OM BRUKEN AV VEKTORER OG MATRISER
I DEN PROJEKTIVE PLANGEOMETRI

KJELL KOLDEN

Det folgende er intet forsgk pa en samlet fremstilling, men en rekke
eksempler p4 hvordan vektor- og matriseregning kan brukes til & be-
skrive projektivgeometriske egenskaper ved plane figurer.!

1. Punkt, rett linje, insidens. I den plane projektivgeometri er det
vanlig & identifisere et punkt P med mengden av proporsjonale tall-
tripler hvor ikke alle tall er null. Man skriver saledes

P = Mp1,P2:P3)

hvor 2 er en vilkarlig tallfaktor 0.

Pa samme méte identifiseres en rett linje » med et lignende talltrippel.
Man benytter i dette tilfelle ofte en hakeparentes for & antyde at tall-
triplet skal bety en rett linje:

U = Auy, g, U] .

For 4 unngd de to typer parenteser, vil vi benytte rekke- og soylevek-
torer. Vi skriver altsa

Uy
P =ip = Mp1peps} 08 u = iu* = ﬂl%’-
Ug

Asterisken betegner at rekkevektoren u = {u,,u,,u3} er transponert til en
sgylevektor.

Som vi vet, er punkt og rett linje duale begreper i den projektive plan-
geometri. Ved denne betegnelsesmate oppnar vi at det duale begrep
dannes ved transponering av en vektor. Videre oppndr vi at punkter og
rette linjer kan betegnes direkte ved vektorer. Vi kan altsa tale om punk-
tet p og den rette linje u*.

1 Enkelte forbedringer av den opprinnelige fremstilling skyldes professor David Fog

og professor Ernst 8. Selmer. Jeg vil her gjerne takke dem sé meget for dette og for
den interesse de har vist.
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At punktet p ligger pa linjen u* (insidens av punkt og rett linje) kan vi
né uttrykke ved matriseligningen

pu*r=0.

Ser man bort fra vektorenes karakter av henholdsvis rekke- og sgyle-
vektor, kan matriseproduktet p-u* ogsd betraktes som et alminnelig
skalarprodukt.

Vektorproduktet @ x b av to rekkevektorer vil vi igjen oppfatte som
en rekkevektor (altsa et punkt). P4 samme vis opfatter vi a* x b* som
soylevektoren (@ x b)* (en rett linje).

Den rette linje u* gjennom punktene @ og b kan vi da fremstille slik:

u* = (axb)*.

At a og b ligger pa u* fglger nemlig av a-(axb)*=b-(axb)*=0. —
Dualt er p=ax b skjeringspunktet mellom linjene a* og b*.
Tre punkter a, b, ¢ vil ligge pé rett linje dersom vi har

@y Gy O3
a-(bxe)* =[abe] = |b; b, by| = 0.
€y Cy Cg

2. Det projektive koordinatsystem. La oss betrakte fire vilkarlige
punkter a,, by, ¢, og d, av hvilke ikke tre ligger p4 rett linje. Da kan
vektoren d uttrykkes som en linezrkombinasjon av @y, b, og ¢,:

d = Jyay+ by +2A5¢
hvor 2,, 4, og 2, alle er =0. Benytter vi vektorene a=21,a, b=41,b,,
c=13¢, til & representere de tre forstnevnte punkter, far vi
d=a+b+c.
Et vilkarlig punkt ® i planet kan fremstilles ved
x = 1,0+ 2,b+ 250 .

Vi kan her oppfatte talltriplet (z,,2,,%;) som koordinater for x i et ko-
ordinatsystem med »grunnpunktene« @, b og ¢. Punktet d far da koordi-
natene (1,1,1) og kalles derfor »enhetspunktet«. Det sees at man kan velge
fire vilkarlige punkter i planet som grunnpunkter og enhetspunkt, bare
ikke tre av dem ligger pa rett linje.

3. Punktrekker, linjebunter, duale figurer. Dersom et punkt x skal
ligge pa rett linje med to punkter @ og b, ma vi som nevnt under 1 ha
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x-(axb)* = [xab] = 0.

Dette medferer at vektoren & mé veere en lineserkombinasjon av @ og b:

(1) X = 0,8+ x,b .

Vi kaller «, og «, de binere koordinater til punktet ® med @ og b som
grunnpunkter. Dersom «, +0, dvs. +b, kan punktet ogsa uttrykkes ved

x = a+ab,

hvor o =ux,/o, kalles parameteren til .
Transponerer vi (1), far vi

x* = o a* 4 x,b* .

Dette representerer det duale begrep til en punktrekke, nemlig en linje-

bunt. x* er en rett linje som gar gjennom skjeringspunktet for de rette
linjer a* og b*.
Vi betrakter na (fig. 1) skjeeringspunktet s mellom en rett linje ¢* og

c .. /\

Fig. 1 Fig. 2

den rette linje gjennom punktene @ og b. Vi far da for s, idet vi bruker
formelen for trevektorproduktet!:

s=cx(axb) = (b-c¥la—(a-c*)b = x;a+xb .

s far de binwre koordinater «, =b-c*, x,= —a-c* nar a og b er grunn-
punkter.
Transponerer vi relasjonen ovenfor, far vi analogt (fig. 2)

s* = ¢*x (a* xb*) = (c-b*)a*—(c-a*)b* = x,a* + a,b* .

Dette kan vi lese slik: s* er forbindelseslinjen mellom punktet ¢ og
skjeeringspunktet @ x b mellom linjene a* og b*. Linjen s* tilhgrer linje-
bunten o,a@*+ x,b*.

1 De i denne formel inngéende skalarprodukter skrives s& de ogsé kan oppfattes som
matriseprodukter.
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4. Firkant, firside. En firkant er bestemt ved sine fire hjgrner a, b,
¢, d (fig. 3), av hvilke ikke tre ligger pa rett linje. Vi kan da velge @, b, ¢
som grunnpunkter og d=a+b + ¢ som enhetspunkt.

d—e
d-a (d—a)+(d—c¢)

Fig. 3

(@—a)— (d—e)

Firkantens seks sider er gitt ved vektorproduktene
(ax b)*, (axce)*, (axd)*, (bxce)*, (bxd)*, (exd)*.

Av relasjonen d —a=>b -+ c=x ser vi at ® er et punkt som bade ligger pa
(ax d)* og (b x e)*, altsd et skjeringspunkt mellom to motstiende sider
i firkanten. « kalles derfor et diagonalpunkt. De to andre diagonal-
punkter er gitt ved

y=d-b=a+c, z=d—c=a+b.

De tre forbindelseslinjer mellom to og to av diagonalpunktene betegnes
som firkantens diagonaler.

Av relasjonen d+b=(d—a)+ (d—c) ser vi at punktet (d—a)+ (d—c)
er skjeeringspunktet mellom diagonalen (d —a)* x (d — ¢)* og den ene side
som gar gjennom det tredje diagonalpunkt d —b. Pa samme méte ser vi
at den andre side gjennom dette diagonalpunkt méa skjere diagonalen i
punktet (d—a)—(d—e¢). Sammen med de to diagonalpunkter gir dette
punktgruppen

(2) (d—a), (d-c); (d—a)+(d—c),(d—a)—(d—c).
Dersom x, y; +«y, x+ By er fire punkter pa en rett linje, sier vi at
dobbeliforholdet mellom disse fire punkter er
@ y;x+oy, x+py) = «:f.

Dersom dobbeltforholdet er lik —1, sier vi at punktparene @,y og
x+oy, &+ Py er harmonisk konjugerte. Av (2) folger derfor setningen:
Pa enhver diagonal © en firkant vil de to sideskjeeringspunkter og de to
diagonalpunkter vere harmonisk konjugerte.
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Transponerer vi na alle uttrykk og relasjoner ovenfor, fremkommer de
tilsvarende storrelser ved den duale figur, firsiden (fig. 4).

Vi far:

Sider: a*, b*, c*, d*.

Hjorner: axb, axe, axd, bxe, bxd, cxd.

Diagonaler: d* —a*, d*—b*, d*—c*.

Diagonalpunkter: (d—a)x (d—b), (d—a)x (d—c), (d—b)x(d—c).

Harmoniske linjepar: (d* —a*), (d*—c*); (d* —a*)+ (d* —c*), (d* —a*)
— (d* — c*) etc.

5. Korrelasjoner, polariteter. Dersom vi transponerer vektoren til et
punkt x, far vi en rett linje «*. Dette kalles en korrelasjon, det er en til-
ordning av en rett linje til ethvert punkt a. I dette tilfelle blir den til-
ordnede rette linje ganske spesiell, idet linjens linjekoordinater blir lik
punktets punktkoordinater. Vi skal nd oppstille den generelle korrela-
sjon. La 4 vere en ikke-singuler 3 x 3 matrise og @ et vilkarlig punkt.
La transformasjonen 7' fgre punktet & over i linjen Aax*:

T: ax— Ax*.

Dette kan ogsd uttrykkes slik: Et punkt @ og dets tilsvarende linje u*
er knyttet sammen ved ligningen

u* = Ax* .
Omvendt kan vi uttrykke &* ved u*, idet |A|+0:
x* = A u* .

En rett linje k* med ligningen k-a* =0 i punktkoordinater fores da over
i en linjebunt med ligningen k-A-'u*=0 i linjekoordinater, altsd i
punktet kA-1. Vi har derfor (med litt endrede betegnelser):

T: u*—>ud-1l.
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Vi vil bruke betegnelsen »4-linjen til punktet x« for den rette linje
Ax* som tilordnes punktet ® ved transformasjonen 7'. Da gjelder fol-
gende setning:

Dersom A-linjen til et punkt x gir gjennom et punkt y, sd vil A*-linjen til
Yy ga gjennom ax.

Bevis: Da y ligger pa Ax*, har vi y-Ax*=0. Ved transponering faes
x-A*y* =0, som viser at x ligger pad A*y*, hv. sk. bev.
Vi betrakter na (fig. 5) to punkter
Aa’ a og b og deres A-linjer Aa* og
Ab*. Skjeeringspunktet ¢ mellom de
a to A-linjer blir da

c=(Aa*<Ab*)" c = (Ada* x Ab*)*,

b Da ma A*-linjen til ¢ g& gjennom
a og b slik at vi kan skrive
Ac’ Ab* A*(Aa* x Ab*) = A(a* x b*)

Fig. 5 hvor A er en proporsjonalitetsfak-

tor. For & finne denne utregner
vi Aa* x Ab*, Resultatet viser seg 4 kunne skrives som

Aa* x Ab* = K(a* x b¥)

hvor K er den matrise, hvis elementer er komplementer til elementene
i A, altsd K=|A4|(4*)-1. Herav folger at A=|A|. Erstatter vi dernest i
den betraktede relasjon a* og b* med A-la* og A-1b*, blir den

A*(a* x b*) = |A|(A-la* x A-1b*) .

Dette gir en regel for & multiplisere et vektorprodukt med en ikke-
singuleer matrise.

Dersom A er en symmetrisk matrise (ikke-singuler), far vi korrela-
sjoner av serlig enkel karakter, de sikalte polariteter. I dette tilfelle
betegner vi linjen Ax* som A-polaren til punktet . For slike polarer
gjelder da setningen: Dersom y ligger pd A-polaren til ®, sd ligger ® pd
A-polaren til y. Dette folger av setningen om A-linjer, idet vi har 4= A4*.

6. Kjeglesnitt. Ved hjelp av polariteter kan vi oppstille folgende enkle
definisjon: Et kjeglesnitt er mengden av de punkter ved en polaritet som
ligger pa sine polarer. ‘

Er polariteten bestemt ved den ikke-singuleere, symmetriske matrise
4, far det tilsvarende kjeglesnitt K 4 ligningen
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x-Ax* = 0.

