LEIBNIZ’ FORMULA FOR =
DEDUCED BY A “MAPPING” OF THE CIRCULAR DISC*

VIGGO BRUN

In this journal I have published an article [1]in 1955: “On the problem
of partitioning the circle so as to visualize Leibniz’ formula for z.” I
began with quoting an interesting remark by Lionardo da Vinci [4]. In
his opinion the art of painting—the art of the eye—is superior to poetry
—the art of the ear—because the eye is a much finer organ than the ear.
He says: “If you, historians, or poets, or mathematicians had not seen
things with your eyes you could not report them in writing.”

I had got theidea to my research by reading an article of lord Brouncker
[2] from 1668, where he gave a “squaring of the hyperbola, by an in-
finite series of rational numbers”, namely the area A under the hyper-
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bola y=1/(1+%), when 2 goes from 0 to 1. Lord Brouncker used the
same bisecting-summation as Archimedes did when he determined the
area of the segment of a parabola. As seen from fig. 1, lord Brouncker
obtained in this way the formula

In my article, I tried to divide in a corresponding manner the circular
disc so that the formula of Leibniz

1
5
could be “‘seen with the eyes”, to use the words of Lionardo. I concluded
my article in this way: “Obviously I have not succeeded in finding an
equally ‘“‘visible” formula for = as lord Brouncker found for In2. It
would surely be of great interest if someone could find a better ““charting”
of the area of the circle to illustrate this “arithmetical formula’ for s,
which certainly is one of the most glorious conquests in mathematics.”

One of the reasons for not succeeding was that I did not know a simple
deduction of the area under the curve y=x" when x goes from 0 to 1.
A closer study of Fermat’s method to calculate this area recently gave
me the idea to use a similar procedure for the circular disc. Fermat [3]
used a section of the interval from 0 to 1 following the terms of a geome-
tric series, with quotient <1.

Let us circumscribe a circle quadrant with radius 1 by a square and
divide the right squareside by the points with ordinates 1,k,k2,...,
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where k<1 (see fig. 2). The calculation of the areas @, in the eighth part
of the circle gives

1-%k k-t 1—k -
Q, = 5 .l+k2”= 5 Er-Y(1—k2n gkt —fsn g ),

valid for £ <1 and n =1, and consequently

1-k
Q= —— (I-R+B k...

1—k
Qs = —— (b-E+I0-E5+...)

1k
O = —— (BB k-1 ...

...............................

A vertical summation gives

it 1-% 1 k2 k4 ‘kﬁ
ran= 2 (1—k_1—k3+1_k5_1_k7+”')
1(1 k2 N It 16 . )
2 1+k+k2 Ldtk+...+k% 14+k+...+k5 ")

Let us also inscribe a “circular saw’ in the eighth part of the circle
(see fig. 3). A calculation of the areas P, gives
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1—k k11—
Pu=— " Typm2~ 2

k kn—-l(l — k2n—2 + k4n-—4 — k6n—6 +.. .) ,

valid for k<1 and n=2. For n=1 we have

1-k

Pi=—5

DO

A similar vertical summation as above gives

it 1-k 1 k2 2 .

) Py =— —k( - —) f

nél " *3 T4 k4l 14kt ... +k |
Clearly

(oo} n o o]
22Pn<:1-<22(2n,
n=1 n=1

where the difference between the upper and the lower bound is

1 k? kA ) 1-k
= — s <

1-%) (=
( )(2 IR NN R S S 2

Using the upper bound, we conclude that

7 N (1 k2 + i kS + )
—=lim({1-— — oo )y
4 1+k+k 1+k+...+k% 14+k+...+k8

and therefore

7 1 1+1 l+
4—‘ g 5 7 e o s

If we compare with lord Brouncker’s “mapping” of his hyperbolian
area, we must admit that our procedure has not led to a division of our
area in parts 1 —§, 3 — %, etc. It was necessary to apply a calculation with
a limiting process.

Let us try to give a geometrical meaning to the terms

—k 1-k
'A'l = —2— (1—](}2), A2 = T (k—ks), ete.

in our vertical summation of @,, which are producing the term 1-—}%
in /4. It is possible to interpret A;,4,,... as trapezoids inside @,

Q- - ..
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In figs. 4 and 5, we have drawn circular arcs with radii ¥* and k*
respectively. For the next trapezoid with area A3 we must draw a
circular arc with radius k8, etc. From fig. 4 we see that

1-k 1-k 1-k* 1-%k
Al = T (X%—x%) = 2 .1+k2 = 2 (l—kz) >

as wanted. We also see that
Yo\
24yt =kt = (—1) , or r, = tglv.
Ty
Likewise we get from fig. 5 that

1-%

PR — b
A2 92 (k k):

and

4
ritys = k8 = (?) , Or r,=tg2v,.
2

Generally we get
2 2 Yn 4 2
ZTpt+Yp=|—), or r,=1tgv,.
x’ﬂ

These equations are independent of k. We can therefore interprete
geometrically the formula

o4 L ®
2 “_2'( _1+k+k2)

n=1
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a8 a sum of trapezoids, all of them having their lower left corner on the

curve (fig. 6)
r = tgiv.

Let us also study the terms giving rise to 3 — % in n/4:

1-%k 1-k
B, = —— (1-k2)k4, B, = — (1 —k*) k8, etce.

We can give these terms in our vertical summation a geometrical inter-
pretation as trapezoids situated between A; and the origin, between 4,
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and the origin, etc. A study of figs. 7 and 8 shows that the trapezoids B,
and B, have the areas we want. Further

T

8
B+ni =1 = (5) » 01 = tghoy

1

8
E+m; = k' = (gj) s 02 = tglv,.
2

In general we can deduce that the lower left corner of B, is situated
on the curve '
r = tglv.

This leads to the conjecture that it is possible to construct a “map”
of the eighthpart of the circular disc by means of the boundary curves

r = tg2v, r = tgtv, r = tgdv, ...
or in cartesian coordinates:

2oty = gt 104 a8y? = g8, aM4al%? = yl2, ete.
¥y =Y Y

1(1 1) 11)
2\5 1/’ (9 11/, e

between parts with areas

1/ 1
2\ "3

1
2

Fig. 9 Fig. 10

It is necessary to verify this conjecture. (See figs. 9 and 10.) For the
area P between the axis and the curves r=1 and r=tg2v we obtain

i

in
1
P = S dv— S tgtody = 3 To—1y),
0

0

[
DO
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where we have introduced the notation
in
I, = S tghvdv .
0

For the area Q between the curves r=tg?v and r=tg*v we obtain

i= 1 in 1
S tg4vdv—-§ S tgdvdv = 3 (L,—1Ig), ete.
0 0

Q =

[ -

It is obvious that I,,,<I, because tg"+lv <tgv in the interval from
0 to m/4. Since

in 1 in 1
t n-1ly(1 2 — toty = —
S g 1o(1+tg2v)dv n‘ g =,
0
we obtain the recursive formula
1
L y+lpn=-.
n
From this and I, >0 we conclude that
lim7I,=0.
n—»oo
Further
1 1
Ina—1Inis = ;z—n—-|-2
and therefore
1 1 1 1 1
Io"—I4 - 1—5, I4—Is = 5—;} ) 18_112 = 5——1—1,..- FY

which verifies our conjecture.

We are now able to draw a “map” of the circular disc (see fig. 11).
Here the four fan-shaped parts together have the area 4(1 — %), the eight
greatest sicle-formed parts the area 4(}—4), the next-greatest sicle-
formed parts the area 4(}—3), and so on. The equations for one set of
limiting curves, in a suitable polar coordinate system, have the very
simple form r=tg?*y, n=1,2,3,....

