EN GENERELL METODE
TIL PUNKTVIS KONSTRUKSJON AV KJEGLESNITT

HANS GEORG KILLINGBERGTRO

Ved tekniske skoler og hayskoler og i universitetsutdannelsen av mate-
matikklerere til den hgyere skole blir det gitt kurser i deskriptiv geome-
tri der kjeglesnittene kommer til hyppig anvendelse i gvingsoppgavene.
P4 dette trinn blir kurvetegningen gjerne utfort ved at man ut fra visse
definisjonselementer konstruerer et rimelig antall kurvepunkter og trek-
ker kurven skjonnsmessig gjennom disse. Leerebekene er da ogsé i regelen
godt utstyrt med anvisning av metoder til punktvis konstruksjon av
kjeglesnitt. Naturlig nok er disse metodene spesialisert i to retninger,
nemlig bade for ulike slags kjeglesnitt og for forskjellige definisjonsele-
menter til hvert av disse. Slik er det oppstatt en dobbel flerfoldighet
av metoder som kandidatene skal skille mellom og lzere & anvende.

Dette skulle tilsi et visst behov for en generalisering over de nevnte
retninger, med en praktisk verdi som for det ene avhenger av hvor mange
spesialmetoder man far slatt sammen i en metode, og for det andre av i
hvor liten grad generaliteten er oppnadd p& bekostning av en praktisk
utfarelse.

I det folgende beskrives en metode som har fullstendig generalitet i den
grad at den er felles for alle kjeglesnitt og anvender definisjonselementer
som dels kan utledes av, og dels inneholder som spesialtilfeller, elemen-
tene for de ulike spesialmetodene. Metoden er en direkte anvendelse av
den projektivgeometriske setning om dannelsen av et kjeglesnitt ved to
projektive linjebunter. Denne setning kan igjen oppfattes som et ko-
rollar til Pascals setning om en sekskant som er innskrevet i et kjegle-
snitt (se f. eks. J. Hjelmslev: Larebog i geometri, og Grundlag for den
projektive geometri). I forste omgang kan det derfor vekke en viss un-
dring at lerebokforfattere og lerere vil beholde flerfoldigheten av spe-
sialmetoder, heller enn & trekke denne gamle og velkjente perle inn i
undervisningen. Forklaringen kan vere at teorien bak disse setningene
ville sprenge rammen for et rimelig pensum. En hensikt med denne ar-
tikkel er derfor & vise hvordan metoden kan innferes pa et elementeert
grunnlag. Dette grunnlaget omtales i avsnitt 1. I avsnitt 2 innfores meto-
den med en kort begrunnelse. I avsnitt 3 viser de to forste eksemplene
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at metoden har et sterre anvendelsesomride enn spesialmetodene til-
sammen. De gvrige eksemplene viser det eiendommelige forhold at den
generelle metode gir raskere konstruksjoner enn de fleste spesialmeto-
dene. T avsnitt 4 er samlet en del kommentarer.

1. I de nevnte kurser i deskriptiv geometri innfares i forbindelse med
sentralprojeksjon en utvidelse av det tredimensjonale rom med sékalte
uendelig fjerne elementer. Av teorien for denne utvidelse tar vi med
folgende definisjoner og setninger:

D1. I det utvidede rom ligger et og bare et uendelig fjernt plan. Alle
andre plan i rommet er utvidede og kalles egentlige plan.

D2. I ethvert egentlig plan ligger en og bare en uendelig fjern linje.
Den lar seg formelt representere ved planets retning, og er derfor
felles for alle plan i denne retning. Alle andre linjer i planet er
utvidede og kalles egentlige linjer.

D3. P& enhver egentlig linje ligger et og bare et uendelig fjernt punkt.
Det lar seg formelt representere ved linjens retning, og er derfor
felles for alle linjer i denne retning. Alle andre punkter pé linjen
kalles egentlige punkter.

D2'. Gjennom enhver (uendelig fjern savel som egentlig) linje gér
minst et egentlig plan.

D3'. Gjennom ethvert (uendelig fjernt savel som egentlig) punkt gar
minst en egentlig linje.

De to siste definisjonene avslutter det utvidede rom, i det de sier at
dette rom ikke inneholder andre uendelig fjerne linjer og punkter enn
de som innfgres ved D2 og D 3. Med en slik avsluttet utvidelse av rommet
oppnées blant annet at folgende setninger gjelder uten unntak:

S1. Gjennom to forskjellige punkter gar en og bare en linje.

S2. To forskjellige linjer i samme plan har et og bare et skjeringspunkt.

S3. Gjennom en linje og et punkt som ikke ligger pa linjen gr et og
bare et plan.

S4. Et plan og en linje som ikke ligger i planet har et og bare et skjee-
ringspunkt.

S5. To forskjellige plan skjerer hverandre i en linje og har ingen andre
punkter felles.

I en nmrmere kommentar til S1 betraktes felgende tilfeller, i det
punktene kalles 4 og B og linjen c:

a) A og B er egentlige. Da er ogsa c egentlig. (Selvskreven restriksjon
til S1.)
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b) A er egentlig og B er uendelig fjernt. B ligger da pa en egentlig
linje b (D3'), og ¢ blir en egentlig linje som géir gjennom A og er parallell
med b.

c¢) Bade 4 og B er uendelig fjerne punkter, henholdsvis pa to egentlige
linjer @ og b. Da er ¢ den uendelig fjerne linje i et egentlig plan som er
parallelt med bade a og b. Da a og b ikke kan vere parallelle nar 4 og B
skal vere forskjellige (D3), er planets retning og dermed ¢ entydig
bestemt (D 2).

Av fire tilfeller under S2 skal bare et nevnes, der linjene kalles a og b,
planet 7, og skjeringspunktet C': z er rommets uendelig fjerne plan, og
a og b er de uendelig fjerne linjer i to egentlige plan « og f. Disse plan er
ikke parallelle siden a og b er forskjellige (D2). Da vil & og g skjwre
hverandre i en egentlig linje ¢ (restriksjon til S5), og C' blir det uendelig
fjerne punkt pa c.

De andre tilfellene under S2 og alle tilfellene under S3, S4 og S5 kan
kommenteres pa tilsvarende mate.

La « og o” vaere to forskjellige plan, og & et punkt som hverken ligger
iocelleria’. Er 4 et vilkarlig punkt i «, kan skjsringspunktet 4’ mellom
«' og linjen JA betraktes som et bilde av 4. Denne avbildningen av «
pé «’ kalles sentralprojeksjon med «’ som billedplan og @ som gyepunkt.
Her utelukkes ikke det tilfelle at & er uendelig fjernt, men da mé bade
« og o’ ngdvendigvis veere egentlige siden & ikke skal ligge i noe av dem.
I dette tilfelle blir avbildningen affin.

Av S1 og S4, henholdsvis av S3 og S5, folger at en sentralprojeksjon
avbilder en-entydig punkt i punkt og linje i linje.

Med motiv i rommets utvidelse og egenskaper ved sentralprojeksjo-
nen tilfoyes folgende definisjoner:

En hyperbel har to uendelig fjerne punkter, representert ved de to
asymptoteretninger. Asymptotene er tangenter i disse punktene.

En parabel har et uendelig fjernt punkt, representert ved parabelens
akseretning. Den uendelig fjerne linje i parabelens plan er tangent i dette
punktet.

Et punkt O i samme plan som et kjeglesnitt » sies & ligge innenfor x
dersom enhver linje som ligger i dette plan og gar gjennom O, skjzrer x
i to forskjellige punkter som begge er forskjellige fra O.

Etter dette vil sentralprojeksjonen avbilde kjeglesnitt i kjeglesnitt,
tangent i tangent, tangeringspunkt i tangeringspunkt og et punkt innen-
for kjeglesnittet i et punkt innenfor dets bilde. Her og i det folgende er
underforstatt at « og «’ er egentlige plan.
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I neste avsnitt benyttes folgende hjelpesetning:

Til et vilkarlig kjeglesnitt » i planet «, og et vilkarlig punkt O innenfor
%, kan en finne et billedplan «' og et gyepunkt & slik at O avbildes i et
punkt O’ og x i en sirkel med O’ som sentrum.

Setningen begrunnes slik: Gjennom O géar en diameterlinje som skje-
rer » i to punkter, hvorav minst et, la oss si P, er egentlig. La P, vere
det uendelig fjerne punkt pa tangenten i P. OP, skjerer x» i to punkter,
hvorav det ene kalles ). Tangenten i ¢ skjeerer PP, i et egentlig punkt
R, og den skjerer OP i et punkt 8. La «' veere et vilkarlig plan som er
forskjellig fra « og skjeerer « langs PP, Da er R og P egentlige punkter
i «, og en kan finne et punkt O’ i &' slik at linjestykkene RP og PO’
blir sider i et kvadrat. La 8’ veere det uendelig fjerne punkt pi PO’.
00' og S8’ ligger i samme plan og skjerer hverandre i et punkt @. Det
overlates leseren & verifisere at dette valg av &' og @ gir den pastitte
avbildning.

2. Konstruksjonen bygger pa felgende definisjonselementer: Gitt tre
punkter pa et kjeglesnitt, og tangentene i to av dem.

La 4 og B vere de to punktene med kjente tangenter, C det tredje
punktet og § tangentenes skjeeringspunkt. Konstruksjonen utferes som
en serieproduksjon av kurvepunkter C; pa felgende mate (fig. 1).

Trekk linjene AC og BC. Overskjeer disse med en skare linjer gjennom
S. En slik linje vil skjere AC i et punkt 4; og BC i et punkt B;. Skjee-
ringspunktet C; mellom AB; og B4, ligger da pa kjeglesnittet.

Fig. 1 Fig. 2
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Dette kan bevises slik: I det spesielle tilfellet hvor kurven er en sirkel
med 4B som diameter, star BC normalt pa AC, og 4,B; normalt pa AB,
hvorved B; er skjeringspunktet mellom hgydene i trekanten 4A4,B.
Altsé er AC; hoyden pa BA,, hvorved C, ligger pa sirkelen. Det generelle
tilfelle tilbakefores pa dette spesialtilfellet ved at man pad AB velger et
punkt O innenfor kjeglesnittet og anvender hjelpesetningen i foregéende
avsnitt.

3. Med noen eksempler vil vi nd vise hvordan metoden egner seg i
praksis, og begynner med & illustrere det utvidede anvendelsesomrade
som kommer av at man ikke behgver & kjenne hva slags keglesnitt som
foreligger.

Eksempel 1. Projeksjon av skjeringen mellom andregradsflate og
plan.

Er andregradsflaten en kjegleflate (fig. 2), blir konturgeneratrisenes
projeksjoner tangenter til den sgkte kurve. Planet gjennom konturen
skjarer det gitte plan i en linje hvis projeksjon a bestemmer tangerings-
punktene 4 og B. Et tredje punkt C' finnes enten som skjaring mellom
planet og en vilkarlig generatrise, eller mer spesielt, som pa fig. 2. Ut
fra dette kan kurven konstrueres.

Pé lignende mate finnes projeksjonen av et plans skjering med ellip-
soide, paraboloide eller hyperboloide, i det disse har plan kontur. Tan-
gentene i 4 og B ma da bestemmes som tangenter til konturens projek-
sjon. I avsnitt 4 er beskrevet hvordan tangentene kan konstrueres. Skal
man tegne to projeksjoner, kan et konturpunkt i den ene overfores og
tjene som C i den andre.

Eksempel 2. Projeksjon av skjeeringen mellom to andregradsflater i et
spesialtilfelle.

Dersom to andregradsflater har et felles symmetriplan som er parallelt
med projeksjonsplanet, vil skjeeringskurvens ortogonalprojeksjon ligge
pé et kjeglesnitt. Fig. 3 viser en paraboloide og en sylinder i en slik stil-
ling. Her er de nodvendige elementer funnet, og skjeringskurvens pro-
jeksjon viser seg a ligge p& en hyperbel.

Kjenner man bestemte elementer pé et spesielt kjeglesnitt, vil en heldig
fordeling av rollene som A4, B og C fare til forbausende enkle konstruk-
sjoner, slik eksemplene nedenfor viser.

Eksempel 3. Konstruksjon av ellipse.
Gitt en diameter, retningen av dens konjugerte, og et punkt. 4 og B
velges i endepunktene av den gitte diameter, og S blir et uendelig fjernt
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Fig. 3 Fig. 4

punkt, representert ved retningen pa den konjugerte diameter. Med en
skare linjer gjennom § menes da en skare paralleller til den konjugerte
diameter.

Eksempel 4. Konstruksjon av parabel.