Skriver vi kjeglesnittsligningen som a- A4-14x* =0 og innferer u* = Ax*,

u=xA, antar den formen
u-A-lu* = 0.

Dette er kjeglesnittets ligning i linjekoordinater, idet w* har linjekoordi-
natene til A-polarene Ax*.

Skriver vi kjeglesnittsligningen som a-BB-1AB-'Bx*=0, hvor B er
en ikke-singuler, symmetrisk matrise, og innferer y* = Bx*, y=xB, far vi

y-B1AB-ly* = 0.

Dette er ligningen i punktkoordinater! for et nytt kjeglesnitt Ky 145-1.
Vi ser at K, avbildes i Kg 1451 ved den linexre transformasjon
T: y=xB.

Dersom matrisen A4 er singuleer vil ligningen - Ax* =0 likevel repre-
sentere en punktsamling i planet. Vi sier at x-Aax*=0 i dette tilfelle er
ligningen for et degenerert kjeglesnitt. Da A er singuleer, vil et degenerert
kjeglesnitt ikke ha noen ligning i linjekoordinater, idet matrisen A4-! ikke
eksisterer. Det er velkjent (og lett & vise) at et degenerert kjeglesnitt
bestar av to rette linjer som eventuelt kan falle sammen.

Vi kan vise at polaren Ax* bare har punktet x felles med et ikke-
degenerert kjeglesnitt. Sett at punktet y+a pa kjeglesnittet ogsa 14 pa
polaren Ax*. Da ville ® ogsa ligge pa polaren Ay* slik at begge polarer
Ax* og Ay* ville gd gjennom x og y. Dette ville medfore Ax*=14y*
eller A(x— Ay)*=0, hvilket er umulig nar |4| 0. Polarene Ax* er derfor
tangenter til kjeglesnittet K ,.

7. Kjeglesnittsbunter. Gjennom fire punkter a, b, ¢, d, hvorav ikke
tre ligger pa rett linje, kan der legges uendelig mange kjeglesnitt. Kjegle-
snittets symmetriske 3 x 3 matrise C er nemlig bestemt ved de 6 elementer
pi og over diagonalen. Skal x-Cx*=0 for x=a, b, ¢ og d, gir dette 4
linezere homogene ligninger til bestemmelse av elementene i C. Den
alminnelige lgsning vil derfor avhenge av to lineere homogene para-
metre, f. eks. C=1,4+,B, hvor A og B er matrisene for to av kjegle-
snittene i bunten. For C+B kan vi ogsa sette

C=A+IB,

hvor 4 er en inhomogen parameter.

1 Ligningen kan ogsad opfattes som ligningen i linjekoordinater for kjeglesnittet
Kpa—1p ved polariteten y*=Bax*.
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La v* vere en vilkarlig rett linje. Vi vil bestemme de kjeglesnitt i
bunten A+AB som har v* til tangent. Vi skriver da opp ligningen i
linjekoordinater for et vilkarlig kjeglesnitt i bunten. Den blir

u-(A+iB)u* = 0.
Skal v* veere tangent til dette kjeglesnitt, mé vi ha
(3) v (A+AB)lo* = 0.

Dette blir en 2. gradsligning i 4. Matriseelementene i (4+AB)-! blir
nemlig proporsjonale med komplementene til matriseelementene i
A+B, og da A+ AB er en 3 x 3 matrise, blir disse komplementer 2. grads-
polynomer i A. Ligningen (3) har derfor vanligvis to retter 1, 4,. Hertil
svarer to kjeglesnitt Kp, K¢ som har o* til tangent. Matrisene P og Q
er da gitt ved P=A4+41,B og Q=4+ 4,B.

Vi kaller kjeglesnittenes bergringspunkter med v* for p og q. Punktene
p og q ligger henholdsvis p4 Kp og K, og de ligger begge pa linjen v*
som er identisk med linjene Pp* og Qq*. Dette kan vi uttrykke ved

(4) pPp* = 0, qQq* = 0, qPp* = 0, pQq* = 0.

La C vxre matrisen for et vilkarlig kjeglesnitt i bunten. Da kan C
ogsé uttrykkes linesert ved matrisene P og O, slik at vi kan skrive

(5) C =oP+p50,

hvor « og f er passende konstanter.
La ® vere skjeringspunkt mellom kjeglesnittet K og v*. Da har vi

x-Cx* = 0.
Skriver vi x =p +tq, idet p og q tas som grunnpunkter pa v*, og benytter
vi (5), far vi
© (p-+tg)(P+ PQ)(P* +1g%) = 0.

Utferes her alle multiplikasjoner av matriser og vektorer, vil en rekke
ledd forsvinne p& grunn av relasjonene (4) og de tilsvarende transpo-
nerte relasjoner. Ligningen forenkles derved til

BpQOp* + at?qPq* = 0.

t = t)/-BpQOp*/xaPa* = +i.
Dette viser at K skjerer v* i to punkter p+¢,q, p—t,q. Men

Herav faes

(P, @;P+tg, P—19) = —1.
Altsa vil de to skjeringspunkter veere harmonisk forbundne med de to
bergringspunkter p og q. Skjeringspunktene utgjor folgelig et punktpar
i en involusjon som har p og q til dobbeltpunkter.



AFBILDNING AF UDSAGN PA BUER AF
KONCENTRISKE CIRKLER

FINN METHLING

Som Alf Nyman! har vist, har rumanalogierne spillet en vasentlig
rolle for udformningen af logikkens begrebsverden og de forhold, der gor
sig gwldende her. Selv de ivrigste talsmeend for den rent symbolsk-
algebraiske fremstillingsméde har ofte stottet sig til de fundamentale
geometriske anskuelser, nar det drejer sig om forklaringen af de elemen-
teere kompositionsformers definitioner. Er symbolerne forst skabt og de
gensidige forhold mellem dem udredet, lgsriver det symbolske system
sig fra sin elementart anskuelige basis og bliver et nyttigt apparat, der
har vist sig at veere logikken en uvurderlig tjener, fordi den befrier den
fra dagligtalens usikre begreensninger. Det fglgende mé derfor ikke op-
fattes som en apologi for en tilbagevenden til mere primitive udtryks-
mader. Det ma kun ses som et nyt eksempel pa en geometrisk fortolk-
ning af de elementeere former.

De mest kendte geometriske afbildninger (Euler, Bolzano, Venn og
Maass) anvender todimensionale omrader til fremstilling af de givne for-
hold. Det skulle fremgé af den omstaende figur, hvorledes den matematiske
logiks udsagn samt en vigtig del af dens elementere definitioner og
tautologier vil kunne afbildes pa buer af koncentriske cirkler. Begreens-
ningen ligger i, at der kun kan indgé 1 eller 2 udsagn i afbildningen.
Hvis der indgar 3 eller flere udsagn, vil det pa denne made ikke kunne
lade sig gore at fremstille det mulige antal kombinationer af sandheds-
veerdier.

Hvert udsagn med den dertil svarende bensxgtelse er afbildet p&4 hver
sin cirkel. De to primeere udsagns sterrelser og indbyrdes beliggenhed er
vilkarligt valgt og lader sig bestemme ved tre vinkler. De binzre former
indretter sig derefter. De enkelte logiske universers storrelser (diametre)
har ingen betydning. De koncentriske cirkler bgr betragtes som én cirkel,
ét feelles univers, man af overskuelighedsgrunde har spaltet i flere.

1 Arr NymaN: Rumsanalogierna inom logiken. Lunds Univ. Arsskr. N.F., Avd. 1,
Bd. 22, Nr. 4.
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Udsagn: Benegtelser:

1) Udsagn A ~A4

2) Udsagn B ~B

3) Incl. alternation (veller — eller begge«) AvB ~(4vB)
4) Konjunktion (»og«) A-B ~(4-B)
5) Konditional (»hvis — sd«) A>B ~(4>B)
6) Bikonditional (vhvis og kun hvis«) A=B ~(A=B)

~ (AvB) er ®kvivalent med 4 | B, som er forbundet bencegtelse, hvilket
svarer til vhverken — eller¢.

~(4-B) er xkvivalent med 4 | B, som er alternativ bencegtelse, hvilket
svarer til »eller — eller ingen, men ikke begge«.

A> B er mkvivalent med (~AvB) eller ~(4-(~B)).

A =B er ekvivalent med (4> B)-(B>A4).

~(A=B) er xkvivalent med exclusiv alternation (veller — men ikke
begge«). Ved alternation forstdr man sedvanligvis inclusiv alternation
som 3).




ALGORITMER I MATEMATIKKEN:
EN INNFORING I DEN REKURSIVE MATEMATIKK
OG DENS ANVENDELSER, II*

JENS ERIK FENSTAD

Formaliserte teorier og Godels teorem. En aksiomatisk teori T vil veere
bygget opp over visse grunnbegreper. En pastand @ innen T vil vere et
utsagn formulert ved hjelp av disse grunnbegreper, samt variable og
logiske symboler. I »spissen« for teorien vil det std en rekke pastander
som kalles aksiomer. Et bevis innenfor T av et utsagn @ skal veere en
endelig sekvens av pastander @,, ..., 9D, slik at @ er det samme som Dy,
og for hver 1=1,2, ...,k er @, enten et av aksiomene i T eller folger fra
forangaende pastander i bevisfelgen ved bruk av de spesifiserte slutnings-
regler for 7.

For en aksiomatisk teori T vil en kreve at en effektivt kan avgjore om
en gitt sekvens @, ...,D, er et bevis for en gitt pastand @. At P er
bevisbar innen T vil si at det fins et bevis for @ innen T. Denne relasjon
er vanligvis ikke effektivt avgjerbar, idet det her forekommer en eksi-
stenskvantor i definisjonen. Men vet vi om en @ at den er bevisbar, s&
kan vi finne et bevis for dette utsagn ved suksessivt & skrive opp bevis-
folgene innen T, og sa avgjere, oppskrevet en bevisfelge, om den er et
bevis for @. Vi har her forutsatt at det er hoyst et fellbart uendelig antall
bevisfelger innen T, en antagelse som vanligvis vil vaere oppfylt. Spesielt
gjelder dette om man tillater kun et tellbart antall av variable, logiske
symboler og grunnbegreper innen 7.

Vi har forutsatt at T er konsistent, dvs. at ikke alle utsagn formuler-
bare innen T er bevisbare ut fra de gitte aksiomer og slutningsregler.
En ekvivalent formulering av konsistenskravet er at ikke bade en pa-
stand og dens negasjon skal vere bevisbare. Et annet viktig begrep er
kompletthet (eller fullstendighet). T kalles komplett hvis for enhver @
enten @ eller dens negasjon er bevisbar. Vi skal vise at en konsistent teors
som er komplett, er avgjorbar (dvs. at det for en slik teori fins en effektiv

1 Forste del sto i NMT, denne &rgang, s. 17-35.
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metode til & avgjere om en gitt pastand @ er bevisbar). Pivisningen er
uformell idet effektivitetsbegrepet er intuitivt. Avgjerbarhetsmetoden er
som folger: For en vilkarlig @ er den eller dens negasjon bevisbar innen 7.
Vi antar at bevisene kan effektivt skrives opp, ett etter ett. Da bevis-
relasjonen er effektiv innen T, vil vi effektivt kunne finne et bevis
Dy, ..., D slik at enten er @, lik @ eller s& er @, lik negasjonen av P.
Og av konsistensen av T folger at bevisbarheten av negasjonen av @
vil medfere at @ selv ikke er bevisbar. Saledes har vi for komplette,
konsistente teorier en metode til effektivt 4 avgjore om et gitt utsagn
er bevisbart eller ikke.