I suppose that Lionardo da Vinci would have been glad to see this
figure “with his eyes”!
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Fig. 11
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EN ANVENDELSE AF
TEORIEN FOR DIFFERENTIALLIGNINGER
PA ET MEKANISK PROBLEM
(STANGEN DER ALDRIG FALDER)

NIELS MARTIN HANSEN

1. Indledning. Vi betragter en tynd stang, som er frit drejelig i et
kugleled anbragt i stangens ene ende. Lad stangen have lengden a og
massen m. Kugleleddet bevaeges omkring i rummet pa en foreskreven
made. Vi antager, at kugleleddet til tiden ¢ befinder sig i punktet O(%),
som i et fast koordinatsystem med lodret tredie-akse har koordinaterne
(f(®),9(),R(t)). Stangens stilling beskrives i koordinatsystemet zyz, som
er akseparallelt med det faste koordinatsystem, og som har begyndelses-

punktet anbragt i O(t). Stangens position angives ved vektoren r=0_Q>,
hvor @ er stangens andet endepunkt. P4 fig. 1 er indtegnet stangens be-
veaegelse, som den tager sig ud i zyz-systemet, nir stangen er startet i
hvile til t=0 med @ anbragt i P.

(f,9,h)

Fig.1

Vi antager nu, at funktionerne f, g og h er to gange kontinuert diffe-
[82]
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rentiable i intervallet [0,7"], samt (idet G betegner tyngdeacceleratio-
nen) at der findes et positivt tal b, s& at vi for alle ¢ € [0,7"] har:

(1) —mh(t)—mG < —2b < 0.

Sagt med andre ord: Stangen vil stedse merke et tyngdefelt, hvis lod-
rette komponent er nedadrettet og sterre end et fast tal. Vi kan da vise:

SmrNING 1. T4l den foreskrevne beveegelse af O svarer en position, hvor-

—
fra vi kan lade stangen starte i hvile, sdledes at OQ’s z-koordinat er positiv
under hele beveegelsen, og stangen er lodret for t="T.

I [1] er et tilsvarende problem behandlet pa en temmelig intuitiv
made. I [2] behandles helt udferligt det mindre generelle tilfeelde, at
kugleleddet bevages langs en vandret linie, og stangen er bundet til en
lodret plan.

Vi skal i det folgende bevise setning 1. Vi simplificerer forst proble-
met. I stedet for den tynde stang med lengden a og massen m, betragter
vi det @kvivalente matematiske pendul med masse m og pendulleengde
2a. For at fa simple betegnelser tenker vi os m=1, 2a=1 og mG=1.
Det er klart, at disse antagelser ikke @ndrer noget fundamentalt. Be-
tingelsen (1) lyder nu:

(1) —h{t)-1 < =26 < 0.

Vores system er nu reduceret til en partikel med massen 1, som er
bundet gnidningsfrit til enhedskuglen i xyz-systemet. Hvis vi pa fig. 1
opfatter halvkugleoverfladen som den halve enhedskugle, er der pa denne
indtegnet partiklens bevaegelse, som den tager sig ud i xyz-systemet, nir
partiklen er startet i hvile til ¢=0 i P. @ angiver partiklen til tiden £.
Udover tyngden (0,0,—1) vil partiklen ogsi meerke en ydre kraft
K'=(—f(t), —§(t), — h(t)), som hidrerer fra kugleleddets acceleration. Den
totale ydre kraft K er da (—f, —§, —h—1), og K() er kontinuert ifalge
forudsetningerne om f, g og h. Foruden kraften K er partiklen ogsé pa-
virket af en reaktion fra kugleoverfladen. Denne ma vere vinkelret pé
kugleoverfladen; thi partiklen er bundet gnidningsfrit. Reaktionskraften
har derfor formen N(t)r, hvor r er partiklens stedvektor i xyz-systemet.

Vi kan nu opskrive en differentialligning, som beskriver partiklens
bevaegelser:

(2) # = K+ Nr; bibetingelse: 7> = 1.

Ved differentiation af bibetingelsen fas r-#=0 og r+#+4#2=0. Vi har
derfor:
N=Nrr=¢r-Kr=—-ir-K-r,
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Enhver lgsning til (2) mé& derfor opfylde

3) F=EK—(Kr+i?r.

2. Egenskaber ved differentialligningen (3). Det er klart, at enhver
losning til (3), som yderligere opfylder r2=1, er en lgsning til (2). Lig-
ning (3) har imidlertid for passende K lgsninger, som ikke har denne
egenskab. Tag for eksempel en vilkarlig to gange differentiabel kurve
u(t) udenfor kugleoverfladen #2=1. Ligningen (3) bestemmer da med
r=u en funktion K(t), og den differentialligning, man derefter kan danne
med dette K, har blandt andet lgsningen w(¢). Isvrigt har man, at en-
hver to gange kontinuert differentiabel kurve v(¢) pad kugleoverfladen
r2= R? er en lgsning, hvis K(t) veelges lig med &(f).

Vi har imidlertid, at hvis det for en losningskurve geelder, at den tangerer
enhedskugleoverfladen, altsd at der findes et tidspunkt ty, med r*(t))=1 og
#(to) 1(ty) =0, da vil den forblive pd enhedskuglefladen. Dette indses si-
ledes:

Antag v(t) er en losning til (3) i intervallet [t,,f,] med v%(t)=1 og
b(ty) v(t,) =0. Af (3) fas #-r=K-r—>r2—K-rr?, som let omskrives til

a2

d—tzrz = 2(K-r+7r?)(1—1%).

v?%(t) skal altsd opfylde differentialligningen
y"' = wit)(l—y), hvor w(t) = 2(K-v+9?.

Eksistens- og entydighedssetningen kan anvendes pa denne ligning i
intervallet [t,,t,]. Den konstante funktion y=1 er en lgsning, som natur-
ligvis er 1 for ¢=t,, og som har y'({,)=0. For v%(t) gelder v%({,)=1 og

d
(Evz=2v-i7=0 for t=t,. Entydighedssetningen giver da »*=1 i inter-
vallet [#,,t,].

Vi vil nu vise, at enhver losningskurve, der forlober pd kuglen, kan fort-
scettes hem over hele intervallet [0,T]. (Dette er selviglgelig klart ud fra den
fysiske situation, men det er dog meget rart at vise det direkte ud fra
differentialligningen.)

Lad v(f) veere en lgsning til (2) i intervallet [0,7]. Lad [o| antage sin
storsteveerdi i [0,7] for t=t,. Idet vi udnytter at v-®=0, far vi af (2):

d
¥ v=K-v, hvoraf (—i—ti;2=2K-i;. Derfor har vi
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ty
W(ty) = SzK-i;dt+i;2(0) :
0
Idet vi setter sup {|K(¢)| |t € [0,7]}=4, har vi
to
S 2K bdt -+ %(0)
0

[0%(t)| = < 2ty A - [ty +8%(0) -

Derfor gelder:

v%(0)

|b(te)]

Svarende til lgsningen v kan vi derfor finde et positivt tal P, s |o(t)| < P

er opfyldt i ethvert interval, hvor v er defineret.
Lad D vere mengden

0@, £ 2T-4A+

{(ry,rot) ERT |1y, €3 A 1| S 2 A |1y S P AO0OSESTY.
Ligning (3) kan ogsa skrives
(4) =1y iy = K—(K-7rp+72)ry .

For funktionen F=(r,, K—(K-r,+r,?)r,) gelder, at F og denne funk-
tions partielle afledede efter koordinaterne af r, og r, er kontinuerte og
begrensede pa D. Heraf folger, at v(t) kan fortseettes til randen af D.
Da v(t) a4benbart mé forblive i D, kan v(¢) derfor fortsaettes henover hele
intervallet [0,7']. (Se f. eks. [3] eller [4].)

P4 (4) kan vi anvende setningen om lgsningernes kontinuerte afhzngig-
hed af begyndelsesbetingelserne (se [3] eller [4]): Lad u(f) og v(f) vere
lgsninger pa kuglen i intervallet [0,7']. Antag yderligere at %(0)=»(0)=0.
Lad &> 0 vere givet. Da findes > 0 saledes at

(5) [u(0) —v(0)] < & = |u(t)—v(t)| < ¢ for alle £ [0,7'].

3. Bevis for saztning 1. I det folgende identificerer vi, som vi ogsa har
gjort hist og her i det foregdende, uden videre punkter og vektorer med
deres koordinatsat, og symbolet ‘¢’ kan da bade betyde en vektor » og
det punkt, hvis stedvektor er ». Med r, betegner vi z-koordinaten for
punktet r. Halvkuglefladen {re R3 |72 = 1 A 7,20} kalder vi S. Rand-
kurven {r e S |r,=0} for denne flade kaldes C (se fig. 1).

