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AXEL THUE 1863-1922

R. TAMBS LYCHE

En av norsk vitenskaps eiendommeligste og mest originale forsker-
personligheter, Axel Thue, ble fgdt i Tansberg 19. februar 1863. Da han
dgde i mars 1922 var det bare f4 som var klar over at han hadde satt
spor etter seg som vil bevare hans navn for ettertiden som en av vare
store matematikere.

Geologen, professor J. H. L. Vogt, har fortalt folgende anekdote om
ham. Vogt, som da var dekanus ved Det matematisk-naturvitenskapelige
fakultet, rddet Thue til & sgke et adjunktstipendium som nettopp var
blitt ledig. Thue innvendte at han visste ikke hvordan han skulle skrive
en slik sgknad, s& Vogt hjalp ham med & sette opp en kladd: »Til Det
Ak. Coll. Undertegnede ... osv. Kristiania, dato, N. N.« Noen tid etter
kom ganske riktig sgknaden, en tro kopi av Vogts kladd med forkor-
telser og det hele, undertegnet »N. N.« Det hgrer med til historien at
Thue fikk stipendiet.

Praktisk var i hvert fall Thue ikke. Selv har han flere steder gitt ut-
trykk for sitt syn pa det praktisk nyttige kontra det teoretisk grunn-
leggende. »Jo fjernere fra nytte og praktisk anvendelse, desto viktigere«.
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I en avhandling om »tegnrekker« — kanskje det forste (?) arbeide pa
dette omrade som senere med hell har veert tatt opp av andre — har han
tilsynelatende folt et behov for & forklare at han kunne gi seg av med noe
s& apenbart »unyttig«. Han sier nemlig innledningsvis at »det er av betyd-
ning & stille problemer som det viser seg & vare vanskelig & lase«. Mange
vil kanskje mene at det er mange nok av slike problemer pa forhénd,
om en ikke akkurat skal lage dem med hensikt. Men Thues mening er jo
klar: nar det viser seg & veere vanskelig & lose et problem, tyder det pd at
det rerer ved dyptliggende logiske sammenhenger.

En annen eiendommelighet ved Axel Thue som forsker henger sammen
med at han hadde store vanskeligheter med & lese hva andre hadde
skrevet. S4 snart han var klar over problemstillingen i et arbeide, begynte
hans egen tankevirksomhet & ta fatt, og resultatet ble da som regel at
han la arbeidet til side, og forfulgte tankegangen ut fra sine egne, som
oftest svert originale, synsmater. Han ble derfor aldri noen leerd mate-
matiker. Hans forskning kunne sjelden starte ut fra det som allerede var
oppnadd pa et bestemt omrade; hans arbeidsmate var & starte fra grun-
nen av, noe som naturligvis sveert ofte forte til at han gjorde oppdagel-
ser som det viste seg andre hadde nadd fram til for. Dette bekymret
ham dog ikke serlig, bortsett fra at han da mistet all interesse for emnet,
og tok fatt pa noe annet — det var jo alltid nok & ta av.

Det er kanskje ikke si overraskende at Thues hovedinnsats, med en
slik innstilling og arbeidsméte, forst og fremst kom til & ligge innenfor
tallteorien, der s mange ulgste problemer ligger s vidt nar grunnlaget,
at det & veere »leerd« p4 omradet er av mindre betydning enn pé de fleste
andre omrader av matematikken. Det var formodentlig forseket p& &
lgse Fermats problem som forte Thue inn pa studiet av ubestemte lik-
ninger, det studiet som ferte fram til »Thues sats« om »ulgsbarheten i
store tall« av ubestemte likninger i to variable av en meget almen karak-
ter. For 4 na dette resultat, trengte Thue en vurdering av muligheten
for tilnserming av irrasjonale algebraiske tall ved rasjonale tilnsermings-
verdier. Det var ikke tilstrekkelig med det resultat som Liouville pa sveert
enkel mate hadde vist: er p et irrasjonalt algebraisk tall av grad =, s&
har ulikheten

1
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q
et begrenset antall lgsninger i hele tall p og q. Det var nedvendig & vise
at eksponenten n her er ungdig hgy. Det lyktes Thue ved et ytterst
sindrig bevis & erstatte n med }n, og dette var tilstrekkelig til & kunne
utlede setningen om ubestemte likninger. Men med utgangspunkt i Thues
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resultat har senere forskere ytterligere skjerpet tilnsermingssetningen,
inntil punktum ble satt i 1958, da den engelske matematiker Klaus F.
Roth, til den matematiske verdens forbauselse, kunne vise at en iste-
denfor 7, eller Thues in, kunne sette ethvert tall >2. Men det var Axel
Thue som innledet denne »Thue—Siegel-Dyson— ... —Roth’s sats«.

Det var nesten noe av et paradoks at Axel Thue, da han endelig ble
professor ved universitetet i Kristiania, fikk professoratet i »anvendt
matematikk¢. Men en ville ta helt feil av Thue om en mente at han ville
forsomme den »anvendte matematikk« (dvs. den rasjonelle mekanikk i
folge universitetets tradisjonelle oppfatning av begrepet), for bare & sysle
med tallteori og andre ikke-»anvendte« matematiske emner. Sitt profes-
sorat tok han tvertom meget alvorlig — men naturligvis pa sin egen
maner. Hans forelesninger over mekanikk ble mgnstergyldige med hen-
syn til helhetssyn og streng logisk oppbygning. Men for & oppna dette,
méatte han forst bygge opp en abstrakt vektorteori som han kalte »pil-
teori«. Denne Thues »pilteori¢, som han bygget hele den rasjonelle meka-
nikk pa, var i seg selv et logisk byggverk av stor skjonnhet. At den ikke
kom til & sld igjennom hos andre, er apenbart fordi vektorregningen,
slik den etter hvert er blitt utformet, har vist seg som et i lengden mere
hensiktsmessig verktoy.

Som menneske var Axel Thue det mest stillferdige og beskjedne en
kan tenke seg. Med litt mindre av disse i og for seg si sympatiske egen-
skaper er det mulig at hans liv og vitenskapelige innsats kunne ha artet
seg noe annerledes og levnet ham mere tid og krefter til 4 utfolde sine
sjeldne evner. Som det var, kom han til hele sitt liv & vere plaget av
gkonomiske bekymringer som tvang ham til &4 skjote pa sine inntekter
med ekstra undervisningsarbeide — noe hans ikke altfor robuste helbred
slett ikke talte.



OM VERKSAMHETEN INOM NORDISKA KOMMITTEN
FOR MODERNISERING
AV MATEMATIKUNDERVISNINGEN

MATTS HASTAD

Nordiska kommittén for modernisering av matematikundervisningen
startade sin verksamhet 1960 som en kommitté under Nordiska Kultur-
kommissionen. Den har sexton ledaméter, fyra frain vardera Danmark,
Finland, Norge och Sverige. Ledaméterna dr matematiklirare fran skola
och universitet, skoladministratorer m. fl.. En &r representant fran indu-
strin. Kommittén har hela skolans matematikkurser pa sitt program.

Verksamheten inleddes med att kommittén 14t utarbeta en preliminir
kursforteckning. Malsittningen var dérvid att matematikundervisningen
skulle battre &n nuvarande kurser motsvara de krav som det moderna
samhillet stiller.

Utvecklingen under det senaste drhundradet avspeglas i kursforteck-
ningen genom inforande av nya avsnitt sésom méngdlira, vektorer och
sannolikhetsldra. Vidare har vissa uteslutningar skett av delar som be-
funnits overflodiga. Detta giller sirskilt geometriska moment. Aven
tillimpningar ges i hogre grad #n for néirvarande utanfér geometrin
och hiamtas bl. a. fran andra #mnen som fysik, teknik, ekonomi och
samhillsvetenskaperna. Man har férsokt anpassa kursen efter det skade
bruket av riknesticka, riknemaskiner och datamaskiner. Triningen i
numeriska rékningar har darfor delvis omgestaltats.

Losandet av komplicerade problem reduceras. I stéllet bor tid liggas
ned pé att ge eleverna storre insikt och forstéelse. Detta bor kunna uppnés
genom att de grundliggande begreppen behandlas mer ingidende. Forsok
har visat att man med framgang vid relativt tidig 4lder kan introducera
allménna, grundliggande begrepp med utgéingspunkt i konkreta situa-
tioner fran elevernas egen erfarenhet, samtidigt som man ej stiller for
stora krav pa deras rakneskicklighet. Med hjilp av dessa enklare begrepp
kan sedan mer komplicerade forhallanden littare foérklaras. Viktigt dr
ocksd att gora eleverna intresserade av matematikundervisningen.

Kommittén har funnit det vésentligt att verkligen prova dessa idéer
genom férsoksverksamhet i skolorna. Den har dirfér engagerat forfattare
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som i team utarbetar forsckstexter. Dessa texter provas sedan lisaret
1961-62 i Nordens skolor. Forsoksverksamhet har bedrivits i 600-700
klasser t.o.m. lisdret 1963-64 med i allmidnhet flera texter i samma
klags. Lérarna har delgivit kommittén sina erfarenheter. Till och med
lasaret 1963—64 har tjugo olika forsckstexter utgivits. Férutom anvind-
ning i skolorna har texter salts till intresserade lidrare. Sammanlagt har
40-50000 exemplar av texterna utgivits.

I fortsdttningen ges en kort beskrivning av innehéallet i de olika texterna.
Vidare redogores for de inséinda rapporterna.

Arskurs 1-3.

Text: Matematik for arskurs 1 del TA (M 1 IA)L.

Innehdll: Tonvikten i texten ligger pa att klargdra talbegreppet.
Begreppen mingd, element och union av méngder inféres jimte sym-
bolerna { } och U. Talen inféres som antal element i méngder. Addition
diskuteras relativt sent och som ett uttalande om antalet element i
unionen av tva méingder. Symbolerna #, =, > och < infors. Givetvis
introduceras alla begrepp med utgangspunkt fran den forestéllningsvirld
och det sprak som dr barnens. Aktivt arbete med pedagogiska hjélpmedel
— klossar, flanelltavla ete. — spelar en viktig roll.

Erfarenheter: Texten provas lisadret 1963-64.

Text under arbete: Matematik for arskurs 1 del IB (M 1 IB).

Innehdll: Subtraktion infors foregdnget av utfyllnadsévningar med
addition varvid konkreta operationer med méngder utnyttjas. Minus-
tecknet anvinds forsta gangen i mitten av varterminen forsta aret.
Skrivsitt med positionssystemet for talen 0-100 behandlas.

Planerade texter: Texter for arskurs 2 och 3 planeras. Multiplikation
definieras med anknytning till antal element i en produktmingd (ele-
menten ordnade i ett rektangulirt schema) och division férbereds genom
ovningar av typen 3-[00=18, 0-2=4. Aven nigot geometri skall behand-
las.

Arskurs 4-6.

Text: Matematik for arskurs 4 del I (M 4 I).

Innehdll: Texten &r en Oversdttning av en experimenttext, som
ingdr i ett stort projekt i U.S. A. (School Mathematics Study Group).
Den utnyttjar vissa enkla begrepp och symboler fran méngdléiran,
diskuterar talskrivning i andra positionssystem #n tio-systemet samt
behandlar egenskaper hos de fyra riknesétten.

1 Beteckningen inom parentes anges vid bestéllning av texten.
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Texter under arbete: Kommittén avser att, om forséken med de forsta
delarna blir framgangsrika, 6versitta hela textserien for drskurserna 4-6.
Fran innehallet i texterna kan némnas en férberedande geometrikurs,
ingdende diskussioner av de centrala egenskaperna hos de fyra rikne-
séitten pd naturliga tal, rationella tal och decimaltal, enkla anvindningar
av variabler, introduktion till koordinatsystem och negativa tal.

Erfarenheter: Texterna for arskurs 4 provas lisiret 1963-64. Endast
ett fatal klasser dr engagerade.

Arskurs 7-9
(STORRE KURSEN).

Text: Algebra del I (A 7-9 I).

Innehdll: Texten inledes med nagra enkla begrepp och symboler fran
mingdléran sdsom mingd, element, delméngd, union och snitt. Inne-
bérden i orden »och« och »eller« diskuteras och begreppen »utsaga« (utta-
lande, omddme, pastadende) och »oppen utsaga« infors. De »6ppna utsa-
gorna« omfattar bade ekvationer och olikheter, vilka pa detta sitt kan
behandlas gemensamt. De grundliggande réiknelagarna for addition och
multiplikation diskuteras och dessa riknesdtts sammanhang med sub-
traktion och division behandlas.

Erfarenheter: Texten provas sedan lisaret 1962-63. 14 rapporter fran
22 klasser (i Finland och Sverige) har inlimnats. Inte i nigon rapport
avstyrks att arbetet efter textens riktlinjer skall fortsitta. I nagra fall
séigs »méngdliran« vara s littfattlig att den kan behandlas fore arskurs
7. Elevernas reaktioner bedéms vara lika eller mera positiva dn vid den
vanliga kursen. I storre delen av rapporterna anmils svarigheter att
intressera eleverna for ett avsnitt om tillordningsregler, vilket foregar
diskussionen av riknelagarna fér de naturliga talen. I nigra rapporter
onskar man att negativa tal infores i textens andra kapitel f6re 16sningen
av ekvationer och olikheter i kapitel 3. Texten har med ett undantag fatt
ett positivt mottagande. Den innehaller visentligt mer beskrivande text
#n vanliga skolbdcker i matematik. Det har rapporterats vissa svarig-
heter for eleverna att sjilva lisa den beskrivande texten.

Text: Algebra del IT (A 7-9 II).

Innehdll: Denna del skall i huvudsak lisas i sjunde arskursen. Den
innehéaller kapitel om faktorisering (potenser), rationella tal, andra posi-
tionssystem, decimaltal, nirmevirden och procent. Narmevirden dis-
kuteras ingdende. I kapitlet om procent koncentreras arbetet pa for-
staelse av procentbegreppet och endast ett minimum av »handelstermi-
nologi¢ ges.
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Erfarenheter: Texten borjade prévas under varterminen 1963. Det ar
annu for tidigt att uttala sig om resultatet.

Text: Algebra del III (A 7-9 III).

Innehdll: De negativa talen inférs liksom absolutbelopp. Koordinat-
systemet behandlas foreginget av 6vningar i grafisk avbildning av par
av hela tal. I ett kapitel behandlas polynom och brutna rationella uttryck
(férenklingar, faktoruppdelningar, definitionsmingd, enkla andragrads-
ekvationer). Avsnittet ir mindre omfattande én i vanliga larobocker. 1
koordinatsystemet askadliggors 16sningsméngden till 6ppna utsagor i tva
variabler samt behandlas avbildningar av punktméngder.

Erfarenheter: Texten provas i drskurs 8 med borjan lisdret 1963-64.

Planerade texter: Algebratextens avslutande delar for arskurs 9 skall
innehalla statistik och enkel sannolikhetslira, funktionsbegreppet, 16s-
ning av linjéra ekvationssystem, riknestickan och reella tal.

Text: Geometri del I (G 7-9 I).

Innehdll: Texten innehaller en intuitiv introduktion av geometriska
begrepp genom rit- och métovningar. Eleverna far lira sig hantera
hjilpmedel sasom linjal, passare, vinkelhake och gradskiva. Ett stort
antal 6vningar ges. I ett kapitel behandlas likformighet och i ett rymd-
geometri.

Erfarenheter : Texten skall anvéindas i arskurs 7 och under hostterminen
i drskurs 8. Den har provats i skolorna i Finland, Norge och Sverige
sedan lisiret 1961-62. Fran forsoken i arskurs 7 har inlimnats 50 rap-
porter. Endast i en rapport avstyrks fortsatt forsoksverksamhet. Nagra
menar att mycket av innehallet kan flyttas ned till mellanstadiet. I 29
rapporter sigs angiende elevernas intresse for texten »stort intresse,
storre intresse, mycket intresserade, roade« och liknande. Ingen rappor-
terar mindre intresse &n i vanliga fall. Nagra lirare klagar over att
definitioner och satser endast férekommer bland 6vningarna. Fyra lérare
ar negativa till definitionen av vinkel som unionen av stralar. Sju lirare
saknar handledning i ritteknik. Texten kan séigas ha fatt ett mycket
positivt mottagande.