Diskusjonen er forelopig heuristisk. Ett av formalene med denne para-
graf er & gjore den presis, samt & gi interessante eksempler pa teorier
som hverken er komplette eller avgjorbare. Vart eksempel skal vere den
elementeere aritmetikk, og resultatet skal bli Gidels teorem. Men for vi
gar over til en ngyere beskrivelse av deduktive teorier, kan det kanskje
vare pd sin plass & gi noen antydninger om hvordan det intuitive effek-
tivitetsbegrep pa dette omradet blir omformet til begreper hentet fra
den rekursive matematikks teori. Klassen av alle pastander er tellbar,
og det fins da en en-entydig avbildning av den pa N. Benytter vi Church’s
tese, gar det frem av de innledende betraktninger at den tallmengde som
tilsvarer de bevisbare pastander, ma vere rekursivt generert. Kan vi
finne en teori hvis bevisbare pastander (under en en-entydig avbildning
pd N) svarer til en rekursivt generert mengde som ikke er rekursiv, vil
vi ha et eksempel pa en teori som er uavgjorbar og dermed heller ikke
komplett.

Byggestenene eller alfabetet for en formalisert teori vil gjerne veere et
tellbart uendelig antall symboler som deles inn i to klasser, variable og
konstanter. Konstantene deles videre inn i to grupper, de logiske og de
ikke-logiske. Som et eksempel vil vi beskrive oppbygningen av den ele-
mentere aritmetikk som en formal teori. Vi kaller denne teori for P.

Variablene er en tellbar uendelig klasse: vy,vs,...,0,,.... De logiske
konstanter bestar dels av de utsagnslogiske symboler, dels av kvantorene.
Da man m4 skille mellom de logiske tegn brukt uformelt i den ikke-
formaliserte aritmetikk (slik som i tidligere paragrafer av denne artik-
kel) og de tilsvarende tegn innen den formaliserte versjon, velger vi her
for den aksiomatiske teori folgende symbolikk:

A konjunksjon
v disjunksjon
~ negasjon

- implikasjon
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PN ekvivalens
A all-kvantor
\'% eksistenskvantor.

De ikke-logiske konstanter utgjores av predikatsymboler, operasjons-
tegn og individkonstanter. For den aksiomatiske aritmetikk velges:

likhetstegn
addisjon
multiplikasjon
etterfolgeroperasjon
»nulle.

SRR N

I tillegg til disse symboler vil man bruke parentestegn og kommategn
til konstruksjon av formler innen teorien. Enhver formel innen P er en
endelig sekvens i disse symboler, men ikke enhver symbolsekvens er en
»meningsfylt« formel innen P. Det neste trinn, etter angivelsen av alfa-
bet for P, er & beskrive klassen av tillatte tegnkombinasjoner innen teo-
rien. Forst defineres begrepet ferm:

1° 0 er en term. 2° Enhver variabel er en term. 3° Hvis s og ¢ er termer,
sa er A(s,t), M(s,t) og S(t) termer.

Her er s og ¢ symboler som benyttes til & benevne termer, de er ikke
symboler innen den formaliserte teori P, men symboler vi anvender til &
beskrive P. Det skal veere underforstatt i en induktiv definisjon av denne
art at termer, det definerte begrep, kun kan dannes ved de regler som
eksplisitt er formulert, dvs. at klassen av termer er den minste klasse av
symbolsekvenser som inneholder 0 og variablene, og som er lukket under
operasjonene beskrevet i 3°.

Den neste tegnkategori er formler:

1° Hvis s og ¢ er termer, s& er s=t en formel. 2° Hvis @ og ¥ er formler,
sher DAY, ODvVYV, ~D, O -V, &« ¥ formler. 3° Hvis @ er en formel
og v en variabel, sd er Av® og Vv® formler.

Her forutsettes, med forakt for detaljer, at leseren vet & sette paren-
teser pd en slik méte at man far en entydig lesning av de fremkomne
formler. En variabel kan enten forekomme fri eller bundet av en kvantor
i en formel. Et eksempel for & indikere forskjellen:

Avy ~ (A(vy,S(vp)) = 0) .

Her er begge forekomster av v, bundet av all-kvantoren, mens v, opptrer
fri.

Det deduktive apparat vil utgjeres av aksiomer og slutningsregler.
For alle teorier T av den type som vi her beskriver gjennom eksemplet P,
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vil man ha et felles system av logiske aksiomer og slutningsregler. Kun
de ikke-logiske aksiomer varierer fra teori til teori (samt selvsagt ogsa de
ikke-logiske konstanter). De logiske aksiomer deles gjerne i to grupper,
aksiomer for utsagnslogikken og kvantorlogiske aksiomer. De utsagns-
logiske aksiomer er valgt slik at en utsagnslogisk formel er bevisbar,
hvis og bare hvis den er en tautologi ifelge den vanlige sannhetsverdi-
metode. Det er muligheter for forskjellige valg, og eksempler pa denne
type aksiomer kan vare formler som

D> (¥V—>D), ~n~D—>D, (DANVP)—>D.
Et eksempel pa et kvantorlogisk aksiom kan veere
Av D(v) - D(t) ,

der @(t) fremkommer fra @(v) ved & substituere ¢ for alle fri forekomster
av v i @(v) (her ma ¢ vaere palagt visse restriksjoner).

Av logiske slutningsregler kan nevnes modus ponens: Fra ® og @ -~ ¥
& slutte ¥, og den kvantorlogiske slutningsregel: Fra ¥ — @(v) & slutte
¥ — Av®(v), der ¥ er en formel som ikke inneholder v fri. Man har gjerne
ogsé en substitusjonsregel som tillater, under visse restriksjoner, & sub-
stituere termer for fri variable i en formel.

De ikke-logiske aksiomer vil for P vare de felgende formler:

. =0, — 8(vy) =8(v,).

V= 0y — (V=05 = Ve =0s).
~8(v,)=0.

S(vy) =8(vy) - vy =v,.

. ®(0) A Av(D(v) —~ D(S(v))) — B(v).
. A(vy,0)=0,.

. A(vy, S(vy)) = 8(A(v4,5)) .
M(v,,0)=0.

M(vy, S(vy)) = A(M (v5,v5),y).

Her er 5 et aksiomskjema, idet man for @ kan innsette en vilkarlig
formel fra P. Man legger ogsad merke til at de to ferste Peanoaksiomer er
forsvunnet; de gjenfinnes i definisjonen av termer.

Generelt defineres et bevis innen en formal teori T som en endelig
sekvens av formler @,,...,®P,, slik at for hver ¢ er @, enten et aksiom
eller folger fra formler @, ,.. 5Py, (ig, .. 51, <t) ved en av de spesifi-
serte slutningsregler for T'. Et eksempel pa et bevis innen P er folgende
formelsekvens:




ALGORITMER I MATEMATIKKEN 103

@) V) = Uy > (V) = U3 > vy = vy)

(ii) A(v1,0) = v; > (A('Ul,o) =V >0 = 7’1)
(i) A(v,0) = v,

(iv) A(v1,0) = v, > v, = v,

(v) v = v, .

Her er (i) et aksiom, og (ii) er fremkommet fra (i) ved substitusjon.
(iii) er igjen et aksiom, og (iv) felger fra (iii) og (ii) ved modus ponens;
lignende for (v). Vi ser at den refleksive lov for likhet er bevisbar innen P.

En formel @ innen en teori T kalles bevisbar hvis det innen T fins et
bevis @,, . .., Dy slik at @ er lik @,. At D er bevisbar skrives F,, @. For P
skrives kortere +®.

La 4 vere en variabel for endelige sekvenser av formler. Man kan
da definere et (meta-teoretisk) predikat, Bev,(®,4), som betyr at A er
en bevis-sekvens for @ innen T. Predikatet Bev,(®,4) er effektivt av-
gjorbart ut fra definisjonen pa at A er et bevis for @. Videre er klassen
av formler tellbar; det fins derfor en avbildning ® -~ @* av klassen av
formler inn i N. En slik tilordning kalles gjerne en Godelnummerering.
Vi forutsetter at tilordningen er en-entydig effektiv, dvs. gitt @ s kan vi
effektivt finne @*, og gitt en n € N s8 kan vi effektivt avgjere om n = @*
for en formel @, i hvilket tilfelle @ skal effektivt kunne skrives opp.

Et vanlig forekommende eksempel pd en Godelnummerering er den
felgende tilordning for P: Vi nummererer de gitte grunnsymboler i den
rekkefolge de er gitt i denne paragraf, slik at A,v, ~, ... blir det forste,
andre, tredje symbol osv.; =,4,... blir det attende, niende symbol
08v.; (, ) og , blir det trettende, fjortende og femtende symbol; v;,v,, . . .
blir det sekstende, syttende symbol osv. Til det n’te symbol tilordner vi
det odde tall 2n+1. La formlen @ veere symbolrekken vgy; ... y,; ®*
defineres da ved

O* = PPt .. PP,
hvor y* er tallet tilordnet symbolet y,. Hvis @ er formlen ~8(v;)=0 s3
blir @* = 27-323.527.783.1129- 1317. 1725, Det er lett & innse at tilordningen
® — &* oppfyller kravet til en Godelnummerering; det folger av den
entydige primtalloppspaltningen av naturlige tall.

Et fundamentalt resultat for P er folgende sats:

Det fins et rekursivt predikat Bp(x,y), slik at F® hvis og bare hvis

Beviset for denne pastand skal vi ikke g neermere inn p& her. Detal-
jene fins utskrevet i Kleenes leerebok (hvor riktignok den valgte Godel-
nummerering er noe anderledes).
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Derimot reformulerer vi resultatet ovenfor som en definisjon. La T
veere en aksiomatisk teori av typen beskrevet i denne paragraf. Vi sier
at T er rekursivi aksiomatiserbar hvis det fins en (Godelnummerering
& — @* av formlene i T og et rekursivt predikat B(z,y), slik at F; @
hvis og bare hvis dy By (D*,y).

I P kan vi uttrykke de naturlige tall gjennom termene 0, S(0), S(S(0))
osv. En vilkarlig rekursivt aksiomatiserbar teori T kalles aritmetisk hvis
det fins distinkte termer til & uttrykke de naturlige tall; disse termer
blir symbolisert ved 0,1,2,...,n,.... Videre krever vi at for enhver
formel @(v) skal avbildningen n — @(n)* vere rekursiv; dette viser man
lett gjelder for P.

La T vare en aritmetisk teori og R(xy, . . .,x;) et tallteoretisk predikat.
Vi sier at R er definerbar innen T hvis det fins en formel @(vy,...,v;)
innen T slik at

R(nyg,...,n) = Fp @y, ...,ny)
1Ry, ..., 1) = Fp~Pny, ..., n).

T kalles en aritmetisk adekvat teori hvis T er en aritmetisk teori i hvilken
alle rekursive predikater er definerbare. Et viktig resultat er at P er en
aritmetisk adekvat teori.

Vi kan n4 vise folgende teorem som er en generalisert versjon av Godels
sats for Peanoaritmetikken.

La D, og D, veere to disjunkte, rekursivt genererte mengder som er rekur-
stvt inseparable. Anta at T er en konsistent aritmetisk teori og at Dy(v) er et
predikat © T slik at

(1) n e Dy = kg Dy(n)
(2) neD; = btp~Dyn).
Da er T hverken komplett eller avgjorbar.

Beviset er meget enkelt ut fra forutsetningene. La By (%,y) vere det
rekursive predikat slik at

br @ < 3y By(D*,y) .