Vi kan nu g i gang med at bevise setning 1. Hertil konstruerer vi
forst en afbildning @: § 8. Det sker pa folgende méde: Lad PeS.
Med u, betegner vi den lgsning, som starter i P til t=0 med 4,(0)=0.
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Vi skelner imellem tre tilfeelde:

(a) u, skeerer aldrig C.

(b) u, skaerer C for t<T'. Lad #, vere det mindste ¢ € [0,7'], for hvilket
punktet w,(f) ligger pa C.

(¢) u, skzrer ikke (' for {< 7', men endepunktet u,(7") ligger pa C.

Vi definerer nu:
u,(T) i tilfelde (a)

D(P) = {u,(ty) 1itilfeelde (b)
u,(T) i tilfeelde (c) .
Afbildningen @ er, som vi skal se om lidt, surjektiv. Det betyder, at
vi til ethvert punkt P, € S\ C kan finde et punkt P € 8, sdledes at los-
ningen u,, som starter i P med 4,(0) =0, helt forlgber i meengden S\ C

og ender i P, for {=T. Men heraf far vi abenbart setning 1, idet vi vel-
ger P,=(0,0,1). Vi kan endda fa et lidt kraftigere ssetning:

SmrNiNG 1'. T4l den foreskrevne bevagelse af O og et punkt P,e S\ C
svarer en position, hvorfra vi kan lade stangen starte ¢ hvile, siledes at

—_

OQ’s z-koordinat er positiv under hele beveegelsen, og stanger peger i ret-
—>

ningen OP, for t=T.

Vi skal altsa blot se at f& bevist, at @ er surjektiv. Hertil skal vi bruge
folgende hjeelpesztning:

Lemma. Lad @ vere en kontinuert afbildning af S ind ¢ S, sdledes at
punkterne 1 C er fixpunkter. Da er @ surjektiv.

Bevis: Beviset forlgber indirekte. Antag at @ ikke er surjektiv. Da
findes et punkt P e .S, som ikke er billede ved ®@. Abenbart gzlder at

P ¢ C. Vi kan da definere en afbildning p: S\ {P} - C, som er en slags
centralprojektion med centrum P af S\ {P} langs storcirkler gennem P

ned pa C (se fig. 2).

Fig.2
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Afbildningen p er kontinuert og punkterne i C er fixpunkter. Vi be-
trakter nu den sammensatte afbildning po®: § — C. Punkterne i C er
fixpunkter for denne afbildning. Nu er § homeomorf med en cirkelskive,
som derfor ma kunne afbildes kontinuert pa sin rand ved en afbildning
T, sa randpunkterne er fixpunkter. Men det er umuligt, idet vi da let kan
definere en kontinuert afbildning uden fixpunkter af cirkelskiven ind i
sig selv, (efter at have anvendt afbildningen 7' roterer vi cirkelskiven
f. eks. 90°). Vi er dermed kommet i modstrid med Brouwers fixpunkt-
stning, som siger, at enhver kontinuert afbildning af en cirkelskive ind
i sig selv har et fixpunkt. (Se f. eks. [5] p. 194.) ‘

Vi er nu feerdige med beviset for lemmaet og kan sa tage fat pa at vise,
at funktionen @ er surjektiv. For @ gelder abenbart, at @(P)=P, hvis
P tilhgrer C. Punkterne i C er altsa fixpunkter. Vi er derfor feerdige, nar
vi viser, at @ er kontinuert, idet dette sammen med lemmaet sikrer, at
@ er surjektiv. Beviset for kontinuiteten kunne vi have gennemfort for-
leengst, men vi har gemt det indtil nu, da det er en smule teknisk. For et
vilkarligt udgangspunkt P for kurven har vi tre tilfelde at undersgge,
eftersom vi er i tilfeelde (a), (b) eller (c).

Tilfeelde (a): Lad ¢>0 vere givet. Mengderne
C={reR|r=1rr=0} og {u,)|te[0,T]}

er kompakte, og da vi er i tilfeelde (a), er de disjunkte. Deres afstand d
er derfor positiv. Vi setter ¢’ =4 min{e,d}, og ifelge (5) kan vi velge
0>0, saledes at vi for alle £ € [0,7] og enhver lgsningskurve v(¢), hvor
©(0)=0, har

(6) [u,(0)—2(0)] < 0 = |u,(t)—o(t)] < & .

Specielt gelder |u,(T)—v(T)| <&’ <e. Vi har da dels vist, at lgsninger v,
hvor |u,(0) —v(0)| <4, falder i tilfeelde (a), og vi har vist, at @ er kontinu-
ert i tilfaelde (a).

Tilfelde (b): Lad ¢, veere det mindste ¢, for bvilket w,(t) e C. Der
geelder at t,<7. Differentialligningen (3) giver, nar vi kun betragter
z-komponenterne: # = —h—1—(#>+K-r)z. Ifolge uligheden (1) gwlder
—hit)—1< —2b<0 for alle ¢ € [0,T]. Heraf folger, at vi kan velge &> 0,
sdledes at |2|<k =2 < —b<0. Det betyder, at z({) er nedad konveks
i omegnen af t,. Pa fig. 3 er funktionen z(t) skitseret, og vi ser, at z er
negativ i et interval J¢,,t,].

Lad nu &> 0 veere givet. Vi valger ¢, siledes, at z-koordinaten af u,(t)
er negativ i intervallet J¢y,¢,]. Meengderne
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\\to .
. \

Fig.3

{reC||r—u,t)| 2 ¢ og {u,(t) | t € [0,2,]}

er kompakte, og da vi er i tilfelde (b), er de disjunkte. Deres afstand d
er derfor et positivt tal. Ganske tilsvarende har vi, at mengderne {u,(¢,)}
og C er disjunkte og kompakte. Deres afstand e er derfor positiv. Vi setter
¢'=4 min{d,e} (se fig. 4).

e-kugle

¢'-kugle

Fig. 4

Vi valger nu 6> 0, siledes at for alle ¢ € [0,7'] og alle lgsninger v(¢),
hvor $(0)=0, er (6) opfyldt. Til tidspunktet ¢ er z-koordinaten for v
negativ. Derfor mé o(t) skeere C til et tidspunkt ¢ for ¢,, og dette ma ske
indenfor e-kuglen. Thi w,(t) har jo for ¢ € [0,#,] stedse en afstand til punk-
ter i {r e C | |u,(ty) —r| 2 £}, som er storre end ¢’, og v skal holde sig i en
afstand &’ fra u,. Derfor er @ kontinuert i punkter, der hgrer under (b).

Tilfeelde (c): Lad &> 0 veere givet. Tilfzelde (c) er som for nevnt karak-
teriseret ved, at u, ikke skarer C for <7, men endepunktet wu,(7")
ligger pd C. Vi veelger nu ¢, <7 s |u,(t)—u,(T)| < e for te[t,T].
Mengderne C og {u,(t) |t €[0,t,]} er kompakte og disjunkte. Deres af-
stand d er derfor et positivt tal. Vi satter ¢’ =4 min{d, e} (se fig. 5).
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e-kugle

Fig. 5

Vi velger 6 >0, saledes at for alle ¢ € [0,7'] og enhver lgsning v, hvor
©(0)=0, er (6) opfyldt. Indtil tidspunktet ¢, er z-koordinaten af »
ikke 0, og for t€[t;,T] geelder |u,(f)—v(t)| < }e, s& v(¢) derfor tilhgrer
{reS||r—u,T) <&} for t€[t,,T]. Men s& har vi vist kontinuitet i til-
feelde (c). Vi er dermed fwerdige med beviset for, at afbildningen & er
kontinuert.