Text: Geometri del IT (G 7-9 II).

Innehdll: 1 forsta kapitlet behandlas kongruensavbildningar sisom
spegling i en linje, parallellférflyttning, vridning, spegling i en punkt.
Det andra kapitlet, som #r betitlat »Geometri och logik¢, férséker ge en
motivering for ett mer stringent studium av geometrin och férbereder
nista kapitel dir ett fullstindigt axiomsystem ges. Det dr utarbetat av
den franske professorn Choquet och #r limpligt vid uppbyggnad av en
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avbildningsgeometri. Det forutsitter de reella talen. Resten av texten
omfattar genomgéing av de viktigaste egenskaperna hos kongruens- och
likformighetsavbildningar samt ger bevis for de viktigaste satserna inom
elementargeometrin. Area- och volymsberdkningar ingar dven.

Erfarenheter: Texten &r avsedd att tacka resten av geometrikursen pa
stadiet 7-9 och den har bérjat provas under virterminen 1963. Endast
11 rapporter har inkommit. Aven for denna del rapporteras positivt
intresse hos eleverna samt sigs att texten har varit lamplig. Kapitlet
om axiomen har fran ett par hall rapporterats vara svart.

Text: Geometri (MINDRE KURSEN) (GM 7-9 I).

Innehdll: Texten ar en forkortad och omarbetad version av forséks-
texten for storre kursen och avsedd for arskurs 7.

Erfarenheter: Forsoksverksamheten borjade hosten 1963.

Planerade texter : En ny textserie i geometri f6r drskurs 7-9 ar planerad.
Den skall utarbetas i nira anknytning till en i viss utstrickning omar-
betad version av kommitténs text i algebra. Texten skall uppbyggas
kring avbildningar, koordinatsystemet och vektorer. Ett kort avsnitt om
trigonometri kommer troligen att inga.

GYMNASIET.

Text: Algebra del T (A 10-12 I).

Innehdll: I samband med repetition av vissa moment i den tidigare
matematikkursen introduceras enkla begrepp och symboler ur méngd-
liran. En genomgéng gores sedan av de grundliggande ridknelagarna
for naturliga tal, hela tal och rationella tal, varvid man har forsckt
framhéva de olika talméingdernas struktur. Ett kapitel behandlar 16sning
av linjira ekvationer, ekvationssystem och olikheter med anvindande
av enkla begrepp och symboler fran logik och méngdlira. Texten avslutas
med ett kapitel om funktionsbegreppet, vilket inféres som en avbildning
av en mingd in i en méingd.

Erfarenheter: Texten &r avsedd for forsta terminen av gymnasiets
forsta &r (10:de skoldret) och har provats sedan lisaret 1962-63. Fran
Sverige har inkommit 16 rapporter. Den allménna tendensen i rappor-
terna #r att texten innebédr en modifiering av kursen at ratt hall medan
viss oenighet rader i hur langt man skall gi i de olika avsnitten. Flera
av lirarna synes ha ansett texten vil omfattande och har haft svarig-
heter att hinna med den pa den avsedda tiden. Nagra anser att genom-
gangen av riknelagarna i de olika talmingderna har blivit f6r teoretisk.
Bristande intresse fran eleverna rapporteras dirvid. I sju rapporter
rapporteras dock stort, storre eller positivt intresse. Tre lirare siger att
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texten gynnar de béttre eleverna. I 8 rapporter klagas 6ver att texten
innehaller for f4 6vningar. Kapitlen om ekvationer, ekvationssystem och
olikheter samt funktionsbegreppet far genomgéende positiv kritik. En
viss oro uttrycks over att elevernas rikneskicklighet skulle bli sémre.
Med anledning av rapporterna har vissa omarbetningar skett till lisaret
1963-64.

Text: Algebra del IT (A 10-12 II).

Innehdll: Forsta kapitlet behandlar polynom (bl. a. ekvationslésning,
divisionsalgoritmen och faktorteoremet). Ndrmevirden ges i nésta kapitel
en relativt ingdende behandling med diskussion av fel, relativt fel och
felskattningen vid de fyra rikneséitten med nirmevéirden. Textens tredje
kapitel behandlar enkla talf6ljder, summeringar av talféljder och induk-
tionsbevis. I ett langt kapitel diskuteras de reella talens egenskaper.
Kvadratrotter behandlas kortfattat. Potenser med reell exponent inféres
med utgangspunkt fran rationell exponent och rotlagar. Logaritmer
behandlas. Dirvid diskuteras endast kortfattat hur numeriska rakningar
utfores med logaritmer. Som hjilpmedel vid numeriska rakningar skall
riknestickan anvindas. Den behandlas i textens sista kapitel.

Erfarenheter: Texten skall anvindas under varterminen av gymnasiets
forsta arskurs (10:de skolaret). Fran rapporterna kan némnas att flera
ansag polynomkapitlet vara for abstrakt. I tre rapporter konstaterades
att principen vid induktionsbevis forstods littare av eleverna tack vare
mingdbegreppen. Se f6r vrigt erfarenheterna under del I ovan.

Text under arbete: I den hogsta arskursen skall algebratexterna kom-
pletteras med ett kapitel om komplexa tal for provning lisaret 1964-65.

Text: Geometri del T (G 10-12 T).

Innehdll: Inledningsvis behandlas egenskaper hos parallellforflytt-
ningar av planet. Direfter definieras vektorbegreppet och riknelagarna
for vektorer behandlas (addition, subtraktion, multiplikation med skalér,
skaldrprodukt). Parallellkoordinatsystem for vektorer och punkter i
planet inféres. I ett kapitel om trigonometri definieras de trigonometriska
funktionerna for godtyckliga vinklar. Sinus- och cosinusteoremen bevisas
och exempel pa enkla triangelsolveringar ges. Omfanget av detta senare
moment dr kraftigt reducerat jaimfért med ordinarie kurser.

Erfarenheter: Texten dr avsedd fér gymnasiets forsta arskurs (10:de
arskursen). Den har anvints vid forsoksverksamhet sedan ldsaret 1961-
62. Fran denna har 57 rapporter insidnts fran Danmark, Norge och
Sverige. Erfarenheterna dr genomgiende goda om man undantar 5-6
rapporter, vilka dr mycket negativa. Dessa har ogillat den relativt breda
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framstallningen med mycket beskrivande text for eleverna att lisa och
har ansett den for svarlist for gymnasister. Ingen avstyrker dock att
arbetet med att fora in vektorer i gymnasiet fortsittes. I ett tjugotal
rapporter anses texten fér omfattande, tio anser den for teoretisk och
29 att den ar forsedd med for f4 6vningar. Ovningarnas antal har seder-
mera utokats. I 13 rapporter redovisas stort, storre eller positivt intresse.

I 15 rapporter anmiirks pa framstéllningen av skalérprodukt, vilken de-
finierats med hjilp av koordinater i en dimension. I allménhet 6nskar man
skalsrprodukten definierad med hjilp av trigonometri. Tre lirare efter-
lyser vektorprodukt. Flera vill ha ett storre antal tillimpningar frin
fysik och mekanik. Kapitlet om trigonometri har fatt ett mycket positivt
mottagande.

Text: Geometri del IT (G 10-12 II).

Innehdll: Texten behandlar rita linjens analytiska geometri. Réta
linjen framstilles i koordinatform, vektorform, parameterform och nor-
malform. Begreppen riktningskoefficient, riktningsvinkel och riktnings-
tal inféres. Ett kort avsnitt, dar principerna for linjir programmering
visas, avslutar texten.

Erfarenheter: Texten skall studeras i gymnasiets nist hogsta drskurs.
Den bérjade provas lisdret 1962-63. I de 12 inséinda rapporterna ér man
i stort sett n6jd. Texten anses av flera nigot for omfattande.

Text: Geometri del IIT (G 10-12 III).

Innehdll: Texten inleds med en kortfattad framstillning av kégel-
snittens analytiska geometri. Ekvationerna for cirkel, parabel, ellips och
hyperbel hirleds. Hur man med hjélp av koordinatbyte kan avgora den
geometriska betydelsen av en andragradsekvation i tvd variabler visas i
nigra exempel. Behandlingen av andragradskurvorna &r vasentligt kor-
tare dn i ordinarie kurser.

I fortsittningen behandlar texten rymdgeometri. Vektorer i rymden
infores liksom ratvinkligt koordinatsystem med vars hjilp planet och
linjens ekvationer behandlas. Ett kapitel handlar om volymberikningar.
Texten innehaller dérmed mycket litet av den klassiska stereometrin.

Erfarenheter: Texten skall behandlas i hogsta arskursen i gymnasiet.
Den har bérjat anvindas vid forsoksundervisning forst i slutet pé vér-
terminen 1963. Vissa kapitel ur geometri del II och III har bundits
samman till en text, som #r avsedd for kurser med mindre timtal.

Text: Funktionslira del I (F 11-12 I).
Innehdll: Texten inleds med ett kapitel vari nagra begrepp och sym-
boler fran méngdliran inférs. Begreppen intervall, omgivning, 6vre och
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undre grins behandlas. Funktionsbegreppet introduceras som avbildning
av en mingd in i en méngd. Definitionsmingd, virdemiéngd, monotona
och trigonometriska funktioner behandlas. Grinsvirden och kontinuitet
ges en relativt bred behandling bl. a. med utnyttjande av omgivnings-
begreppet. Sedan derivator och deriveringsregler genomgatts, anvinds
medelvirdessatsen f6r att visa sambandet mellan monotonitet och deri-
vata hos deriverbara funktioner.

Erfarenheter: Texten provas med borjan lasaret 1963—64 i niist hogsta
arskursen.

Text: Funktionslira del IT (F 11-12 II).

Innehdll: Ur innehdllet kan nidmnas hogre derivator (konvexitet),
talf6ljder och serier, integraler (definition av bestdimd integral, samband
mellan bestdmd integral och primitiv funktion, tillimpningar pa area-
och volymberikningar), naturliga logaritmer (definierade med hjilp av
en integral), inversa funktioner (tillimpningar pa de cyklometriska funk-
tionerna), exponentialfunktioner (definierade som inverser till logaritm-
funktionerna), partiell integration och integration med substitution,
vektorfunktioner (derivator av vektorfunktioner) och polynomapproxi-
mation (MacLaurins formel).

Erfarenheter: Texten skall provas med borjan varterminen 1964.

Text: Differentialekvationer (D 11-12).

Innehdll: Linjira differentialekvationer av forsta ordningen loses.

Existens- och entydighetsfragor diskuteras. Linjéira differentialekvationer
av andra ordningen 16ses utan anvéindning av komplexa tal.
- Erfarenheter: Texten borjade anviéndas vid forscksverksamhet lasaret
1961-62. Det har inlimnats 42 rapporter fran forscksverksamhet i alla
fyra nordiska linderna. Ingen avstyrker vidare férsok. Nagra anser att
framstéllningen dr for bred (7 lirare) samt for teoretisk (5 lirare) och
forsedd med for fa 6vningar (15 lirare). 20 rapporter berdttar om storre
intresse medan ingen anméler mindre intresse. I vissa rapporter har man
onskat att annat stoff fran omradet skall vara med sésom komplexa tal,
separabla differentialekvationer (4 lirare), fler tillimpningar fran fysik
(8 liarare) och andra integrationsmetoder (4 lirare). Inledningskapitlet
har ansetts vara vil abstrakt. Genomgéende har man varit n6jd med
att studera dmnet i skolan med den foreliggande texten.

Text: Sannolikhetsldra och statistik (S 10-12).

Innehdll: Sannolikhetsldran inleds med den klassiska definitionen av
sannolikheten for en hindelse som kvoten mellan antalet f6r hindelsen
gynnsamma och totala antalet fall. Denna definitions begrinsning dis-
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kuteras sedan. Direfter behandlas de relativa frekvensernas stabilitet,
som praktiskt demonstreras bade for fall, dér den klassiska definitionen
pa grund av »symmetri« synes vara berittigad (kast med mynt och tér-
ningar), och for fall, dir den klassiska definitionen inte ger nagon ledning
(kast med héaftstift).

Sedan behandlas sannolikheter i #ndliga utfallsrum. Hérvid utnyttjas
enkla begrepp fran mingdliran. Bl a. féljande begrepp behandlas:
Hindelse, sannolikhet for en hindelse, komplementérhéindelser och émse-
sidigt uteslutande hindelser, oberoende hindelser, stokastisk variabel,
frekvensfunktion, vintevirde och varians for en stokastisk variabel och
binomialférdelningen.

Kontinuerliga stokastiska variabler behandlas sedan relativt kortfattat.
Begreppet frekvensfunktion definieras och sannolikheter beriknas med
bestémda integraler. Framstéillningen leder fram till normalférdelningen
och approximation av binomialférdelningen med normalférdelningen.

Statistiken omfattar forst och frimst beskrivande statistik. Harvid
behandlas savil grafiska som numeriska metoder att beskriva statistiska
material. Framstillningen omfattar berikning av medelvirde, median,
varians och standardavvikelse samt grafisk konstruktion av stolpdia-
gram, histogram, summapolygon. Aven klassindelat material behandlas.
Av statistisk inferens slutligen behandlas konfidensintervall for en sto-
kastisk variabels vinteviirde och fér en okiénd sannolikhet.

Erfarenheter: Texten borjade provas i de bada hogsta arskurserna
lisaret 1961-62. Hittills foreligger 12 rapporter fran Danmark och Sverige.
Rapporterna ir genomgéende positiva. Man anser att forstksverksam-
heten bor fortsittas. I flera rapporter framhalles att texten ar omfat-
tande, dock bara i tva att den &r for omfattande. I 6 rapporter sigs
ovningarna vara for fa. 7 lirare rapporterar storre intresse. Av andra
moment fran omradet saknar enstaka lirare korrelationskoefficient,
Poissonfordelningen, férdelningsfunktion och betingad sannolikhet.

Texten har sommaren 1963 undergdtt en omarbetning varvid bl. a. ett
stort antal vningar tillforts den och den beskrivande statistiken fatt
inleda texten.

I man av tillging kommer texter att forsiljas till intresserade. Upp-
lysningar kan erhallas efter hinviindelse till kommitténs sekretariat under
adress

Nordiska kommittén for modernisering av matematikundervisningen
Kungl. Ecklesiastikdepartementet

Fack

Stockholm 2




ALGORITMER I MATEMATIKKEN:
EN INNFORING I DEN REKURSIVE MATEMATIKK
OG DENS ANVENDELSER, 1

JENS ERIK FENSTAD

Innledning. Med en algoritme vil vi forelopig forsta en effektiv regne-
prosess eller, mer generelt, en effektiv metode til & avgjere et problem.
Hyvilke typer problemer som kan kalles algoritmiske skal vi ikke prgve
& klassfisere nermere, men heller antyde ved & gi noen eksempler. En-
kelte aritmetiske regneprosesser er si enkle at man vanligvis ikke benytter
ordet algoritme for dem; f. eks. til & finne produktet av to naturlige tall,
a og b, har vi fglgende regnemetode: tallet a-b fremkommer ved & ta tallet
a som addend si mange ganger som tallet b angir. Her vil altsd 4-3=
4+4+4=12; metoden er effektiv forutsatt vi kan addere — og til det
har vi algoritmen med & »telle pa fingrene«!

Ordet algoritme brukes vanligvis i forbindelser som »divisjonsalgoritme«
og »Euklidsk algoritme«. Anta at a og b er ikke-negative hele tall og b> 0.
Divisjonsalgoritmen sier da at det fins entydig bestemte tall ¢ og r, med
0<r<b, slik at a=q-b+r. Her kan ¢ og r finnes effektivt idet ¢ méd veere
et av tallene 0,1,...,a. Man starter da med & regne ut i rekkefolge
0-b,1-b,...,a-b, og undersgker hver gang differensen ¢ —i-b. Den entydig
bestemte 7 slik at 0 <a—i-b <b, er den sgkte ¢. Regnemetoden er opplagt
effektiv, og s intuitivt innlysende at man sjelden beskriver den si
detaljert som her.