Etter forutsetningen for en Gédelnummerering vil funksjonene f(n)=
(@O(M))* og g(n)= (~(Z30(n))* veere rekursive. Definer tallteoretiske predi-
kater B; og B, ved By(n,y) <= BT(f(n),?/) og By(n,y) <:>BT(9("5),?/)~
Disse definisjoner gir umiddelbart ekvivalensene
(3) bp @o(n) <= Ty By(n,y)

(4) Fp ~®@y(n) <= Jy By(n,y) .
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Av (1)—(4) kan vi slutte at Ag={n | by Pyn)} og A;={n | Fz ~Dy(n)}
_er to rekursivt genererte mengder slik at Dyc 4, og D, = A,. Av konsi-
stensen av T fglger at A,n4,=0. Fra definisjonen pé rekursivt insepa-
rable mengder kan man konkludere at det fins et tall m e N —(4,u4,),
dvs. slik at hverken @y(m) eller ~ @y (m) er bevisbare i T. Denne teori
er derfor ikke komplett. Var T avgjorbar, dvs. var 4 ={®* | b, @} rekur-
siv, s& ville ogsd A, veere rekursiv, idet n € 4, <= f(n) € 4 og f er rekur-
siv. Dette er en motsigelse som viser at T ikke er avgjorbar.

Den fglgende utledning er kanskje noe mer teknisk enn det forangaende.
Man kan godt hoppe over den, men for dem som gnsker & se den opp-
rinnelige versjon av Godels teorem, la oss skissere konstruksjonen av et
predikat @, som oppfyller betingelsen i det nettopp beviste teorem, hvor
vi for D, og D, velger de rekursivt inseparable mengder fra Kleenes sats
(del I, s. 34).

P er en aritmetisk adekvat teori, og det fins derfor predikater @; og
@, som definerer henholdsvis de rekursive predikater F((x),,y)=x og
F((x)g,y)=2. La @y(v) vaere predikatet

Vu (Dyv,u) AAw (w < u — ~Dy(v,w))) .

Her er w<u predikatet Vw, (4(w,w,)=u), dvs. at w er mindre eller
lik u. Det er lett & vise innen P at

ne D, = FPyn).

Beviset for n € D; = | ~®y(n) er noe mer komplisert. Anta at n € D;,
dvs. at det fins en m slik at F((n)y,m)=n og F((n),,k)+n for alle k <m.
Idet @, definerer F((x)g,y)==x, far vi | @y(n,m). Innen P kan man vise
at dette medferer

(5) FAu (m < w— Vw (w < u A Dy(n,w)) .

Av F((n),,k)#n for k<m folger, idet @, definerer F((x),,y)=2, at
F~®(n,0), F~Dyn,1),..., F~D(n,m).

Innen P gir dette folgende bevisbare formel:

(6) FAu(u < m — ~®,(n,u)).

N4 vil alltid u<m eller m<u, og av (5) og (6) kan man derfor innen
P bevise
(7) FAu (~@m,u) vV (w < w A Dy(n,w))) .

Men (7) er opplagt ekvivalent med ~®y(n). Dermed har vi vist at @,
oppiyller betingelsene i teoremet.

NMT, Hefte 3, 1964. — 8
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Kall T en utvidelse av P hvis den er fremkommet fra P ved tilfgyelse
av nye ikke-logiske aksiomer. Hvis predikatet R er definerbart i P, vil
det ogs& vare definerbart i T'. Vi kan formulere Gédels teorem pa denne
mate:

GODELS TEOREM. Anta at den formaliserte Peanoaritmetikk P er konsi-
stent. Det fins da ingen komplett og konsistent rekursivi aksiomatiserbar
utvidelse av P. Spesielt er P hverken avgjorbar eller komplett.

At P ikke er avgjorbar ble forst pipekt av Church, som ogsa har vist
at den elementere logikk, dvs. en teori T uten ikke-logiske aksiomer, er
uavgjerbar.

Algoritmiske problemer i algebra. Innen algebra og algebraisk topo-
logi er det ikke sé uvanlig at en gruppe er gitt ved generatorer og rela-
sjoner. Homologi- og homotopigrupper er sveert ofte »gitt« pa denne mate.
Generatorene og relasjonene bestemmer entydig en gruppe og dens egen-
skaper, f. eks. om den er kommutativ, endelig, fri osv. Men kan vi effek-
tivt fra generatorene og relasjonene avgjore hvilke egenskaper gruppen
har, hvor informativ er denne méte & presentere gruppen pa? Fer vi
svarer nermere pd disse spersmél, la oss forklare hva det vil si at en
gruppe er gitt ved generatorer og relasjoner.

En gruppepresentasjon er en endelig sekvens

IT = (2, ..., ,5 70, .. u7y)
der zy, .. .,x, er n distinkte symboler. Et ord i disse symboler er en sym-
bolsekvens
My M2 my
R NN A
der hvert x;; er et av symbolene xy,...,%,, og m,,...,m; er hele tall.

Hvis m;=0, betyr det at w;, ikke forekommer i ordet. Vi innforer ogsa
det tomme ord, betegnet med 1. Hvis alle m; =0, 54 er ordet lik det tomme
ord. To ord » og v kan kombineres ved & skrive dem etter hverandre, uv.
Vi innferer en reduksjonsprosess pa ord: hvis 2" og 27 forekommer
umiddelbart etterfglgende hverandre i et ord u, kan vi danne oss ordet
u’ som fremkommer fra u ved at «]"@** erstattes med 272, Likeledes
tillater vi at 2"2;™* innskytes pd vilkérlige steder i et ord . La ordet
u’ kalles et inverst ord til » hvis wu’ kan reduseres til det tomme ord.

Det gjenstar & forklare hva symbolene rq, .. .,r, i grappepresentasjo-
nen I7 star for. Hver r; er en likning u;=u; der u; og u; er to vilkirlige
ord i symbolene z,,...,z,. r; kalles en relasjon, z; kalles en generator.
Et eksempel er folgende presentasjon:
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.l 2 — 3
Il = (%, %oy 27 = 1,25 = 1, 232y = 277) .

Vi skal beskrive overgangen fra en presentasjon /7 til en gruppe G,
spesielt skal vi bestemme G . — To ord w, og w, kalles umiddelbart
ekvivalente hvis de enten er fremkommet fra hverandre ved en reduk-
sjon eller en innskytning, eller det fins ord u og v samt en relasjon
7ot ug=u, slik at w; =wuww og wy=www, eller w;=wuup og w,=uuw. To
ord w; og w, kalles ekvivalente hvis det fins en folge uy,...,u, slik at
wy =, 0g Wy="1uy, og slik at u; er umiddelbart ekvivalent med u,,, for
1=1,2,...,k—1.

La ekvivalensklassen til ordet w veere betegnet med o,. I mengden
av alle o,, innfares en operasjon ved

O'wl()'wQ = O‘wlw2 .

Det er ikke vanskelig & innse at den innferte operasjon er en gruppe-
operasjon i mengden av ekvivalensklasser. Enhetselementet blir oy, og
det inverse element til ,, blir ¢,,, der w’ er et inverst ord til w. Den frem-
komne gruppe skrives G;.

1 eksemplet 7, finner man at det blir ngyaktig 8 ekvivalensklasser
av ord som kan representeres ved

2 .3 2 3
1, x,, 27, ], Ty, X1, Tox7, XX .
F. eks. vil sekvensen

3.3 3.4 3 3.,-2,2 .00 2 3
T XX X1, X Xgly, X1%g; T1Xoko Ly, T1Xekp, X1Ty, Toly

vise at x,xdxdx, tilhgrer ekvivalensklassen bestemt av x,}. Her er den
forste omformningen en reduksjon, den andre bruk av en relasjon, den
tredje en innskytning, den fjerde en reduksjon, den femte og sjette bruk
av relasjoner. Gruppen Gy er en endelig gruppe av orden 8. Den kan
oppfattes som symmetrigruppen til et kvadrat, der z, representerer en
rotasjon pd 90° i klokkeretningen og x, representerer en speiling om
horisontalaksen gjennom sentret. Symmetrigruppen til kvadratet er
altsd »gitt« ved gruppepresentasjonen I7;.

Vi vender tilbake til problemet antydet i innledningen: Hvilke infor-
masjoner gir IT om G;? Det forste, og ganske naturlige problem som reiser
seg fra dette noe vage utgangspunkt, er & avgjore nar to ord er ekviva-
lente. Dette kalles ordproblemet for grupper; lgsningen av det vil veere
preliminert til en eksplisitt bestemmelse av de forskjellige ekvivalens-
klasser og av gruppeoperasjonen. Vi gnsker en effektiv lgsning av ord-
problemet. Klassen av alle ord er tellbar, og det kan derfor anordnes en
Godelnummerering av alle ord, w — w*, slik at w* er effektivt beregnbar
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ut fra w, og omvendt. Spesielt vil vi velge fglgende avbildning: La sym-
bolene z,,z7",...,%,,," vere ordnet i den angitte rekkefglge. Et vil-
karlig ord kan da skrives som en symbolsekvens ¥, . . . ¥, der hvert av
symbolene y, er et av symbolene z;,27%, . . .. Definer ) =4i—1 og (¢7")*
=41+ 1. Vi setter Godeltallet til w=y,y, ...y, lik w* =p¥"p¥e* . .. pIr".
Godeltallet til det tomme ord settes lik 1.

Dermed har vi var tilordning w — w*, og at ordproblemet er effektivt
lgsbart vil nd si at for alle ord » er tallmengden {w* | ¢,,=0,} rekursiv.
Ovenfor lgste vi ordproblemet for I7; (uten & gjennomfere beviset for-
melt — vi kan referere til Church’ tese). I sin alminnelighet er det ikke
effektivt losbart, og det i folgende skarpe form (husk at o,,= o, betyr at

w og w er ekvivalente):

Novikovs TeorREM. Man kan eksplisitt skrive opp en gruppepresenta-
sjon ITy slik at tallmengden {w* | o,=0,} ikke er rekursiv.

Novikovs bevis (fra begynnelsen av 1950-arene) var umatelig kompli-
sert; senere (se litteraturlisten) er beviset blitt vesentlig forenklet og
forkortet. Vi avstar imidlertid fra enhver bevisantydning, men tar heller
opp en sats av M. Rabin om uavgjorbarhet av egenskaper hos grupper
G, gitt ved presentasjoner I1. Denne sats er til en viss grad et svar pa
problemene antydet i innledningen til denne paragraf.

La @ vare klassen av alle presentasjoner

IT = (xg, ..., ;u; = 1,0, = 1)
Vi forutsetter at y,...,z, er de n forste symboler i en tellbar uendelig
liste x,,%, . . .,%,, . . . av distinkte symboler. Videre antar vi at alle ord

u; er fullt redusert, dvs. inneholder ingen delsekvenser av formen x;a;"

eller x;lxj. Det er lett & se at klassen Q er effektivt tellbar, og vi kan
innfere en Godelnummerering av @, II — II*, ved & definere

* M UL* up*
I7 _popll "'pkk ’

hvor % — u* er Godelnummereringen definert ovenfor for ord.

En egenskap P ved en endelig presentert gruppe G, kalles algebraisk
hvis den bevares under gruppeisomorfismer. G og H er isomorfe hvis det
fins en en-entydig avbildning ¢ av G pa H slik at ¢(g,9,) =@(9;) 9(g2)
for alle elementer g,,9, € G. Vi lar G;; € P bety at G;; har egenskapen P.
Kommutativitet er et typisk eksempel pd en algebraisk egenskap. For
er H isomorf med G under avbildningen ¢, vet vi at for gitte A, hy,e H
fins det elementer ¢,,9, € G slik at h;=g¢(g;) 0og hy=¢(g,), og da gir fal-
gende regning kommutativiteten av H:
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hohy = @(g1)9(92) = P(9192) = P(9291) = P(92)P(91) = hohy

- Her er det midterste identitetstegnet begrunnet ut fra kommutativiteten
av G.