4. Bemarkninger. Vi har indskreenket os til at betragte et endeligt
interval [0,7']. Antag nu, at det hele er defineret for ¢e[0,co[. Da findes
en startstilling, s& stangen altid bevaeger sig i {r € B3 | r,>0}. (Dette er
ogsd bemeerket i [1].) Vi vzlger nemlig en folge (¢,) hvor ¢, — oo, og
hertil startstillinger (P,), saledes at for ¢=t, vil stangen st& lodret, hvis
den er startet i P,. Meengden {r € R3 | r2=1 A 7,2 0} er kompakt. Folgen
(P,) har derfor et fortetningspunkt P,. Man indser let, at hvis stangen
startes i dette punkt, vil den altid bevage sig i mangden {r € E? | r,> 0}.

Man viser let, at hvis (f(¢),§ (), A(t))=0 for t= T, da kan vi vzlge en
startstilling, s& stangen enten star lodret i hvile for {=17" eller narmer
sig asymptotisk til lodret for ¢ — co. (Dette er ogsd bemarket i [2].)

Lad os endelig nzvne, at det er let at give eksempler pa, at setning 1
er forkert, hvis betingelsen (1) ikke er opfyldt.

I det foregiende har vi undersegt differentialligningen (3). Ingen
steder har vi pa vesentlig made udnyttet, at r € R3. Derfor kan det hele
generaliseres til R". Vi betragter da igen ligning (3), men antager nu, at
r e R, Lad for eksempel koordinaten r, svare til z-koordinaten fra for.
Vores kugle er nu den n-dimensionale enhedskugle, og alle resultaterne

NMT, Hefte 3, 1970.~ 7




90 NIELS MARTIN HANSEN

gelder for en vilkarlig dimension. Selviglgelig ma vi for de hgjere dimen-
sioner opgive en mekanisk interpretation af resultaterne, som blot bliver
udsagn om differentialligningen (3).
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N ENKEL BEREGNING AV ké: o

FINN HOLME

Summen Z7° k~2 beregnes i analysebgkene gjerne ved & benytte teo-
rien om Fourier-rekker, eller ved betraktninger over rekkeutvikling av
visse trigonometriske funksjoner, f.eks. av m cotgzmz. At ovenstiende
sum lar seg beregne ved hjelp av godt utviklede teorier er vel ikke over-
raskende, men det viser seg at summen lar seg beregne av en god gym-
nasiast med kunnskap om Moivres formel.

Denne formel sier jo at

(cosp+1 sing)™ = cosng+1 sinng ,
som sammen med Newtons binomialformel gir
. n\ . 1 n\ . 4 3
sinng = (| ) sing cos™1p— g ) sin’g cos™Bp ...,

Erstattes her n med 2n+1, far vi

2n+1\ . 2n+1\ .
sin(2n+1)p = ( n1+ ) 81nq)cos2”<p——( n;— ) sin3p cos?—2p 4 ...

= [(27&:- 1) (Ootg2¢p)n_ (2n;- 1) (cOtgz(P)n—l +.. ] Sin2"+1(p .

kr
Setter vi na (p=<pk=m (k=1,2,...,n), s viser dette at x, =cotg2g,

(k=1,2,...,n) er rottene i ligningen

(2”'1—*—1) x”—(?ng_l) vy 0 =0.

Betrakter vi spesielt summen av rettene, blir derfor

7T 27
1 cotg? cotg? ——— 4 ... + cotg?
(1) g2n+1 g2n+1 + g2n+1
(2n+ 1) ) <2n+ 1) n(2n—1)
“\ 3 /J'\1 /)" 3

[o1]
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Na ser vi at alle vinklene g, er spisse, og dermed gjelder som kjent
ulikheten tgq; > @ > singy, eller

cotg?p, < @2 < (sing,)~2 = 1+cotg?ey, kE=12,...,n

Summasjon av ulikhetene gir

20017% P < 2%_2 < n+200tg Pk >

k=1
eller av (1):
n(2n—1) (2n+ 1)2 Z”,_l_ 2n(n+ 1)
3 Pl 3’
som da gir
@) 2n(2n—1) .nz i | 2n(2n + 2) .nz

_—— < —_— < ———.
(2n+1)* 6 Pl (2n+1)%2 6

Og dermed folger straks det velkjente resultat at

Samtidig kan vi approksimere den endelige sum ved middelverdien av
ytterleddene i (2): '
"1 p(dn+1) a
3N

K (2n+1)2 6
med en feil som er mindre enn den halve differens mellom ytterleddene:
n A
—_—— e < —.,
(En+1)2 2 8n

Av (2) folger for gvrig ogsd den enklere men ungyaktigere tilnsermelse
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ET APROPOS TIL FINN HOLMES ARTIKKEL

ERNST S. SELMER

I den foregdende artikkel gir Finn Holme et elegant og overraskende
enkelt bevis for den kjente formel

© 1 72
25"

 Holme utnytter Moivres formel, kombinert med sammenhengen mel-
lom koeffisienter og retter i en algebraisk ligning. Det samme prinsipp
har jeg tidligere brukt i mine forelesninger »Algebra, tallteori og gruppe-
teori¢ (stensillert, Bergen 1965) for & bevise en annen kjent formel:

: n1 kn\ sinng
1 _
o fan(r ) -

Personlig har jeg ihvertfall ikke sett mitt bevis noe anilet sted.
Realdelen i Moivres formel

(cosp+1 sing)?™ = cos2ne +1 sin 2ngp

gir ved hjelp av binomialformelen umiddelbart

L 2 . .
‘cos2np = cos?p— ( ;) cos2n—2p smztp-l-‘. .. +(=1)"sin®>"¢p

= (1—sin?g)n— (2;") (1—sin2g)*1sin?p+ . . . +(—1)» sinrg .

For gitt cos2np kan vi oppfatte dette som en ligning for x=sing av
grad 2n:
(2) A+ a,x?m 24 . tay, =0,

som tydeligvis har rottene
i ( +2kn) i ( +kn) k=0,1 2n—1
x; = sin — ) =sin —1 =0,1,...,2n—1.
k ? 2n ¢ n

Ved & gi k et tillegg pa n, altsd vinkelen et tillegg pa 7, ser vi at rottene
[93]
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forekommer i par med motsatt fortegn (ligningen (2) inneholder bare
jevne potenser av ). Rettenes produtk er derfor lik

(=1 (;]ZI: sin (¢+%))2.

P4 den annen side er dette produkt lik

Qo 1—cos2ngp _ 2 sin?ng — (=1 sin®ne

“ (—1)» [1+(2;)+(2f)+...] (—1)n2ent

Ved & sette de to uttrykk for produktet lik hverandre og ta kvadrat-
roten, far vi nettopp formelen (1). — At vi har valgt riktig fortegn for
kvadratroten, ser vi ved & innsette for ¢ en vinkel mellom 0 og =/n.
Alle de opptredende sinuser blir da positive.

Forste faktor i (1) er sing. Vi dividerer med denne faktor og lar ¢ — 0,
idet vi bemerker at

sinn sinng sin
lim ¢=lim(nJ:~£)=n
ne ']

92n-2 *

¢—>0 Sin(p >0
Ved grensen far vi derfor formelen

ok n

’-‘!;_I::l Sm; = Eﬁ,
som ogsd er velkjent. Formelen er mindre komplisert enn (1), og det
finnes andre og enklere bevis. Man kan f.eks. spalte opp (2" —1)/(x—1)
i reelle annengradsfaktorer (samt i tillegg faktoren z+ 1 nar » er jevn),
og sette x=1 i det fremkomne.
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EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen véren 1970 pad de
matematiske gymnaslinjer i de nordiske land, samt tilvalgsfag matematikk ved
Hojere forberedelseseksamen i Danmark.

DANMARK
I alle st m& kun én af opgaverne 3a og 3b afleveres til bedgmmelse.

Matematisk-fysisk gren.
I.
1. I en orienteret plan er givet to vektorer @ og b, for hvilket det gelder, at

lal =1 og b =2a.

I det folgende betegner R mangden af reelle tal og N maengden af hele positive tal.
Bestem mangden M, af tal ¢ € R, for hvilke det gelder, at

ta+b| = 6.

Bestem mengden M, af talset (s,f) € R x R, hvor (s,t) +(0,0), for hvilke det
geelder, at
sa+tb | a-b.