Gitt akseretningen, toppunktet og enda et punkt pad parabelen. Det
sistnevnte punktet velges som C, toppunktet som A4, og parabelens
uendelig fjerne punkt som B. Alle linjer gjennom B blir da linjer parallelle
med aksen. S blir toppunktstangentens skjeringspunkt med planets
uendelig fjerne linje, som mé& veere tangentens uendelig fjerne punkt,
slik at alle linjer gjennom § blir linjer parallelle med tangenten. Kon-
struksjonen er gjennomfert pa fig. 4. Den minner mye om en spesial-
metode som mange lerebgker angir, men er langt raskere enn denne ved
at trekking av linjen AC overfladiggjer en nitid oppdeling av to linje-
stykker i jevnstore deler.

I stedet for toppunktet kan man kjenne et annet punkt med tangent
og utfere konstruksjonen analogt.

Eksempel 5. Konstruksjon av hyperbel.

Gitt asymptotene og et punkt C' pa hyperbelen. Asymptotene skjerer
hverandre i S og er tangenter til hyperbelen i de uendelig fjerne punktene
A og B, fig. 5.

Gitt toppunktene 4 og B og et tredje punkt C. Normalen pa 4B angir
tangentretningen i 4 og B, som er retningen til S, fig. 6. Denne situasjo-
nen forekommer ofte ved opptegning av en hyperboloides kontur.
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Fig. 5

4. Den ngyaktighet i opptegningen som et visst antall punkter C; vil
gi, kan man oppnd med et mindre antall punkter dersom man kjenner
tangenten i hvert av dem. Har man tangenten i U, kan man ved hjelp
av denne finne tangentene til C;, i det fglgende setning, som er opplagt
for parabelen (fig. 4), generaliseres ved sentralprojeksjon:

La tangenten i C skjere A,B, i et punkt D;. Da blir C;D, tangent i C,.

Det kan vere en vurderingssak om det lonner seg &4 bestemme tan-
genten i C til dette formal, men er C et egentlig punkt, kan man finne
den slik (fig. 7):

Overskjer AC og BC med en parallell til CS. Denne gir punktene 4’
pa AC og B’ pa BC. Diagonalen CC’ i parallellogrammet CA'C’'B’ er da
tangent i C.

Dette begrunnes slik: La {C;} vare en folge av kurvepunkter som
konvergerer mot C. De tilhgrende trekanter 4,B,C; har en form og
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Fig. 7

stilling som nzrmer seg formen og stillingen til trekanten 4'B’C’ nar C,
nermer seg C.

Med konstruksjonen som er beskrevet i avsnitt 2, kan man i prinsippet
skaffe punkter hvor som helst pd kurven. Men i praksis oppstar gjerne
den ulempen at konstruksjonen sveller ut i storrelse. For & unngd noe
av dette kan man la et funnet punkt C; eller et annet kjent kurvepunkt
overta funksjonen som C. Ofte kan man med hell benytte de uendelig
fjerne punkter pd AC og BC som A; og B;. Eller man kan ha interesse
av & finne diameteren fra 4. Da begynner man med & trekke BA, paral-
lelt med AS, fortsetter med 4,8, som gir B;, og AB,; gir C,. P4 diamete-
ren fra 4 kjenner man nd midtpunktet pa BC,; og B;. SB; gir 4;, og BA;
gir C;. AC; er den spkte diameter.

Elementene som den beskrevne konstruksjon bygger p&, har sin natur-
lige plass i denne rekke av elementer som bestemmer et kjeglesnitt:

Fem kurvepunkter.

Fire kurvepunkter og tangenten i et av dem.

Tre kurvepunkter og tangentene i to av dem.

Tre tangenter og kurvepunktene pa to av dem.

Fire tangenter og kurvepunktet pa en av dem.

Fem tangenter.

Et hvilket som helst av disse tilfellene kan (ved anvendelse av Pascals
eller Brianchons setning) frembringes av et hvilket som helst av de andre.
Derfor kan den beskrevne konstruksjon anvendes direkte eller indirekte
i alle ovenstaende tilfeller.
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Hittil har 4, B, C og S vert betraktet som fire punkter bestemt av
et pd forhand eksisterende kjeglesnitt. Omvendt kan man velge de fire
punktene vilkarlig og studere resultatet av konstruksjonen anvendt pa
disse. Her gjelder:

Dersom 4, B og C ligger pa linje (i utvidet betydning), kan konstruk-
sjonen ikke utferes.

Dersom kun tre av punktene, hvorav det ene er S, ligger pa linje, gir
konstruksjonen punkter p4 en linje gjennom S og det fjerde punktet.

Dersom det blant 4, B, C og S ikke forekommer tre punkter pa linje,
gir konstruksjonen punkter pa et entydig kjeglesnitt.



OM EN METOD ATT DEFINIERA TRIGONOMETRISKA
OCH HYPERBOLISKA FUNKTIONER INOM
DEN LINEARA ALGEBRAN

JERRY SEGERCRANTZ

Inledning. De trigonometriska funktionerna infors vanligtvis i skol-
undervisningen i anslutning till liran om likformiga trianglar. Hérvid
tillordnar man varje vinkel tva reella tal, »cosinus« och »sinus« for ifraga-
varande vinkel.

Genom att kombinera den sedvanliga avbildningen fran den reella tal-
axeln till klassen av vinklar med den nyssnimnda avbildningen fran
klassen av vinklar till de trigonometriska storheterna, erhaller man de
trigonometriska funktionerna.

Syftet med den féreliggande uppsatsen #r att visa, att motsvarande
procedur kan utféras helt formellt inom den 2-dimensionella lineéira alge-
bran med hjilp av en metod, som samtidigt pa ett intressant sitt belyser
sambandet mellan de trigonometriska och de hyperboliska funktionerna.

2-dimensionell linedr algebra. Lat E beteckna en 2-dimensionell vek-
torrymd med den reella talkroppen R som koefficientkropp. Vi antar
alltsd existensen av en additionsoperation, som tillordnar varje vektor-
par x,y (vi anvinder hir och i fortsittningen symbolerna a.y,...,
a,b,... for vektorer och symbolerna «,f,... for reella tal) en vektor
x+y e l, och en »skaldir multiplikation¢, som tillordnar varje par «,x
en vektor o € F, varvid foljande regler bor gilla for alla «,f,2,y,2:

x+y =y+x, @+Y)+z=x+y+2), (x+p)x =oax+fx,
x(®+y) = ax+oy, (xf)x = x(fx), lr=ux.

Vidare antas existensen av en (entydigt bestimd) nollvektor 0, f6r vilken
giller 0+x=x for alla ® € £, samt att mot varje vektor & svarar en
(entydigt bestdmd) vektor —a, som adderad till vektorn @ ger vektorn 0.
Vi definierar x —y=x+(—y).
Vektorerna @, &,, . . ., @, siges vara linedrt oberoende om ekvationen
»_&x,=0 giller endast for al=a2=...=x"=0. Att K ér 2-dimensio-
nell innebdr att det maximala antalet linedrt oberoende vektorer i X

[146]
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dr 2. Det existerar alltsd i £ (dtminstone) ett par linedrt oberoende
vektorer.

Tva linedrt oberoende vektorer i F séiges utgéra en bas i £. Om a,,a,
utgoér en bas, kan varje vektor & uttryckas i formen x=£la, + £%a,, dir
koefficienterna &' och &2 dr entydigt bestimda av a.

Lat oss med Ax beteckna vektorn x:s bildvektor i avbildningen A4:
E — E. Avbildningen A4 siges vara linedr, om for alla «,2,y géller

Ax+y) = Ax+ Ay, A(ox) = xAx .

Vi infér symbolen L fér mingden av alla dylika linedra avbildningar
och betecknar i fortsdttningen L:s element med 4,B, . ...

Vi definierar i L en additionsoperation, en multiplikationsoperation
och en skaldr multiplikation med hjilp av ekvationerna

(A+B)x = Ax+ Bx, (AB)x = A(Bx), (cA)x = «(4x) .
Man verifierar litt reglerna

(AB)C = A(BC), ABB+C) = AB+AC, (B+C)A = BA+CA ,
xAB = AxB

samt att additionsoperationen och den skaldra multiplikationen gor L
till en vektorrymd 6ver R.
En avbildning ® — f(x) € R kallas linedr, om for alla «,x,y giller

f@+y) = f@)+f(y), flox) = of (@) .

En avbildning, som tillordnar varje (ordnat) vektorpar @,y ett reellt tal
f(x,y), kallas bilinedr, om f(x,y) beror linedrt av savil & som y, symme-
trisk, om for alla x,y giller f(x,y)=f(y,x), och alternerande, om
f(y,x)= —f(x,y) for alla x,y.

Med en determinanifunktion A(x,y)e R menar vi i det foljande en
bilineédr, alternerande funktion i £. Om vi antar existensen av en deter-
minantfunktion A(x,y) i F far vi f6r & =~£a, +&2%a, och y=n'a, +7?a,,
dir a,,a, betecknar en godtycklig fast bas,

(1) Alx,y) = (E'*—&4t) Aay, ay),
eftersom A(z,2)= — A(7z,2), d. v.8. A(z,2)=0 for alla z€ E.
Ifall A’(2,y) dr en annan determinantfunktion, giller givetvis analogt
A (aq,a
med (1) &'(2,y) = (£ — £27) &'y, 0,) d.v.5. '@, y) = A, y)- o,
A(ay, a,)

forutsatt, att A(a,, a,) + 0. Man konstaterar litt, att hogra membrum i (1)
definierar en determinantfunktion, som inte #r identiskt lika med 0
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(beteckning: A=:0), ifall vi it A(ay,a,) ger ett godtyckligt fast virde
olika 0. Vi summerar vara resultat i féljande

TroreM 1: Det existerar ¢ B determinantfunktioner A ==0. Om vi utviljer
en determinantfunktion A =0, far vi varje annan determinantfunktion genom
att multiplicera den forstndammda med en limplig reell faktor. En determi-
nantfunktion A =0 antar virdet 0 om och endast om argumentvektorerna dr
linedrt beroende (d. v.s. icke lineirt oberoende).

Varje linedr transformation 4 € L kan tillordnas tva s. k. skalira
invarianter, A:s »spdr« och »determinant, som vi skall beteckna med
tr(A4) resp. det(4). De definierande likheterna &r foljande (A betecknar
en godtycklig determinantfunktion =0):

(2) A(Ax,y) + A, Ay) = tr(A) b(,y)
(3) A(Ax,Ay) = det(4) Az, y) .

Man inser latt, att vinstra membra i (2) och (3) representerar determi-
nantfunktioner i £, varfor vi p. g. a. teorem 1 kan sluta oss till existensen
av reella tal tr(4) och det(4) sa beskaffade, att (2) och (3) giller for
alla ax,y € K.

Storheten tr(4) beror lineirt av A. Ur (3) foljer att A(ABx,ABy)=
det (A4) A(Bw,By)=det(A4) det (B) A(x,y), varur vi utliser regeln

(4) det(4B) = det(4) det(B) .

En bilineér, symmetrisk funktion x-y € R kallas en inre produkt i E,
om ingen vektor fransett vektorn 0 &r ortogonal mot alla vektorer (tvé
vektorer x,y siges vara ortogonala, om x-y=0).

Betriffande inre produkter giller f6ljande

TrOREM 2: En inre produlkt x-y 1 E dr antingen definit, d. v. s. den
motsvarande kvadratiska funktionen a-x antar enbart positiva eller enbart
negativa virden for x + 0, eller indefinit, d. v. s. den motsvarande kvadratiska
Sfunktionen antar bide positiva och negativa virden.

Brvis: Vi for beviset indirekt och antar alltsi existensen av en inre
produkt x-y, vars kvadratiska funktion ®-x antar enbart ej-negativa
eller enbart ej-positiva virden och virdet 0 for (dtminstone) en vektor
v+0. P.g. a. en inre produkts egenskaper existerar en vektor u, for
vilken v-u=0. Uttrycket (tv+u): (to+u)=1%v-v)+ 210 u+u-u=
27(v-u)+u-u, dir 7 dr en reell parameter (—oco< 7<), antar hirvid
uppenbarligen savil positiva som negativa virden, vilket innebir en
motsigelse, varav vi sluter oss till riktigheten av teorem 2, v. s. b.