Et eksempel pa en ikke-algebraisk egenskap ved en gruppe Gy er som
folger: IT har to generatorer. La II, veare presentasjonen fremkommet
fra IT ved & foye til en ny generator z, og en ny relasjon z;=1. Da er
Gy, isomorf med G, (vi skriver det G, ~Gp), men Gy, har ikke den
angitte egenskap. Vi legger ogsd merke til at egenskapen er effektivt
avgjerbar, gitt presentasjonen for gruppen.

RaBiNs TrorEM. La P veere en algebraisk egenskap ved endelig presen-
terte grupper Gy. Anta at det fins en IT, € Q slik at Gy, € P, og at det fins
en IT, € Q slik at Gy, & P og heller ikke er isomorf med noen undergruppe
av en Gy som har egenskapen P. Da er tallmengden

S(P) = {IT* | G € P}

skke rekursiv.

Sagt intuitivt betyr dette at gitt I7 s& kan vi ikke effektivt avgjore
om G har egenskapen P. Algebraiske egenskaper gis det mange eksem-
pler pa. Vi nevner i fleng: 4 veere kommutativ, & vere endelig, & veere
triviell (dvs. & bestd av enhetselementet alene), & vare fri, osv. osv. Den
praktiske konklusjon synes & veere at fra II alene har man svert lite
informasjon om G, — vi kan ikke engang effektivt avgjere om Gj~1
(1 lik den trivielle gruppe) eller om G, inneholder minst ett element =1
(1 lik enhetselementet i gruppen).

Satsen ma leses korrekt. Den sier at det ikke fins noen algoritme,
brukbar for alle IT, til & avgjere om G € P. Gitt en bestemt /7 kan det
godt inntreffe at spesielle overveielser, gyldig kun for den gitte /7, tillater
oss effektivt 4 konkludere at G;; € P — men det er ingen generell algo-
ritme for klassen Q.

Det kan vere av interesse & antyde noe av beviset for Rabins teorem.
Beviset bygger pa Novikovs sats samt pa folgende lemma som er lett
4 formulere, men ganske komplisert & bevise: La IT € @, og la w veere et
ord i IT. Man kan da effektivt skrive opp en presentasjon II,, (dvs. av-
bildningen IT* - [T} er rekursiv), slik at hvis w er ekvivalent med 11 77,
s& er Gy ~1, og hvis w ikke er ekvivalent med 1 i I7, sé er G isomort
med en undergruppe av Gy, .

La Gy, og Gy, vaere gitt ved presentasjonene

Il = (g, ...,%,; 4y = 1,...,u; = 1)

I
—
SN

’ ’
I, = (@q,...,%,u, = 1,...,9
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Vi definerer en ny gruppe G'=G, *Gp, ved en presentasjon
” 4
IT = (Tg, -+ @y ®pits « + 3T Ug = L, ooy = Lug = 1,004 = 1),

der u; er fremkommet fra u; ved at hver generator z; fra II, blir erstattet
med generatoren z,,; fra II. Det er lett & se at Gy, og G, er isomorfe
med undergrupper av G.

Anta né at II; og II, er presentasjoner som oppfyller betingelsene i
Rabins teorem, og at IT, er en presentasjon som tilfredsstiller Novikovs
teorem. La Gy=Gp, * Gy, Idet Gy, er isomorf med en undergruppe av
Gy, og ordproblemet er ulesbart for Gy, s& er ogsi ordproblemet ulgs-
bart for G;.

La w veare et ord i 11, og G; vare gruppen gitt ved Rabins lemma
ut fra w og I1. Definer G, =G *G; . Vi vil vise at w er ekvivalent med
1i 7], hvis og bare hvis G, har egenskapen P. For hvis w er ekvivalent
med 1, s& vil G, ~1, og dermed G, ~ Gy, altsd G, € P. Og hvis w ikke
er ekvivalent med 1 i I, er G isomorf med en undergruppe av G
og dermed av @,,. Og da G, er isomorf med en undergruppe av Gy, og
folgelig ogsa av @G, sa er G, ¢ P etter betingelsen i Rabins teorem.
Tilordningen w — II(w), der II(w) er en presentasjon for @, er effektiv,
dvs. funksjonen w* — II(w)* er rekursiv. Vi har vist at hvis 4=
{w* | 6, =0,}, 84 er

w*ed < Ilw)*eS(P).

Konklusjonen blir at S(P) ikke er rekursiv, da 4, etter Novikovs teorem,
ikke er rekursiv. Dermed er beviset for Rabins teorem fullfert.

Vi avslutter var fremstilling her. Vi skal ikke kreve at leseren godtar
Church’s tese og fra na av identifiserer algoritmebegrepet med rekursivi-
tet. Noen vil finne det intuitivt rimelig at teknikken med Goédelnumme-
rering tillater en & omforme algoritmiske problemer til problemer innen
den rekursive teori. Og hvordan man enn stiller seg til Church’s tese,
ma man medgi at den leder til en ganske omfattende samling av inter-
essante og sldende resultater som ingen, som tar sin matematikk alvor-
lig, kan stille seg likegyldig til.

BIBLIOGRAFISKE KOMMENTARER
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polert versjon av den rekursive teori, men kanskje i en form som er noe langt fjernet
fra det aritmetiske grunnlag. Grzegorczyks lille bok er en meget velskrevet inn-
foring. — Alle disse bgker inneholder omfattende litteraturhenvisninger.
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GUNNAR BERGENDAL — INGE BRINCK: Linedr algebra och geometrs.
Lunds Studentkars Intressebyra, Lund 1963. 217 s. Sv. kr. 30.00.

(Innholdsfortegnelse i NMT 11 (1963), s. 182.)

I den almindelige modernisering af matematikundervisningen, som i
disse ar foregar i Norden, kan man ofte notere en forskydning fra »ren«
geometri mod mere algebraiske synspunkter. I den foreliggende bog fra
Lund, en forste leerebog for universitets- og ingenigrstuderende, bemser-
kes denne veaegtforskydning, idet bl. a. underspgelsen af keglesnit og
keglesnitsflader er udeladt (maske til senere behandling?) og veegten
lagt pa lineser algebra med vektorregning og afbildningsleere som afgo-
rende faktorer. Ogsd m. h. t. formulering og generalisationer er der sket
fornyelser, selv om disse synes lidet radikale, hvorom senere.

Gennem indledningen, der handler om samspillet mellem teori og
virkelighedserkendelse, bliver det klart, at forfatterne vil betone den
intuitive matematiske erkendelse og stort set afstda fra en abstrakt-
aksiomatisk opbygning af deres bog. Dette, mener de, vil specielt for
geometriens vedkommende tage for megen plads op og tilslore det vee-
sentlige i den linesere algebra.

Vi vil kort gennemga bogens indhold. I kap. 1 indferes vektorer i rum-
met som ekvivalensklasser af orienterede liniestykker, og det vises, hvor-
ledes en vektor kan repraesentere en translation eller en kraft. Om simpel
vektorregning vises de egenskaber, der i reglen tages som aksiomsystem
for et linesert vektorrum ((i)—(iii), s. 18-19). Koordinater, basis og basis-
skifte omtales, og sd naevnes det (s. 42-48), hvordan »linesert rum« ab-
strakt kan indfgres v. hj. a. de naevnte aksiomer. Da behandlingen er kort,
teori-smagsprogverne sat med sma typer og opgaverne fa og lette, far
lzeseren nok let det indtryk, at afsnittet ikke skal ntages sa tungte.

I kap. 2, der indleder den affine plan- og rumgeometri, er vi da ogsé
pa fast grund igen, og i kap. 3 om matricer og determinanter refererer nze-
sten alt bortset fra matricers definition og allersimpleste egenskaber til
det 2- og det 3-dimensionale tilfeelde. Regneregler for matricer opstilles
for resten smukt som det naevnte aksiomsystem — hvorfor da s selvud-
slettende kun gere opmserksom herpa i en let overset »anmérkning«?

Den affine rumgeometri fortsaettes i kap. 4, der virker meget velskre-
vet; det geelder ogsd kap. 5, hvor man for alvor ter nyde frugterne af

[112]
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den algebraiske udsed — se blot, hvor smukt skalarprodukt, ortogonal
matrix og iser vektorprodukt behandles. Kap. 6 indferer afbildning helt
alment; nesten alle eksempler handler dog om plan og rum, og linear
afbildning indferes ogsd kun her. Det var dog fristende at generalisere —
men nej, forfatterne modstar fristelsen. I en veerdifuld, men kort para-
graf kommer man ind p4 den euklidiske, ligedannetheds- og den affine
geometri og derfra naturligt til sidste kapitel »Litet elementar geometrig,
hvor bl. a. keglesnit kort behandles (som det, deres navn udsiger).

Bogens mange eksempler er for det meste fortrinlige; der er ogsa et
stort udvalg af opgaver; men langt de fleste er helt simple anvendelser
af teksten. Dette finder anmelderen serdeles beklageligt. Som opgaverne
nu en gang er, er facitlisten bag i bogen en god idé.

I et forspg pa at sammenfatte ma jeg vedga, at jeg neppe er upavirket
af den modernisering af tilsvarende stof, som jeg har kunnet fglge ved
Kgbenhavns Universitet. Med dette forbehold vil jeg mene, at den fore-
liggende bog er noget for forsigtig i sine moderniseringsbestraebelser, forst
og fremmest fordi den klynger sig til det 2- og det 3-dimensionale rum
og kun i fa og korte afsnit tgvende beveeger sig herudover.

For ingenigrstuderende og andre, der mest er interesserede i de direkte
anvendelser af dette stof, er bogen fortreeffelig. Den vedligeholder hele
tiden en geometrisk fornemmelse af, vhvad der sker¢, eksemplerne er ofte
meget illustrative, opgaverne giver et vist handelag. Men for fremtidens
studerende i matematik og teoretisk fysik er det min opfattelse, at bogen
er for let og for overfladisk (i emnevalg, absolut ikke i behandling). Disse
studerende skal alligevel snart heskeftige sig med generelle vektorrum
pé en langt mere omfattende made — hvorfor sa ikke »ga til biddet« med
det samme ? Det ter man i hvert fald i Kebenhavn.

Poul Einer Hansen

Axos Csiszir: Foundations of gemeral topology. (International series
of monographs on pure and applied mathematics, 35.) Translated from
the French by Mrs. K. Csaszar. Pergamon Press, Oxford, London, New
York, Paris 1963. 19+ 380 pp. sh. 105/-.

(Innholdsfortegnelse i NMT, denne &rgang, s. 74-75.)

Emnet for denne boka er i egentlig forstand »Foundations of general
topology«. Dens siktepunkt er & gi en struktur-teori som omfatter ele-
mentene av teorien for topologiske rom, nerhets-rom og uniforme rom.
Egenskaper ved en spesiell av disse strukturer behandles bare i den ut-
strekning de har en naturlig generalisering til det almene tilfellet. For-
melt sett er boka praktisk talt selvforsynende, men for at den skal kunne
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leses med utbytte er fortrolighet med grunnbegrepene i topologien ngd-
vendig.

Fremstillingen bygger pa begrepet topogen ordning. En topogen ord-
ning p4 mengden X er en relasjon < i klassen av delmengder av E, med
folgende egenskaper:

(1) 9<0, E<E .