Bestem mangden M, af talset (s,t) € R x R, for hvilke det gelder, at
(s+la+b | a+(t+1)b.
Bestem mangden M,, hvor
My =M,NnM,.
Bestem meengden M, af talset (s,t) € N x N, for hvilke det gelder, at
(s, t)eM, A 0 < |sa+tb| < 10.

2. En funktion f er for reelle tal  bestemt ved

|z —z — 6|

@) = —-
x

Underseg f og dens graf med hensyn til definitionsmengde, nulpunkter, fortegn,
monotoniforhold og asymptoter. Tegn grafen.
Linjen ! har ligningen
y=3x+1.

Bestem koordinatszttene til de punkter, der er fxlles for ! og grafen for f.

[103]
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Beregn arealet af den punktmeengde i ferste kvadrant, der er bestemt ved

{@y) |flx) Sy = Jz+1}.

3a. I planen er valgt et koordinatsystem. Desuden er der givet folgende afbild-
ninger af planen pa sig selv:

[ er den rette affinitet med forvandlingstallet § og linjen med ligningen z —4 =0

som affinitetsakse,

g er spejlingen i linjen med ligningen z —y =0,

h er parallelforskydningen bestemt ved vektoren a(—3, —1).

Bestem koordinatszttet til punktet P, sdledes at h(g(P)) =f(P).

Bestem en ligning for punktmsengden k(g(f(L))), hvor L er linjen med ligningen

r—y—2=0.

Bestem en ligning for den punktmengde M, for hvilken det galder, at
h(g(f(M)))=C, hvor C er punktmengden med ligningen

2?2 +y?+6r—2y+6 =0.

3b. P4 en virksomhed med 100 medarbejdere skal 2 udtages til en s@rlig opgave.
Udtagelsen foregir ved lodtrakning, hvor alle har samme chance for at blive valgt.

Netop 3 af de 100 medarbejdere er verkfarere. 1) Find sandsynligheden for, at
ingen veerkforer udtages. 2) Find sandsynligheden for, at mindst én verkferer
udtages.

Netop n af de 100 medarbejdere er kvinder. 3) Bestem, udtrykt ved n, sand-
synligheden for, at mindst én af kvinderne udtages. 4) Bestem det mindste antal n,
for hvilket denne sandsynlighed er storre end 1.

II.
1. Los inden for mengden af komplekse tal ligningen

2% + 22% — (3 + 2¢)x + 44 1
2x% — (3 + )z + 3¢

Los inden for mengden af komplekse tal ligningen

28+ (6 —2)22 —2ix —8 + 42
2% — (3 +2¢)x + 33

idet det oplyses, at denne ligning har en reel losning.

2. T et koordinatsystem i rummet er en linje ! bestemt ved parameterfremstil-
lingen
(2,y,2) = (=3 +48, %, —7+31).

Den retvinklede projektion pd linjen I af punktet 4(4,1, —3) kaldes S. Bestem
koordinatsettet til S.
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Bestem koordinatsettet til punktet C, sdledes at S er midtpunktst af linjestyk-
ket AC.

Linjestykket AC er diagonal i et kvadrat ABCD, der ligger i en normalplan n
til /. Bestem koordinatszettene til punkterne B og D.

Bestem koordinatsettet til den retvinklede projektion pd =z af punktet
T(-8,1, —12).

Beregn toplansvinklerne langs kanterne i grundfladen 4ABCD i pyramiden
T —-ABCD.

3a. Lad f veere en i et interval [a; b] defineret og differentiabel funktion, og lad
den afledede funktion f’ veere kontinuert i det samme interval. Lengden s af
grafen for f er da bestemt ved formlen

b
s = S V1+f (2)2de .

a

En funktion g er bestemt ved
g(x) = Insinz, z € [3n; ia].

Beregn lengden af grafen for g. :
For ethvert reelt tal a sterre end % er en funktion h bestemt ved

hiz) = 2%,  xe[b;al.

Beregn tallet a, siledes at leengden af grafen for h er £l

3b. I et koordinatsystem i planen er givet cirklen C; med ligningen
z?2+y*+8x—8y+31 =0.

Ved en multiplikation med 2 ud fra et punkt @ pé forsteaksen efterfulgt af en
drejning om @ afbildes C, pé en cirkel C,, der har centrum i punktet P(9,0).
Bestem en ligning for C,.
Bestem koordinatszttene til de punkter @, der har den angivne egenskab.
Bestem for ethvert sddant punkt @ gradsterrelsen af drejningsvinklen.

Samfundsfaglig og naturfaglig gren.
1. Bestem de reelle tal x, der tilfredsstiller uligheden

22 —Te +21
x

IIA

3.

Bestem de reelle tal z, der tilfredsstiller uligheden

1+logx <

logx

Bestem de reelle tal z, der tilfredsstiller mindst én af de naevnte uligheder.

NMT, Hefte 8, 1970.— 8
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2. En funktion f er for reelle tal  bestemt ved

z
x2—1

fl@) =4z —

Undersog f med henblik p& definitionsmengde, nulpunkter, fortegn og monotoni-
forhold.

Bevis, at grafen for f har tre asymptoter. Tegn grafen.

Bestem arealet af den punktmangde i forste kvadrant, der begranses af grafen
og linjen med ligningen 5x — 3y =0.

3a. Tre krukker I, IT og III indeholder henholdsvis 4, 5 og 4 kugler: I inde-
holder 2 rede og 2 bl& kugler, II indeholder 1 red og 4 bla kugler, III indeholder
4 rede kugler.

1) Fra en tilfzldigt valgt krukke tages tilfeldigt en kugle. Find sandsynlig-
heden for, at kuglen er red.

2) Fra en tilfzeldigt valgt krukke tages tilfeldigt to kugler. Find sandsynlig-
heden for, at begge kugler er rode.

3) Fra en tilfzldigt valgt krukke tages tilfseldigt to kugler, som viser sig at veere
rede. Find sandsynligheden for, at kuglerne blev taget fra krukke III.

4) Fem gange udferes folgende: Fra en tilfeeldigt valgt krukke tages tilfzeldigt
en kugle. Kuglens farve noteres. Kuglen legges tilbage i den krukke, hvorfra den
blev taget. Find sandsynligheden for, at der skiftevis tages en kugle af den ene
farve og en kugle af den anden farve.

3b. I planen er valgt et koordinatsystem med begyndelsespunkt O. For ethvert
reelt tal a, hvor a+ 0, fremstiller ligningen

y = ax®—2a%c +a®+a—1

en parabel P,. Tegn i det valgte koordinatsystem parablerne P, P; og P—,.
Angiv, udtrykt ved a, koordinatsmttet til toppunktet T'q for parablen P, og
tegn i det valgte koordinatsystem mengden af toppunkter.
Find en ligning for den parabel P, hvis toppunkt har mindst afstand fra O.
Bestem mzngden af de tal a, for hvilke det gelder, at afstanden fra punktet

E(0,1) til Ty er mindre end J/10.

Hojere forberedelseseksamen.
Tilvalgsfag matematik.
1. Nedenstéende figur viser en ligebenet trekant, hvori der er indskrevet et

kvadrat med sideleengden 2. Vinklerne ved grundlinjen er v.

2 +tgv)?
( gg)_ . Beregn arealet, ndr v =72,1°. Beregn

Bevis, at arealet af trekanten er
gV

v, nar arealet er 10,86.
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2. En funktion f er for reelle tal  bestemt ved
f@) = Vz(3-x).

Undersog funktionen med henblik ps definitionsmengde, nulpunkter, fortegn og
monotoniforhold.

Tegn det grafiske billede af funktionen. Vis, at det grafiske billede har en tangent
(halvtangent) i koordinatsystemets begyndelsespunkt.
Los uligheden

iz < f(z). ‘

\

Beregn arealet af den punktmangde, der er bestemt ved ‘
{@y) | ~dz sy =f(@@)}.

3a. Les for ethvert reelt tal a ligningssystemet ‘

ax?+2y =a+2
82 tay = 4
med hensyn til (z,y).