TRIGONOMETRISKA OCH HYPERBOLISKA FUNKTIONER 149

Lat oss anta att en inre produkt a-y definierats i K. Vi betraktar
“Grams determinant” det (a;-y,), d. v.s. uttrycket

T Y1 X1°Y,
Lo Y1 L3 Yy

Man 6vertygar sig ldtt om att det (®;*y;) representerar en determinant-
funktion sivil betraktad som funktion av vektorerna a;, x, som av vek-
torerna y,, y,. P4 basen av teorem 1 kan vi dérfor sluta oss till existensen

av ett tal 4 s& beskaffat, att foljande identitet giller (vi antar att en
determinantfunktion A =0 definierats i E):

= (X1 Y) (@2 Yo) — (%57 Y1) (1Y) -

(5) det(mi'yj) = A A(@y, ) AYy, Y,) -

TuorEM 3: Om den inre produkten x-y dr definit, dr konstanten A i

identiteten (5) positiv, medan diremot A dr negativ, ifall den inre produkten
dr indefinit.

Buvis: Vi betraktar forst det definita fallet. Lat aj, a, vara en bas och
a,a,

a,— ———a,. Hirvid giller a,-a;=0. Vektorerna a, och a), ir linesrt
a,-a
1 %1

Il

’
a,

oberoende, eftersom A(a,,a,)=A(a,,a,)+0, och bildar foljaktligen en
ortogonal bas.

Vi insitter @, =y, = a; och ®,=y,=a; i (5), varvid vi far (a, a,)(a}- a})
=2-A%a,ay), d.v.s. A= (‘h'%)‘%—@ >0 p.g.a. vart antagende be-
traffande den inre produkten. £¥(ay, a)

I det indefinita fallet kan beviset utfsras fullkomligt analogt utgaende
frén tva linedrt oberoende vektorer a,,a, valda t.ex. sa, att a,ca,>0
och @, a,<0. For en godtycklig vektor a=&la,+ &%) giller a-ax=
(E)%(ay- ay) + (§%)X(ay- a;). Foljaktligen ar i foreliggande fall al-al <0,
eftersom den inre produkten uppenbarligen annars vore (positivt) defi-

nit. Samma uttryck som i det definita fallet visar déirfér, att A<O0,
v.s. b.

Av identiteten (5) framgar att vi genom att vid behov overga till en
ny determinantfunktion A’'=«A, dir «+0 ir en lamplig reell faktor,
kan astadkomma, att A=1 eller —1 om den inre produkten ir definit
resp. indefinit. Determinantfunktionen kallas hirvid normerad.

Vi bevisar hirefter ett fér vara syften anpassat specialfall av det s. k.
Fréchet-Riesz’ska teoremet:

TrorEM 4: Ifall en inre produkt x-y definierats i E, motsvaras varje
linedr funktion f(x)e R 1 E av en entydigt bestimd vektor ac E sd be-
skaffad, att for alla ® € E giller f(x)=x-a.
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Bgevis: Vi utvéljer tva ortogonala basvektorer @, och @, och definierar

f(@) a,+ f(as) a,. Fér en godtycklig vektor ® = &'a, + £2a, fas x-a=
a,-a, a,- a,

Ef(ay) + &% (ay) =f(x). Harmed har vi pavisat existensen av en mot f(x)
pa ovannamnt sitt svarande vektor. Entydigheten foljer omedelbart ur
egenskaperna hos en inre produkt. Om ndmligen x-b=x-a fo6r alla «
giller - (b—a)=0 for allax, d. v.s. b—a=0 eller m.a.0. b=a v.s. b.

a

il

Lat oss anta, att vi definierat en inre produkt -y i E. Uttrycket
Ax-y, dir A € L betecknar en godtycklig fast lineér transformation och
y en godtycklig fast vektor, representerar en linedr funktion av x. Folj-
aktligen existerar en entydigt bestimd vektor a, som satisfierar ekva-
tionen Ax-y=x-a fér alla . Avbildningen y — @ dr linedr, vilket man
latt verifierar, d. v. s. formedlas av en linedr transformation. Vi betecknar
ifrdgavarande transformation med A4 och erhaller alltsi foljande identitet :

(6) Ax-y = x- Ay .

Man siger, att A erhallits genom »ransponering eller »adjungering«
av A. Ur (6) foljer omedelbart reglerna

(7) AB=BA, A=A, I =1

(dér I betecknar den identiska transformationen i E), samt att A beror
linedrt av A.

De ovan definierade skaldra invarianterna paverkas inte vid transpo-
neringen, ett faktum, som foljer av identiteten (5). Vi har t. ex.

A-det (A) A¥ay,a) = A A(ay,a5) A(Aay, Aay) = det(a;- Aay)
= det(4a; ;) = i A(day, Aay) A(ay,a,) = A-det(4) A¥a,,a,) ,

varav vi sluter att det(4)=det(4).

En linedr transformation 4 € L kallas en rotation, om for alla vektorer
x,y giller Ax-Ay=x-y. Av (6) foljer, att A 4r en rotation om och endast
om
(8) A4 =1.

Formlerna (4) och (8) ger oss det(4A4)=det?(4)=det(I)=1. Determi-
nanten for en rotation ar alltsa 1 eller —1. I det forra fallet sédges rota-
tionen vara egentlig, i det senare fallet oegentlig.

Transformationen A. Lat oss anta, att i F fastslagits en inre produkt
x-y och en determinantfunktion A(x,y)=0. Ett resonemang liknande
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det, som kom till anviindning ovan vid definitionen av 4, visar, att man
med hjilp av ekvationen

9) Alx,y) = Ax-y

kan definiera en linedr transformation A € L. Vi noterar, att Ax-x=0
for alla @. Eftersom A(®,y) #r alternerande, giller Ax-y= —Ay-x,
d.v.s.

(10) A= —-A.

Ur (10) féljer bl. a. ekvationen tr(A)=tr(—A). Men tr(4) beror
lineéirt av A, varfor tr(—A)= —tr(A). Vidare giller tr(A)=tr(A). Allt-
sa 4r tr(A)= —tr(A), d. v. s.

(11) tr(A) = 0.

Lat oss substituera y, = Az, och y,=Ax, i (5). P. g. a. (3) och trans-
formationen A:s egenskaper erhaller vi hérvid ekvationen — (Ax,-a,)%=
—A-det(A)(Axy x,)% Dé Axy-a, 40 for linedirt oberoende ®, och a, har
vi foljaktligen
(12) det(A) = A-1.

P.g.a. sambandet (9) kan definitionerna (2) och (3) skrivas i formen
Adx-y+ Ax-Ay=tr(A) Ax-y resp. Adx-Ay=det(4) Ax-y. Med stod
av (6) och den inre produktens egenskaper kan vi ur dessa hirleda foljan-
de tva ekvationer, som giller for alla AeL:

(13) AA+A4AA = tr(4)A
(14) AAA = det(A)A .

Genom att speciellt sitta A=A i (14) och beakta (12) far vi
(15) —A3 = A-1A.

I (15) kan man »férkorta med A, vilket ger oss ekvationen
(16) A2 = =21,

Ekvationen (12) visar nimligen, att det(A)+0, vilket ater p. g. a. (3)
innebér, att A(Aay, Aay), dir a,,a, utgor en bas i E, ir olika 0, d. v. s.
Aa; och Aa, lineiirt oberoende. Varje vektor x kan alltsd skrivas i for-
men x=~{§Aa,+2Aa,=Ax', dir ®' =£&'a,+£%a, Vi har alltsi A2x=
Ay’ = -2 1Nx"' = — - 1x, v.s. b,

Substitution av A4 for 4 i (13) ger med beaktande av (7) och (10):

(17) A24—-AN2 = tr(AA)A .
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Genom att multiplicera vartdera membrum i (13) med A (frdn hoger)
fas
(18) AAA+AAN2 = tr(4)A2.

Addition av (17) och (18) samt »férkortning med A« ger slutligen
(19) AA+AA = tr(A) A +tr(AA)T,

vilken ekvation alltsa géller for alla 4 € L.

Om A speciellt kommuterar med A, d.v.s. AA=AA, kan vinstra
membrum i (19) skrivas i formen 24A. Enligt (16) kan I ersittas med
— AA2. »yForkortning med A« och multiplikation med % ger oss framstall-
ningen
(20) A = i[tr(A)I-2-tr(A4)A].

Egentliga rotationer vid en definit inre produkt. Trigonometriska
funktioner. Vi betraktar nu det fall att den inre produkten &r definit och
forutsitter, att A definierats med hjilp av en normerad determinant-
funktion A(x,y). Konstanten 4 i (5) 4r alltsa 1 och vi har enligt (16)

(21) A2 = T,

Lat A vara en godtycklig egentlig rotation. Genom att multiplicera
(14) med A (fran vinster) och beakta vart antagande (8) erhaller vi ekva-
tionen A4 =AA. Transformationen 4 kommuterar alltsa med A och kan
foljaktligen framstéllas i formen (20), vilket ger oss réitt att uppstilla
foljande

DeriNtTION: Vi definierar cos(A) och sin(A), dir A € L betecknar en
egentlig rotation, som koefficienten for I resp. A i framstillningen (20).

Vi har siledes foljande formler:
(22) A = cos(A)I+sin(4)A
(23) cos(A) = 3 tr(4), sin(d) = —}tr(A4).

Vid transposition av (22) framgar likheten A =cos(A4)I—sin(4)A,
vilken multiplicerad med (22) ger AA=[cos?(4)+sin?(4)]I. Vi har
alltsd (p. g. a. (8)) sambandet cos?(A4)+sin?(4)=1.

Med hjilp av (22) kan additionsteoremen for de trigonometriska funk-
tionerna enkelt hirledas. Produkten av tva godtyckliga egentliga rota-
tioner 4 och B #r likasi en egentlig rotation, eftersom enl. (7) och (8)
ABAB=BAAB=BB=1. Genom att tillimpa (22) pd 4 och B samt mul-
tiplicera de erhallna ekvationerna far vi

|
|
|
|
|
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AB = [cos(A) cos(B)—sin(A) sin(B)]1

+ [cos(A4) sin (B) +sin(4) cos(B)]A ,
vilket innebéar, att

cos(AB) = cos(A4) cos(B)—sin (A4) sin (B)
sin (AB) = cos(A) sin(B) +sin(4) cos(B) .

Koefficienterna i (22) dr nidmligen entydigt bestdmda, eftersom A och I
ar linedirt oberoende (i annat fall skulle A vara en multipel av I, vilket
strider bl. a. mot (10)).

Vi observerar, att de egentliga rotationerna upptagit den roll, som
innehas av vinklarna vid den elementért-askadliga definitionen av de
trigonometriska funktionerna.

Egentliga rotationer vid en indefinit inre produkt. Hyperboliska
funktioner. Framstéllningen i féregdende avsnitt kan direkt overforas
till det fall, att den inre produkten &r indefinit. P. g. a. att konstanten 4
i foreliggande fall 4r — 1, uppstéar vissa teckenéndringar. Koefficienterna
i framstéllningen (20) for en godtycklig egentlig rotation A kallar vi i
detta fall cosh (A4) och sinh (4). Analogt med formlerna (21), (22) och (23)
fas nu

(24) A2 =1
(25) A = cosh(A4)I+sinh(4)A
(26) cosh(4) = 3 tr(4), sinh(4) = }tr(A4).

Formeln cosh?(A4)—sinh?(4)=1 samt additionsreglerna fér de hyper-
boliska funktionerna hirleds p4 samma sidtt som motsvarande formler
for de trigonometriska funktionerna.

Det bor papekas, att funktionen cosh(4) antar dven negativa véirden.
De egentliga rotationerna sonderfaller i tva underméngder: rotationer A4
for vilka cosh(4)z1 och rotationer A for vilka cosh(4)< —1. Lat oss
kalla de ifragavarande undermingderna U+ resp. U-. Avbildningen
A~ —A, Ae U+, definierar en omvint entydig avbildning frin U+
till U-.

Avbildningarna A(r). Vi har tillsvidare betraktat de trigonometriska
och hyperboliska funktionerna enbart som funktioner av egentliga rota-
tioner. For att na fram till de ordinéra trigonometriska och hyperboliska
funktionerna konstruerar vi en avbildning fran den reella talaxeln till
méngden av egentliga rotationer, varvid alltsd varje reellt tal ve R

NMT, Hefte 4, 1964, — 11



154 JERRY SEGERCRANTZ

kommer att motsvaras av en bestdmd egentlig rotation A(z). Vi paligger
den s6kta avbildningen tva villkor. For det f6rsta bor den vara en homo-
morfism, d. v.s. f6r alla 7,7, € R bor gilla

(27) ATy +7) = A7) A(7y) -

For det andra kréver vi att avbildningen skall vara differentierbar,
d.v.s. fér varje e R bor grinsvirdet lim, ,[4(t+47)—A(7)]/A~
existera.