(2) A< B impliserer A<B.

(3) A< A’'<B'<B impliserer A<B.

(4) A<B & A'< B’ impliserer
AnA’<BnB" & AUA'<BUB.

En syntopogen struktur pa E er en klasse & av topogene ordninger som
oppfyller

(5) Hvis <" og <" er elementer i & fins et element < i & slik at 4 < B
hvis A <’'B eller A< B.

(6) Til hvert element < i & fins et element <’ i & slik at 4 <B im-
pliserer 4 <’C' <’'B for en passe mengde C.

De syntopogene strukturer er det ni fremstillingen samler seg om.
Dersom en slik struktur bestir av en eneste relasjon, kalles den enkel.
Den kalles symmetrisk dersom A < B impliserer £ — B < E — A for alle <
i &, perfekt dersom A, < B, i € I, impliserer U,_;4,<U,_, B, for alle <
1 & og vilkarlig indeksmengde 1.

Topologiske strukturer korresponderer med enkle, perfekte syntopogene
strukturer ved overgangen

A <B <> B er omegn om 4.

Likeens korresponderer neerhets-strukturer med enkle, symmetriske synto-
pogene strukturer ved overgangen

A<B <= ACB

(»4 € Bq star for »4 ikke ner E — Bq).
Endelig korresponderer uniforme strukturer med perfekte, symmetriske
syntopogene strukturer pad folgende miéte: Klassen av relasjoner <y

definert ved A<y B < UW)<B

danner en perfekt, symmetrisk struktur nar U gjennomlgper alle symme-
triske entourager i en uniform struktur %. Omvendt danner klassen av

mengder U. = {(x,y) o} « E’—{y}}

en basis for en uniform struktur nar < gjennomlgper en perfekt, symme-
trisk syntopogen struktur .#.
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Studiet av de generelle syntopogene strukturer gjennomfores meget
detaljert. Blant de begreper som behandles kan nevnes filterkonvergens
i syntopogene rom, produkt-rom, komplette og kompakte syntopogene
rom, osv., med eksplisitt formulering av anvendelser pad de spesielle
strukturene nevnt ovenfor. For eksempel er alle topologiske rom og alle
naerhets-rom komplette ifglge disse begrepsdannelsene, mens kompakti-
fiserings-teorien reduserer seg til den vanlige for denne type rom.

Boka inneholder altsd ikke det en vanligvis finner i en standard-
innforing i generell topologi. Men den er av stor verdi dersom en gnsker
& f4 innpasset de vanlige grunnleggende begrepsdannelser i en slik storre
sammenheng.

Olav Njdstad

WorLreaNe GiLor — Ruporr LAUBER: Analogrechnen. Springer-Ver-
lag, Berlin, Gottingen, Heidelberg 1963. 16+ 423 S., 336 Fig. Ganzl.
DM 68.00.

(Innholdsfortegnelse i NMT 11 (1963), s. 129-130.)

Den udbredelse og interesse, der inden for de sidste 10-15 &r er blevet
cifferregnemaskinerne til del, har henvist en anden type regnemaskiner,
analogregnemaskinerne, til en slags skyggetilvarelse. Fra flere sider
spaede man endog analogregnemaskinerne en snarlig dod, en spadom,
som indtil nu ikke er giet i opfyldelse, og der er for gjeblikket heller
ingen tegn pa, at dette vil ske.

Som et udtryk for analogregnemaskinernes levedygtighed star den
meengde litteratur, der til stadighed udkommer om emnet, sidst den bog,
der er genstanden for denne anmeldelse: W. Giloi og R. Lauber’s »Ana-
logrechnen«, med undertitlen »Programmierung, Arbeitsweise und Anwen-
dung des elektronischen Analogrechners«. De to forfattere har begge are-
lang erfaring i at bringe deres viden pa dette omrade videre til andre,
idet W. Giloi i en Arrekke har afholdt programmeringskurser ved Tele-
funkens analogregnecenter, og R. Lauber har undervist ved Rechen-
institut der Technischen Hochschule Stuttgart, og det er lykkedes dem
i denne bog at fremlegge deres store viden og erfaring. Resultatet er
blevet en fortreeffelig bog, som har det fortrin fremfor mange andre boger
om dette emne, at den henvender sig til brugeren af analogregnemaskinen.
Dette medferer, at analogregnemaskinen betragtes som et matematisk
hjslpemiddel og ikke som malet i sig selv. Det skal bemserkes, at bogens
fremstilling ikke er bundet af noget bestemt analogregnemaskinefabri-
kat, men at den kan leses med stort udbytte, uanset hvilken analog-
regnemaskine man har adgang til.
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Bogen er opdelt i 5 hovedafsnit, hvoraf det forste (55 sider) giver en
kortfattet gennemgang af de vigtigste regneelementer samt principperne
for programmering af en analogregnemaskine. Afsnittet indledes med en
definition af en analogregnemaskine som en regnemaskine, hvor de stgr-
relser, som man gnsker at regne med, er tilknyttet fysiske storrelser, som
lader sig sendre kontinuert. En regnestok, hvor de variable som bekendt
er repraesenteret ved en bestemt lengde, er siledes en analogregnema-
skine. Ved den egentlige analogregnemaskine bevirker den kendsgerning,
at det fysiske forlgb lader sig beskrive matematisk, omvendt, at mate-
matiske sammenheenge lader sig afbilde ved fysiske forlgb. Ved analog-
regnemaskinen opbygger man séledes en fysisk model, i hvilken de samme
matematiske udtryk geelder som i det aktuelle problem. De forste ana-
logregnemaskiner var mekaniske i deres funktion, og de foreliggende lig-
ninger blev siledes underspgt ved hjelp af en mekanisk model. Elektro-
teknikkens voldsomme fremskridt har medfert, at de elektroniske ana-
logregnemaskiner, hvor den fysiske model realiseres ad elektrisk vej, er
de mekaniske langt overlegne i hurtighed, ngjagtighed og fleksibilitet.

Afsnit I slutter med et fortreffeligt eksempel, hvor hele arbejdsgangen
ved losningen af et problem pa en analogregnemaskine er illustreret
(10 sider), lige fra skalering af de variable (det m4 erindres, at en analog-
regnemaskine er at betragte som en »fast-komma, maskine«) til afprev-
ningen af det fardige program. En enkelt kritisk bemzrkning skal dog
fremseettes til det nmvnte eksempel. Forfatterne viser, hvorledes sma
koefficientvaerdier kan realiseres ved i opkoblingen at forbinde to poten-
tiometre efter hinanden, en kobling, der reducerer indstillingsfejlen. Til
gengzld bliver den resulterende koefficientveerdi pa grund af belast-
ningsforhold forskellig fra produktet af de to potentiometres »palydende«
veerdi, et forhold, som forfatterne overhovedet ikke nsevner pa dette
sted. — Med dette forste afsnit af bogen som ballast vil det vaere muligt
straks at g4 i gang med programmering af relativt simple problemer for
en analogregnemaskine.

I afsnit II (60 sider) gennemgas den tekniske baggrund for analog-
regnemaskinens regneelementer, en gennemgang, som er set bedre og
fyldigere andre steder. Forfatterne har imidlertid som nezevnt haft til
hensigt at skrive en bog for brugerne af analogregnemaskiner. Set i lys
heraf mé afsnit IT anses for fyldestgerende i indhold og omfang.

Afsnit III har som titel »Anwendung des Analogrechners zur Losung
von Differentialgleichungen« og er i sin lengde (168 sider af bogens ialt
423 sider) en kraftig understregning af, hvor analogregnemaskinernes
hovedanvendelsesomrade ligger. I dette afsnit gennemgas programme-
ringsteknikken for et stort antal typer af sivel linemre som ulinesere
differentialligninger, og der opstilles generelle koblingsdiagrammer for de
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forskellige typer. En kobling, som f. eks. den, der er vist i kapitlet om
lgsning af » sammenhgrende differentialligninger af 1. orden, er imidler-
tid ikke umiddelbart praktisk anvendelig, idet den medferer, at en regne-
forsteerker belastes med n — 1 potentiometre, hvilket er en teknisk umu-
lighed for n sterre end ca. 4. Det skal retferdigvis indremmes, at for-
fatterne bemserker, at den omtalte figur viser den principielle opkobling
af problemet, men en fyldigere redegerelse for, hvor vanskelighederne i
praksis vil kunne opsté, savnes. I afsnittet omtales forskellige nyttige
trick-koblinger, metoder til lgsning af randveerdiproblemer og partielle
differentialligninger samt koblinger til fremskaffelse af forskellige ana-
lytiske funktioner, og afsnittet slutter med en gennemgang af en metode
til losning af et optimaliseringsproblem (linezer programmering) pé ana-
logregnemaskinen.

I bogens afsnit IV (100 sider) gives eksempler pa brugen af analog-
regnemaskinen inden for forskellige tekniske discipliner. Afsnittet ind-
ledes med et kapitel omhandlende realisering af linezre overferingsfunk-
tioner pa analogregnemaskinen, og der angives et generelt koblingsskema
for en linezer overfgringsfunktion af nte orden. I kapitlet om analogregne-
maskinens anvendelse inden for reguleringsteknikken, velsagtens det om-
rade, hvor analogregnemaskinerne har vundet storst udbredelse, savnes
en fyldig og systematisk gennemgang af metoden til programmering di-
rekte udfra det foreliggende systems blokdiagram. Afsnittet slutter med
en beskrivelse af metoder til bestemmelse af en funktions middelveerdi,
spredning og fordelingsfunktion.

I det sidste afsnit V (31 sider) omtales de forskellige typer af fejl, der
kan forekomme ved lgsning af et problem pa analogregnemaskinen, og
hvilke muligheder man har for at opsege disse fejl. Af fejlmuligheder kan
nzevnes fejl i opkoblingen af det matematiske udtryk (programmerings-
fejl), fejl som folge af den begreensede ngjagtighed af de enkelte kompo-
nenter eller fejl, som skyldes direkte maskinfejl. Det tjener forfatterne
til ros, at de i deres bog har medtaget dette afsnit om fejlmuligheder og
fejlspgning, et omrade af analogregnemaskineteknikken som er serdeles
vigtigt, og som mange andre forfattere hidtil er sprunget over med sam-
lede ben. Man kunne blot have onsket, at de to forfattere havde ladet
deres erfaring og viden inden for dette omrade komme til leeserens kund-
skab i storre udstrekning, end det her er sket.

Det mé opfattes som en ros, at de fa kritiske bemeerkninger, der har
varet at fremsette, kun har angdet bagateller. Bogen kan varmt anbe-
fales til alle, til begyndere, der gnsker en lerebog om emnet, sdvel som
til viderekomne, der har brug for en handbog inden for dette store og
interessante omrade.

Flemmaing Svensson
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Kravus KRICKEBERG: Wahrscheinlichkeitstheorie. B. G. Teubner Ver-
lagsgesellschaft, Stuttgart 1963. 200 S. Leinen DM 29.40.

(Innholdsfortegnelse i NMT 11 (1963), s. 184.)

Dette er en innferingsbok i sannsynlighetsregning som viser originalitet
ved sdvel emnevalg som fremstilling. Av spesiell interesse er det at den
ngdvendige malteori er utledet som en naturlig del av sannsynlighets-
regningen.

I kapitel I behandles: Boolske mengderinger, tilfeldige begivenheter,
sannsynlighetsmal, sannsynlighetsrom, sannsynlighetsbevarende avbild-
ninger, mélbare funksjoner og tilfeldige variable. Et avsnitt om kombina-
torikk behandler trekking med eller uten tilbakelegging av ordnet eller
uordnet utvalg. Poisson-fordelingen og den hypergeometriske fordeling er
definert.