En litt mer innviklet algoritme er den Euklidske til & finne sterste
felles divisor for to hele positive tall. Som kjent bygger denne algoritme
pa gjentatt bruk av divisjonsalgoritmen.

Disse eksempler pa algoritmer er tatt fra aritmetikken, men innen
hvert omrade av matematikken er det i bruk algoritmer av forskjellig
slag. Sannhetsverditabellene er en effektiv metode til & avgjore almen-
gyldigheten av utsagnslogiske formler.

A vise at et problem er effektivi avgjorbart lgses i praksis ved & kon-
struere en eller annen form for algoritme som man intuitivt innser leder

NMT, Hefte 1-2, 1964. — 2 [17]
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til det forgnskede resultat. S& lenge man er overbevist om at de spesielle
algoritmer man anvender er effektive, har man intet behov for et generelt
begrep algoritme, men har man mistanke om det motsatte, at et gitt
problem ikke er algoritmisk lgsbart, si vil man métte vite hva en effek-
tiv regneprosess »egentlig« er.

Dette siste er ikke sa helt enkelt, effektiv avgjerbarhet er et intuitivt
og ikke matematisk begrep. Det har neppe noe helt presist innhold, og
argumentasjon ut fra dette intuitive startpunkt vil lett lede ut i en
endelgs filosofisk disputt om hva effektive prosesser i »virkeligheten« er
for noe. Det var erfaring har gitt oss er en rekke eksempler pa algoritmer,
og en folelse av at en effektiv regneprosess skal veere noe i retning av en
operasjon med visse typer symboler, hvor det foreligger et endelig antall
utgangssymboler med hvilke vi skal foreta visse manipulasjoner, slik
at det er ngyaktig foreskrevet hvilke symbol-manipulasjoner vi pa et-
hvert trinn i sregningen« skal utfore.

Dette er ikke presist, s& tar man sitt utgangspunkt her, blir det ikke
noe matematikk ut av den generelle teori for algoritmer. Det man for-
nuftigvis ber gjere er & teknifisere begrepet, det intuitive algoritmebegrep
vil bli erstattet med begrepet rekursiv funksjon, og et spersmal om eksi-
stens av algoritmer vil bli omformet til et problem om visse funksjoner
er rekursive eller ikke.

S4 snart klassen av rekursive funksjoner er definert kan man som ren-
matematiker stille seg forngyd. Denne funksjonsklasse har en rekke
interessante egenskaper, og studiet av dem gir anledning til en masse fin
matematikk. Resten kunne forsividt vere irrelevant. Men rekursive
funksjoner er foreslatt som en teknifisering av algoritmebegrepet. Er na
algoritmer det samme som rekursive funksjoner? Stilles sporsmélet pa
denne mate, er der intet fornuftig svar. Vi kan ikke »bevise« at rekursive
funksjoner er det samme som algoritmer, for her har vi &4 gjere med
sammenhengen mellom et intuitivt og et formalt begrep. Skal teorien for
rekursive funksjoner ha noen relevans for problemet om effektiv beregn-
barhet, ma vi overbevise oss, p4 det intuitive plan, om tre ting. For det
forste méa enhver rekursiv funksjon veere, intuitivt sett, effektivt beregn-
bar. For det andre ma vi til enhver kjent algoritme kunne tilordne en
rekursiv funksjon slik at det & regne ut funksjonsverdien for visse argu-
menter betyr & lose det algoritmiske problem. Og for det tredje mé vi ha
i var besittelse teknikker til & omforme algoritmiske problemer til pro-
blemer om eksistens eller ikke-eksistens av rekursive funksjoner. I tur
og orden vil disse problemer bli diskutert. Men forst en skisse av den
matematiske teori for rekursive funksjoner.
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Primitivt rekursive funksjoner. Utgangspunktet skal veere den ele-
mentare teori for de naturlige tall. Vi betrakter de naturlige tall som
umiddelbart gitt: tallrekken begynner med tallet 0 og genereres ved en
primitiv operasjon, etterfolgeroperasjonen, som betegnes med '. Sym-
bolene 1,2,3,... er da per definisjon navn pid de genererte objekter
0’,0”,0",. ... Sammenfattende kan en si: 1° 0 er et naturlig tall; 2° hvis n
er et naturlig tall, s& er n’ et naturlig tall; 3° naturlig tall er fullstendig
beskrevet ved reglene 1° og 2°.

Her er 3° en slags ekstremalbetingelse som gjor det umiddelbart klart
at induksjonsprinsippet er gyldig for de naturlige tall. For har 0 en egen-
skap P, og nedarves denne egenskap ved etterfelgeroperasjonen, sa vil
alle tall ha egenskapen P, idet noe er et tall, hvis og bare hvis det enten
er 0 eller fremkommet fra 0 ved et endelig antall gangers bruk av etter-
folgeroperasjonen.

Videre er det opplagt at man kan definere funksjoner f: N - N ved
rekursjon (her star N for de naturlige tall). En rekursiv definisjon bestéar
i & angi eksplisitt hva f(0) er, og definere f(n') ut fra n og f(n) ved bruk
av allerede veldefinerte funksjoner. Det er da klart, slik tallrekken opp-
fattes generert, at f(n) er definert for alle n, og at funksjonsverdien er
entydig bestemt.

Dette er det sedvanlige intuitive grunnlag for teorien om de naturlige
tall. Den blir her uten videre akseptert. Ganske annerledes ville saken
stille seg fra et aksiomatisk eller formal-logisk standpunkt. Det skal vi
komme tilbake til senere i denne artikkel i forbindelse med det meget
omtalte Godels ufullstendighetsteorem for den elementeere aritmetikk.

En beskjeden bruk av logiske og mengdeteoretiske symboler vil lette
fremstillingen i det fglgende. N skal, som ovenfor antydet, symbolisere
mengden av de naturlige tall, {0,1,2,...,n,...}. 4,B,C, ... vil betegne
delmengder av N. Komplementermengden til 4 vil vi skrive N — 4, og
ellers anvende som vanlig symbolene n e 4, AuB og AnB.

Tallteoretiske predikater (eller utsagnsfunksjoner) vil vi betegne med
symbolene P,Q,R,S,... og angi i parenteser det antall variable som
predikatet er avhengig av, slik at P(x,,...,z,) vil sta for et eller annet
tallteoretisk predikat av » variable x;,2,, . ..,z, som for et gitt n-tupel
av naturlige tall er enten sant eller galt.

De logiske symboler med deres betydning angir vi i nedenstaende tabell.

Logiske Symboler: Leseméte:
P = @ P impliserer ¢.
P < Q P er ekvivalent med Q.
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Logiske Symboler: Lesemate:

P&Q P og Q.

Pv@ P eller Q.

1P ‘ ikke P.

Yz P(x) for alle z, P(x).

dx P(x) . det fins en z slik at P(x).

(Vx < y)P(x) for alle z <y, P(x).

Jz < y)P(x) det fins en z<y slik at
P(x).

(uxr < y)P(x) den minste x <y slik at
P(z) hvis (Jx<y)P(x);
ellers, y.

p-operatoren er strengt tatt ikke det vi vanligvis forstar med en logisk
operator, det er et operasjonstegn vi kan benytte til & danne tallteoretiske
funksjoner fra utsagnsfunksjoner eller tallteoretiske predikater. To enkle
eksempler (det forste viser ogsé hvorledes vi tillater oss & gjore smé en-
dringer i den innferte symbolisme uten videre forklaringer):

(py < 22+ 1)[x < y] = x+1
(wy < 2)[z <yl = 2.

N er generert ved etterfolgeroperasjonen ut fra tallet 0. Gitt N kan vi
innfere en funksjon ¢: N — N ved definisjonen o(x)=x" for alle x € N.
o kalles etterfolgerfunksjonen. Den er effektivt beregnbar etter et hvilket
som helst intuitivt algoritmebegrep. Videre er det intuitivt klart at funk-
sjoner definert ved rekursjon er effektivt beregnbare, idet selve defini-
sjonsarten gir anvisning pa en effektiv regneprosess. La oss betrakte
situasjonen litt ngyere. En typisk rekursiv definisjon av en funksjon f(z)
kan vere £(0) = q

f@) = b, f@)) -

Her er ¢ € N eksplisitt gitt, og vi antar at h(x,y) er en effektivt beregnbar
funksjon. Skulle vi regne ut f(0"'), ville vi beregne i rekkefolge

f0) =4q
f(0) = h(0, f(0)) = £(0,9) = ¢,
fO") = B0, f(01) = k(1,q1) = ¢s -
Idet A er beregnbar, vil tallene ¢, og g, vere effektivt gitt, dermed ogsa
funksjonsverdien av f for =0"". Ut fra denne overveielse vil man kunne

overbevise seg om at f(z) er effektivt beregnbar for alle x € N, nettopp
ved & folge den algoritme som er bygget inn i den rekursive definisjon.




ALGORITMER I MATEMATIKKEN 21

De primitivt rekursive funksjoner, den forste klasse av effektivt beregn-
bare funksjoner og i en viss forstand en basismengde for klassen av alle
effektivt beregnbare funksjoner, er funksjonsklassen generert ut fra etter-
folgerfunksjonen ved rekursive definisjoner. Denne avgrensning av de
primitivt rekursive funksjoner er for lite presis for vart formal, sa det
vil veere nedvendig & gi definisjonen i langt sterre detalj.

Grunnfunksjonene vil vere gitt etter folgende skjema:

I fla) =
(II) f(xly"'ﬂxn) =Q: qu
(I11) f@y,...ox,) =2, 1 i< n.

Hvert av skjemaene (I)—(III) definerer en tallteoretisk funksjon av det
spesifiserte variabelantall. (I) gir etterfelgerfunksjonen o, (II) gir de kon-
stante funksjoner med vilkarlig variabelantall, og (III) er et skjema som
er tatt med for & kunne standardisere de etterfelgende substitusjons- og
rekursjonsskjema. (En anvendelse av (III) i forbindelse med rekursjons-
skjemaet vil bli gitt nedenfor.)

De genererende prinsipper for klassen av primitivt rekursive funksjo-
ner skal vere substitusjon og rekursjon i henhold til fglgende to skjema:

(Iv) f@y, . x,) = glha(@y, .. o@y), ..l .. 2))

f(0) =¢q
Vo {f 2 Wy, £@)
0,2y, ...,2,) = g(®s, - . .,%,)
(Vb) fW o, . x,) = Wy, [y, %, - . ., 2,), %, . . ., T,)

En funksjon f kalles primitivt rekursiv hvis det fins en endelig folge
(sekvens) av funksjoner f,, ..., f, slik at enhver funksjon i felgen enten
er en grunnfunksjon (dvs. direkte definert ved et av skjemaene (I)-(III)),
eller er dannet ved substitusjon eller rekursjon (dvs. etter skjemaene
(IV)—(V)) fra forangaende funksjoner i folgen, og f,=f.

Som et eksempel angir vi fglgende sekvens. (Til hgyre har vi gitt hva
man kaller analysen av rekursjonsfelgen, dvs. en spesifikasjon for hver f;
etter hvilket skjema og fra hvilke funksjoner den er dannet.)

1. fil) = = (III); n=3=1.

2. folx) = 2’ @).

3. f3(y,2,2) = 2 (II1); n=3, 1=2.
4. f4(y>z’x) = fz(f3(y,z,x)) (Iv); linje 2 og 3.

5 [5(0,2) = fi(x)

V') = fu(y, f5(y,2),2) (V); linje 1 og 4.
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Funksjonen f;(y,x) er saledes primitivt rekursiv, og det er ganske lett
4 se at det er addisjon av naturlige tall som her er definert. Vanligvis
gis den rekursive definisjon pa felgende mate:

z4+0 =2
z+y = (x+y).

Hva vi her har gjort er & omforme denne definisjon, bl. a. ved bruk av
(III) og (IV), slik at rekursjonsligningene blir brakt pa den form skjema,
(Vb) krever. Denne standardisering av rekursjon og substitusjon er selv-
sagt nedvendig for & fa en presis avgrensning av klassen av primitivt
rekursive funksjoner. Imidlertid vil vi gi eksemplene pa en uformell méte
og overlate til leseren & omskrive disse etter skjema (I)—(V).

I visse tilfelle vil vi fa bruk for funksjonen z -+, som er lik  —y hvis
w2y, og lik 0 hvis x<y. Til den rekursive definisjon av denne funksjon
trengs en art invers funksjon til etterfglgerfunksjonen :

7(0) = 0
a(x') = x.
x -~y blir da definert ved
-0 =2

x-y = a(x=y).

Rekursivitet av tallteoretiske predikater (utsagnsfunksjoner) blir til-
bakefort til rekursivitet av funksjoner ved bruk av teknikken med repre-
senterende (eller karakteristiske) funksjoner. Er P(x,, .. .,x,) et tallteore-
tisk predikat, kalles en funksjon f dets representerende fumksjon hvis
f@y, .. .,2,)=0eller f(x,,...,2,)=1 for alle n-tupler z,, .. .,x,, og

P(xy,...,x,) < f(xg,...,x,) = 0.

P(zy, . . .,z,) kalles primitivt rekursiv hvis f er primitivt rekursiv.

Det vil i sin alminnelighet vere en lett oppgave for leseren & vise at
de vanlige tallteoretiske predikater og funksjoner er primitivt rekursive.
Her skal det anferes noen generelle skjema til dette bruk.

A. Hvis P og @ er primitivt rekursive predikater, s& er 1P, P & Q,
Pv@, P=Q og P<>Q primitivt rekursive. Likeledes leder sub-
stitusjon av primitivt rekursive funksjoner for argumentene i et pri-
mitivt rekursivt predikat til et nytt primitivt rekursivt predikat.

La oss som et eksempel pa bevis ta P v . Hvis f og ¢ er de represen-
terende funksjoner for henholdsvis P og @), si vil den representerende
funksjon for Pv @ vere h=f-g.
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B. Er P(,,...,2,,y) et primitivt rekursivt predikat, sa vil (Iy<z)

Py, ...,x,,y) og (Yy<z)P(z,.. .»%,,Yy) veere primitivt rekursive
predikater av x,,...,x,,2, og (uy <2)P(x,, . . .,2,,y) vil vere en pri-
mitivt rekursiv funksjon av «,,...,,,z.

La den representerende funksjon til P vzere f@y,...,2,,y). Anta at
y=m<z er den minste y slik at P(x,,...,,,y). Da vil f(zy,...,2,,0)=

f@y .z, )=...=f(x,, .. < Zy,m—1)=1 og f(zy,...,x,,m)=0. Visste
vi at m var den eneste y <z slik at P(x,, .. .»%,,y), kunne vi definere en
funksjon g(x,, .. .,,,z) ved
9@y, - 20,2) = 3 f(@y, ., 2,,Y) ,
y<z
og fa at g(x,,...,x,,2)=m. Det vet vi ikke, men vi kommer unna ved

folgende knep. Definer h(x,,...,x,,y) ved
h(zy, ..., z,,y) =ISIf(x1, ey Ty 8)
sy

Da vil k(= ...,x,,y)=1 s4 lenge y er mindre enn den minste y, slik at
P(xy, . . .,2,,91), og My, ...,2,,y)=0 nar y 2 denne minste y,. Dermed
kan vi definere

(ny < 2)P(y, . ..,2,,y) = h(xy, ..., 2,,Y) .

y<z

Den siste detalj, at funksjonsverdien er lik z hvis det ikke fins noen y<z
slik at P(xy, . ..,,,y), er det lett & verifisere at var definisjon oppfyller.

C. En funksjon f definert ved

Ji@s, .. ,2,), hvis Qy(zy,...,x,)

J@yoonm,) =0 oo

fm(xb ’xn)’ thS Qm(xl’ sxn)
er primitivt rekursiv hvis f,,..., f,., @, .. .»@p er primitivt rekur-
sive, og hvis det for alle x,,...,x, fins akkurat en Q; 1=5i<m, slik

at Qu(xy, . . .,x,).