Lat oss anta att vi funnit en dylik avbildning A(z). Substitutionen
;=01 (27) samt »férkortning med A(z,)« ger oss ekvationen

(28) A(0) =1.

Genom att derivera (27) i avseende & 7, och ge at 7, virdet 0 erhaller
vi for alla 7, € R ekvationen

(29) A(zy) = A(0)A(7y) .

P. g. a. (8) giller for alla 7€ R att A(v)A(r)=1I, varur genom derive-
ring framgar att A(7) A(t) + A(7) A(7)=0. P. g. a. (29) kan vi i den senaste

ekvationen ersitta A(r) med 4(0)A(r) och A=A med Z(r)Z(_O_), varvid
vi i betraktande av (8) erhaller 4(0)+ A(0)=0. Denna ekvation tillsam-
mans med (16) och (17) visar att A(0) kan skrivas i formen »A, » € R.

Genom att insitta detta uttryck for 4(0)i (29) fas
(30) A(7) = xAA(7) .

I laroboken »Linear algebra« (2. uppl.) av W. Greub visas hur man
med hjilp av Picards iterationsmetod kan konstruera en differentierbar
avbildning 4(7) som 16sning till differentialekvationen (30) med »utgangs-
villkoret« (28). Losningen idr entydigt bestimd och uppfyller villkoret
(27).

Om vi speciellt viljer =1 resulterar iterationsprocessen i foljande
uttryck:

(31) A7) = X' ——,
v=0 V-

d. v.s. symboliskt A(7)=e™. Eftersom lineiira transformationer kan
betraktas som vektorer i L, bereder odndliga serier av typen (31) inga
principiella svarigheter.

Genom att substituera serien (31) i uttrycken (23) och (26) erhaller vi
de sedvanliga serieutvecklingarna fér de trigonometriska och hyperboliska
funktionerna. Vi har t. ex. i det indefinita fallet
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A2 =1, tr(A%) = tr(I) = 2, tr(A2+l) = tr(A) = 0
och
. 1 (zA) 1 STATL ] L 7 7
sinh(A(7)) = —2—tr [A; " ] = Etr% = é,,:%,mv_!j = Z

v=1,35,... V! .
Frégan, huruvida alla egentliga rotationer antas som funktionsvirden

vid avbildningen 7 > A(7), kriver en sirskild undersokning. Med
kiinnedom om egenskaperna hos de trigonometriska och hyperboliska
funktionernas serieutvecklingar inser man utan svarighet att i det defi-
nita fallet varje egentlig rotation antas (t.o.m. for oindligt ménga

virden 7), medan vi ddremot i det indefinita fallet erhaller en omvint
entydig avbildning fran R till U+,

Exempel. Lat oss t. ex. anta, att den inre produkten a-y ir indefinit.
Vektorparet e,, e, mé utgora en i avseende & den betraktade inre produk-
ten ortonormerad bas d. v. s. vi har e;-e; = —e,-€,=1 (vid limplig num-
rering av basvektorerna) samt e;-e,=0. For godtyckliga vektorer
x={le; + &%, och y=1nle, +1ne, fas hirvid x-y= &Y% — £2;2. Funktionen
A(e,y)=E&2— %! utgdr en normerad determinantfunktion.

Aae

Fig. 1.

Vi betecknar koordinaterna for vektorn Ax med & och &2, Uttryckt
med hjélp av koordinater antar definitionen (9) hirvid formen &152 — g2yl =
EUngt —&¥n?, varav vi ser att £'= —¢2 och &=—¢ d.v.s. Ax=

— &%, —&le,. Transformationen A innebér m. a. o. en spegling (fig. 1) i
avseende & den rita linjen &= — &2,
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Den utritade heldragna och streckade grenen av hyperbeln (£1)2 —
(£2)2=1 utgor orten for éndpunkterna av de vektorer till vilka e, 6verfors
vid transformationer tillhérande U+ resp. U-.

Aven funktionen A’(x,y)= — A(®,y) utgoér en normerad determinant-
funktion. Ifall vi anvénder oss av A’ vid definitionen (9) kommer A att
motsvaras av en spegling i avseende & linjen £'=£2

Vid en motsvarande behandling av det definita fallet motsvaras trans-
formationen A av en »90°:s vridning« av det 2-dimensionella planet.

Slutanmirkning. Den ovanstiende framstéllningen kan utan nimn-
virda fordndringar tillimpas i det fall att koefficientkroppen utgérs av
de komplexa eller rationella talen. Vid en rationell koefficientkropp méaste
vi dock undanta det avsnitt, dir avbildningen 4(t) behandlades. Vid en
komplex koefficientkropp bortfaller distinktionen mellan definita och
indefinita inre produkter.

Ocksa de oegentliga rotationerna kan representeras med hjilp av de
trigonometriska eller hyperboliska funktionerna, nagot, som vi dock inte
nérmare gar in pa i detta sammanhang.
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A SIMPLE CHI-SQUARE TEST

OVE DITLEVSEN

1. Statistics based upon the distributions of extreme values. The dis-
tribution functions for the largest and smallest value, respectively, in a
sample of m members drawn independently from a population with the
distribution function F(x) are

Onas (21) = 0", G () = 1-[1 = Pl

where m is a positive integer.
If, more generally, the distribution functions

1
(1.1) Crmax(®; ) = F(z)*

1
(1.2) Crin(@; &) = 1—[1—F(x)]*,

where « is any positive number, are considered, a first exercise would
be to calculate the maximum likelihood estimates of x, when a sample
Ty, Ty, . . ., T, of n independent members from the relevant populations
is given. In the following, only distributions of the continuous type will
be considered. For (1.1) the likelihood equation becomes
1 1,
oln | Py f(w)

& 1

oI L & 0
- =é’5&[—lnm+<——l>lnF(xi)]
1
E

(1.3) =

i=1

[0

7
" PP = 0,

& =1

where f(x)=dF (x)/dz, assuming this derivative to exist and be continuous
piece by piece. The unique solutions of (1.3), and of a similar equation
corresponding to (1.2), are

(1.4) oa* = —lzn’lnF(xz)
N =1

(1.5) a* = —lzn'ln[l—F(xi)].
" =1

The next step is to find the distribution of these statistics.
[157]
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2. The distribution of the estimates a*. It is easy to obtain the distri-
bution of «* by use of characteristic functions [1, p. 185]. Corresponding

1
to the variable — —InF'(£), the characteristic function is defined by
n

@) olt) = mge“ (—%mlf’(f))} ,

R

where £ has the distribution function F(x)*, and where 7 is the imaginary
unit. Using (1.1) and the substitution » = F(«x), the formula (2.1) becomes

ol 1 1 a1
v —jt=InF(x) ; ¢ —=+=4 n
(p(t)=56 AR = -\ =
o o n— ot
—00

In virtue of the independence of the terms in (1.4), the characteristic
function of «* is then [1, p. 188]:

0 = wir = (1-2)"

P1\l) = Q)" = " .
¥

Introducing the variable 2n —, the characteristic function will be
[2.2

4 nf‘i 2t —2@
<p2<t>=m{e” a}=¢1(—")=<1—2u> T,
X

which is the characteristic function corresponding to the y2-distribution
with 2n degrees of freedom [1, p. 233].

This interesting and useful result, which, by a similar calculation, also
appears to be valid for (1.5), can, with 1/x=m, be stated as follows:

The random variables
(2.2) —2m21nF(xi)
i=1

(2.3) —2m 3 In[1-F(z,)],

corresponding to samples from populations with the distribution functions
F(x)™ and 1 —[1—F(x)]™, respectively, are distributed like y? with 2n degrees
of freedom, if F(x) is of the continuous type.

Naturally this is only an elementary generalization of the fact that
n=F(&) is uniformly distributed on the interval [0,1] when P({<z)=
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F(x) (the probability integral transformation). It is then clear that
—21In% has the frequency function 0 for <0 and

d d
— P(=2Inn<2) = — P(n=e—i7) =
( nn=x) o (nze-*)

da (1—e¥) = fe-i@

&=~

for z = 0, which is the frequency function for 42 with 2 degrees of freedom.

For m=1, the two populations become identical with the distribution
function F(x). This suggests that (2.2) and (2.3) may be used as test
statistics for the hypothesis that the population has the distribution
function F(x). The disadvantages of the usual y2-test, which demands a
grouping of the sample (see [2]), and which is only asymptotically correct,
is not present in this test, although naturally its usefulness depends
upon the power of the test. This question will be elucidated in a number
of examples in the following.

For m > 1, there are also some cases where (2.2) and (2.3) may be used
as test statistics. In a number of physical measurements, it is only the
largest or smallest value among m values that is registrated. An obvious
case is the measurement of the strength of a chain with m links. The
strength of the weakest link determines the strength of the chain as a
whole. A hypothesis about the distribution of the strength of a link
selected at random may then be tested by the statistic (2.3).

3. The joint asymptotic distribution for the two statistics corres-
ponding to m=1. Let

(3.1) 7 = —2 3 InF(z,;)
=1

(3.2) = —2 3 In[l— F(x;)] .
=1

The first and second order moments are

Mz} = Mz} = 2n, V{r,} = V{zy} = 4n

n

mizriv,} = 4 3 Y M{nF(z;) In[1-F(x))]}

=1 g=

3

[

= 4nM{InF (&) In[1 - F(&)]}+M{—2 In F(£)} M{—2 In[1 - F(&)]}(n2—n) ,

where [3, formula 440 p. 283]:
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M{nF(E) In[1-F(& Slnu In(1—w)
0

= lim [Rudulnuln(l-u)+(1-u)n(l-u)—»lnw]?
(c1,c9) — (0, 1)

such that the coefficient of correlation becomes

Mty 7} — M{r, 2 :
mn =My 2 s
U{z,} 6

9{11’ 72} =

From the central limit theorem [1, p. 286] it now follows that the dis-
tribution of

(3.3) &) = ( —2n T,— 2n>

2 ]/n 2 Vn

tends to the bivariate normal distribution given by the frequency func-
tion

1 1 (m2 29my+ y-)
f(x,y) = = ¢ 20-e® \o1? o103 032
2710'102]/1 —p?
3 —6 3x2+(n2—6) wy+3y?
(3.4) = __ e m2(12-m2)
72 ]/12 — 72

as n — oco. Some important fractiles of this asymptotic distribution are
tabulated below.

< -
g; igifc’kx)x)}% 200 100 50 25 1.0 05 01 005

(1) x 0.46 0.89 1.20 1.50 1.84 2.07 255 2.73
(2) x - 0.10 0.30 0.46 0.65 0.76 1.01 1.11

Table 1. Some fractiles of the bivariate normal distribution with means (0, 0), standard
deviations (1, 1), and coefficient of correlation 1—72/6.

(The table has been made by Klaus Illum, M. Se., with the aid of an
electronic computer.)

As
2
Miag+bn} = 0, V{aé+bn} = a®+b%+2 (1—%) ab

we further have the asymptotic probability

P
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3
(@®+ %) + (6 — ) ab x) ’

where @ is the normal distribution function

(3.5) Pat+bnpsx) =D <V3

1 ¢
@(x) ey ———] S e_ﬂ.’dt .

]/2n

4. Example. The exponential distribution. Consider the exponential
distribution

0 for u < —1
Flz) = {l—e'(“+1> for = -1,
. . . m - m
where % is the standardized variable 4 = ——.
o
From a given sample z,, %,, . . ., «,, it is desired to test the hypothesis

H,: m=mgy, o=0, against the hypothesis H,: m=m,, c=o0;.

First it may be remarked that if some u;=(x;—m,)/o, in the sample
are less than — 1, the hypothesis H, is false with probability 1. Assuming
all u, greater than —1, formula (3.2) gives

(4.1) 7, = —2£’ln[1—F(xi)] = 25](%4— 1) = 2n (x___,"f_"_f_l) ,
i=1 i=1 0o

where nZ= X z,. If H is true, 7, is distributed as y2 with 2n degrees of
freedom. ‘7!

Following Cramér [1, p. 529], we will try to find a wniformly most
powerful test corresponding to a given probability level ¢ of rejecting H,
when it is true.

Writing the joint frequency function of the sample as f(x; ), where

x=(&y, Zyy . . ., %,) and a=(m,o), we have
A ) 1)
flx; @) = —e =1\ ° =—e ¥ e ’

for all z;>m—o, and f(x; &) =0 elsewhere.
The searched critical set for & in the sample space R" is determined
by the condition

(4.2) f@; a) =z cflx; @),

where ¢ is some positive constant. Only if m,—o,<my—o0, is a simple
critical set obtained, namely the set that follows from
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(l-l)mz

(4.3) e\ 1/ > constant > 0,

in addition to the set

(4.4) {x | at least one x; < my—a,} .