3b. I maengden af positive reelle tal Ry er en komposition * bestemt ved

xy

TrY = ——.
Var 4 y2

Beregn 3*4, (3%4)%5 og 3x(4x5).
Bevis, at funktionen f fastlagt ved
1
f(m) == z € Ry
x?

er en isomorfi fra (R,,*) til (R4, +).
Bevis, at den associative lov gzlder for (R4,*).
Bevis, at (R4,*) ikke har noget neutralt element.

FINLAND
Lingre kursen.

1. Bestim a och b s, att f(x) =ax* + ba® uppfyller villkoren f (1) = 4 och f/(2) =28.
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2. Bestdm de polynom av tredje graden med heltaliga koefficienter vilkas noll-
stillen dr %, ¥ +2¢ och § —2¢.
3. Bestdm

I r—4
m
z->4 2—1/;

4. Los den ena av foljande uppgifter:

a) En cirkel gr genom tva hérn i en kvadrat och tangerar en av dess sidor.
Berikna forhallandet mellan cirkelns radie och kvadratens sida.

b) Vektorerna a, och a, uppfyller villkoren |a,| =|a,| =a och a,-a, =0. Bestdm
konstanten % s8, att vektorn »=}a, — (1 —k)a, har lingden ka.

5. Man vet att f'(z) = och f(1) =1. Berékna f"’(2) och f(2).

3xr—2

6. Bestdm orten for de punkter vilka har samma avstdnd till z-axeln och cir-
keln 22 +42%=1. Rita figur.

7. Talen i rickan a,=1, @y, a3, . . ., n, . . . bildar en konvergent geometrisk serie
med summan 10. Berikna (exakt) summan av de hundra férsta talen i rdckan

loga,, loga,, logas, . . ., logan, ... (basen=10).

8. Undersék vilka virden funktionen

y=+V2x+l+a?

antar d& —1=<x=3.

9. Visa, att for 0 <x <n/3 giiller tanz < 2.

10. I tetraedern ABCD ér AC =BC =AD =BD =s. Vilken ér tetraederns storsta
mojliga volym?

11. Betrakta alla funktioner y =f(x) med foljande egenskaper: f(0) =1; f(2) =4;
i intervallet 0 <z <2 giller 0<f’(z) <2. Bestdm med st6d hérav mojligast trénga
grinser for virdena f(1). Ange en funktion av det n#mnda slaget fér vilken f(1)
sammanfaller med den ovan erhallna undre grénsen.

12. M4 E vara ett éndligt utfallsrum med en given sannolikhetsfunktion P, och
mé A och A vara tvé komplementira hindelser i detta rum. Bevisa att P(A)=
1-P(A).

Vilken #r sannolikheten for att tippa &tminstone en match ritt vid slump-
missig tippning av en kolumn med tolv matcher (alternativ 1, x och 2)?

Endast tio uppgifter far behandlas. Uppgifterna 11 och 12 fordrar kunskaper
utéver den egentliga skolkursen.
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ISLAND
(Mentaskoélinn vid Hamrahlid.)
I.

1. Bestem for folgende talmeengder gvre og nedre grense, hvis sddanne findes:

2n
A={an|an=————,neN}, B={x
n+1

5—x
>1, xeR;.
z?2—1
2. Bestem nuipunkteme for polynomiet
P(z) = 2022+ (2—-5:)2—1+2¢,

og dan et tredje grads polynomium @(z) med reelle koefficienter, siledes at P’s
nulpunkter ogsé er nulpunkter for Q.

3. Bestem alle lgsninger til ligningen
2+ 42422 42+1 =0,

Skriv redderne pé formen a +b (a og b reelle tal) og tegn deres graf.

4. a) For hvilke hele tal a findes der en lesning til

22 = a (mod9)?
b) Bestem losningerne til
22 +4x+3 = 0 (mod9)
og
22— z—8 = 0 (mod9).

c) Vis, at restklasserne 1, 2, 4, 5, 7 og 8 (mod9) danner en gruppe G' overfor
multiplikation (den associative lov behever ikke at eftervises).

d) Vis, at G er cyklisk og bestem dens frembringere.

o) Bestem en undergruppe i G med 3 elementer.

~ &. Givet funktionen
v f(x) = cos®x —sin?x cosz (0= =2n).
x

Beregn vardierne af f’(x) og S f(t)dt (for det nulpunkt z i f, som ligger naermest 2x).
0

6. Ligningerne for linierne I og m er

l: 3z—y =0
m: x+2y—1=0.

Lad m, betegne m’s spejlbillede i I. Bestem ligningen for m;,.
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II.
1. Givet linierne

= {@y) | 20+3y=0}, m = {(@wy)|o=3+;, y=2+at}.

For hvilke verdier af a er m vinkelret pa ?

Bestem ligningen for en linie n, som gir gennem punktet (3,2) og danner en
vinkel p& 45° med I. (Hvor mange lgsninger ?)

2. I et koordinatsystem i planen er der givet punktet A4, —3).
a) Bestem koordinaterne for punktet B, séledes at OB 30A.

b) Bestem koordma,teme for punktet D, saledes at DB %AD.
c) Beregn AB OB

d) Beregn AB OD samt den spidse vinkel mellem OD og AB.
e) Bestem skzringspunktet mellem liniestykkerne 4B og OD.

3. En ellipse har sine brzendpunkter i ( +4,0) og toppunkter i (+5,0). Bestem
ellipsens ligning samt ligningen for dens tangent i punktet P(4, 9.
Vis dernzst, at ligningen

15222 — 20%y? = 482

er ligning for en hyperbel, som skzrer ellipsen i punktet P. Bestem vinklen mellem
tangenterne for ellipsen og hyperblen i P. Tyder din tegning (med brendstréler)
p& nogen regel angéiende skeringen mellem ellipse og hyperbel med felles brend-
punkter?

4. Bestern maxima, minima og asymptoter for kurven

2 _
F ={(x’y) Iy = x——_z‘—‘m},
z—1
og tegn den i hovedtrzek.
Find ligningen for kurvens tangent i (2,5).
I hvilket forhold deler reringspunktet liniestykket, som asymptoterne skrer af
tangenten ?

Beregn arealet af det omrade, som begrenses af F, den skeve asymptote samb
linierne =2 og xz=4.

5. Tegn graferne for funktionerne
f@) = }la?—4| -} ~2), gl) =[1-}a]

indenfor intervallet —4 <x <4.

Beregn f 0g(2) og g of(2).
Hvor indenfor intervallet er f og g a) kontinuerte, b) differentiable ?
4

Beregn f’(x) og S g(x)dex.
-4




OPPGAVER 111

6. (Velg enten a) eller b), ikke begge dele.)
a) Bevis, at
sin (2n 4 1)t —sin ¢

cos 2t +cosdt+cosbt+ ... +cos2nt = .
2 8int

14
og fremsaxt en tilsvarende satning om
sin2¢ +sin4t+sin6t+ ... +sin2nt .,

b) Angiv definitionen af [x] samt dens definitionsmaengde og vaerdimangde.
Vis at hver af de to funktioner, [x]+[—x] og [#] —2[$«], kun kan tage to for-
skellige veerdier.

NORGE

Reallinjen.
1. a) Likningen
2 +px?+gr+r =0

har rettene x,, z, og x;. Finn koeffisientene p, ¢ og » uttrykt ved z,, z, og .
b) I likningen
2 —1622+(2a+3)x+3a = 0

er den ene roten tre ganger summen av de to andre rettene. Finn a og rettene i
likningen.
¢) Skriv regelen for & opphaye en potens i en potens.
Finn ¢ av likningen
e — 162t + 43¢t +60 = 0,

der e er grunntallet i det naturlige logaritmesystemet.

2. Vis at
8in3v» = 3 8inv—4sindv.

I trapeset ABCD, der CD er parallell med 4B, er AB=5a, BC =3a, CD =2a,
£ BAC=v og £ BCD=4v. Vis at sinv=§l/§.

Konstruer trapeset ved forst 4 konstruere vinkelen v. Bruk a =2 cm ved konstruk-
sjonen.

Regn ut AC og AD uttrykt ved a.

Vi trekker en linje gjennom punktene 4 og D og en linje gjennom punktene B
og C. De skjerer hverandre i E. Vis at AE =Ya.