Disse »avledede slutningsskjema« er meget effektive til & pavise at visse
tallbeoretiske predikater og funksjoner er primitivt rekursive. Til eksem-
pel gis noen predikater og funksjoner i forbindelse med primtall. Vi
minner om at ethvert tall kan spaltes entydig i et produkt av primtall.

z|ly < (A2 < y)[z-z = y]
Pr() < o> 1&13y < 2)[y > 1&y|a]



24 JENS ERIK FENSTAD

= Do = 2 :
Py = (pr < p,!+1)[x > p, & Pr(z)]

@) = (uy < x)[p¥ | = & pY { 2]

Her er x|y delelighetsrelasjonen, Pr(x) betyr at x er et primtall,
p,=det(y+1)’'te primtall, og (x);=eksponenten til p; i den entydige
primtallfaktoriseringen av z (bemerk at etter var definisjon av u-opera-
toren er (0),=0 for alle ¢, likedan er (1);=0 for alle ). z{ y betyr som
vanlig 1(x | y). Definisjonene er ikke ngyaktig i overensstemmelse med de
offisielle skjema (dvs. skjema (I)-(V) og A-C), men det er en enkel opp-
gave, genergst overlatt til leseren, & omskrive definisjonene slik at full
overensstemmelse foreligger.

Dette avslutter vare bemerkninger om klassen av primitivt rekursive
funksjoner, basis for klassen av alle effektivt beregnbare tallteoretiske
funksjoner. Denne fremstilling har veert ngye knyttet til den som Kleene
gir i sin store lerebok, »Introduction to metamathematics«, Amsterdam
1952 (se for gvrig litteraturhenvisningene pé slutten av denne artikkel).
I de etterfolgende avsnitt vil vi velge en noe avvikende fremgangsmate,
som synes & lede til hovedresultatene i den rekursive teori pa en serlig
enkel og direkte méte (nir man velger & starte fra et aritmetisk grunnlag
(dvs. rekursjon), og ikke velger f.eks. elementart formale systemer,
Turing-maskiner el. lign. som utgangspunkt for den rekursive teori).

Rekursivt genererte mengder og rekursive funksjoner. Som en for-
beredelse til innfgringen av begrepet rekursiv funksjon vil det veere hen-
siktsmessig & diskutere begrepet rekursivt generert tallmengde. Vi sier
at en mengde AS N er rekursivt generert hvis A=4, eller det fins en
primitivt rekursiv funksjon f slik at

xed < IAn[f(n) = x],

dvs. A er enten tom eller verdiomradet til en primitivt rekursiv funk-
sjon. Den intuitive bakgrunn er at vi ved & beregne funksjonsverdiene
f(0), f(1),... effektivt kan generere elementene i 4.

Hvis 4 er rekursivt generert, si er ikke N — 4 nedvendigvis rekursivt
generert; intuitivt er det ikke effektivt & avgjere for en gitt x om f(n)
for alle n e N. I visse tilfelle lar det seg gjore. La f(n)=2n og g(m)=
2m+1. Da er A;={zx|3n[f(n)=x]} mengden av de like tall og
A,={x |Im [g(m)=2]} mengden av de odde (ulike) tall. Her er 4,=
N — A4, og f(n) +x for alle n hvis og bare hvis det fins en m slik at g(m) ==.

En tallmengde 4 < N kalles rekursiv hvis bade 4 og N — A er rekursivt
generert. Er 4 rekursiv kan vi effektivt avgjore om x € A eller ikke. For
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la f; generere 4 og f, generere N —A4. Det vil da finnes et = slik at
z=f(n) eller x=f,(n). Beregner vi suksessivt f;(0), f5(0), fi(1), fo(1), ...,
vil vi fer eller senere komme til et n slik at x=f,(n) eller z=Ffy(n), dvs. vi
vil effektivt kunne avgjore om x € 4 eller om z € N— 4. (Er 4 =0 eller
A =N fins det ikke funksjoner f, og f, som her antatt, men det er opplagt
effektivt avgjerbart om z € 4 eller ikke.)

Et predikat P(xy,2,,...,%,) kalles rekursivt hvis tallmengden P,=
{& | P((@)o, ()y, - - -, (x),)} er rekursiv. Her er (z); den primitivt rekursive
funksjon som ble definert i forrige paragraf. Poenget her & er & redusere
predikater av n+ 1 variable til predikater av en variabel, dvs. til tall-
mengder. Skal man avgjgre om P(xy,%y,...,x,) eller 1P(xy,xy,...,x,),
regner man forst ut x=_2%-p{1...p{" og undersoker om x e P, eller
x ¢ P,. Dette lar seg effektivt avgjore idet P, er antatt rekursiv. Denne
overveielse viser fglgelig at rekursive predikater méa aksepteres som effek-
tivt beregnbare.

En liten sats om rekursivt genererte mengder viser at definisjonen
ikke er alt for spesiell. Intuitivt skal jo en rekursivt generert mengde
motsvare en effektivt genererbar mengde.

La R(x,y) veere et rekursivt predikat. Da vil mengden

A = {x |3y R(z.y)}
veere rekursivt generert.

Bevis: Enten fins det ikke noen z og y slik at R(x,y); i dette tilfellet
er A =0 og dermed rekursivt generert. I motsatt fall fins det en x, slik
at 3y R(x,,y), hvilket betyr at det fins en primitivt rekursiv funksjon
f slik at R(z,y) < 3n [f(n)=22-3Y]. N& vil f((y)e)=2"-3Y" vare et
primitivt rekursivt predikat @(x,y); la h(x,y) vere den representerende
primitivt rekursive funksjon. Definer en funksjon g ved

9(0) = x,
gn+1) = (n)y- (1 =A((n)y, (n)y)) +9(n)-h((1)o, (n)y) -

Per definisjon er g(n) primitivt rekursiv, og

(n)y, om Q((n)o’ (n)1)
g(n), om 1Q((”)o> (n)l) .

A = {z|3Inlgn) = z]},

altsa for det forste at hvis f(m)=27-35, sd herer eksponenten r til verdi-
omradet for g. For dette formal velger vi

gn+1) = {

Vi skal vise at

n = 2r-3%"%
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altsd

Mo =1r=2, (n)y =2™3°=y; (y)y=m, (y); =s.
Da blir

f((?/)o) = f(m) = 27-3% = 2%.3Wn

slik at Q(z,y), altsd Q((n)y, (n),), og dermed g(n + 1) = (n),=r. — Omvendt
vises lett ved tilsvarende formler at hvis r tilherer verdiomradet for g,
s4 kan vi bestemme m og s slik at f(m)=27-3%. (Bade y og n kan da fa
andre primfaktorer i tillegg til p,=2 og p,=3.)

Vi gir noen andre enkle egenskaper ved rekursive predikater: Ethvert
primitivt rekursivt predikat er rekursivt. Et predikat P(x) er rekursivt
hvis og bare hvis det fins primitivt rekursive predikater R(z,y) og S(x,¥y)
slik at

P(x) < Jy R(z,y) < Yy S(z,y) .

For enten er mengden 4 = {x | P(x)} tom, i hvilket tilfelle P(x) er ekviva-
lent til 3y [r+x & y=y] og til Yy [x+2 & y=1y]; eller s& er N — A4 tom,
hvilket behandles analogt; eller si fins det primitivt rekursive funksjo-
ner f, og f, slik at

zed < y[fily) = 2], ze N—-A4 <= Ty [foly) = 2] .

Vi lar da R(z,y) <> fi(y)==z og S(z,y) <> fa(y)+x; det er da umiddel-
bart at bade R og § er primitivt rekursive og at de pastatte ekvivalenser
holder.

Videre vil det til ethvert rekursivt predikat R(z,y) finnes et primitivt
rekursivt predikat S(z,y) slik at

Jy B(z,y) < 3y S(x,y) .

Beviset er en enkel anvendelse av satsen ovenfor, med en opplagt modi-
fikasjon hvis det ikke fins noen tall z,y slik at R(z,y).

Klassen av rekursive mengder danner en Boolesk algebra, mens et av
vare hovedresultater vil veere at klassen av rekursivt genererte mengder
ikke er lukket under komplementdannelse. For et mer utferlig studium
av disse klasser henvises til litteraturlisten. For oss er disse klasser kun
et skritt pa vegen til de generelt rekursive funksjoner.

En tallteoretisk fumksjon f(xy,...,z,) kalles (generelt) rekursiv hvis
predikatet RBix,...,x,,y) definert ved

Bixy, . ..,2,,y) < f(xy,...,2,) =y,
er rekursivt.
For & godtgjere at en rekursiv funksjon er effektivt beregnbar kan
man angi felgende (lite praktiske!) regnemetode: La z,, . . .,x,, vere gitt.

—e—
e ————
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Betrakt suksessivt f(x;,...,%,)=0, f(®y,...,2,)=1,...,f(Ty,...,2,)=
m,.... Da f er en funksjon fins det en og bare en verdi m slik at
f(@y, ..., x,)=m, og da f(z,, . ..,x,) =y er et rekursivt predikat, kan man
effektivt finne det forste av utsagnene i folgen ovenfor som er korrekt.
Den tilhgrende m er funksjonsverdien av f for argumentverdiene
%y, ...,%,. Enhver rekursiv funksjon mé saledes pa intuitivt grunnlag
ansees for algoritmisk.

La wuyR(zy,...,%,,y) bety det minste tall y slik at R(x,,...,%,,¥)
holder, hvis det fins minst en ¥ slik at R(xy,...,%,,y); ellers la
wyR(xy, . . .,%,,y) vere udefinert. Vi skal vise at u-operatoren, under en
eksistensbetingelse, kan benyttes til & definere rekursive funksjoner fra
rekursive predikater. Mer presist:

La R(z,y) veere et rekursivt predikat slik at Ve Iy R(x,y). Da vil funk-
sjonen
f(@) = nyB(z,y)
veere rekursiv.

Beviset er en anvendelse av en tidligere bemerkning. Idet R(x,y) er
rekursiv fins det primitivt rekursive predikater Sy(z,y,2) og S,(x,y,2) slik
at

R(z,y) < 32 8y(x,y,2) < Vz 84(z,y,2) .
Vi kan da uttrykke predikatet f(z) =y ved
f@) =y < Rx,y) & (Vu < y)1R(z,u)
< Az 8y(2,4,2) & (Yu < y) Jw 18,(x,u,w) .

A si at det til alle u <y fins en 2 slik at P(u,z) er det samme som & pasta
at det fins en sekvens zy,2,,. . .,2,; slik at P(u,z,) holder for alle u <y.
Men en slik sekvens kan representeres ved et tall w=2%-p3 ... pZ7,
og vi far ekvivalensen

(Yu < y)3dz P(u,z) < Jw (Vu < y)P(u,(w),) .
Benyttes denne ekvivalens pa uttrykket ovenfor, faes

f@) =y < 32 8(x,y,2) & Jw (Yu < y)18,(x,u,(w),)
< 3z [So(x,y,(z)o) & (Vu < y) 'ISl(x,u,((z)l)u)] .
Her er uttrykket i parentesen et primitivt rekursivt predikat (anven-

delse av skjema A-B fra forrige paragraf), og dermed er f(x) =y uttrykk-
bar pa formen 3z R,(z,y,2). — Analogt vil man fa folgende ekvivalens:

f@) =y <= V2 8i(z,y,2) & Yu < y) Yw18Sy(x,u,w)
< V2 [84(2,4,(2)) & (Yu < y) 18y(z,u,(2);)] -
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Ved omvending av den bemerkning som innledet beviset folger at pre-
dikatet f(x) =y er rekursivt, altsd at f(x) = uy R(x,y) er en rekursiv funk-
sjon under forutsetning av at R(x,y) er rekursiv og Vz 3y R(x,y), denne
siste betingelse for & sikre at f(x) er definert for alle z € N.

Anvendelse av u-operatoren til & definere rekursive funksjoner gir oss
et meget kraftig skjema til & definere beregnbare funksjoner, idet vi na
fra en effektiv betingelse R(x,y) kan finne en funksjon f(x) slik at
R(z, f(x)) holder for alle x. (Vi forutsetter da eksistensbetingelsen.)
pu-operatoren uttgmmer i en viss betydning muligheten for 4 definere
rekursive funksjoner, hva folgende sats viser:

Gitt en rekursiv funksjon f(x). Det fins da to primitivt rekursive funksjo-
ner g(y) og h(x,y) slik at

f(@) = gluy[h(w,y) = 0]),
der vi har at Yz 3y [h(x,y)=0], og g(y) kan velges wavhengig av f.
Beviset er enkelt. f(z)=y er et rekursivt predikat slik at

Yo Iy [f(x) = y].

N4 kan f(x) =y uttrykkes som 3z R(z,y,z) med en primitivt rekursiv R.
La hy(,y,2) veere den representerende funksjon til R. Vi har da at
f(®)=y < 3z [h(z,y,2)=0]. Definer h(x,y)=h1(x,(y)o, (¥);); man innser
da lett at Va 3y [A(z,y) =0], og dermed kan f(x) skrives som

f(@) = (uylh(z,y) = 0]), .

Her er g(y) den primitivt rekursive funksjon g(y)= (y),.

Med dette har vi vist en normalform for generelt rekursive funksjoner.
(I et senere avsnitt skal vi gi en sterkere form.) Videre kan vi bemerke
at klassen av generelt rekursive funksjoner kan genereres ved skjemaene
(I)~(V) samt et skjema (VI) som folger:

(VI) f(xl: .. ',xn) = ;uy[g(xlﬂ .. ',xn!y) = O] )
der
Vay,...,x, dy [g(x,, . . .,2,,y) = 0].

Vi skal ogsa i et senere avsnitt konstruere en rekursiv funksjon som
ikke er primitivt rekursiv; dermed leder skjema (VI) ut over basisklassen
av primitivt rekursive funksjoner. Opplagt er funksjoner definert ved
skjema (I)~(VI) effektivt beregnbare pi intuitivt grunnlag. Spersmalet
er nd om det er rimelig & identifisere klassen av rekursive funksjoner med
de effektivt beregnbare funksjoner. Dette har selvsagt intet eksakt svar
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fordi det angar forholdet mellom en formalisme og dens tolkning. Men to
ting kan sies. For det forste kjenner man ingen intuitivt effektivt beregn-
bar funksjon som ikke har vist seg & veere rekursiv etter ovenstaende
definisjon. Og for det andre s& har man betraktet en rekke forslag til
definisjon av effektiv beregnbarhet (f. eks. ved Turingmaskiner), og hver
gang har man kunnet vise at de korresponderende klasser av effektivt
beregnbare funksjoner er de samme. Dette har ledet til fglgende tese,
forst fremsatt av den amerikanske logiker A. Church i 1936:

Enhver effektivt beregnbar funksjon er rekursiv.

Normalform for primitivt rekursive funksjoner. Klassen av primitivt
rekursive funksjoner er tellbar, idet vi har et tellbart antall grunn-
funksjoner, og enhver primitivt rekursiv funksjon er rendelig generert«
ut fra grunnfunksjoner ved substitusjon og rekursjon. Spesielt vil klassen
av primitivt rekursive funksjoner av en variabel kunne arrangeres i en
tellbar uendelig rekke

fi@), fol), . .., fol@), . ..

Vi kan da definere en tallteoretisk funksjon av to variable, F(n,x), ved

F(n,2) = fu) .

Anta at vi effektivt kan telle opp de primitivt rekursive funksjoner av
en variabel, dvs. gitt n, s& kan vi effektivt finne f,. Funksjonen F(n,x)
vil da vere effektivt beregnbar, idet vi for gitt » og x ferst finner f, og
deretter beregner f,(x) som funksjonsverdien av F for argumentene n,x.
Etter Church’s tese skulle da F(n,x) vere rekursiv. Men F er ikke primi-
tivt rekursiv. For da ville ogsa funksjonen

f(x) = F(z,2)+1

veere primitivt rekursiv og dermed finnes i sekvensen f, f,,.... La n,
veere en indeks slik at f=f, ; vi fir da motsigelsen

f(ng) = F(ng,me)+1 = f(ng)+1.