For 0, >0y, (4.3) is fulfilled with the probability &, see (4.1), when

T —my 9
Tp=2n|——+1) 2 g3, 10>
)

or

= > 00 9
nT Z n(my—o,)+ 3 Xon, (-0

The critical set found is independent of @,=(m,,0,) and is thus the
uniformly most powerful test of H, relative to all admissible H,. Obvi-
ously, the test is biased as it is required that m, — o, <my— o, and oy > o,
For m; — 6, <my— 0, and o,> 0, we get the test (4.4) and

2n (Qﬁ;@’ + 1) < Aon,e -
%o

The probability measure of the set (4.4) is zero as long as the hypo-
thesis H, is true but not if H, is true. Due to this, it becomes complicated
to work out the power of the test unless we further assume that m, — o, =
mg—0o. This last situation is the usual one in most applications of the
exponential distribution, for instance in traffic theory. We then normally
have

Mmy—0y = My—0g = 0.

It is then easy to obtain the power function for the test, as the random
variable
x—my my
2n <—~ﬁ + 1) = Ty—
01 my

is distributed as y* with 2n degrees of freedom under the hypothesis H,.
The power function becomes

m
(4.5) P(r, z Xgn,a—s)) =P (Z;n = Xgn,a—e)—o)

my
for the test of H, against H,. Requiring that

¢  when H is true

4, P(z, = 42 = .
(4.6) (72 2 xz'f"(l_e)) {1 —¢ when H, is true ,

we get the formula

|
x
|
|




A SIMPLE CHI-SQUARE TEST 163

2

Op My Xom,e
- - .2

01 M1 Xon,(1-¢

for a significance bound of my/m, on level ¢ for errors of the first and
second kind, when a sample of » members is given, see fig. 1.

10

KXo = |
- 7
P
a4
/Sy
/)
/)
NV

/S
00 // : "

1 10 10? 103 10° 10°

04

N

Fig. 1

5. Example. Pseudo-random numbers. The uniform distribution. If a
stochastic experiment has to be simulated on a computer, a simple method
to generate random numbers that are uniformly distributed on the
interval [0,1] must be at hand.

Random numbers may be generated from a stochastic physical process,
but this matter is often difficult to handle. Normally, so-called pseudo-
random numbers are used. They are, curiously enough, generated in a
purely deterministic way, namely by a simple recursive mathematical
formula, for instance by the additive or the multiplicative congruential
method. For references, see [4], [5] and [6].

A method of the additive type is the Fibonacci sequence [4]. Starting
with two random integers r, and r;, we get a sequence of ‘“‘random”
integers by the formula

(5.1) Tp = Tpoy+ 7y (mod M).

After division by M —1, we get a sequence of “‘random” numbers that
are uniformly distributed on the interval [0,1].
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Naturally, the applicability of such a sequence of numbers as represen-
tative for the outcome of a sequence of independent stochastic experi-
ments must be tested with a great variety of tests. Such investigations
have been published by various authors. They show that pseudo-random
numbers generated by multiplicative and certain additive congruential
methods follow the laws of probability in a satisfactory way for practical
purposes, provided the period of the sequences is not surpassed.

The Fibonacci sequence (5.1) has the advantage of being very fast,
but it has been asserted that it is unsatisfactory with respect to “ran-
domness™.

The object of this example is to test the Fibonacci sequence for uni-
formity, that is, we set up the hypothesis H, that the distribution func-
tions is

0 for x < 0
Flxy=Jlzfor0 sz < 1.
lforl < x.

As alternative hypothesis H,, it is simple to consider the beta distribu-
tion with the density function

r
——(QI)Jf.qucfﬁ’*l(l—ac)q—1 for 0z2<1
B; p, q) = {I'(p)I(q)
0 for x<0and z>1,

where p> 0 and ¢ > 0 are parameters, and I"is the gamma function. The
two hypotheses coincide for p=g=1.
The condition (4.2) for the best test becomes

(p—l)(—2éllnxi)+(q——l) (—2éln(l—xi)) £ —-2In [c (?(g))f%q)_))"]

(5.2) = 2)/nC+2n(p—1)+2n(g—1),
or with (3.1), (3.2) and (3.3):
(P—-1é+(g-1)y = C.

The probability of this event is determined by (3.5) if » is large. As this
probability depends on p and ¢, a wniformly most powerful test of H,
with respect to all H, does not exist.

The most powerful critical set on level ¢ is, for n large,

(5.3) ak+by < l7—iV3(az+b2)+(6—7;2)(11; ,
3 .
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where a=p—1, b=g—1, and u, is the e-fractile of the standardized
normal distribution.

The power function is only obtainable in a simple way if p or ¢ are equal
to 1. If, for example, ¢ =1, the distribution function of the beta distribu-
tion is

0 for x < 0
Fx) ={a? for 0 =2 < 1
1 for 1= x,

and if H, is true,
n

pry = —2 3 Ina?
i=1

is distributed like z3,. If p>1, (5.2) shows that 7,<y%, , is the best
critical set, such that the power function becomes

P(Tl = xgn,a) = P(X%n = P%%n,e) .
If p<1, the power function becomes

P(r, 2 Z:ﬁn,a—f)) = P(y3, 2 plgn,u—e)) )
which is the same as (4.5). With the requirement (4.6), we get the same
curves as in fig. 1.

The Fibonacci sequence (5.1) has been tested on the Danish computer
GIER, with r,=394852741, r; =263822912, M =22°—1=536870911, and
n=10000. As M is the largest (single word length) integer that can be
stored in GIER, a small rounding off error will occur. This is, however,
only an insignificant “random” contribution to 7.

For every 100 experiments, (£,%) was calculated from (3.3) and plotted
in the coordinate system shown in fig. 2. Some frequencies obtained
from the 100 points are given in table 2, together with theoretical
probabilities taken from the table 1. Significance lines corresponding
to (5.3), with a=b and =5, 1 and 0.1%,, are drawn in fig. 2. No signif-
icant departure from the hypothesis H, is observed.

Probability % | 1 5 10 13 20 36
1. quadrant o 2 5 6 - -
2. quadrant 2 3 8 - 22 35
3.quadrant | 2 11 17 24 - -
4. quadrant 1 3 10 - 21 35

Table 2. Observed distribution of 100 points (£, 5) (see fig. 2).
From all 10000 experiments, (£,7) was calculated to be
(£,m) = (—0.1948, —0.4921)
which is a very probable result under the hypothesis H,.
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E=—Int-1
n=-ln(1-t)-1
0st=)

5 1\ 0l 3

-3110 -2 S — N Ji A 3
-5 . ‘r 3 ®e .
\ N TN\ 205
1 <4 :o N
. h w\‘ 10|
< < o * \
544
2 \ R
-3
0] 1 5
Fig. 2. 100 points each generated after (3.3) for n=100. Thus every term in this sum
may be interpreted as a point distributed at ‘“random’ on the curve £= —Int—1, 5=

—In(1—¢)—1, where 0=<¢t=<1. The parameter was drawn. as t=r by the reduced Fibonacci
sequence. Domains with given probabilities (in %) corresponding to the asymptotic nor-
mal distribution (3.4) are indicated. Further, the lines of regression are drawn.

Further, estimates were calculated for the standard deviations of
7,/2 and 7,/2 and the coefficient of correlation between 7, and 7, by the
usual formulae. The results were

o{7,/2} ~ 1.0041, o{7,/2} ~ 0.9916, o{7y,7,} ~ —0.6398,
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which are in good agreement with the theoretical quantities, see p. 160.
The distribution of the 10000 numbers in 10 equal intervals was

948, 1049, 1032, 953, 1004, 991, 1041, 1019, 982, 981 .

The usual estimate of the variance of these uniformly distributed num-
bers r was (using the notation of standard errors)

o?{r} ~ 0,0827 +7-10-%.

The theoretical value is §; a0.0833. To get an impression of the depend-
ence between numbers following each other in the sequence, the following
coefficients of correlation were estimated:

9996 9996
elrnrpsi} 2 3 (= 1= 1) X (ra—1)2,
n=1 n=1

for ¢=1,2,3,4. The respective results were

—0.0033, —0.0108, —0.0006, —0.0048 .

Added in the proof:

The author has recently become aware of the fact that the use of (2.2)
and (2.3) as test statistics is classical. The method was first considered
by R.A. Fisher (1932), K. Pearson (1933, 1934), J. Neyman (1937) and
E. S. Pearson (1938), see for example Biometrica 30 (1938), p. 134.
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TrRvING ADLER: T@nkende maskiner. Overs. fra engelsk af Gunhild
Lundbak. Fremad, Kobenhavn 1964, 119 s. D. kr. 14.75.

(Innholdsfortegnelse i NMT, denne argang, s. 122.)

Det #r forvanansvirt hur fa forsok till populidrvetenskaplig presenta-
tion av datamaskiner som har gjorts. Man tycker annars att detta dr ett
omrade som skulle vara vil ignat at sddana. Hir saknas varken mojlig-
heter till konkret teknisk beskrivning, intellektuellt stimulerande diskus-
sion eller fantasieggande framtidsperspektiv. Att det r angeliget att god
populiirvetenskap i d&mnet finns tillginglig inses av de stéindiga miss-
uppfattningar och férvringningar om datamaskiner som méter i mass-
media.

Den foreliggande boken vinder sig till en bred publik med elementira
kunskaper i matematik i avsikt att underlitta forstielsen av datamaski-
ners arbetssétt.

Efter en inledning med exempel pa datamaskinernas anvindnings-
omraden beskrives kort en Turingmaskin. Det binira talsystemet intro-
duceras och de principiella skillnaderna mellan analogi- och siffermaskiner
diskuteras. Den Booleska algebran illustreras forst med exempel fran dess
tillimpningsomraden inom logikkalkyl och méngdléra och infores sedan
som en abstrakt algebra. Resultaten frén den algebraiska teorin &ver-
fores sedan med hjilp av den kinda Shannonska tolkningen till elektriska
kopplingar. Med utgingspunkt frén en existerande maskin (N ORQ)
demonstreras hur de aritmetiska operationerna utfores elektroniskt.

Bokens huvudvikt ligger vid avsnitten om Boolesk algebra som upp-
tar hilften av texten. Det &r en utmirkt grundliggande beskrivning av
den Booleska algebran som tillgodoser hogt stillda pedagogiska och
teoretiska krav. Det torde vara anmirkningsvért att i en populdr be-
skrivning finna en korrekt axiomatik, kompletterad med bevisexempel,
och boken visar hir att populira framstéllningar inte behover vara teo-
retiskt underforsorjda.

Som beskrivning av datamaskiners funktionssitt ér emellertid boken
ofullstéindig. Ytterst lite siiges om den tekniska uppbyggnaden av mo-

[168]
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derna maskiner och grundliggande begrepp sdsom program och instruk-
tioner berors mycket kortfattat. Lisaren ges ingen mojlighet att fylla ut
luckan mellan den matematiska logiken och de avancerade tillimpnin-
garna av datamaskinteknik. Boken har definitiva fortjinster, men &r
klart otillricklig som en mera generell introduktion till datamaskiner.

Sten Henriksson

D. Busnaw: Elements of general topology. John Wiley & Sons, New
York, London 1963. 166 pp. sh. 53/-.

(Innholdsfortegnelse i NMT, denne argang, s. 73.)

Boka er beregnet til & gi en forste innfering i generell topologi for stu-
denter som har gjennomgatt »three years of sound undergraduate math-
ematics«. Teoretisk forutsetter den ingen forkunnskaper, i det en del
ngdvendig mengdelere er gitt i et tillegg.

De emner som behandles er stort sett dem man venter & finne i en
elementar innfering i generell topologi. Selve begrepet »topologisk rome«
blir grundig studert ut fra forskjellige synspunkter, og standardmetodene
for konstruksjon av nye rom ut fra gitte (underrom, produktrom, kvo-
tientrom) er behandlet pa vanlig méte.

Separasjonsaksiomene er utforlig diskutert. Kompakthetsbegrepene har
naturligvis f4tt bred omtale, men da en adekvat konvergensteori farst
blir gitt i siste kapitel, gir fremstillingen ikke den fulle oversikt.

Behandlingen av uniforme strukturer fgrer fram til karakterisering
av uniforme rom ved komplett-regularitet. Til slutt fglger en konver-
gensteori for filtere, og Hausdorff-kompletteringen for uniforme Haus-
dorff-rom konstrueres ved minimale Cauchy-filtere.

Teknikken med »innebygging« av topologiske rom i forskjellige stan-
dard-rom er ikke behandlet. Derfor savnes viktige emner som f. eks.
metriserings-satsene og Stone-Cech-kompaktifiseringen.