I kapitel II defineres forventningsverdi og Beppo-Levis og Fatou-
Lebesgues teorem for forventnings-operatoren blir bevist. Nesten sikker
konvergens studeres, og det forste Borel-Cantellis lemma utledes. I et
avsnitt om forventningsverdi og sannsynlighetsbevarende avbildninger
vises hvorledes forventningsverdien til en variabel kan uttrykkes ved
dens sannsynlighetsfordeling. Her finnes videre korrespondansen mellom
fordelingsfunksjoner og sannsynlighetsmal, Tschebyscheffs ulikhet og
Cauchy—Schwarz’ ulikhet. Fubinis teorem utledes i avsnittet »Unabhin-
gigkeit«. Her er ogsa endelige Poissonske og Bernoulliske forsgksrekker
definert. Lebesgue-integralet innfores ved hjelp av de rektanguleere for-
delinger. Funksjonaldeterminantens rolle ved transformasjon av abso-
lutt kontinuerlig fordelte variable er utledet. Kapitlet avsluttes med
Kolmogorovs konstruksjonssetning for stokastiske prosesser. Spesielle
fordelinger som er behandlet i dette kapitel er binomial-, Poisson-,
rektanguleer-, Cauchy- og multinormalfordelingen.

Kapitel III behandler folger av uavhengige variable. Konvergensbe-
grepene, konvergens nesten sikkert, stokastisk konvergens, konvergens i
middel og i kvadratisk middel studeres. Her finner vi videre Kolmogorovs
ulikhet, to av Kolmogorovs store talls sterke lover, det andre Borel-
Cantellis lemma, kriterier for svak konvergens for folger av fordelings-
funksjoner og Lindebergs sentralgrenseteorem.

Beviset for Lindebergs teorem fores uten bruk av karakteristiske funk-
sjoner. Isteden benyttes en tilordning mellom de tilfeldige variable og de
linesere operatorer over mengden § av kontinuerlige og begrensede reelle
funksjoner over tallinjen. Er x en tilfeldig variabel s& defineres operato-
ren W, ved

(Wof)2) = Ef(@+2); fe®, Ae]—oo, +oo[.




LITTERATUR 119

Er x og y uavhengige s& er W, =W, W,. Disse operatorene benyttes
senere i avsnittet om Brownske bevegelser.

Kapitel IV gir en meget god og grundig innfering i betingede forvent-
ninger. Betinget forventning gitt en sigmaring & defineres og det vises
at den for kvadratisk integrable variable faller sammen med projek-
sjonen inn i mengden av @-malbare kvadratisk integrable variable. Ra-
don-Nikodyms teorem bevises og eksistensen av betingede forventninger
til integrable variable utledes herav. Videre finner vi her bl. a. Doobs
konvergensteorem for semimartingales, null-en loven, martingale gene-
raliseringer av grensesetningene i Kapitel ITI, Doobs eksistensteorem
for betingede sannsynlighetsfordelinger, en generalisering av Fubinis
teorem til ikke nedvendigvis uavhengige variable, Chapman-Kolmogo-
rovs ligning for Markovprosesser med diskret tidsparameter og to grense-
teoremer for nte potensen av en stokastisk matrise.

Kapitel V behandler Brownske og Poissonske prosesser. Eksistensen
av en prosess med uavhengige tilvekster og gitte tilvekstfordelinger som
oppfyller en konsistensbetingelse bevises. Det vises her at Brownske
prosesser kan karakteriseres — pa noen modifikasjoner ner — som proses-
ser med kontinuerlige trajektorier og uavhengige tilvekster. Det bevises at
trajektoriene ikke har begrenset variasjon i noe intervall. Tilsvarende vises
det at en Poissonsk prosess kan karakteriseres — p& noen modifikasjoner
naer — som en prosess med uavhengige tilvekster, der trajektoriene antar
bare heltallige verdier og er monotont voksende med sprang pa 1.

I et tillegg nevnes andre mater & bygge opp sannsynlighetsregningen
pa. Her vil leseren ogsa finne en kort gjennomgéelse av aktuell litteratur.

I hvert avsnitt er det en eller flere oppgaver.

Det forutsettes ikke at leseren har forkunnskaper i sannsynlighetsreg-
ning eller malteori. Leseren ber bl. a. veere fortrolig med mengdeopera-
sjonene union, snitt og differens; kunne litt matrise- og determinant-
regning og ha kjennskap til funksjonaldeterminantens rolle ved skifte av
variabel i et multippelt Riemann-integral.

De fleste feil som anmelderen har funnet er av trykkfeils-typen. P4
side 125 star det at hvis P og @ er to sannsynlighetsmal og g er en kon-
stant slik at @ <oP sd er |E,Z|<o|EpZ| nar Z* er integrabel. For bevi-
set er det tilstrekkelig at ulikheten holder for ikke-negative variable.
Utgangspunktet for definisjonen av forventningsverdi pi side 39 er en
endelig additiv sannsynlighetsfunksjon P over en semi-ring &. Endelig
additivitet defineres som additivitet for en disjunksjon pa to mengder,
og sd regnes det videre som om vi hadde additivitet for en vilkarlig ende-
lig disjunksjon. At dette — med bokens definisjon av semi-ring — ikke
er riktig i sin alminnelighet viser eksemplet:
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S = {{1,2,3}, {1}, {2}, {8}, 9}
P({1,2,3}) = P({1}) = P({2}) = P({3}) = 1
P@) =0.

Til slutt et sitat fra forordet: »Wie wenige Gebiete der Mathematik
verdankt die Wahrscheinlichkeitstheorie wihrend ihrer ganzen Ge-
schichte ihre eigenartige Gestalt den von Anwendungen und ausser-
mathematischen Bereichen herrithrenden Impulsen, und trotz aller ma-
thematischen Abstraktion nimmt dieser Einfluss immer noch zu. Die
Lektiire einer rein mathematischen Darstellung wie der vorliegenden,
wo der beschrinkte Raum nur wenige Hinweise auf solche Einfliisse zu-
liess, kann daher nur eine einseitige Vorstellung vermitteln und sollte
durch das Studium der in ganz anderer, nicht masstheoretischer Weise
geschriebenen im Anhang zitierten Biicher von W. Feller und M. Kac

erginzt werden.« Erik N. Torgersen

Jax Lurasiewicz: Elements of mathematical logic. Translated from the
Polish by Olgierd Wojtasiewicz. Pergamon Press, Oxford, London, New
York, Paris 1963. 114124 pp. sh. 42/-.

(Innholdsfortegnelse i NMT, denne argang, s. 76.)

Denne bok er en si godt som uforandret versjon av de forelesninger
F.ukasiewicz holdt over den elementere del av den matematiske logikk
ved Warsawa-universitetet i slutten av 1920-arene. (Forsteutgaven er
fra 1929.) Som historisk dokument har boken megen interesse og verdi.
Jan Fukasiewicz var en av de store pionerer innenfor den matematiske
logikk, og i denne bok la han frem, delvis for forste gang, sine resultater
over utsagnskalkylens metateori, — av spesiell interesse var hans bevis
for den deduktive kompletthet av utsagnskalkylen. Det avsluttende
kapitel behandler den aristoteliske sylogismelere med metoder fra den
symbolske logikk. P4 dette omridet utforte Lukasiewicz et banebrytende
arbeid. Disse undersgkelser, i langt mer omfattende form, har han senere
utgitt som egen bok (Oxford Univ. Press, 2. utgave 1957).

Verdifull som denne bok er, kan den ikke ubetinget anbefales en
nybegynner som i dag ensker & studere den matematiske logikk. Men
for den noe viderekomne som har en historisk interesse for sitt fag, er
dette en interessant bok, skrevet som den er av en av de forste ledere
for den imponerende polske skole innen den formale logikk.

Jens Erik Fenstad
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HARRY MALMHEDEN: Matematisk statistik. CWK Gleerups forlag,
Lund 1963. 310 s. Hft. sv. kr. 40.00, inb. sv. kr. 46.00.

(Innholdsfortegnelse i NMT 11 (1963), s. 185.)

Forfatteren sier i innledningen at boken »vinder sig till en av mate-
matisk statistik intresserad publik med viss matematisk utbildninge.
Det kreves bl. a. kjennskap til multiple integraler.

Boken er delt i tre hovedavsnitt: »Beskrivande statistik« (ca. 60 sider),
»Sannolikhetsvariabler« (ca. 100 sider) og »Stickprov« (ca. 100 sider). Siste
avsnitt omfatter imidlertid ogsd utledning av endel sannsynlighetsteo-
retiske resultater, og de prinsipielle problemer i forbindelse med statistisk
induksjon har derfor ikke fatt en s& bred behandling som ovennevnte
sidetall kunne gi inntrykk av.

Selv om fremstillingen er oversiktlig, md emnevalget sies & veere noe
sout of date¢, serlig for statistikkens vedkommende. Generelle prinsipper
for konstruksjon og vurdering av statistiske metoder er f. eks. ikke om-
talt, statistisk forsgksplanlegging ikke nevnt, og ikke-parametriske situa-
sjoner overhodet ikke behandlet.

Arnljot Hoyland

NMT, Hefte 3, 1964. — 9
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EKSAMENSOPPGAVER

Nedenfor felger matematikkoppgavene til studenteksamen varen 1964 pa de
matematiske gymnaslinjer i de nordiske land.

DANMARK
Matematik I.

1. Givet en parabel med ligningen y2 =4x samt punkterne 4(—12,0) og 0(0,0).
Find, idet P er et vilkarligt punkt pa parablen, det geometriske sted for skee-

ringspunktet mellem linien AP og en linie gennem O vinkelret pé linien OP.
Angiv den fundne kurves art og beliggenhed.

2. Ien plan x er givet et kvadrat A BOD med siden a. M er midtpunktet af siden
AB, N er et punkt pa siden BC, og R er et punkt pé siden CD siledes beliggende,
at DR =BN. I N tegnes normalen til #, og punktet 7' afs@ttes pd normalen séledes,
at NT =BN.

Bestem lengden af BN saledes, at rumfanget af tetraedret 7-MNE bliver si
stort som muligt.

3. Der er givet to liniestykker p og g.

Konstruer en trekant ABC, saledes at BO =24B, BD=p og DC=gq, hvor D
betegner skaeringspunktet mellem siden BC og halveringslinien for vinkel 4.

Diskussion kraves.

Beregn sider og vinkler i trekant ABC, nir p =2,464 og g =3,696.

Matematik I1.
1. Les ligningen
sin3z 3

sin2c 2
2. Undersog og tegn kurven med ligningen
Yy =x V4—x2 .

En figur F i forste kvadrant begranses af kurven, dennes tangen’o‘i (0,0) og en
kurvetangent, som er parallel med z-aksen.
Bestem arealet af F.

3. En plan skewrer en omdrejningskegleflade i en ellipse med storaksen 12 og
excentriciteten §. Planens vinkel med keglefladens akse er lig med keglefladens
toppunktsvinkel.

Bestem keglefladens toppunktsvinkel.

Bestem afstandene fra keglefladens toppunkt til hvert af ellipsens fire top-
punkter.

[131]
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FINLAND

Lingre kursen.

1. Ett snilltdg av lingden a passerar pé tiden ¢ ett i samma riktning gdende gods-
tag, vars lingd &r b och hastighet v. Hur lang tid atgar till tdgens passage da de
gar i motsatta riktningar ? (Tiden for tdgens passage ér den tid, dd de dtminstone
delvis gar jdmsides.)