En sirkel gér gjennom C og E og tangerer AB i G@. Denne sirkelen skjzrer siden
AD i et punkt F. Finn AQ@ og AF uttrykt ved a.

3. Parabelen 2% —4y =0 er gitt. Finn likningen for tangenten i punktet P(z,,y,)
pd parabelen. Trekk en rett linje p fra origo vinkelrett pd denne tangenten, og
en rett linje ¢ gjennom P parallell med z-aksen. Kall skjeringspunktet mellom p
og q for 8. Nar P flytter seg p4 parabelen, tegner S en kurve K. Vis at K har lik-
ningen

y =3,
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Er denne kurven symmetrisk om noen av koordinataksene ?

Sett f(x) =223, Regn ut f'(x) og f’'(x). Droft fortegnet for disse tre funksjonene
nar z varierer. Hvordan gar det med f’(x) nir x — 0, nadrx —o0o ogndrx — —oo?

Tegn den gitte parabelen og kurven K ph millimeterpapiret med 2 cm som en-
het pd begge aksene.

Regn ut det arealet i 1. kvadrant som er avgrenset av parabelen og kurven K.

PROVEPENSA.

For eksaminander med provepensum i differensiallikninger var oppgave 3
erstattet av folgende:

3. Vi har gitt differensiallikningen
(x=3)y —y = 2(x—3)%z+1), r<3.

Bestem den fullstendige lesningen til differensiallikningen.
Vis at likningen for den lesningskurven som har maksimalpunkt pa z-aksen,
kan skrives
y = @+1)2z—3).

Bestem eventuelle nullpunkter, maksimalpunkter og minimalpunkter til denne
funksjonen.

Framstill funksjonen grafisk.

Bestem ved hjelp av grafen det tallomradet & tilhorer nar to av rottene i lik-
ningen

(w+1)2(x—-3) =k

er a) positive, b) negative.

Bestem k slik at likningen far to forskjellige reelle rotter, og finn disse rettene.

For eksaminander med prevepensum i vektorregning var oppgave 2 erstattet
av folgende:

2. a) Bruk vektorregning til & bevise folgende setninger:
1) Summen av kvadratene p& diagonalene i et parallellogram er lik summen av
kvadratene pd sidene.

—_ =

- - —

2) Firkanten ABCD er en rombe => AB-BD+AD*=AB-AD.

b) I et ortonormert koordinatsystem er det gitt en rombe ABCOD. Punktet A
har koordinatene (1,0), punktet B har koordinatene (6,5), og

- >
AB-BD = —-20.

Finn koordinatene til punktene ¢ og D og vinklene i romben.
— —
c) Det er gitt en rombe ABCD. Merk av et punkt P p& BC slik at BP =f -PC,
—_

>
og et punkt @ pa linjen gjennom D og C slik at DC =f-CQ. Vis ved vektorregning
at punktene 4, P og @ ligger pé en rett linje.
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For eksaminander med prevepensum i geometri var oppgave 2 erstattet av fel-
gende:

2. To plan « og f er gitt ved likningene

oa: br+y—62+6 =0
B: 3x—y—22+2=0.
Planene « og 8 skjazrer hverandre i en rett linje s. Bestem en parameterfram-
stilling for s.
Vi har gitt et punkt P(5,3,2). Bestem likningen for et plan y gjennom linjen s
og punktet P. Hvilken avstand har dette planet fra origo?

Likningen
(2k—1)x+y—2kz+2k = 0

framstiller et plan for hvert reelt tall k. Vis at alle planene gir gjennom linjen s.

~ For eksaminander med fullstendig prevepensum i matematikk var det gitt egne
oppgavesett:

1. Geometri-oppgaven ovenfor.

2. Finn lesningsmengden til likningssettet

ar+y = ¢
2x+y =a.

Alternativ 1:

3. Vis ved induksjon at for alle naturlige tall n gjelder

n
k21 =(n—1)20+1.
k=1

4. En funksjon f er gitt ved

2@ — 22

fle) =———, Dr={zeR||z[+2}.

4(l2| -2)

Undersek om f(z) har noen grenseverdi nér a)  gr mot —2, b)  gir mot 2.
Bestemn asymptotene. Bestem nullpunkter og ekstremalpunkter til f. Tegn grafen
til f.

Bestem ved regning lesningsmengden til likningen
fl@) = —3z+i.
Regn ut
1
f@)

dz .

g X

Alternativ 2:

3. a) Skriv opp definisjonen av kontinuitet av en funksjon f i et gitt punkt ved
hjelp av kvantorer. Bruk definisjonen til & vise at funksjonene f og g gitt ved
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f@) =2x+1 og g(x) = 222+3z—1

er kontinuerlige i x=2.
b) Bestem

. r—4
lim ———.
z—>4 x—l/20—:v

4. En funksjon f er gitt ved

flz) = S(t2—2t—8) Intdt.

1
Forklar hvorfor

f(z) = (#?—2x—8) Inx.

Bestem den storste definisjonsmengden for funksjonen f.

Bruk f’(z) til & bestemme mulige maksimal- og minimalpunkter for funksjonen f.
Skisser grafen til f.

Bruk partiell (delvis) integrasjon til & bestemme et uttrykk for f(x) som ikke
inneholder integraltegn.

SVERIGE
Naturvetenskaplig och teknisk linje.
Arskurs 2.
Del A. Uppgifter till vilka endast svar skall lamnas.

1. F &r en primitiv funktion till funktionen f, dér f(x) =622 — 42 + 2. Man vet
att F'(1) =3. Bestdm F(x).

2. Figuren visar kurvan y =a®. Bestdm a.

Y




!
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3. Kurvorna K, L, M, N, O, P nedan ér graferna till funktionerna

a) x~a2?; b) x~sinz; ¢) x~e?; d) x~-;
z
e) x ~z%; f) x—~Inz.

Ange vilken kurva som hor till respektive funktion.

K 4 L : M

) N \
< .

/ o

4. En funktion z —~ f(z) ér deriverbar for alla reella . Ange i vilket av nedan-
stdende fall funktionen antar ett lokalt maximivérde fér x=1.

a) f'(@)=1-z; b) f'(@)=le—1];
c) f'@)=(x+1)(z-3); d) f'(x)=(x—1)*(x—4).

5. Vilken av nedanstéende funktioner f har f6ljande graf?

A f(@)

7T 37 6r =z
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8) f(@)=2sin3z; b) f(x)=3cosz; o) fla)=2 singg
d) f(x)=3sin2zx; e) f(x)=2cos(x+n).

6. I vilka av féljande fall giller limf(z)=0?

z—>0
sinz
a) f(z)= - b) f(x)=In(1+z); c) f(x)=cosz.

d) f@@)=e%; ) f(z)=w-e%; ) f(x) =tane .
7. Lés ekvationen sinz = — 0,80, 0 <z < 360°. Svara i hela grader.

8. Vilken av féljande funktioner &r invers till funktionen x — e?7?

a) v ~In22; b) x~e2; ¢) x~}Inz; d) xmlng.

Inz
9. Bestim f’(e), d& f(x)=—7y, #>0.
z

1

10. Berdkna lim n \ z?7dz, n € N.
n—»oo -1

Del B. Uppgifter till vilka fullstindig losning skall ldmnas. -

11. Rita kurvan y =4a® — 3z samt ange koordinaterna fér kurvans maximi- och
minimipunkter.

12. Rita kurvan y =3 4 2z —22. Berikna arean av det omrdde som begrinsas
av kurvan och de positiva koordinataxlarna.

13. ABCD é&r en rektangel. |AB| =2 och |AD|=1. M #r mittpunkt p& DC. Be-

rikna skaldrprodukten AM - AC.

14. Vid tidpunkten ¢ sekunder &r den elektriska spénningen mellan tvé punkter
U(#) volt, och U(t)=200(1 —e—0.08t), Stromstyrkan mellan punkterna &r I(f) am-
pere, och I(¢)=U’(). Bestdm stromstyrkan for ¢ =20.