Fremstillingen er overalt meget utferlig og stort sett klar. En instruk-
tiv historisk oversikt innleder boka, og teksten inneholder hele veien
rikelig av motiverende kommentarer. I det hele vil boka sikkert gi god
innsikt i de emner den behandler. Men forstielsen av den generelle topo-
logis betydning ville kanskje blitt en annen dersom de innfgrte begreper
ble anvendt pa noen flere ikke-trivielle problemstillinger.

Forfatteren har — etter eget sigende — i stor utstrekning brukt
Bourbaki som modell. Terminologien fglger da stort sett denne, men ikke
konsekvent. Séiledes er f.eks. komplett-reguleere rom forutsatt Haus-
dorff, kompakte derimot ikke. Olav Njdstad

NMT, Hefte 4, 1964, — 12
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BeNT CHRISTIANSEN : Elementcer kombinatorik og sandsynlighedsregning.
Munksgaard, Kebenhavn 1964. 135 s. D. kr. 14.75.

(Innholdsfortegnelse i NMT, denne argang, s. 123.)

Den samnordiska diskussionen av gymnasiets matematikkurs har glid-
jande nog lagt stor vikt vid sannolikhetskalkylen och statistiken. Den
svenska gymnasieutredningen kodifierar detta intresse; i Danmarks »bla
betenkning« medges bl. a. att kombinatorik och enkla sannolikhetsteo-
retiska uppgifter behandlas i 3. realklassen om liraren si onskar.

Med den mojligheten fér 6gonen har Bent Christiansen skrivit sin liro-
bok. Han ger forst en grundlig gnuggning i konsten att rikna med per-
mutationer och kombinationer, utmynnande i binomialformeln. Tempot
ar lugnt och exemplen (savil losta som olosta) manga, vilket alltsd sam-
verkar for ett sdkert tillgodogsrande av stoffet. Det skulle dock formod-
ligen vara svart att hinna ga igenom hela boken noggrant i skolan. Dess-
béttre innehéller forordet ocksa nagra forslag till forkortningar av kursen.

Avsnittet om sannolikhetsteori grundas pi en god framstéllning av
mingdlirans elementa i bokens forsta del. Fullt stringent och utom-
ordentligt pedagogiskt inféres ett diskret sannolikhetsfilt. Forhallandet
mellan det praktiska experimentet och den matematiska modellen &skad-
liggores. Vidare genomgas den klassiska sannolikhetsdefinitionen samt
de enklaste lagarna for rakning med sannolikheter (oberoende hiindelser)
och slutligen inféres binomialférdelningen.

Bokens framstéillning av elementéir sannolikhetsteori (i det diskreta
fallet) utgor en mycket god grundval for studier i matematisk statistik
och en virdefull teoretisk forberedelse for studiet av statistiska arbets-

metoder.
Thomas Polfeldt

H. S. M. CoxerEr: Unvergdngliche Geometrie. (Wissenschaft und Kul-
tur, Bd. 17.) Ins Deutsche iibersetzt von J.J. Burkhardt. Birkhduser
Verlag, Basel, Stuttgart 1963. 552 S. S. Fr. 55.00.

(Innholdsfortegnelse i NMT 11 (1963), s. 129.)

I de sidste artier er det blevet seedvane i den vestlige verden at nedskaere
geometristoffet, nar leseplanen har veeret taget op til revision for at
skaffe matematiske nydannelser indpas i undervisningen. Dette motive-
res i reglen med, (1) at geometristoffet er foreldet — ofte over 2000 ar
gammelt —, (2) at geometri blot er en del af algebra og matematisk ana-
lyse, og (3) at geometriens opbygning ud fra et aksiomsystem som et
eksempel pa den aksiomatiske metode er for kompliceret for gymnasiet
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og den elementzre universitetsundervisning; den aksiomatiske metode,
som man gnsker at bibeholde i undervisningen, illustreres langt lettere
ved f. eks. gruppeteori eller topologiske rum.

Det er ikke hensigten her at forsege at benaegte gyldigheden af (1) og
(2) — og da slet ikke (3); men at vi ngdigt skulle g& s& vidt i vores re-
formiver, at vi praktisk taget afskaffer geometrien, derom vidner denne
bog. Enhver leser af Coxeter’s bog vil endog vere veludrustet til at
diskutere gyldigheden af (1) og (2).

Coxeter’s bog er en stor bog bade i kvantitet og i kvalitet. Savel
originaludgavens beskedne titel »Introduction to geometry« (John Wiley
& Sons, 1961) som titelen pa den foreliggende tyske oversmttelse ud-
trykker noget vasentligt ved bogens indhold. I form er den elementer
og koncis, i emnevalg formodentlig en kommende klassiker.

Bogen falder stort set i fire dele, hvoraf den forste omhandler geometri
i den euklidiske plan og i rummet, anden del analytisk geometri, herunder
ogsa de platoniske legemer, tredie del projektiv geometri og ikke-eukli-
disk geometri, mens fjerde del veesentlig drejer sig om differentialgeometri.

Af disse afsnit er kun det fjerde traditionelt, og det udmearker sig
endda ved et kapitel om firefarveproblemet i forbindelse med fladetopo-
logi. De tre forste afsnit er fremstillet med udpreget pedagogisk for-
stielse for begynderens problemer og stetisk hensyntagen til den mere
erfarne matematiske leeser.

Grundtanken igennem hele fremstillingen er den, der blev fremsat af
F. Klein i hans Erlanger program: at opbygge geometrien pa begrebet
transformationsgruppe. Den aksiomatiske metode er klart bragt i an-
vendelse ved indferelsen af ikke-euklidiske geometrier, men derudover er
bogen ikke strengt aksiomatisk opbygget. Forfatterens begejstring for
geometrisk intuition og inspiration skinner igennem overalt.

Bogen er sveer at indvende noget alvorligt imod ; men £. eks. synes kegle-
snit taget i projektiv forstand (i 3. afsnit) og opfattet som andengrads-
kurve (i 2. afsnit) ikke at veere i relation til hinanden. Ligeledes kunne
man méske have gnsket, at bogen havde indeholdt et afsnit om konvekse
figurer, som nok skal vise sig at falde ind under bogens tyske titel.

Til slut skal det neevnes, at teksten indeholder talrige historiske noter
og mange henvisninger til uddybende litteratur. Overseattelsen fglger ret
ngje den engelske original, men flere smafejl er blevet rettede i den tyske
udgave. Desuden indeholder bogen flere hundrede gvelsesopgaver, som i
den tyske udgave er besvarede i slutningen af bogen.

Alt i alt er det en bog, som man uden tgven kan anbefale til ethvert

skole- og universitetsbibliotek. Flemming P. Pedersen
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ToreiL. ERMAN — CARL-ERIK FrROBERG: Lirobok 1 ALGOL. Student-
litteratur, Lund 1964. 4+ 126 s. Genom Lunds studentkars intressebyra
sv. kr. 16.25. Genom bokhandeln sv. kr. 20.00.

(Innholdsfortegnelse i NMT, denne &rgang, s. 125.)

Det algoritmiske sprog ALGOL 60 blev fastlagt af en international
komité i 1960. Siden da har det hastigt vundet udbredelse som middel
til at beskrive beregningsprocesser bade ved undervisning, fra forsker til
forsker, og fra forsker til elektronisk datamaskine. Officiel international
status opndede det, da det som det hidtil eneste blev anerkendt af Inter-
national Federation for Information Processing i august 1962.

Sidelgbende med den kraftigt stigende anvendelse af sproget er der
vokset en anseelig litteratur af beskrivelser og lerebgger op omkring det,
deriblandt adskillige pa skandinaviske sprog. Den foreliggende nye bog
af Ekman og Froberg er dog sa vidt anmelderen bekendt den forste, der
udkommer som bog pé svensk.

Af bogens 20 kapitler handler et om den historiske og tekniske bag-
grund for ALGOLs fremkomst, de folgende 13 er det egentlige, syste-
matiske kursus i ALGOL, mens de sidste behandler visse mere sprog-
tekniske problemer, bade i ALGOL selv og i sprogets tillempning til de
eksisterende datamaskiner. Som helhed prages bogen forst og fremmest
af forfatternes positive og praktiske holdning til ALGOL. Baggrunden
herfor er deres flerarige erfaring med anvendelsen af det til brug ved
undervisningen og forskningen omkring Lunds universitets elektroniske
cifferregnemaskine SMIL. Denne baggrund har dog ikke medfert nogen
snever binding til specielle, lokale forhold; tvertimod er bestraebelserne
pé at eliminere en sadan indflydelse lykkedes s& godt, at man med tryg-
hed kan anbefale bogen som grundlag for et ALGOL kursus for en hvil-
kensomhelst maskine.

I det egentlige kursus har forfatterne valgt at give en neesten fuld-
steendig redegerelse for sprogets ejendommeligheder med det samme.
Dette har som bekendt den ulempe, at visse leesere kan blive overvaldet
ved tanken om subtile muligheder og farer, som i praksis let kan undgas.
P4 den anden side er det i overensstemmelse med bogens almindelige
holdning, som afspejler et gnske om at vaekke interesse, ikke alene for
sproget som middel, men ogséa for programmeringssproget som fenomen
i sig selv. Tillige modvirkes de mulige uheldige virkninger af det righol-
dige udvalg af gode, praktiske eksempler. I valget af disse har forfatterne
med godt held udtenkt problemstillinger, som kun kraever et minimum
af speciel forhadndsviden, og som derfor vil kunne bruges ved ALGOL
kurser inden for vidt forskellige fag. Kun et mindretal af gvelserne kree-
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ver en speciel viden om numerisk analyse. I det hele kan man kompli-
mentere forfatterne for den made, det er lykkedes dem at fremstille de
mange enkeltheder i ALGOL i en stil, der er feengslende og endda under-
tiden humoristisk.

Et par kritiske bemeerkninger kan dog ikke undgas. Som en mindre
ting kan man undre sig over, at de gode rad om at undga »hoppsatser«, der
citeres pa side 44, ikke folges op i de efterfglgende eksempler. Bade side
56, 73 og 80 finder man kandidater til en behandling af denne art. Pa
side 81 siges det, at fejlleddet ved Simpsons formel er proportionalt med
fjerde potens af intervallet. Dette gelder dog kun tilnsermet. En noget
mere dybtgidende kritik kan rettes mod kapitel 19, der handler om
kompilatorkonstruktion. Nu er tre sider ikke meget til et sdidant emne,
men selv med denne undskyldning er dette kapitel ikke lykkeligt, idet
pa den ene side den dybere mening med brugen af de beskrevne stakke
naeppe vil sté leseren klar efter lesningen, mens pa den anden side en hel
reekke lige sa vigtige problemer som f. ex. lagerdisposition, adressering
og producerkald, end ikke navnes. Det kan ogsi nevnes, at det sidste
eksempel i det igvrigt udmarkede kapitel 16 ikke er korrekt ALGOL og
at problemet derfor ikke eksisterer, og at det andet gvelseseksempel pa
side 96 er blevet forvansket af noget, der er verre end trykfejl.

Men lad ikke disse bemarkninger overskygge indtrykket af en bog, som
vil kunne gere udmarket fyldest, hvad enten man vil bruge den som
lzerebog til elementsere kurser ved de hgjere leereanstalter eller til selv-

studium.
Peter Naur

A. Ya. KaiNTCHINE : Continued fractions. Translated from the Russian
by Peter Wynn. P. Noordhoff, Groningen 1964. 101 pp. D. fl. 16.25.

(Innholdsfortegnelse i NMT, denne argang, s. 127.)

Denna bok ér egentligen helt obehovlig. Denna 30 4r gamla monografi
har ndmligen sedan atta ar varit tillginglig i tysk 6versidttning (A. Khint-
chine: Kettenbriiche. Math.-naturw. Bibl. 3. Teubner, Leipzig 1956).
Det utgivande forlaget ovan syns (el. latsas) vara ovetande om detta.
Skall verkligen tid och krafter liggas ned pa oversittning av bocker till
engelska, som redan finns i tysk version ?