2. En cirkelperiferi #r medelst radier delad i tjugo lika stora delar. Fran &nd-
punkten A av en radie félles normalen 4B mot en nirliggande radie, frdn dess
fotpunkt B i sin tur normalen BC mot den nirmast dérpa féljande radien o. s. v.
Hur manga procent #r lingden av den oéindliga brutna linjen ABC ... stérre eller
mindre dn cirkelperiferin ? (Tvé decimalers noggrannhet.)

3. For vilka virden pé a dr rotterna till ekvationen z%+4ax +2 =0 reella och
positiva samt deras positiva skillnad <1?

4. Hirled ekvationerna fér normalerna genom origo till kurvan y=3x—1a2.
Rita figur.

5. Hirled formeln fér avstdndet fran punkten (x,,7,) till linjen ax +by +c¢=0.

6. Genom skidrningspunkterna 4 och B mellan cirklarna O, och O, dras tva
rita linjer som skir cirkeln O, i en och samma punkt P och O, i punkterna C och D.
Bevisa att kordan OD #r parallell med tangenten till O, i punkten P. Behandla
vart for sig de fall, d& P faller utanfér och innanfor cirkeln O,.

7. I en likbent triangel 4 BC, vars ben =a, vrider sig baslinjen kring mittpunkten
av basen 4B, varvid punkterna 4 och B rér sig utmed C':s vinkelben till punkterna
A, och B, si att arean av triangeln A4,B,C ér tva génger ABC':s area. Berdkna
summan av triangelsidorna 4,C och B,C.

8. Stommen till ett télt, som har formen av en pyramid med kvadratisk bas,
utgéres av fyra stavar, envar av lingden a. Berékna det stérsta virde téltets
volym kan fa.

cos 2x

e | 17
sin (45° —x)

9. For vilka vérden pa x dr

10. Beriikna arean av den figur som begréinsas av parabeln 2y =2 och réita linjen
genom parabelns brénnpunkt och punkten (2,2). Rita figur.

ISLAND

I.
1. Lgs ligningen 2% +1=0.

2. I trekanten ABC er 4=110,12°, b=6,731 og ¢=5,832. Beregn trekantens
ubekendte vinkler og side, dens areal og radius i dens omskrevne cirkel.
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3. Om de tre folgende ligninger skal det vises, at en af dem er rigtig for alle
veerdier af # og en anden ikke rigtig for nogen veerdi af x. En af ligningerne er rig-
tig for visse veerdier af ». Les denne fuldsteendigt og anfer de lesninger, som ligger
i intervallet 0° <z <360°.

a) cosz —sintx =sin 2z.
b) cos3x cosz + 2 sin?2x =sin 3x sinx + 1.

¢) cos2x +2 sin2x ="1.

4. Tegn parablerne I: y=x%—122+38 og II: 2y=16—a% A er et punkt pé I,
B et punkt pa II med samme abscisse, som antages positiv.

a) Udtryk arealet af trekanten OAB ved den fewlles abscisse for A og B (O er
origo).

b) Find maximum og minimum for trekantens areal.

¢) Beskriv i hovedtrak, hvordan arealet varierer med den falles abscisse, nar
der ogsa for denme tillades negative veerdier. Tegn en figur, der viser arealet som
funktion af z.

II.
1. Givet funktionen
2(x —2)2

23

Y

a) Angiv funktionens definitionsomrade.

b) Bestem maxima og minima.

c) Bestem kurvens asymptoter.

d) Tegn den del af kurven, der ligger til hgjre for y-aksen.

e) Bestem de tangenter til kurven, der gir gennem origo.

f) Beregn arealet af det lukkede omrade, der begrenses af z-aksen, linien x =6
og en bue af kurven.

2. En ellipse har breendpunkter i (7,0) og (—7,0) og gér gennem (—2, 12).

a) Bestem ellipsens ligning.

b) Beregn arealet af den trekant, der bestemmes af z-alksen, ellipsens tangent i
(—2,12) og dens normal i dette punkt.

¢) Find hwldningstallet for den diameter, der er konjugeret med diameteren
gennem (—2,12).

3. I en reguler firsidet pyramide 7-ABCD er hver side i grundfladen 2 leengde-
enheder og toplansvinklen mellem modstéende sideflader 2u. En plan gennem AB
vinkelret p& planen TCD skerer T'C og T'D i henholdsvis C; og D;. Volumenet for
pyramiden 7'-ABCD betegnes med V, for T-4ABC,D, med V.

. V, cos2u(l+ cos2u)

a) Pavis, a 7 =y

b) Bestem den veerdi af u, for hvilken dette forhold bliver §.
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NORGE
Reallinjen.

1. I likningen 22 —2a2?* — (3a2 +4a +3)z — 203 +a? +6a =0 er g et reelt tall. Vis
at 2a er en rot i likningen. Finn uttrykk for de to andre rottene i likningen. Hva
for verdier av a gjer disse rottene reelle?

For a =} blir venstre side i likningen lik funksjonen 2a° —x? —4x +3.

Skriv nullpunktene til denne funksjonen. Finn maksimal- og minimalpunktene
for den kurven som er det grafiske bildet av funksjonen. Tegn en enkel skisse.

Punktet A(—1,4) ligger pa kurven. Hva er likningen for tangenten til kurven
147

(jennom A kan vi legge en rett linje som er tangent til kurven i et annet punkt
enn 4. Finn likningen for denne tangenten ogsé.

Regn ut det arealet i 2. kvadrant som er avgrenset av y-aksen, kurven og den
siste tangenten.

9. T trekanten ABC er / C =90°, AB=2a og AC =a. En rett linje I som ikke
skjwrer trekanten, gar gjennom C og danner vinkelen v med AC. Vis at det rota-
sjonslegemet som kommer fram nar trekanten blir dreid helt rundt om 7 som akse,
har volumet

3
V= 7}3& (V§sinv+3cosv) .

Vis at volumet er sterst for en viss verdi av vinkelen v, og finn dette sterste
volumet.

Vis at uttrykket for 7 ovenfor kan formes om til uttrykket 2aRT, der T' er
arealet av trekanten ABC, og R er radien i den sirkelen som tyngdepunktet i
trekanten (skjeringspunktet for medianene) folger nar trekanten blir dreid rundt
om aksen [.

Bruk dette til & finne direkte av figuren den verdien av vinkelen » som gir det
storste volumet.

3. Det er gitt en sirkel med sentrum i origo og radius R, og en parabel med topp-
punkt (R,0), parameter 2p og akse langs den positive z-aksen.

Hva er likningen for polaren til et punkt P(x,,%,) med hensyn til parabelen ?

Tinn likningen for det geometriske stedet til punktet P néar polaren skal vaere
tangent til sirkelen. Vis at det geometriske stedet er en hyperbel, og finn sentrum,
halvaksene og likningene for asymptotene.

La Q(x;,y,) veere et parabelpunkt som ligger slik at parabeltangenten i@ ogsa
er tangent til sirkelen. Forklar hvorfor @ da m4 ligge pa det geometriske stedet
for P.

For p=R blir likningen for det geometriske stedet

x?—4Rx—y2+3R%* = 0.

Regn ut koordinatene til @ i dette tilfellet, og skriv likningene for fellestangen-
tene til parabelen og sirkelen.

Tegn de gitte kurvene og det geometriske stedet nar p=R=2. Velg 1 cm til
enhet pa aksene. Tegn ogsé fellestangentene for parabelen og sirkelen.
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SVERIGE
Matematisk gren.

1. Bevisa att funktionen y =e=2%¢- (cosx +sinx) satisfierar differentialekvationen
dy  dy . de®
—2 44— +5y=0. Det forutsittes bekant, att — =e?.
da? dx dx

2. I en ellips &r O medelpunkten och F' ena brinnpunkten. Ellipsens normal i
ena #ndpunkten av parametern genom F skér storaxeln i N, s& att ON:OF =gq.

Bevisa att ellipsens excentricitet &r Vc}
. (2n—1)-37+1
3. Bevisa att formeln 14+2-3+3:32+4-3%+... +n 3771 =———4———galler
for alla positiva heltalsvérden pa n.

4. I en konvergent oiindlig geometrisk serie &dr forsta termen « och andra termen
2 +2. Uttryck den tredje termen som funktion av z. Askadliggsr dérefter funk-
tionen grafiskt och ange eventuella asymptoter samt maximi- och minimipunkter.

5. Kordorna AB och AC i en cirkel delar dennas yta i tre lika stora delar.
Bestim vinkeln BAC i grader med en decimal och med ett fel mindre &n 0,1°.

6. Funktionen f(x)=34x%—|z?—2| &r given. Studera denna funktion sirskilt
med avseende p& maximi- och minimivirden. Upprita i skilda diagram kurvorna
y =f(x) och y =f'(x). Ange ocks4 for vilka viirden pa x funktionen f(x) &r deriver-
bar.

7. I ett rdatvinkligt koordinatsystem dr punkterna A(2; 0) och B(0;m), dir m
&r en fran noll skild konstant, givna. En rérlig rit linje, parallell med linjen y =z,
skir z-axeln i P och y-axeln i Q. De riita linjerna AQ och BP skir varandra i E.
Orten for R, da den rorliga linjen antar alla ténkbara lédgen, dr ett kégelsnitt.
Undersok ortens utseende for olika virden pa konstanten m. — Det erfordras inte
men betraktas som en foértjinst, att man studerar kvadraten pa ortkurvans ex-
centricitet som funktion av m och &skadliggér denna funktion grafiskt.

8. I en parabel dr en korda dragen vinkelrdtt mot axeln. Visa att ytan av para-
belsegmentet dr tva tredjedelar av ytan av den rektangel, ddr en sida utgéres av
kordan och motstéende sida tangerar parabeln. Anvind detta for att 16sa foljande
uppgift :

En rit cirkulidr kon skéires av ett plan parallellt med en generatris. Den inom
konen belidgna delen av planet blir d& ett parabelsegment, vilket inte hir behéver
bevisas. For vilka viirden pé konens toppvinkel kan parabelsegmentet ha en yta,
som #dr stérre dn ytan av konens axelsnitt ?

RESULTAT AF PRISOPGAVER FOR DANSKE GYMNASIASTER

(Opgaverne i NMT 11 (1963), s. 191-192.)
Der indkom 35 besvarelser. En praeemie pé kr. 150 blev tildelt Karsten R. Olesen,

Im Virum Statsskole og en premie pa kr. 100 Frode Poulsen, IIT m Ribe Kate-
dralskole.



SUMMARY IN ENGLISH

KorrL KoLDEN: On the use of vectors and matrices in plane projective
geometry. (Norwegian.)

A point with plane projective coordinates (pys Po> Ps) 18 represented by the
row vector p={p1, Da» pa}, and a line with line coordinates (uy,Us uy) is simi-
larly represented by the column vector u*. By treating these symbols partly as
vectors (scalar and cross products), partly as matrices (matrix products), a rather
concentrated presentment of plane projective geometry is obtained.

Fixy METHLING: Representation of logical statements by arcs of concen-
tric circles. (Danish.)

In the figure p. 98, two statements A4 and B and some of their logical com-
binations are represented by arcs of concentric circles.

Juns Erik FexsTaD: Algorithms in mathematics: An introduction to
recursion theory and its applications, I1. (Norwegian.)

In part 1I, the earlier results on recursively enumerable sets are used in an
exposition of a generalized version of Godel’s theorem, the original application
to formalized arithmetic being sketched. The last section discusses recursive un-
solvability in group theory giving an account of Rabin’s results. A miniature
guide to the literature is appended.
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