Under vare forutsetninger, at opptellingen er effektiv, og at enhver
effektiv funksjon er rekursiv, kan vi slutte at ikke alle rekursive funksjo-
ner er primitivt rekursive. Formalet med denne paragraf er 4 eliminere
de antatte forutsetninger, dvs. 4 definere en rekursiv funksjon F(n,zx)
slik at gitt en primitivt rekursiv funksjon f(x), sd fins det minst en »
slik at f(z)=F(n,z). Funksjonen F vil ogsd veere utgangspunktet for
konstruksjonen av en rekursivt generert mengde som ikke er rekursiv,
dvs. hvis komplement ikke er rekursivt generert.
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Som en forberedelse til definisjonen av F skal vi forst konstruere en
en-entydig avbildning av N x N inn p4 N. La tallparene vare ordnet pa
folgende mate:

(0,0)
(0,1) (1,0)
(0,2) (1,1) (2,0)

...............

Idet vi erindrer at N starter med 0, dvs. at vi begynner & telle med 0,
ser vi at tallparet (z,y) far nummeret

J@,y) = [1+2+...+@+y)]+z = [(x+y)2+3z+y].

Avbildningen J: NxN — N er primitivt rekursiv og en-entydig pa.
De inverse avbildninger lar seg definere ved

2)[z = J(z,y)]
2)[z = J(z,y)].

Disse funksjonene er ogsa primitivt rekursive og oppfyller ligningene
J(K(2),L(z)) = z, K(J(x,y)) = =, L(J(z,y) =y .

Ved rekursjon kan man s& definere for alle n > 2:

Jz(xs?/) = J(x:y)
Jn+1(x1: v 9xn+1) = J(xl, Jn(xz’ R ,xn-f—l)) s

K() = (ue < 2)3y
L(z) = (uy < 23w

IIA 1IA

og dermed f& en-entydige avbildninger av n-tupler pa tall. Det er en
enkel sak & sette opp definisjoner av de tilhgrende inverse funksjoner.

Vi skal na definere en rekursiv funksjon G(m, k) slik at hvis det er gitt
en primitivt rekursiv funksjon f(x,,...,z,), s& skal det finnes et tall m
slik at

f@ oo 2,) = G(m, J(n,J (@, . . 5 T))) -

Funksjonen F(n,z) vil da kunne defineres som G(n,J(1,x)), om vi setter
J1(x)=w. La oss kortere skrive (n,z,, .. .,z,) for J(n,J (2y, .. .,x,)), idet
0,x) skal forstdes som J(0,z). G vil bli konstruert ved en art dobbel
rekursjon. Forst utgangsverdiene:

G(m,{0,z)) = 0, for alle m .
G(0,{n,zy,...,2,)) = 0, for alle » > 1 og alle z,,...,z,.
G(0,{1,z)) = a', for alle x.
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Dermed er G(m,k) definert for m=0 eller K(k)=0. Vi antar na at
n=K(k)=1. Alt ettersom (m),=0,1,2, eller =3 skiller vi mellom fgl-

gende tilfeller: (m)g = 0

Gm+1,{n,zq,...,2,)) =

For korthets skyld vil vi na sleyfe tilfgyelser av arten: »for alle n>1
og alle zy,...,x,4 — som man burde ha tatt med for fullstendighets
skyld.
(m)o=1 og 1= (m),<n:
Gm+1,{n,xy,...,2,)) = Xy, -
(m)e=1 og (m);=0 eller (m);>n:
Gm+1,{n,zq,...,2,>) = 0.
Dermed er G(m,k) definert for alle primitivt rekursive funksjoner etter
skjema (I)-(III), og samtidig er det tilfoyd passende verdier for ikke &
f& noen »huller¢ i definisjonen av @, dvs. at det ikke fins noen tallpar m, k

slik at G(m,k) er udefinert.
Substitusjonsskjemaet (IV) »bygges inn« i @ pa felgende mate:

(m)g=2 og (m);=0:
Gim+1,{n,z,,...,2,%) = 0.
(m)o=2 og (m)yz1:
Gim+1,{n,x,, ...,x,))
= G(( )3’\ Z’G( 1 1,(n,x1, e ’xn>)’ e sG((m)l,(m)gs <n’x1’ o 5xn>)>)

Her er (m); ; & opfatte som ((m),);.
Rekursjonsskjemaet (V) gis ved

(m)y=3 og n=1:
=G(m+ 1,{1,0)) = (m),
Gim+1,{1,2")) = G((m)y,(2,2,G(m +1,{1,2)))) .
(m)g=3 og n>1:

G(m+1,{n,0,2,, . ..,2,)) = G((m);,{n~1,2,,.. %))
Gm+1 n,x'x,, . ..,x,)) =
(m)g,{n+ 1,2, d(m+1,{n, 2,2y, . . ., %,)), %y, . . ,xn>) .

Som eksempel betrakter vi den primitivt rekursive definisjon av addi-
sjon som ble gitt i en tidligere paragraf. Vi skal na finne et tall m slik at

G(m: <2:x11x2>) = Ty +Z;.
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La forst m;=2-3+1=7 og n=1, som gir
7,{1,z)) = x.

La videre my,=0 og n=1, som gir
| G(0,{1,z)) =z’ .
Til fa(y,2,2)=2 far vi & sette my=21-32+1=19 og n=3:
G(19,{3,2,%5,25)) = Xy .

Dette gir de tre utgangsfunksjoner til den rekursive definisjon av
addisjon. Anvendelsen av substitusjonsskjemaet gir oss

my = 22.33m3.51.7mz+1
og n=3, altsa

G(my, (3,2, %9, 23)) = G’(O,<1,G‘(19,(3,x1,x2,x3>)>) = z,.
Settes s& my=2%-3"-5"+1 og n=2, gir definisjonen av G(m,k) at
G(m5><2:x13x2>) = Tyt .

Ut fra dette eksemplet innser man lett at til enhver primitivt rekursiv
funksjon f(zy,...,z,) fins det et tall m slik at f(xy,...,z,)=
G(m,{(n,xq,...,x,y) for alle n-tupler av tall z,,...,z,. Man vil videre
innse at G(m,k) er definert for alle tallpar m,%. Dette kan vises ved en
induksjon pa m hvor man i basis og induksjonstrinn benytter en induk-
sjon pa K(k).

Det gjenstar da & gjennomfare det fullstendige bevis for at G(m,k)
er rekursiv. N4 er det ganske umiddelbart at G er effektivt beregnbar,
som folgende eksempel indikerer: La oss beregne G(61,7). Entydig fakto-
risering gir 61=60+1=22-3-5+1, og den effektive omvending av J gir
7={1,2). Herav folger at

G(61,7) = G(0,{1,G(0,{1,2)))) = G(0,(1,3)) = 4.

Nar @ er effektivt beregnbar, er G rekursiv ifglge Church’s tese. De
lesere som ikke fgler seg intuitivt overbevist om dette, men gjerne vil se
et formelt bevis for rekursiviteten av G(m, k), henvises til litteraturlisten
pa slutten av denne artikkel, spesielt til Grzegorezyk’s bok, »Fonctions
recursives¢, Paris 1961, hvor et liknende bevis er skrevet ut i detalj.

Ved det Cantor-type argument som vi ga i begynnelsen av denne
paragraf, kan vi ogsa slutte at G(m,k) ikke er en primitivt rekursiv funk-
sjon. :

L P

Py
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Rekursivt inseparable mengder. Den rekursive funksjon G(m,k) kan
benyttes til & stille opp en forbedret versjon av normalformen for rekur-
sive funksjoner. I en tidligere paragraf viste vi at gitt en rekursiv funk-
sjon f(z), s4 kan vi finne en primitivt rekursiv funksjon A(z,y) slik at

f@) = (uy[h(@,y) = 0]) -

La F(m,z,y)=G(m,(2,2,y)); da vil det & finne en primitivt rekursiv
funksjon h(z,y) vere det samme som & finne et tall m slik at A(z,y)=
F(m,z,y). Normalformen vil saledes bli: 7'l enhver rekursiv funksjon f(x)
kan man finne et tall m; slik at

f(x) = (M?/[F(mfyx,?/) = 0])0 .

m; kalles vanligvis et Godeltall for f(x) (etter K. Godel, hvis fundamen-
tale resultater innen den rekursive matematikk vi senere skal stifte neer-
mere bekjentskap med).

Vi kan n& péavise at det fins rekursivi genererte mengder som ikke er
rekursive, dvs. at klassen av rekursivt genererte mengder ikke er lukket
under komplementdannelse. Bevisteknikken er en variant av Cantors
diagonalmetode. La F(x,y)=G(x,{1,y)), definer en tallmengde C, ved

xelCy < Ay [F(x,y) = x] .

Idet predikatet F(x,y)=x er rekursivt, sd er C, rekursivt generert. Det
erlett Aseat Cy+N;laf.eks. x=4, daer F(4,y)=0G(4,{1,y))=1{for alle y,
dvs. 4 ¢ €. Var C, rekursiv, s& ville N —C, vere en ikke-tom rekursivt
generert mengde. Det betyr at det skulle finnes en primitivt rekursiv
funksjon f, slik at x € N-C, < 3y [fo(y) =x]. Da F(x,y) er en univer-
salfunksjon for klassen av primitivt rekursive funksjoner, ville det eksi-
stere et tall m, slik at fy(y)=F(my,y). Vi far da

xeN-Cy < Jy [F(my,y) = «] .
Men dermed har man motsigelsen, for
my € Cy <= y [F(my,y) = my] < mee N-C,.

Med dette har vi nddd frem til et av hovedresultatene i den elementzre
del av den rekursive teori.

For i neste paragraf & kunne gi den skarpeste versjon av Godels teo-
rem, trenger vi et sterkere eksistensutsagn. To mengder 4, og A4, kalles
disjunkte hvis A,nA4;=0. De kalles rekursivi separable, hvis det fins en
rekursiv mengde B slik at A4, B og 4,nB=0, altsa 4, N — B, hvor
N — B ogsé er en rekursiv mengde.

NMT, Hefte 1-2, 1964. — 3
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Mengder som ikke rekursivt kan separeres kalles rekursivt inseparable.
Det er klart at hvis 4,n4,=0, sa er A, og 4, rekursivt inseparable hvis
og bare hvis det for hvert par av disjunkte, rekursivt genererte mengder
B, og B;, med A,< B, og A,< By, fins et tall m slik at m ¢ B, og m ¢ B,
(se figur). Spesielt kan da hverken A4, eller 4, vere rekursive mengder.

N o

La som ovenfor F(x,y)=0G(x,{1,y)). To predikater Ry(z,y) og R,(z,y)
defineres ved

Ry(x,y) < F((@),y) = 2 & (V2 < y)[F((@)g,2) + ]
Ry(z,y) < F((x)o,y) =z & (V2 = ¥) [F((x)pz) + x].

Definer tallmengdene D, og D; ved

we Dy < Jy Ry(w,y) ,
reD;, < dy By(x,y) .

KreENES TEOREM. Tallmengdene Dy og D, er to ikke-tomme, disjunkte,
rekursivt genererte tallmengder som er rekursivt inseparable.

Kleene benytter ikke eksakt de samme predikater som her til 4 definere
D, og D,, men det var han som forst eksplisitt paviste eksistensen av
rekursivt inseparable mengder.

Forst vises at DynD;=4d. Anta at x € DynD;; det vil da finnes tall
Yo og yy slik at 1° F((@),y,)=x; 2° F((@)p,2)+2z for alle z=<y,;
3° F((®)o,y1)=2; 4° F((x),2)+x for alle z<y,. Av 2° og 3° felger at
Yo <Y1, 0g av 1° og 4° fglger at y, <y,, hvilket er den gnskede motsigelse.

Vi skal na godtgjere at Dy+0 og D,+9. La fy(y)=y=1 og fi(y)=y;
dette er primitivt rekursive funksjoner av en variabel, slik at det fins
tall my og m, som gir F(m,y)=y=1 og F(m,y)=y. Vi pastir at
m=2"-3™¢e D,. For det forste har vi at F((m),,m)=m, og for det
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andre vil F((m),,2z)=2=1%m for alle z<m. Dette gir Ry(m,m), dvs.
dy By(m,y) som er ekvivalent med m e D, Pa samme mate vises at
2mM.3M0 e D,.

Anta at B, og B; er to rekursivt genererte mengder slik at Byn B, =0
og Dy B,, D,cB,. Vi skal da konstruere et tall m slik at m ¢ B, og
m ¢ B;.

Da D, og D, er ikke-tomme ma det finnes primitivt rekursive funk-
sjoner som definerer B, og B,, dvs. det mé gis tall m, og m, slik at hvis
m=2"0-3™ gi vil

x € By <> 3y [F((m)o,y) = ]
xe B, < Ay [F(m),y) = =] .

Anta at m e B,, dvs. at det fins en y,, slik at F((m)o,ym)=m. Da
BynB,=0 vil m ¢ B, dvs. F((m),,y)%m for alle y, spesielt (Vz=<y,,)
[F((m),,z)%m]. Og dette leder, etter definisjonen pa R,(x,y) og D, til at
m € D;. Dette er en motsigelse idet D, < B;. P4 samme mate vises at
antagelsen m € B, leder til motsigelsen m € D,.

Den forste etappe er nd gjennomfert. Vi har gitt et riss av den rekur-
sive matematikks teori frem til det fundamentale resultat, grunnlaget
for all anvendelse, at det fins rekursivt genererte tallmengder som ikke
er rekursive (og den skarpere versjon om eksistens av rekursivt genererte,
men rekursivt inseparable par av mengder). Selvsagt er det trivielt at
det fins ikke-rekursive mengder, idet klassen av rekursive mengder er
tellbar mens klassen av alle delmengder av N er ikke-tellbar. Betydningen
av vart resultat er at vi effektivt har funnet en tallmengde som ikke er
rekursiv. Anvendelser av dette resultat kommer i de felgende paragrafer,
hvor vi skal diskutere problemer omkring aksiomatiserbarhet og effektiv
avgjorbarhet av teorier, samt gi en oversikt over en del undersgkelser
omkring algoritmiske problemer i algebra og topologi.

(Flortsettes 1 neste hefte.)



PERSONNUMMERERING I NORGE:
LITT ANVENDT TALLTEORI OG PSYKOLOGI

ERNST S. SELMER

»Og det skjedde i de dager at det utgikk et bud fra keiser Augustus
at all verden skulle innskrives i manntall.«

Meget har endret seg siden juleevangeliet ble skrevet, og det gjelder
ogsé prinsippene for folkeregistrering. Idag farer statlige byraer omfat-
tende statistikker over befolkningen. Avanserte statistiske metoder og
moderne elektroniske regnemaskiner er uunnverlige hjelpemidler i dette
arbeid.

I Norge sorterer folkeregistreringen under Statistisk Sentralbyra, i
engere kretser bare omtalt som »Byraet«. Denne hendige forkortelse skal
vi ogsa adoptere her.

For & lette den maskinelle bearbeidelse av et sentralt personregister
for Norge, er det meningen & overfore det til magnetband. Dette vil skje
i forbindelse med en total nummerering av hele den norske befolkning
(allerede i 1964). Nummeret skal knyttes til den enkelte person, uav-
hengig av bopel, giftemal o. 1. Registeret ma selvsagt stadig ajourferes
pa grunnlag av meldinger om fodsler, dadsfall, flyttinger osv. Det regnes
med at Byraets sentrale register etter hvert kan bli til stor nytte for en
rekke andre instanser, f. eks. skattemyndigheter, trygde- og pensjons-
kasser, Forsvaret, Norsk Rikskringkasting o. 1. I vart fremtidige mellom-
veerende med slike institusjoner ma vi regne med at vart tildelte person-
nummer kommer til & spille en viktig rolle.!

Prinsippet for nummereringen er enkelt og velkjent: Forst kommer et
sekssifret tall for fodselsdatoen, med to sifre for dag, to for maned og to
for arstall. Deretter kommer et individualnummer innen hver fadselsdato.
For en befolkning som Norges trenges her ire sifre, men det skulle ogsa
holde en stund. Hittil har det vert maksimalt ca. 250 fgdsler pa samme
dag i Norge — naturligvis varen 1946.