Fran denna synpunkt sett dr alltsd en anmélan onodig. Nagra ord kan
dnda sdgas. Khintjins [ryska o. a. namn bor transkriberas pa det for varje
sarskilt sprak riktiga séttet] glainsande verk har gatt ut i manga editioner.
Den tyska oversidttningen byggde pa 2:a upplagan fran 1949, denna
engelska foljer 3:e upplagan av 1961. Endast nagra noter har tillkommit
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och tryckfel rittats. I forordet stiiger Gnedenko, att de moderna numeriska
metoderna i matematiken har viickt intresse for algoritmer sadana som
kedjebrikens. En nyligen utgiven bok (av Khovanskij, NMT 11.4, Mot-
tatte boker, s. 184) ir ett beligg for detta. Enligt Gnedenko fyller 4nda
Khintjins bok alltjimt sin uppgift: att ge en inledning till teorin for
regelbundna kedjebrak och samtidigt att bersra djupa och intressanta
problem i den metriska talteorin. Denna dikotomi &r vil ockss bokens
enda »fel«: del I-IT ér en pedagogiskt vilgjord, lattlist introduktion,
medan del III &r en krévande framstéllning av Khintjins ilsklingsgebit,
metrisk kedjebraksteori. Dirigenom blir ockss titeln vilseledande.

Det &r vil forlagets och inte 6versittarens fel att ocksa den senares
namn finns med pa titelbladet, ddr det avgjort inte hor hemma.

Sett i ljuset av senare ron (t. ex. ref:s forskning) blir avsnittet om
tals konvergentapproximation omodernt och »skevts. Khintjin talar
(s. 30) om »bésta approximationer av 1:a och 2:a ordningen¢, med

E(Z;
b

approximationer av 3:e ordningen, némligen b|b& —a/|, har emellertid vida
intressantare egenskaper.

Bokens framgang i Sovjet och oversittningen till engelska bekriftar,
att intresset for detta dmne, liksom for teorier dtkomliga med kedje-
braksmetoder, i detta nu #r stort. Man har insett kedjebrakens visent-
liga betydelse. Detta dr dessvirre inte fallet dverallt hos oss.

P.S. T oktobernumret av Zentralblatt noterar man med hipnad, att
denna ansedda tidskrift har upplatit mer &n en sida for en recension av
ett franskt arbete (1960), som av recensionen att doma inte ir nagot
annat dn ett bokstavstroget plagiat (!) av kap. ITI i Khintjins bok! Man
vigrar att fatta att detta kan vara mojligt.

resp. [bf—a| som karaktiristika. De uttryck som kunde kallas

Clas-Olof Selenius

G. D. Mostow — J. H. SampsoN — J. P. MeYER: Fundamental struc-
tures of algebra. McGraw-Hill Book Co., New York, Toronto, London
1963. 16+ 585 pp. sh. 69/6.

(Innholdsfortegnelse i NMT, denne argang, s. 128-129.)

Jeg vet ikke om vekstraten for utgivelse av lerebgker i matematikk
er av eksponentiell karakter eller ikke. Men at det kommer en ustyrtelig
mengde er i alle fall sikkert! Og av og til hender det at det i denne flom-
men av ofte noksa ordinazre boker kommer en hvis kvalitet umiddelbart
stér fast. Boken Fundamental structures of algebra av Mostow, Sampson
og Meyer er etter min mening en slik bok. Denne oppfatning er selvsagt
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subjektiv og kan bero pa sd mangt. Dels kan det skyldes at denne boken
typografisk, og utstyrsmessig forgvrig, er av usedvanlig hoy klasse, dels
kan &rsaken veere at man syns den elementere matematikkundervisning
ved universitetene har s& alt for mye av analyse og at denne boken, an-
vendt fra forste semester av, kunne veere et utmerket supplement ved sitt
rike innhold av viktig og nyttig algebra.

Boken er i sin oppbygning ikke s4 ulik den velkjente Survey of modern
algebra av Birkhoff og MacLane, men den er mer elementer og tilpasset
et lavere niva. Den forste del behandler de fundamentale strukturer:
Binsere operasjoner og grupper i forste kapitel, ringer, integritetsomrader
og de hele tall i annet kapitel. Sa i videre rekkefglge kropper med anven-
delse pa de rasjonale tall, en rask oversikt over teorien for reelle og kom-
plekse tall med deres aksiomatiske karakterisering, og en innfering i
teorien for polynomringer og rasjonale funksjoner. Fremstillingen er
ganske bred og elementer, den er rikt illustrert og der er omfattende
oppgaveavsnitt. Alt i alt gir denne del av boken en god innfegring i mate-
matikken av i dag, og kunne med fordel kreves av enhver student innen
de naturvitenskapelige fag, ja, ogsd av mange fra sosialvitenskapene.

Etter mitt skjonn har mengdeleren fatt den rimelige plass den ber ha
i en innferingsbok. Den kommer inn etterhvert som det er hensikts-
messig & bruke dens terminologi. De mengdeteoretiske konstruksjoner
(ekvivalensklasseinndelinger, kvotientstrukturer osv.) kommer fgrst inn
der de naturlig kan benyttes til & belyse de strukturelle egenskaper ved
de algebraiske systemer en studerer. En slipper dette lange innlednings-
kapitlet med mengdeteoretiske trivialiteter som en rekke forfattere né
utstyrer sine lerebgker med, gyensynlig i den tro at man dermed har
gitt studentene en forstéelse av hva »moderne matematikk« egentlig er.

Bokens neste og sterste del er en solid innfgring i linezr algebra. Etter
den »moderne tradisjon« er oppbygningen aksiomatisk. Men snart blir vel
den elementeere vektoralgebra obligatorisk gymnaspensum, sa en direkte
aksiomatisk innfering pa universitetsniva skulle veere fullt forsvarlig.
Dessuten er denne fremstilling godt konkretisert gjennom eksempler, og
dertil er den forste del av boken en utmerket forberedelse til vektorrom-
teorien. Og nar behandlingen har veert brukt med stor suksess pa »vir-
tually all entering freshmen who contemplated more than one term of
mathematics in college, s& skulle man formode at ogs& véare begynnende
studenter med letthet ville fglge med!

Videre gir boken det tradisjonelle stoff som lineertransformasjoner og
matriser, determinanter (elegant behandlet), Jordans normalform, samt
kvadratiske og hermitiske former. Noe uventet er et fyldig kapitel om
grupper og permutasjoner, og en morsom overraskelse i en slik bok er et
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pent kapitel om ringer av operatorer og differensialligninger (dvs. den
systematiske teori for lineeere ligninger med konstante koeffisienter).

Det nest siste kapitel er av mer metodologisk art. Det er en systematisk
fremstilling av konstruksjon av kvotientstrukturer, rikt eksemplifisert
ved den tidligere teori. Et vesentlig kapitel fra mengdeleren, godt plas-
sert i den samlede fremstilling.

Boken avsluttes med et omfattende kapitel multilinezer algebra. Ved
en rask gjennomlesning virker fremstillingen godt ordnet. Indekser i
hopetall — béde oppe og nede, foran og bak — forekommer selviglgelig.
Inntrykket er dog at forfatterne makter & gi en ganske koordinatfri
fremstilling uten & gi inntrykk av den goldhet som Chevalley gir i sin
Fundamental concepts of algebra. Jeg tror at fysikerne ville ha stor glede
av denne del — noe som er nok et argument for 4 anvende boken i den
innledende universitetsundervisning.

Denne bok er preget av tidens aksiomatiske fremstilling av matema-
tikken. Men til forskjell fra Halmos’ kjente Finite-dimensional vector
spaces, som er en glimrende bok for matematikeren (»S& elegant kan det
altsd gjoresl«), s& tror jeg at denne boken er en glimrende bok for studen-
ten! En av de fi4 sammenlignbare bgker er Godements nylig utkomne
Algebre, men den er pa fransk og langt fra sa tiltrekkende utstyrsmessig,
s jeg tror vire studenter vil like Mostow etc. bedre.

En bok som denne, gjerne forelest grundig over tre semestre (her i
Oslo tilsvarende sekvensen Fo 4, Ma 3, Ma 6), ville bidra meget til & heve
det matematiske niva, uten derfor utelukkende & ta sikte pa dem som
skal spesialisere seg i matematikk. En slik undervisning, fornuftig sam-
ordnet med en analyseundervisning & la Rudins Prenciples of mathematical
analysis, ville vaere en rimelig modernisering av det alt for tradisjonelle
stoff som na ofte tilbys begynnerstudenten.

Og skulle noen enné ikke vare overbevist, s les bokens forord!

Jens Erik Fenstad

Len~NarT RADE: Sannolikhetslira och statistik. Biblioteksforlaget,
Stockholm 1963. 232 s. Sv. kr. 28.50.

(Innholdsfortegnelse i NMT 11 (1963), s. 187.)

Forfatteren sier i innledningen at denne »ldrobok dr avsedd att vara
en forsta introduktion till sannolikhetsliran och statistiken ...« Den
krever bare beskjedne matematiske forkunnskaper. I de fire forste kapit-
ler behandles saledes utelukkende sannsynlighetsteoretiske modeller for
forsok med et endelig eller nummererbart antall utfall. Femte og sjette

I
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kapitel forutsetter imidlertid noe kjennskap til begrepene bestemt inte-
gral, dobbeltintegral og partiell derivasjon.

Bokens innhold faller naturlig i to deler: kap. 1, 2, 3 og 5 som omhand-
ler sannsynlighetsregning, og kap. 4, 6 og 7 som behandler utvalgte em-
ner fra den statistiske metodelere. Selv om en forstar forfatterens motiv
for & ville illustrere kap. 1, 2 og 3 ved eksempler fra statistisk hypotese-
proving (kap. 4) for han fortsetter med sannsynlighetsregningen i kap. 5,
ville det vel vzert lettere for nybegynneren & f& oversikt over stoffet,
dersom kap. 4 og 5 hadde byttet plass.

I forste kapitel innferes elementene for mengdeleren, og den klassiske
sannsynlighetsdefinisjon er omtalt. Annet kapitel omhandler endelige
utfallsrom (finite sample spaces), og sannsynlighetsregningen bygges opp
aksiomatisk. S8 tar forfatteren i tredje kapitel for seg diskrete stokastiske
variable og begrepene forventning og varians defineres, og i femte kapitel
behandles kontinuerlige stokastiske variable. I disse fire kapitlene pre-
senteres leseren for de alminneligste begrepene pa en grei og oversiktig
mate. Litt uheldig synes jeg det er at begrepet frekvensfunksjon nyttes
sdvel i forbindelse med diskrete som kontinuerlige fordelinger. Forgvrig
er det vel upedagogisk at begrepet »stickprov« er definert pa tre méater
og nyttes i tre forskjellige sammenheng. (Se f. eks. s. 42, 5. 157 og 5. 198.)
I annet avsnitt side 153 er ogsé en uheldig formulering som bare er egnet
til & lede leseren pa villspor.

Men om kap. 1, 2, 3 og 5 gir en meget god forsteinnfering i sannsyn-
lighetsregningen, kan dessverre det samme ikke sies om innfgringen i den
statistiske metodelere gitt i kap. 4, 6 og 7. Min forste hovedinnvending
gjelder disponeringen av de enkelte emner. For nybegynneren er det
viktig & f& plassert de forskjellige omrader av metodeleren i forhold til
hverandre. Kapitel 6 har som hovedoverskrift Statistisk skattning, men
i underavsnittet 6.1 finner en et generelt avsnitt om statistisk inferens,
i 6.2 deskriptiv statistikk og i 6.9 statistisk forsgksplanlegging. Hypotese-
proving behandles som nevnt forst i kapitel 4, der forfatteren illustrerer
begrepene ved & ta for seg folgende eksempel : Et forsek gir ut pa & prove
personers smaksevne ved & presentere dem for to standardlesninger av
hvilke den ene er litt sgtere enn den andre og be dem smake og peke ut
den soteste. Anta at en bestemt forsgksperson proves i alt » ganger og
gir 7 riktige svar. Ved & betegne sannsynligheten for at denne person ved
et enkelt forsgk skal svare riktig med p, og gjore de vanlige forutsetninger,
kommer en frem til at % er binomisk fordelt (n,p). p karakteriserer n&
kandidatens smaksevne, og pa grunnlag av en observert # skal kandida-
ten godkjennes eller vrakes som provesmaker ved bedriften. Her heter
det blant annet (s. 100): »Det ter sig alltsd rimligt att godkénna prov-
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smakare med stort antal korrekta bedémningar och underkinna de andra.
Vi bestimmer d& ett tal ¢ och fattar besluten sa, att vi accepterar en
person om 72 ¢ och underkédnner personen om 7 < c.«

Forfatteren definerer na en funksjon S, »sddan att S(p) ér sannolikheten
att vi skall godkénna en provsmakare, som har sannolikheten p att gora
korrekt bedomning.« Han velger s n=12 og ¢=8, og kaller uten videre

12
S(p) = P(n z 8|p) = Y by, ,(x)

r=8

for styrkefunksjonen. Noen hypotese og eventuelle alternativer er ikke
stilt opp, og leseren mé uvilkérlig sperre seg selv: Kan ikke styrkefunk-
sjonen like gjerne vaere definert ved P(y<8|p)? En passant papeker
forfatteren, uten 4 komme neermere inn pa forholdet, at en ma veare
oppmerksom pé at styrkefunksjonen her gir »betingade sannolikheter«
og sier videre at en, nar en diskuterer vekten av forskjellige feilslutninger,
ber ta sannsynlighetsfordelingen fra de foreliggende verdiene med i be-
traktningene, ». .. en sddan sannolikhetstérdelning for méjliga p-virden
brukar kallas en a priori-férdelning. Vi skall emellertid ej hir diskutera
uttnyttjande av a priori-férdelningar«. Har ikke nybegynneren forlengst
falt av lasset, gjor han det i alle fall her.