15. Funktionen @ har foljande egenskaper:

1
1) &'(x) = ——-e~%5%* for alla .
27
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2) Nagra av @:s funktionsvirden framgar av foljande tabell:

z: 0,00 0,25 0,50 0,75 1,00 1,50 2,00
d(z): 0,5000 0,5987 0,6915 0,7734 0,8413 0,9332 0,9772

Bestdm med hjilp av ovanstéende uppgifter ett ndrmevérde till
1

S e=0,52% dy ,
0

‘ -

l

Ve

Q

Arskurs 3.
Del L. Uppgifter till vilka endast svar skall limnas.

VEKTORER MED KOMPLEXA KOMPONENTER.

Foér sddana vektorer 7= (z,y) som behandlats i gymnasiekursen giller att z och y
ar reella tal. Men man kan generalisera begreppet vektor och definiera en vektor
o
V = (z,w), déir z och w ér komplexa tal .
For tvé saddana vektorer kan man definiera en motsvarighet till den skalédra pro-
dukten av tvi reella vektorer.

— —
Definition: Den skaldra produkten av vektorn V,=(z,,w,;) och vektorn V,=
—_ —

(29, w,) dr ett komplext tal V-V, =22, +w,w,, dér Z som vanligt betecknar det
konjugerat komplexa talet till 2, alltsé Z=a —bi, om z=a +b7 (a,b € R).

—> —
Exempel 1: Om V,=(1+%,2) och V,=(2—14,10 +4¢), f&r man eftersom 2= —1:

— -
Vi Ve = (14+9)(2+4) +2(10—43) = 2+20+¢+42+20—8; = 21 —53.
— - — —
1. Bestdm V-V, d& V;=(1+%,2) och V,=(3—14,1+1).

2. Fér reella vektorer giller ¥; -7, =0, v;- Den hir definierade skaldra produkten
- = > -
dr emellertid inte kommutativ, dvs. i allménhet &r V,:V, %V, V,. Didremot kan

man visa att
— = - —

VoVy=VyoV,
dar V1 V2 ér det konjugerat komplexa talet till V1 V2
I exempel 1 ovan berdknades V1 V2 for tva givna vektorer. Ange V2 Vl, dar

V1 och V2 4r samma vektorer som i exempel 1.

3. Vid definition av en vektors lingd beh6éver man den skaldra produkten av en
vektor V med s1g s_]alv, V V
Bestdm V V dé V—(a+bz, ¢ +dz).
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-
4. Man definierar en vektors langd, | V|, liksom vid reella vektorer:

- — —>
vi=Jyvv.

-—
Berikna lingden av vektorn V; i uppgift 1 ovan.

Aven begreppet ortogonala vektorer kan generaliseras.
Definition: V1 V2—0 <> V1 och V2 ar ortogonala
Exempel 2: Vektorerna V1 =(1-2¢,2) och V2=(7,,l —11) &r ortogonala, ty

- > - —> _ —
ViV, = (1=20)(=0)+2(1+3i) <= V'V = —i=2424i<=> V"V, = 0.

5. Bestdm de reella tal ¢, for vilka vektorerna Vl (t,2) och Vz—(t+z, t—1) ar
ortogonala.

Del A. Uppgifter till vilka endast svar skall ldimnas.

6. Vilka av nedanstéende vektorer (givna i ett ortonormerat koordinatsystem)
ar ortogonala mot vektorn (1,2,3)?

a‘) (1’2’3); b) (3’0’0); C) (—4’5’—2);
d) (0’31—2); e) (3!2’ 1)'

7. T en klass p& 25 elever &r 10 flickor. Tva klassrepresentanter, en flicka och en
pojke, skall utses. P4 hur ménga sitt kan detta ske?

8. Linjerna y = 2z och z =3 roterar kring z-axeln. Berikna volymen av den be-
grinsade kropp som bildas vid rotationen.

9. Vilka av foljande talfljder &r geometriska ?

a) 0,—1,—2,-3,...; b) 3, —6,12 —24,48,...;

) 0,61, 02, 63 d)1234 )xx2x3x4
ede e %e73, ... —y =y = Ty eees e —y oy e
¢ el 2305 23T

10. Vilken av nedanstdende differentialekvationer har en l6sning y = —sinx —
cosx?

a) Yy’ —y=e?; b) 3y’ +y =z +sinx;

c) ¥y’ +y =2sinx; d) y’'-2y -3y=z.



OPPGAVER 119

11. Vilka av nedanstdende komplexa tal har ett argument z?

1 1 1 1472
8) =5 b) =5 o) 343i; d) —; o) .
% I3 1—2 I3

2
12. Genom variabelsubstitutionen z =1 +#? vergér integralen S el/#-1dx i en av

nedanstdende integraler. Ange vilken. 1
1 1 2
a) Se‘dt; b) S 2tetdt; c) S etdt;
0 0 1
1 of 2 2
d) SE; dt; e) S2teV‘—"1dt; f) Sztetdt.
0 1 1

13. Planen x +2y +2z =0 och 2z + 3y —z + 5 =0 skéir varandra ldngs en rit linje.
Bestam var denna linje skér xzy-planet.

Del B. Uppgifter till vilka fullstindiga losningar skall limnas.
14. Bestém konstanten a s& att vektorn (2, —3,1) blir parallell med planet
ax+5y—3z+2=0.

15. Bestdm den 16sning till ekvationen y’+ 3y =0 for vilken giller y(0) =2.

16. En rét linje L. gir genom punkten (5,3,4) och &r parallell med linjen
(x,y,2) =(1+1¢,2t, —t). Bestdm skérningspunkten mellan L och planet z +y—z+4
=0.

17. Hur manga termer méste man minst ta med i den o#éndliga geometriska
serien 125+100+80+ ... fér att summan av dessa termer skall dverstiga 624 ?




SUMMARY IN ENGLISH

Vicco BrUN: Leibniz’ formula for m deduced by a vmappings of the circular
disc. (English.)

In the eighth part of a circle with radius 1 (figs. 9 and 10 p. 79), we draw the
curves (U, whose equations in polar coordinates are 7 =tg?ny, 0Zv=n/4, n=
1,2,3,.... Then the area enclosed by the axis, the circle and C, is %—(1 —31;), the
area between C, and C, is (3 —1), the area between C, and Cy is 4(3 —;), and so
on. Summing these areas, we get the celebrated formula of Leibniz:

7T
v 1-3+3-%+....

N1eLs MARTIN HANSEN : An application of the theory of differential equati-
ons to a mechanical problem. (Danish.)

Let O and @ (fig. 1 p. 82) be the endpoints of a rod, which can move without
friction around a ball-and-socket joint attached to O. In relation to a fixed co-
ordinate system in space, with vertical z-axis, the point O has a prescribed motion
expressed by the coordinates O(f(t), g(¢), k(¢)), t € [0,T].

Is it possible to choose the start position of the rod such that it has a prescribed
direction (with positive z-component) at the time ¢ =T, and such that @ has been
above O all the time?

In one dimension the problem has been solved by A.Broman in a paper in
NMT 1958, and it is discussed rather intuitively in R. Courant — H. Robbins:
What is mathematics ?

If we assume continuous acceleration of O and also 3e>0Vte [0,T]: —.I'z(t) -Q
< —e¢, where @ denotes the gravity acceleration, the above question is answered
affirmatively.

> 1
Finxy HoLME: A simple determination of >} = (Norwegian.)
k=1"
The sum of the title is determined in an elementary and very simple way.
From the imaginary part of Moivre’s formula with exponent 2n +1, it follows that

k
x, = cotg? v (k=1,2,...,n) are the roots of an equation
2n+1
<2n1+1) on — (2n3+1> wnlp. .. =0.

Summing the roots, and using
cotglp < g2 < (sing)~% = l+cotglp (0 < ¢ < i7),
bounds are obtained for k-2, from which

© 1

e

|,

follows immediately.

ErNsT S. SELMER: A propos of Finn Holme’s paper. (Norwegian.)

Moivre’s formula, and the connection between coefficients and roots of an alge-
braic equation, are used to give a simple proof of the well known identity
n—1 ( lm) sinng

si +— —_—
[120] JLsm\eHr) = s
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