Forst et par bemerkninger om fedselsdatoen. Forfatteren er fodt 11.
februar 1920, og vil altsa som farste del av sitt personnummer fa sifrene

1 Initiativet til personnummereringen kom ikke fra Byrdet, men fra neringslivets

organisasjoner. Begrunnelsen var nettopp at et fast nummer for den enkelte lonnstaker
ville lette neeringslivets mellomveaerende med skattemyndigheter, trygdeordninger o. 1.

[36]
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110220. Fra et registreringssynspunkt er selvsagt arstallet viktigst, der-
nest maneden. I den allerede innferte svenske personnummerering har
man derfor valgt & gi opplysningene i datoen i motsatt rekkefolge, altsa
for eksemplet ovenfor som 200211. Imidlertid tyder svenske erfaringer
pa at man herved har introdusert en psykologisk betinget feilkilde; folk
er nd engang vant til & oppgi dag, méned og ar i denne rekkefglge.

Ved at sifrene for drhundre sloyfes, introduserer man en viss liten mulig-
het for forveksling. I Oslo, hvor en lokal personnummerering med to-
sifret individualnummer allerede har veert i bruk en tid, opplevet man
f. eks. en forveksling mellom et nyfedt barn og det ikke avsluttede
dedsbo etter en millionzr som var fedt ngyaktig 100 ar tidligere. Forveks-
lingen fikk ingen skattemessige konsekvenser for babyen, men var jo
godt avisstoff.

Med tresifret individualnummer er det imidlertid lettere & forebygge
slike forvekslinger, idet man f. eks. kan bruke visse 100-sifre for personer
som er fgdt i forrige drhundre, andre sifre for fodselsdatoer i dette ar-
hundre og atter andre 100-sifre for fgdsler fra ar 2000. Med under 300
fadsler pr. dag er det jo nok av individualnummer til radighet.

Med et nisifret personnummer er det noksa stor sannsynlighet for feil,
av to helt forskjellige typer:

1° Punchefeil. En rekke lokale registere fores pa hullkort som ma
punches, og slike kort brukes ogsd som hjelpemiddel ved overfering av
opplysningene til magnetband. Ingen operater puncher feilfritt, og gjen-
tatt punching med sammenligning er en noksa omstendelig kontroll-
metode, som man om mulig vil unngad. — I samme kategori kommer
avskriftsfeil pa steder hvor opplysningene behandles rent manuelt.

2° Gale opplysninger fra publikum. At folk glemmer et tilfeldig tildelt
individualnummer kan forklares, men som vi skal se er det pafallende
hvor mange som angir sin egen fodselsdag galt.

For & knipe eventuelle forekommende feil kan man innfere ett eller
flere kontrollsifre etter fadselsdatoen og individualnummeret. Her er det
forfatteren kommer inn i billedet, idet jeg av Statistisk Sentralbyra ble
anmodet om & vurdere effektiviteten av forskjellige kontrollsystemer.
Det har veert et omfattende arbeid, hvor bade matematiske, maskintek-
niske og registreringsmessige problemer métte koordineres, i neert sam-
arbeid med byrasjef B. Bendiksen i Byraet. Nedenfor skal jeg vesentlig
gi en kort fremstilling av den matematiske side av saken.!

1 Neermere detaljer finnes i min rapport »Kontrollsifre ved personnummerering«, del
1-3, som i stensillert form kan fées ved henvendelse til Statistisk Sentralbyra, Oslo.



38 ERNST 8. SELMER

Det meste av det hullkortutstyr som brukes i Norge er levert av IBM
(International Business Machines), som ogsa produserer forskjellige typer
kontrollutstyr til punchingen. Metoden bygger pa at man tar en veiet tverr-
sum av det tall som skal kontrolleres. Denne tverrsum reduseres sa etter
en viss modul til et ensifret tall, det egentlige kontrollsiffer, som plasse-
res umiddelbart til hgyre for det siste siffer av tallet.

Det finnes utstyr som beregner kontrollsifferet samtidig med pun-
chingen. I Norge vil imidlertid kontrollsifrene bli beregnet sentralt, pa
Byréets elektroniske regnemaskin, slik at det senere bare vil bli behov
for utstyr som kontrollerer samtidig med punchingen, og varsler hvis
kontrollsifferet ikke stemmer med resten av tallet.

Det kontrollsystem som vil bli tatt i bruk er det sakalte » Modulus 11«.
Vekttallene i standard-modellen gjentas her i grupper pa 6, etter falgende
system:

Sifre i gitt tall: ... xg x; g x5 T, 23 T, 2, %
Vekttall : ...43 21760543 2

Av den veide tverrsum
t = ...+ 4w+ 3x;+ 2x4 + Txs + 624 + Dy + 4y + 37, + 22,

dannes s& minste positive rest r ved divisjon med 11. Kontrollsifferet &
er ikke selve denne rest, men dens 11-komplement:

k=11-r.
Uttrykt med det tallteoretiske kongruenssymbol = blir derfor!
k=11—-r =11—t = —t (mod 11).

De mulige verdier for k er 0, 1, 2,...,9, 10. Siden £ bare skal represen-
tere ett siffer, ma vi forkaste k=10, og altsd ogsa alle tall som leder til
et slikt kontrollsiffer. Prinsippet er derfor ikke brukbart i systemer hvor
det ikke foreligger noen valgfrihet; det ville f. eks. ikke veere mulig &
kontrollere bare fodselsdatoen pa denne méate. Men na skal det jo etter
fodselsdatoen tilfoyes et forholdsvis vilkarlig tresifret individualnummer.
Den elektroniske regnemaskin passer da ved tildelingen pé at det resulte-
rende kontrollsiffer er lovlig. Under hver fodselsdato mé derfor hvert
11-te individualnummer forkastes (men det er fortsatt rikelig & ta av).

1 Som kjent betyr a=b (mod n) at differensen a—b er delelig med n, altsd at @ og b
gir samme (hoved)rest ved divisjon med n. Kongruenser kan adderes, subtraheres og mul-
tipliseres som vanlige ligninger. Nar modulen 7 er et primtall, kan vi ogsa fritt forkorte
i en kongruens (med tall == 0, altsd med tall som ikke er multipla av modulen).
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Et eldre IBM-system (brukes n& i Oslo) anvender modulen 10, med
vekttallene 1,2, 1, 2,.... Her behgver man ikke forkaste noe kontroll-
siffer, men systemet er vanskeligere 4 behandle matematisk, siden modu-
len ikke (i motsetning til 11) er et primiall. For vart spesielle formal har
systemet videre den ulempe at det tydeligvis gir samme veide tverrsum
— altsd uoppdaget feil — hvis dag og mdned ombyttes i fadselsdatoen.
Dette er nemlig en hyppig forekommende feiltype.

Selv om man velger modulen 11, kan man pa bestilling £& andre vekttall
enn standardserien 7, 6, 5, 4, 3, 2. Vi vil derfor i alminnelighet betegne
vekttallene med v;, idet vi samtidig innferer fglgende betegnelser for
sifrene i personummeret:

Dag Maned Ar Nummer

v pr——

(1) dig dy Myg My Gyg Ay Myge Ny My

Vg Vg Uy Vg U5 Uy Vg Uy Uy

Sa mé vi se nermere pa de feil som vekttallene skal kontrollere. Som
nevnt er det delvis punchefeil, delvis gale oppgaver fra publikum.

Den dominerende punchefeil er feil ¢ ett enkelt siffer. Hvis det korrekte
siffer kalles z, det galt punchede for z', og det tilherende vekttall v, vil
feilen forbli uoppdaget bare hvis

vx = ve’ (mod1l),
eller
v(—2')=0.

(I det felgende kan »mod 11« utelates.) Da modulen er et primtall, med-

farer dette
v=0 eller z=2a.

Det er klart at man alltid vil velge (det ensifrede) v+ 0, altsd =0 (mod11).
For enhver modul =10 vil videre x=2" medfeore x=2'. Feil i ett siffer
vil derfor alltid oppdages nar alle vekttall er = 0. (Dette argument holder
ikke nar modulen er < 10. F. eks. ville et system modulus 7 ikke kunne
skille mellom sifrene 0 og 7, mellom 1 og 8 eller mellom 2 og 9.)

De hyppigste punchefeil i fo sifre er ombytting og kompensasjon. —
Hyvis operateren bytter om to (forskjellige) sifre x; og z;, svarende til vekt-
tallene v; og v;, vil feilen forbli uoppdaget bare hvis

Vi VX = V0
eller
(vi—v;,-)(xi—x,-) =0.
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Da vi har antatt x;+x;, altsd x;,—x;%0, medfgrer dette v,=v;, alts
v;=v;. En ombytting av to sifre vil alts& forbli uoppdaget bare hvis de
to plasser svarer til samme vekttall. For IBM’s standard vekttall (grup-
per pé 6 sifre) betyr dette en avstand pa 6 plasser mellom de ombyttede
sifre. En slik ombytting er imidlertid uhyre usannsynlig; de aller fleste
ombyttinger skjer mellom nabo-posisjoner.

vKompensasjon« vil si at to nabosifre begge gkes eller minskes med
samme belgp i forhold til de korrekte verdier, f. eks. 45 istedenfor 12.
(Feilen skyldes gal handstilling i forhold til tastaturet.) Hvis de korrekte
sifre er z; og x;,,, de punchede sifre z;+a og z;,,+a, og de tilhgrende
vekttall v, og v, Vil feilen forbli uoppdaget bare hvis

Vi + 0 11%541 = 04+ @) +0;4(%4q + ),
eller
a(v;+v;44) = 0.

Da vi antar a0, altsd a==0, medforer dette v;+v;,,=0, altsd v;+v;,,
=11. Kompensasjon vil derfor alltid oppdages hvis summen av to nabo-
vekttall aldri er 11. For IBM’s standard vekttall opptrer imidlertid
denne sum én gang innen gruppen, som 5+ 6.

Det forekommer ogsad andre punchefeil i to sifre, av mer tilfeldig
karakter. Punchefeil i mer enn to sifre er forholdsvis sjeldne, og vanske-
lige &4 systematisere.

Vi kommer sa til den annen hovedtype av feil, nemlig gale oppgaver
fra publikum. Det viser seg, kanskje noksa overraskende, at slike feil ma
ventes a forekomme to-tre ganger sd hyppig som punchefeil (forutsatt
erfarne punche-operaterer). Og her er det at titelens »anvendt psyko-
logi« kommer inn i billedet.

Forst noen ord om erfaringsmaterialet: Vi bygget opprinnelig pa en
sammenligning som Byraet hadde foretatt for »en argang av dede,
ca. 35000 personer, mellom kirkebgkenes og dedsattestenes oppgave over
fodselsdato. Materialet var imidlertid hverken tilstrekkelig stort eller helt
representativt hva utfyllingen av oppgavene angar (prest — lege).

Men s gjorde Byraet et funn i Oslo kommune. Som nevnt har Oslo
allerede gjennomfert en lokal personnummerering, i forbindelse med en
folketelling i 1960. Ved denne telling skulle publikum selv fylle ut fod-
selsdatoen, som s& ble sammenlignet med oppgavene i folkeregisteret.
Man fant og noterte i Oslo ca. 8000 uoverensstemmelser, men vi fikk bare
ca. 7000 av dem. De resterende tusen var personer som ogsé hadde skre-
vet navnet sitt galt, og derfor var havnet i en annen skuff!

Materialet fra Oslo er si stort at det ma antas & vare representativt
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ogsé i landsmalestokk. De divergerende oppgaver ble punchet pa kort
ved Byraet og gjennomanalysert pa dets elektroniske regnemaskin.

Som ved punchefeil er den dominerende feiltype at bare ett siffer er
galt angitt. Ombytting av nabosifre er ogsé forholdsvis hyppig forekom-
mende. For slike feil gjelder det samme som forklart under omtalen av
punchefeil.

Ved siden av ett siffer galt er den storste feilpost at begge sifre ¢ fodsels-
dagen er galt angitt (mens méned og &r er riktige). Om vi holder ombytting
av sifrene utenfor, gjenstar det nesten 600 feil av denne kategori. Antallet
er s& stort at det berettiger et ngyere studium av »psykologien« bak feil-
ene.

Hvis den korrekte fodselsdag har sifrene d,,d; og den gale d;d;, folger
det av (1) at feilen forblir uoppdaget hvis

Vodyo+ vgdy = vedyo+ Vgl 5
eller

(2)

!
vy _ d—dy
= .
vg  dyg—dyy

Hoyresiden er uforandret ved en ombytting av merkede og umerkede
sifre; ved analysen er det selvsagt ikke ngdvendig & vite hvilken oppgave
som var korrekt og hvilken som var gal.

Det viser seg nd at differens 1 ved 10-skifte, altsd ombyttingene
09 — 10, 19 « 20 og 29 « 30, tilsammen svarer for omtrent § av alle de
betraktede feil i fedselsdagen. For slike ombyttinger er

dyp—dyp = 1, dy—dy = +9

(tegnene folger hverandre), og de vil altsa ifelge (2) ikke bli oppdaget
hvis vi velger vy/vg=9. Denne verdi for forholdet vy/vy bor derfor absolutt
unngées.

Det er ogsa andre, om ikke s& markerte psykologiske »fallgruber« blant
de forekommende feil i fadselsdagen. Den beste oversikt far man ved &
lage en tabell over antall uoppdagede feil for de forskjellige verdier av
forholdet v,/vg (mod 11). Som ventet er forholdet 9 desidert det ugun-
stigste (123 feil ialt), mens det pad den annen side viser seg at forholdet
vylvg=2 er det beste valg (38 feil, hvorav ingen markerte fallgruber).
Dette gjelder i hvert fall i Oslo-materialet, men avstanden til nest beste
valg (48 feil) er sdpass stor at man kanskje kan vente samme tendens i
landsmalestokk.

P4 samme mate kan man behandle de noksa vanlige feil med begge
sifre gale i maneden eller i drstallet. Nar det gjelder feil i méned, domine-
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res disse av ombyttingen september < oktober, altsd 09 <> 10. Her kom-
mer nok ogsé fonetikken inn i billedet; det er lett & here feil pa »niende«
og »tiende«. Ogsd ved érstall er differens 1 ved 10-skifte en alminnelig
feil.

I forbindelse med arstallet dukket det opp en psykologisk kuriositet.
Av (1) folger at det er verdien av forholdet v;/v, (mod 11) som er avgje-
rende. Av visse grunner kunne man vente at v;/v,=2 ville veere et meget
godt valg, men dette slo ikke til i Oslo-materialet. En nsrmere under-
spkelse ga forklaringen: Dette forhold tar ikke ombyttingen 00 « 19,
som viste seg 4 vaere ganske vanlig. Grunnen er at »ar nittenhundre«
blir til arstallet 19.

Ved & ta hensyn til slike psykologiske tendenser i Oslo-materialet,
kan man »skreddersy« et sett vekttall som gir faerre uoppdagede feil enn
IBM’s standard vekttall. Uansett hvilket system man bruker, viser det
seg imidlertid at antall uoppdagede feil ved bare ett kontrollsiffer vil
bli noksé stort, anslagsvis i nerheten av 0,5 promille av samtlige regi-
streringer. For & gke sikkerheten er det derfor bestemt at man i Norge
skal bruke to kontrollsifre; derved regner man med 4 komme ned i om-
trent én uoppdaget feil (punche- eller oppgavefeil) pr. 100000 registre-
ringer.

Av mange grunner er det naturlig 4 bruke samme modul 11 ved begge
kontrollsifre, men vekttallene kan godt vere forskjellige. Vi tenker oss
derfor (1) utvidet med et nytt sett vekttall w,:

dy dy Myg My Qg Ay Mgy Mg Ny Ky Ky,
(3) Vg Vg VU7 Vg Vs Uy VU3 Uy Uy

Wy Wg Wy Wg W5 Wy W3 Wy Wy Wy

Ved hjelp av vekttallet w, kan annet kontrollsiffer k, ogsd kontrollere
forste kontrollsiffer k,.