Forfatteren peker sa pa at styrkefunksjonen avhenger av #, P og ¢ og
antar at han kan »ange tva tal p, och p,, p; < p,, sadana att det ir onsk-
virt att underkénna provsmakare med p < p, och samtidigt onskvért att
godkidnna sddana med p > p,«. Han »fixerar vidare sannolikheten fér fel-
beslut i fallen p=p, och p=p, till « och f« og peker pa at n og ¢ kan
bestemmes ut fra

Sn,c(pl) = &, Sn,c(pz) = ]__.ﬂ .

Fremdeles er imidlertid hverken begrepene signifikansniva eller teststyrke
nevnt. I et etterfolgende avsnitt karakteriseres testene etter om aksep-
tanseomradet er én-, respektive to-sidig. Fremdeles er det ikke oppstilt
noen hypotese, enn si alternativer. Senere gis en generell formulering av
statistisk hypoteseproving, der to hypoteser H, og H,, begge sammen-
satte, omtales, men en gis inntrykk av at problemet er symmetrisk i
H, og H,.

En mé bare beklage at en bok som gir en s god innfering i elementene
av sannsynlighetsregningen, samtidig er s& vidt utilfredsstillende nar det
gjelder den statistiske metodelare. Det er & hape at forfatteren i forbin-
delse med neste utgave av boken er villig til & omarbeide kapitlene 4, 6
og 7. Samtidig ber de hyppig anvendte ikke-parametriske metoder (tegn-
testen, Wilcoxon’s tester) tas med. Da kan resultatet bli en riktig god

og anbefalelsesverdig lerebok. Arnljot Hoyland
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PRISOPGAVE FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier udskriver
herved nedenstéende prisopgave for elever i gymnasier og ved studenterkurser.
Opgaven gnskes besvaret sa fuldsteendigt som muligt, og der legges vaegt pd en
omhyggelig og overskuelig fremstilling. For den bedste blandt de tilfredsstillende
besvarelser uds®ettes en premie pd 250 kr., og der kan eventuelt uddeles ekstra-
premier.

Besvarelserne indsendes senest 31. marts 1965 til lektor Henrik Meyer, Bakke-
draget 15, Birkerod. P& besvarelsen skal anfores navn, adresse, skole og klassetrin.
Indsenderen skal samtidig med besvarelsen indsende en erklering om, at opgave-
losningen er selvstendigt arbejde. (Benyttelse af litteratur er dog tilladt.)

Lad f betegne en funktion, der er defineret i et interval I, og lad K
veere dens grafiske billede i et seedvanligt retvinklet koordinatsystem.

Funktionen f kaldes konveks i I, dersom det for vilkarlige punkter 4
og B pa K gelder, at ethvert punkt pad kurvestykket 4B ligger under
eller pa4 korden 4B.

1. Vis, at f er konveks, nar og kun nar det for vilkarlige tal z; og x,

i I geelder, at
flgws+ (1= q)wp) = gf (@) +(1=q)f (w,) ,
hvor q er et vilkarligt tal mellem 0 og 1.

2. Vis, at hvis f er en kontinuert funktion i intervallet 7, og dersom
det om enhver korde til det grafiske billede gwlder, at der findes et
punkt af det grafiske billede, som ligger pa eller under denne korde, s&
er f konveks i 1. (Vis eventuelt forst, at hvis en funktion ¢ er kontinuert
i et lukket begrenset interval, og hvis ligningen ¢(z)=0 har losninger i
dette interval, sa findes der en sterste og en mindste lgsning.)

3. Vis, at hvis funktionen f er to gange differentiabel i intervallet I,
og hvis f"(x)20 for alle x i I, s& er f konveks i [I.

4. Vis, at funktionerne f;, f, og f5, som for positive tal x er bestemt ved
fil) = —Inz, fyx) =2, r=21, fyx)=27P, p>0,

alle er konvekse.

[186]
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5. Vis, at hvis f er konveks i intervallet I, og hvis tallene z;, #,,. . .,
tilhgrer I, si er

n

f<x1+x2+...+xn
n

1
) = () +f @)+ +f(w)

6. Vis gyldigheden af folgende uligheder, hvori z;, «,,. . ., z, betegner
vilkéarlige positive tal:

n n——————— X+ Xyt ...+,
S Vo, .., < ,
1 1 1—V12 "= n
— . —
Ty X n
P
n i+ X+ ... FX
< 1 2 n, p>0,
1 1 1 n
J— — ._I.._.
i ah xk
S
r T S 8 s
‘/x1+x2+ +xn§l/x1+x2+ T o cr <.
n n

PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1965, arrangert av Norsk Matematisk Forening.

Den beste samling besvarelser vil bli tildelt H.K.H. Kronprins Haralds premie
pé 200 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster vere med. Oppgavene faller inn under reallinjens pensum.
Jo enklere og mer elementeere losningsméter en kan finne, dess bedre. Oppgavene
bor droftes og greies ut s& fullstendig som mulig. Det er ikke nedvendig & ha svart
pé alle 6 oppgavene. Ingen kan vinne hovedpremien mer enn én gang.

En sender lgsninger til lektor Ragnar J. Solvang, Ris skole, Vinderen, Oslo,
innen 1. 8. 1965, ledsaget av en erklering om at oppgavene er selvstendig lest.
Oppgi skole og klasse.

Oppgavene er ogsé publisert i Den Hogre Skolen for 1. febr. 1965.

Vi henstiller til matematikklererne p4 reallinjen om & gjore flinke elever opp-
merksom p& konkurransen.

1. Vis at
n—1 . n+1 __ n
N g — (n—1)x nat +x
=0 (x—1)
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Finn et forenklet uttrykk for

1 n
sp(@) = = 3 (n—r)a”,

« n r=0
nar xz+1 og n er et helt positivt tall. Finn spesielt s,(1).

Vis at s,(—1)2 % for alle n. Finn et positivt helt tall N slik at

$u(—=1)—% < 1m0

for alle nz V.

Hvordan ma x velges for at lim s, (z) skal eksistere ?

n—>00

2. Gitt funksjonene
f@) = a+2+} og h@) = —a+)a2+a—1f.

Hva blir definisjonsomrade og verdimengde for de to funksjoner ?
Vis at f(x) og h(x) er omvendte (inverse) funksjoner nar definisjons-
omridet begrenses pa passende mate. Bruk dette til & lgse likningen

224200+ L = —a+]/a—2;x—%6.

3. Bevis, uten bruk av tabeller, at

1 1 1
a) +— > 2 (7% < 10);

> 2.
log,7 * logsm

logyn " log, 2

4. I den likebente trekanten ABC er AC = BC, og £ (C=20°. Punkte-
ne M og N ligger pa henholdsvis AC og BC slik at £ ABM =60° og
£/ BAN =50°. Vis at ZBMN =30°.

5. Bestem summen

n-l+m—1)24+n—-2)3+...4+2:n—1)+1:n.

6. I likningen ax?+ bx +c=0 er koeffisientene og konstantleddet ulike
(odde) tall. Bevis at likningens rotter ikke kan veere rasjonale.
Forsgk & angi analoge resultater for en likning av vilkarlig grad n.

RESULTAT AV PRISOPPGAVER FOR NORSKE GYMNASELEVER
(Oppgavene i NMT 11 (1963), s. 193-194.)
I konkurransen var det 8 deltakere. H.K.H. Kronprinsens premie kr. 200 for

beste besvarelse ble tildelt Bernt Oksendal, Flekkefjord komm. h. allmennskole
(realartium 1964).

{
|
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PROBLEMTAVLING FOR SVENSKA GYMNASISTER

Ocksd i 1964 har Svenska Matematikersamfundet i samarbete med Svenska
Dagbladet arrangerat en stort upplagd tévling med férsoksomgang vid de olika
laroverken foljd av final i Stockholm. Med vederbérlig tilldtelse publicerar vi
hiarmed uppgifterna i finalomgangen.

1. Av en triangel ar ytan 7' och en vinkel v givna. Bestam triangelns
sidor s att den sida som stir mot v blir s& kort som mojligt.

2. Summan av ett visst antal pad varandra féljande naturliga tal
n, m+1,..., n+m, ar 1000. Bestim alla mojliga sadana talfoljder.

3. Bestam ett polynom med heltalskoefficienter som har
(a) talet ]/§+V§ bland sina nollstallen;
(b) bade talet V§+V§ och ]/§+ V3 bland sina nollstillen.

4. n personer har sina bostider By, B,,...,B, si beligna att avstan-
det fran B, till B; for alla i och j &r hogst 1 km. De soker en métesplats
M si att det lingsta avstandet fran B; till M blir sa kort som mdjligt.
Oberoende av liget pa bostiderna B; kan man uppskatta detta kortaste
langsta avstand L.

(a) Angiv den bista uppskattningen av L om n=3.

(b) Giv uppskattningar av L (ej nodvéndigtvis den bésta, men upp-
giften bedéms med hénsyn till hur god uppskattningen é&r) for n=4.

5. En funktion
f(x) = 1+a, cosx+a, cos2x+ ... +a, COSNT,

dir ay, a,, . . ., @, ir konstanter, 4r = 0 for alla x. Vi soker uppskattningar
av koefficienten a,.

(a) Om n=2, bestim de storsta och minsta viirden som a; kan ha for
saddana funktioner f(z).

(b) Behandla motsvarande uppgift for andra virden pd n. Den tév-
lande limnas hér frihet att behandla uppgiften efter eget val, t. ex. att
ge uppskattningar pa a, for n=3 eller 4, att ge uppskattningar som géller
for alla », att konstruera exempel, som visar virden som kan antas.

Forsta pris tilldelades Johannes Sjéstrand, Lundby samldroverk, Géteborg,
andra pris Bengt Fornberg, Lundellska liroverk, Uppsala, och tredje pris tilldela-
des Ingemar Ragnarsson, Angelholms ldroverk.



SUMMARY IN ENGLISH

Haxs Geore KILLINGBERGTRO: A general method for pointwise con-
struction of comic sections. (Norwegian.)

Given 3 points 4, B, C on a conic section, and the tangents at 4 and B (fig. 1
p- 140), new points C; on the curve can be found by using the well known projective
generation of conic sections. The author first gives a simple proof of this construe-
tion, by projecting the conic section onto a circle. It is then shown, by means of
examples, that this general method can be used effectively for pointwise con-
struction of conic sections.

JERRY SEGERCRANTZ: On @ method to define trigonometric and hyperbolic
Junctions within linear algebra. (Swedish.)

We consider a 2-dimensional vector space B with real coefficients. Let x-y
(%, y € E) be an inner product in E and A(x, y) a determinant function not iden-
tically equal to 0. A linear mapping A is defined by means of the identity 4(x, y) =
Ax-y. It is shown that every proper rotation A4 is a linear combination of A and
I (the identity mapping). The appropriate coefficients of I and A are called cos (A4)
and sin (4), respectively, if the inner product is definite, and cosh (4) and sinh (A4),
respectively, if the inner product is indefinite. The addition theorems for the tri-
gonometric and hyperbolic functions are derived in a straightforward manner. By
constructing a suitable mapping from the real axis to the group of proper rotations,
we arrive at the usual trigonometric and hyperbolic functions of a real variable.

The analoguous process may be applied in the case of a complex coefficient
field.

Ove DrrLevsEN: A simple chi-square test. (English.)

Consider distributions of the continuous type with piece by piece continuous
density functions. Corresponding to a sample @;,a,, . . .,z, taken from populations
with distribution functions F(z)m or 1—[1— F(x)]m, the random variables

n n
=2m XInF(x;) or —2m XIn[l—F(x;)]
i=1 i=1
are distributed like x2 with 2n degrees of freedom.
These random variables are proposed as test statistics. The power of the test is

investigated on a family of exponential distributions and on the uniform distribu-
tion against the beta distribution.

[190]
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