Vi skal ogsé se litt pa den matematiske behandling av to sett vekttall,
og begynner med feil pd to vilkdrlige plasser i og j. Med de tidligere beteg-
nelser vil slike feil forbli uoppdaget hvis

/ ’
/Uixi + ijj = v + ?)]x} 5

og tilsvarende for w, altsa
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Da vi antar at z; —x; og x;— x;-$ 0, medferer disse homogene kongruenser
at

Feil pa to vilkarlige plasser vil derfor alltid tas med to kontrollsifre om
alle forhold v,/w; er inkongruente (mod 11). Hvis derimot »;/w; =v;/w; for
et visst valg av ¢ og j, vil samtlige feil i z; og #; som passerte uoppdaget
ved forste kontrollsiffer ogsd passere uoppdaget ved annet siffer.

Til slutt skal vi se p&4 en av de store psykologiske fallgruber, nemlig
ombytting av fodselsdag og mdned (mens ombyttinger dag < ir og méned «
ar ikke forekommer s& hyppig). Av (3) ser vi at en slik feil vil passere
uoppdaget hvis

Voo + Vgly + VMyg + VMg = Vg + Vgmy + Vi +vedy
og tilsvarende for w, alts&

(v — Vg)(d1p—Myg) + (V53— Ve)(dy—my) = 0
(wy — wy) (d1g— Myp) + (wg — wg) (dy—my) = 0.

Som ovenfor finner vi derfor at alle ombyttinger av dag og méaned vil
tas med to kontrollsifre hvis
Vg — V7 Ug— Vg

=0.
Wy —Wq Wg—Wg

Til slutt skal vi kort beskrive den kombinasjon av kontrollsifre som
ble valgt, etter omfattende undersgkelser og vurderinger.

Man kunne tenke seg & bruke IBM’s standard vekttall for begge
kontrollsifre, eller samme »skreddersydde« vekttal for begge. Det er ogsa
mulig & bruke ett standard og ett skreddersydd kontrollsiffer, i den ene
eller annen rekkefglge, og det var en av de siste lgsninger som ble valgt.

Forste kontrollsiffer k, vil bli skreddersydd for & motvirke punchefeil
og psykologisk betingede oppgavefeil. Annet kontrollsiffer k,, blir der-
imot av standard IBM type. Dette kontrollsiffer skal da brukes »i felteng,
ved hjelp av umodifisert kontrollutstyr, og samtidig f&r man ogsé en
kontroll av sifferet k,. De aller fleste feil vil tas ved denne kontroll.

Kontrollsifferet k, brukes bare hver gang opplysningene kommer inn
til Byraet for ajourfering av det sentrale personregister (p&4 magnet-
band). Disse opplysninger mé da likevel passere den elektroniske regne-
maskin, og for denne er det like lett & kontrollere et skreddersydd som
et standard vekttallsystem. Praktisk talt alle feil som passerte den ferste
kontroll vil da bli oppdaget.
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Det kan tenkes at visse institusjoner for internt bruk helst vil ngye
seg med ett kontrollsiffer, altsa utelate k,. En slik institusjon mi da
spesialbestille utstyr til bruk for det skreddersydde kontrollsiffer k,,
men far til gjengjeld et for formélet bedre system enn standard-vekt-
tallene gir.

For & tilfredsstille nysgjerrige lesere skal jeg angi de skreddersydde
vekttall v,:

Vg Vg Uy Vg Vg Uy U Uy Vg
37618945 2

Det er klart at et slikt system er bestemt (mod 11) bare pa en propor-
sjonalitetsfaktor neer.

Hver norsk borger skal altsi i ner fremtid tildeles et 11-sifret kjen-
ningsnummer. Det kan virke langt, men nummeret vil av praktiske
grunner bli delt i to deler, en sekssifret for fadselsdatoen og en femsifret
for individualnummer og kontrollsifre. Sin egen fedselsdato ber man jo
kunne huske (selv om Oslo-materialet viser at det kan by pa visse pro-
blemer), og resten av nummeret er tross alt ikke lenger enn et gjennom-
snittlig norsk telefonnummer.




DEN FORSTA SIFFRAN OCH POINCARES
ROULETTEPROBLEM

LENNART RADE

Inledning. Det ir ett anméirkningsvért fenomen att fysikaliska konstan-
ter och liknande tal betydligt oftare bérjar med nagon av siffrorna 1, 2, 3
eller 4 &n med nagon av siffrorna 5, 6, 7, 8, 9. Med forsta siffran avses
da den forsta signifikanta siffran t. ex. 4 i talet 0,00489. Intuitivt véintar
man vil sig att i genomsnitt § av talen i en tabell med befolkningsdata
eller med materialkonstanter skall bérja med 1, 2, 3 eller 4. I stéllet
finner man att i allmédnnhet 709, av talen har denna egenskap.

W. Weaver berittar [4, sid. 270-277] att en ingenjor vid General
Electric Company upptickte att i en stor och ofta anviind logaritm-
tabell bar sidorna spar av successivt allt mindre anvindning frin de
forsta riknat. Ingenjéren drog hirav den riktiga slutsatsen att man
oftare har anledning att bestimma logaritmen fér tal med liga begyn-
nelsesiffror #n for tal med hoga saddana.

Detta egendomliga fenomen, som synes ha uppmirksammats forst for
c:a 20 ar sedan har nyligen givits en matematisk motivering av R. S.
Pinkham [2]. Vi skall hir redogora fér Pinkhams modell och dven visa
detta fenomens samband med ett av sannolikhetslédrans klassiska pro-
blem, Poincarés rouletteproblem. Redan nu vill vi emellertid nimna att
det foljer av Pinkhams modell att proportionen fysikaliska konstanter,
vars begynnelsesiffra ar mindre &n eller lika med x, i genomsnitt &r lika
med log (z+1). (Med loga avses hiir alltid 1%logx.) Hérav féljer speciellt
att proportionen fysikaliska konstanter med begynnelsesiffran 1 i genom-
snitt dr log2~20,30 och att proportionen fysikaliska konstanter med
begynnelsesiffran 1, 2, 3 eller 4 i genomsnitt &r log5~0,70. Att mota en
fysikalisk konstant, som bérjar med 9, &r rent av en ganska sillsynt
hindelse, d& proportionen sddana konstanter &r log 10 —log9a0,05.

Beteckningen fysikalisk konstant skall ej hér uppfattas alltfér bokstav-
ligt. For att den nyss omnémnda logaritmlagen skall vintas gilla f6r en
mingd tal skall dessa avse totalbilden av nagot »fysikaliskt« fenomen.
Se t. ex. nedan angivna exempel. Man kan ej viinta sig att den skall
gilla for sddana censurerade data som t.ex. ytan av Sveriges storsta

[45]
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sjoar, folkméngden i virldens storsta stider. For att lagen skall gilla
bor konstanterna ha stor spridning, vilket framgir av hirledningen
nedan.

Innan vi gar in pd Pinkhams modell skall vi med en tabell belysa
logaritmlagen empiriskt med nagra exempel.

Tabell 1.
Empiriska exempel pé logaritmlagen.
Antal Antal konstanter, som
ta. borjar pa 1, 2, 3, el. 4
Typ av konstant Kkonstanter jar p
Antal %
Folkmiingd i Sveriges stidder 1/, 1962 133 91 68
Yta i ha av Sveriges stider 133 90 68
Folkmiéngd i Sveriges képingar 1/, 1962 96 63 66
Yta i ha av Sveriges kopingar 96 67 70
Konstanter fér metalliska grundémnen
pa sid. 48-49 i ELFYMA -tabellen 343 251 73
Goteborgs driftutgifter 1961 férdelade pé
olika titlar 125 86 69

Av tabellen framgar att i samtliga de sex anférda exemplen ér andelen
konstanter med begynnelsesiffrorna 1, 2, 3 eller 4 ungefir lika med 709,
helt i enlighet med logaritmlagen. De ovan angivna exemplen har ej
valts bland flera andra utan #r de sex férsta exempel som forf. under-
sokt for att empiriskt belysa logaritmlagen.

Forsta siffrans fordelning. Vi betraktar nu féljande matematiska
modell f6r en mingd fysikaliska konstanter. Vi later konstanterna mot-
svaras av en positiv och kontinuerlig stokastisk variabel £ med frekvens-
och fordelningsfunktionerna f, och F,, dir F(z)= (5fe(t)dt, 2 = 0. Utfalls-
rummet F, for & dr da B,={z; 0 <z < x}.

Lat nu 5 vara forsta siffran i en fysikalisk konstant & D4 ar ocksa 7
en stokastisk variabel. Den &r en funktion av & och den har utfalls-
rummet F,={1,2,...,9}. Vi bestimmer nu fordelningsfunktionen F,
for n, som &r bestamd av att F,(x)=P(n sx). For varje « € B, giller nu
att hindelsen {n<z} innebdr att nigon av hindelserna {10" &<
(x+1):10"}, n=0,+1,+2,..., intriffar, ty alla tal i intervallet
{t; 10" <t < (x+1)-107} har en begynnelsesiffra, som #r mindre #n eller
lika med z. D4 dessa hindelser &r émsesidigt uteslutande, s &r

F (x 2P(10n<§<(x+1 107) = S’[FE((x+ 1)-10) — F(107)] .

N=—00 7n=—00
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Enligt detta samband bestims fordelningsfunktionens F, virden i
sprangpunkterna x € £,. For 6vrigt r den en ren springfunktion, d& 7
#r en diskret stokastisk variabel.

Vi infér nu vidare den stokastiska variabeln g=log(n+1). Den har
utfallsrummet E,_={log2,log3,...,log10} och fordelningsfunktionen
F , sadan att

(24

F,(x) = P(log(n+1) £ z) = P(n £ 10°—1) = F,(10°—1)
= Zoo[Fé(lO”")—FE(lOn)], xek,.

N=—00
Om vi nu dessutom definierar den stokastiska variabeln p=1logé, si

ir med uppenbara beteckningar K,={xr; —co<x<oo} och F (x)=
F,(10%). Vi far alltsd

F(x) = X [F(x+n)—F n)], x€kE,.

Vi har hir uttryckt fordelningsfunktionen for ¢ =Ilogaritmen fér den
forsta siffran 6kad med 1 i den fysikaliska konstanten & i fordelnings-
funktionen for g =logaritmen for &.

Enligt den i inledningen nimnda logaritmlagen s& skall det gilla att
F,(x)~log(x+1) dvs. att F (x)=F,(10°—1)~ z eller att

Fx) = 3 [F(x+n)—F,n)] ~z, 0 <z =<1.
Nn=-—00

Har ar hogra ledet fordelningsfunktionen for en stokastisk variabel
med likformig sannolikhetsférdelning pa intervallet (0,1). Vi skall nu
med en elementir metod uppskatta skillnaden F (x) —x. I vart fall &r o
en kontinuerlig stokastisk variabel, vars frekvensfunktion vi betecknar
med f,, —oo<x<oo. For f, giller, som for varje frekvensfunktion, att
(0ufo(@)da=1.

Vi fir nu med hjilp av medelvirdessatsen f6r bestimda integraler:

F (x)—2 = ZO’O[FQ(x+n)——FQ(n)]——x ng(x)dx

fx)dx = 200' wfg(n+ 0,x)—x 200’ fg(n+ 6;,)

N=—oo Nn=—o0

I
L
C
b
|
5
|
8
b
3
T

n n

Vi far da
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F)=al < & 3 |ffn+0,2)=fn+0) <= Vi), 0Sas1,
dar V[f,] ér totala variationen av frekvensfunktionen f,.

Vi har alltsa visat att |F (z) —x| <- V[f,]. Det kan ndmnas att Pink-
ham [2] med avancerade analytiska hjilpmedel visar olikheten
|F () —x| < §V[f,]. Vikan alltsa vénta oss bittre anslutning till logaritm-
lagen om V[f,] &r liten. Om t. ex. g &r normalférdelad med standard-

11/2
avvikelsen o, sd ar V[f,]=— }/ —. I detta fall &r alltsd approximationen
o'xn

bittre ju storre standardavvikelsen dvs. spridningen &r.

Man kan fraga sig om det existerar nigot allmént samband mellan
den totala variationen V[f,] och standardavvikelsen o. Som man latt
inser behover ej stor standardavvikelse betyda liten totalvariation.
Diremot kan man visa att liten totalvariation medfér stor standard-
avvikelse. I sjilva verket giller f5ljande olikhet, som angivits och bevi-
sats av Mats Rudemo i en diskussion i anslutning till denna uppsats:

Vifl z

3]/§0 -
Denna olikhet kan bevisas med hjilp av att 2f,< V[f,] (d& integralen

(2ofo(®)dx dr konvergent maste f, anta virden som ligger godtyckligt
néra 0), och Chebyshevs olikhet pa féljande sétt:

oo pte
o = S (x—p)f(x)de = & S flx)dx = € (1— Sfe(x)dx) 2 (1-¢V[f,)) .
—00 |e—u|=e y—e
2
Hir ar p vintevirdet E(p). Om vi hir véljer e= VT vilket maximerar
hogra ledet, far vi den angivna olikheten. [fe]

Vi far alltsd den bista anslutningen till logaritmlagen, da V[f,] &r
liten, vilket i sin tur medfér att ¢ har stor standardavvikelse. Intuitivt
ter sig detta rimligt.

Vi skall nu visa att ett annat problem i sannolikhetsliran leder till
exakt samma matematiska fragestillning som problemet ovan.

Poincarés rouletteproblem. Betrakta en vridbar visare av sadan
lingd att dess spets vid rotation beskriver en cirkel med omkretsen 1.
Antag att visaren bringas att rotera och att hérvid spetsen forflyttar sig
lingden p lings periferin, —oc < <oco. Vi antar att ¢ ar en kontinuerlig
stokastisk variabel.

Lat vidare (fig. 1a) ¢ vara avstandet liings periferin fran visarens begyn-
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Fig. 1a Fig. 1b

nelseliéige till dess slutlige, métt i o:s orientering. Da &r ¢ en stokastisk
variabel med utfallsrummet &, ={x; 0 <2 <1} och fordelningsfunktionen
F,, som litt uttryckes i fordelningsfunktionen F, for . Vi far

F,@) =Plpsa) = X P so=atn) = Y[F@tn)—Fm)].
NnN=—00 Nn=—00

Vi har alltss samma samband mellan de stokastiska variablerna ¢ och
@ som i problemet om forsta siffran. Den enda skillnaden &r att ¢ hir
ar en kontinuerlig stokastisk variabel. I detta rouletteproblem forefaller
det mycket rimligt att ¢ i allmdnhet har en i det nidrmaste likformig
sannolikhetsfordelning runt periferin dvs. att oavsett den mekanism,
med vilken visaren bringas att rotera, si #r sannolikheterna att visaren
skall stanna pa skilda men lika langa cirkelbdgar approximativt lika.
Denna, princip tillimpas fér 6vrigt som bekant vid ett mycket stort antal
olika spel av roulettetyp. Att approximationen till en likformig sanno-
likhetsfordelning #r béttre ju mindre V[f,] ér, verkar ocksd rimligt.

Vi skall hir visa att for en speciell roulette uppfor sig alltid visaren
som om utslaget hade approximativt likformig sannolikhetsférdelning
runt periferin. Detta visades ursprungligen av H. Poincaré [3, sid. 148-
150], som emellertid gjorde onddigt stringa férutsattningar. Vi dterger
hir ett allminnare bevis enligt Fréchet [1, sid. 3-6].

Vi delar in rouletten i 2n sektorer, omvéixlande réda och svarta (fig.
1b), och s& att alla réda cirkelbagar har lingden 7 och alla svarta léng-
den s.

I fig. 2 har vi askadliggjort frekvensfunktionen f, fér ¢. Vi definierar
mingderna R, och Sy, k=0, +1, +2,..., enligt figuren dvs

R, = {x;k(s+r) £ & < ks+(k+1)r}
Sy, = {w; ks+(k+1)r £ x < (k+1)(s+7)}.

Om vi vidare betecknar R=U%_R, och 8=UX_S, och later p, och g,
vara sannolikheterna for rétt respektive svart, sd ar

NMT, Hefte 1-2, 1964. — 4
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] A /| 4 24
R, 82 Ry S84 Ry S0 Ry 8

Fig. 2

Pn = PleeR) = \f(a)dz och g, = PleeS) = {f)du;
S
Puty = \f@)dw = 1.

—00

Vi skall nu visa att oberoende av f, s& giller vid griinsverging sidan
att kvoten r/s dr konstant att

. r . s
limp, = — och limg, = —.
n—>o0 7‘+S n—>00 r+8

Detta betyder att for stora virden pd » uppfor sig alltid visaren
som om utslaget ¢ hade en likformig sannolikhetsférdelning lings peri-
ferin med avseende pa fordelningen rétt — svart.

Vid beviset utnyttjar vi endast att f, sisom varje frekvensfunktion
fér en kontinuerlig stokastisk variabel ér integrerbar. Vi antar att f, ar
begrinsad och infor foljande beteckningar for supremum och infimum
av f, i B, respektive §;:

Sup'f? = Ak’ inf fe = O, Sllpfe = Bk: inf fo = bk .

zeRy zeRy xeSk zeSk

Da giller att

o0 (o]
2 ray, £ p, < 2 rd;,
k=—00 =—00

och d& p,+¢,=1, att

k_Z (raz+sb) < 1 ék_Z'(rAk+sBk).

Lat vidare y;, vara ordinatan i grinspunkten mellan R, och §, (fig. 2)
och sitt
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= 21 Sp= 2 (18

. k=—o0
Da ar

r+ r
S, = (r+s) 2 Y = —pn eller p, = ————Sn.
k=—c0 r+s

Vi visar nu att lim S,=1 och lim p, =lim p,. Detta féljer av att

Nn—-oo0 Nn—>oo Nn—>o0

Pnl _Z: (Ay—ay)

[1—-8,] 2 (A —ay) kZS(Bk_bk)'
D4 funktionen f, &r integrerbar s& gir summan i hogra ledet av den andra
olikheten mot 0, d& n gar mot oéindligheten. Samma sak giller d& ocksa
om summan i hégra ledet av den forsta olikheten. Hérav foljer de nyss
nimnda grinsvirdena samt sedan att
r 8

li = — h i =—.
mp, = —— o im g, = -

n—>00 n—>00 +8

Pinkhams invarianslag. Som ett ytterligare stod for logaritmlagen
visar Pinkham [2] féljande invarianslag. Lat som férut den stokastiska
variabeln £ vara matematisk modell f6r en méngd fysikaliska konstanter.
Vad hinder med foérdelningen av forsta siffran i dessa konstanter om
de samtliga multipliceras med ett och samma tal ¢? Det tycks naturligt
formoda att denna transformation ej paverkar fordelningen av forsta
siffran. Att si #r fallet om forsta siffran har fordelningsfunktionen
log (x+ 1) inses litt. Pinkham visar nu att denna fordelning &r den enda
fordelningen for forsta siffran, som har denna egenskap.

For att kunna rikna med logz i stéllet f6r med log(x+ 1) definierar
vi funktionen G, s att

G (x) = P(n = x-1) = F(x—1).
Enligt vad vi visat forut s& &r da

Q. (x) = f[Fe(x-IO")—FE(lO")], ze{2,3,...,10}.

N=—00

Om vi nu multiplicerar & med ¢, si blir funktionen G for forsta siffran

5 [ o))
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Om nu denna ir invariant sa far vi

G 2) = 3 [Felw- 100 —F,(107)] = ‘i[Ff (f-wn) _F, (l-wn)] :

Nn=—00 n= ¢ 4

Harav far vi

1
eller om vi sitter —=z;:
c

Gn(x)+G11(x1) = G‘r)(xxl) .

Den enda hir anvindbara kontinuerliga 16sningen till denna funk-
tionalekvation #r @, (x)=logz. Detta &ér vilkint om x &r godtyckligt.
Pinkham visar att funktionalekvationen leder till samma entydigt be-
stimda 16sning om =z, vilket hir 4r fallet, endast antar véardena 2,3, . . .,10.
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OM VARDEFORDELNINGSLARANS HUVUDSATSER

GUNNAR AF HALLSTROM

1. Inledning. Rolf Nevanlinnas teori for meromorfa funktioners
virdefordelning utformades i sina grunddrag under 1920-talet [17-18].
Den kulminerade i tvenne fundamentalsatser, som ger uttryck for den
jamvikt som rader med avseende pa fordelningen av de virden den
betraktade funktionen antager. Som ett korollarium till den andra fun-
damentalsatsen framgick den enkelt formfullindade defektrelationen,
som utgér en generalisering av Picards berdmda sats [22], att en mero-
morf funktion pé sin héjd kan utelimna tva virden.

I den Nevanlinnaska teoriens spar har sedermera f6ljt en lang rad av
modifikationer och av utvidgningar till andra funktionsklasser. Trots
att modern funktionsteori foretridesvis har sokt sig andra vigar, har de
berérda virdefordelningssatserna bevarat sin plats som hjilpmedel och
inspirationskélla. Det kan mahidnda darfér vara pé sin plats att ge en
resumé Over nadda resultat. Den foljande framstillningen kan icke ga
in p4 bevisforingar och ej heller i 6vrigt ge en fullstéindig bild av omradet.

2. Analytiska funktioner. Betraktar vi en komplex funktion w(z)=
u(z,y)+iv(z,y) av den komplexa variabeln z=ux+17y, sa kallas den som
kant analytisk, om w'(z) existerar. Alternativt kan villkoret uttryckas
sd, att w och v &r kontinuerliga jimte sina foérsta derivator och uppfyller
Cauchy-Riemanns differentialekvationer

(1) Uy = V

Om w(z) dr analytisk i hela z-planet, kallas w(z) en hel funktion. Om
i varje punkt av planet antingen w(z) eller 1/w(z) &r analytisk, kallas
w(z) meromorf. Géller detta blott ett avgrinsat omrade, siges w(z) i
detta vara meromorf eller av meromorf natur.

3. Virdefordelningsstorheterna. Vi betraktar en meromorf funktion
w(z). Alternativt antages den meromorfa karaktiren hos w(z) vara garan-
terad blott i enhetscirkeln |2|<1. I vartdera fallet dr det limpligt att

[53]
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undersdka funktionens beteende innanfor och péa cirklar [z|=r och
sirskilt det asymptotiska forhallandet nar » véixer mot oo resp. 1 [18, 20].

Funktionens tendens att pé cirkelperiferin approximera ett givet virde
a miter Nevanlinna med den s. k. smygfunktionen

2n

1 1
m(r,a) = — \ i
27

e —al 7 F )

2n
1
m(r,0) = o S 1 [w(reie)| dg ,
0

dir Ifi¢ betyder Int om detta tal &r positivt, annars 0. Lat w(z) ha
n(r,a) a-stillen for |z| <r, varvid multipla rotter till ekvationen w(z)=a
riknas sd manga ganger som multipliciteten anger. Av dessa antal n(r,a)
bildar Nevanlinna genom integration antalsfunktioner N(r,a) enligt for-
meln

(2) N(r,a) = \ [n(t,a) —n(0,a)] iJl—t-if+n(0,ar,)1n'r s

~ OCe

vilken ju f6r alla a<w(0) férenklas till

3) N(r,a) = Sn(t,a)d Int .

0

4. Forsta huvudsatsen. Medelst en lamplig interpretation av Jensens
sats kommer Nevanlinna till sin forsta huvudsats. Denna utséiger, att
om w(z) blott sparsamt antager ett virde a innanfor en cirkel, s& maste
funktionen desto starkare approximera detta virde pa periferin och vice
versa. Nagot exaktare, summan av smygfunktionen och antalsfunktionen
dr tillndrmelsevis oberoende av a. Om man definierar vad Nevanlinna
kallar w’s karakteristiska funktion T genom likheten

T(r) = m(r,00)+N(r,o0),
sd utséger i sjilva verket forsta huvudsatsen, att for alla a
(4) m(r,a)+N(r,a) = T(r)+0(1),
diar O(1) betecknar en term som for alla r absolut sett understiger en

endast av a beroende kvantitet, 11 |a| 4 konst.

5. Konkurrensen mellan m och N. Firsta huvudsatsen (4) innebir
alltsd att m och N visentligen kompletterar varandra, si att deras
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summa dr nistan oberoende av a. Men fragan dirom, hur stor del av 7'
de bada termerna utgér, ger betydande svarigheter att besvara. Fér i
hela planet meromorfa w(z) foreligger starka indicier for hur svaret kom-
mer att utfalla. Enligt Picards sats kan N(r,a) icke férsvinna eller ens
forbli @ndligt for mer &n tva a-virden. Men #ven alla berdkningar av m
och N for vkéinda« meromorfa funktioner gav vid handen att m(r,a) blott
for enstaka a-virden numeriskt kunde utgéra den dominerande termen i
T(r) eller ens nagot sa nir mita sig med N(r,a), nir r dr stort. Det
lyckades R. Nevanlinna att kli denna féreteelse i exakt form och att
for denna sin andra huvudsats ge ett bevis som bygger pa langa skickligt
genomforda kalkyler. Viktigaste etappstation utgjorde en sats som ut-
siger att den logaritmiska derivatans smygfunktion foér a=oo viixer re-
lativt langsamt med r. Kort dérpa gav brodern Frithiof Nevanlinna
ett alternativt bevis [16], som utnyttjar egenskaperna hos l6sningar till
differentialekvationen Au=4e%,

6. Andra huvudsatsen. For att formulera Nevanlinnas andra huvud-
sats betraktar vi ¢ (>2) virden ay,...,a,. Utom antalsfunktionen
N(r,a) infér vi N(r,a), som framgar ur formeln (2) om vi i den erséitter
n(r,a) med det antal 7(r,a) som fas, om vi riknar &ven multipla a-stéillen
enkelt. P4 den av w(z) uppbyggda Riemannska w-ytan R, motsvaras ju
ett k-faldigt a-stélle for w(z) av en k-faldig vindlingspunkt, och k—1
kallas dess forgreningsordning. Skillnaden

(5) nl(r’a') = 7&(7’,0/)—7_?/(7',0)

anger di summan av de multipla a-stéllenas forgreningsordningar i
r-cirkeln. Forgreningssumman av alla multipelstéllen anges av
(6) n(r) = X' m(r.a),

(@)
dér summan utstrickes 6ver de a-virden som rakar antas multipelt f6r
|z| 7. Nu kan man analogt med (2) bilda jimvél N,(r,a) och N,(r), och
har da enligt (5) och (6)

(7) N]_(T,a) = N(T’a’)—'N(r,a); Nl(r) = A(Z)YNl(r,a) .

Med dessa beteckningar kan vi formulera andra huvudsatsen sa hir:
Man har q
(8) 2 m(r,a) + Ny(r) < 27'(r) +8(r) ,
¥=1

ddr S(r) utgor en restterm, om vilken foljande gdiller:
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1:0. Om w(2) dr meromorf i hela planet (det s. k. paraboliska fallet),
ar
9) lim inf S(r)/In[rT'(r)] < oo;

r—>0

2:0. om w(z) dr av meromorf natur ¢ enhetscirkeln (det hyperboliska
fallet), gdller
’ T
(10) lim inf S(r)/In Tr) < oo
r

r—>1 1-

7. Kommentar till andra huvudsatsen. Vilken &r nu den djupare inne-
bérden av andra huvudsatsen ?

Det kan visas att 7'(r) gar snabbare mot oo &n Inr, s& snart w(z) ar en
icke-rationell meromorf funktion. Salunda visar (9), att S(r) i (8) &r en
term som #r helt underordnad 7'(r) for alla transcendenta meromorfa
funktioner (naturligtvis inkluderande hela funktioner). I undantags-
intervaller kan denna regel brytas, eftersom (9) blott dr ett undre grins-
virde. Men det visas att sidana intervaller alltid har #ndlig totallingd,
och de saknas helt om w ar av dndlig ordning, d. v.s. om

lim sup In7'(r)/Inr < oo .

For transcendent w(z) utsiger dirfor (8), att, hur ménga a-virden
man #n viljer, summan av deras smygfunktioner alltid asymptotiskt
blir hégst ~27'(r), medan enligt (4) antalsfunktionerna da maste svara
for ett belopp atminstone a(g—2)7(r). Flera &n 2 virden kan di ej
utelimnas eller ens antagas blott ett &ndligt antal ganger, enér i sa fall
deras N(r,a) bleve O(Inr), d. v. s. mindre &n en multipel av Inr. De hér
nimnda resultaten giiller &ven de under punkt 2:0 nidmnda funktioner
for vilka 7T(r) vixer snabbare &n —In(l1—r), medan ett stérre antal
undantagsvirden och en storre betydelse hos smygfunktionen kommer i
fraga hos sddana funktioner i enhetscirkeln, vilkas karakteristika 7'(r)
ir begrinsad eller i varje fall inte véixer snabbare &n —In(1—r).

8. En modifikation. Tillimpas (4) och (7) pa (8), finner man med en
nagot fordndrad restterm S(r), som dock fortfar att uppfylla (9) resp.
(10), att
(11) (q—2)T(r) =

N(r,a,) +8(r) .

D

k

I
-

Denna formulering av andra huvudsatsen dr vird sirskild uppmérksam-
het, eniir den #r frigjord fran smygfunktionen och dérfér visar sig mer
limpad #n (8) for generalisering till vissa allménnare funktionsklasser.
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I detta sammanhang ma nimligen foljande foreteelse férutskickas. A
ena sidan beror ekvivalensen mellan formuleringarna (8) och (11) pa gil-
tigheten av forsta fundamentalsatsen (4). A andra sidan giller icke (4)
utan stark modifikation om den analytiska karaktiren av w(z) upp-
luckras; diremot kan (11) i sddana lampligt avgrinsade fall forbli be-
stdende. En motsatt foreteelse intriffar om w(z) forblir analytisk men
existensomridet kompliceras. Under rédtt allménna betingelser forblir
da (4) i kraft, men andra huvudsatsen maste i regel modifieras.

9. Defektrelationen. Foérrdn vi 6vergar till modifikationer av just
nimnda slag, skall vi behandla defektrelationen. Man definierar defekten
hos virdet a sdsom

m(r,a)
(12) d(a) =
T(r)
Virdets forgreningsindex definieras som
N
(13) u(a) = lim inf ;5(:)“)
samt funktionen w(z)’s totala forgreningsindex som
N
(14) # = lim inf 1(r) .
T(r)

Grinsvirdena i (12)-(14) giller fér r — oo eller r — 1 beroende pa4 om
planet eller enhetscirkeln utgér det betraktade (existens)omradet.
I alla de fall dir 7'(r) &r obegrinsad, har man enligt (4) foljande alter-
nativa uttryck:
N(r,a)
T(r)

Ur (6)—(10) far man nu, nir (8) divideras med 7'(r),

(15) 6(a) = 1—lim sup

(16) 2,(6 o)+ play)) < é’ < 2.

Detta #r defektrelationen, och den giller f6r alla meromorfa funktioner
och fér funktioner i enhetscirkeln som uppfyller villkoret

In(1-7)

T

Om §(a)>0, siger vi att a dr ett defekt virde, d.v.s. ett sparsamt

forekommande virde, mitt med méattet N(r,a) relativt 7'(r). For ett
virde som en meromorf funktion antar blott ett @ndligt antal ganger

lim
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eller ej alls &r d(a)=1. Enligt (16) kan blott tvd sddana virden fére-
komma, och detta dr Picards teorem [22]. Defekrelationen ir siledes en
skirpning av denna sats, i det den utséiger att den totala defektsumman,
utokad med forgreningsindex, aldrig 6verstiger 2.

10. Anslutna problem. Lat w(z) vara meromorf i hela planet. Ur (4),
(7), (12) och (13) framgar att for varje a

8(a)+p(a) < 1.

Ett starkt defekt virde kan alltsd ej vara mycket starkt férgrenat pa
den av w(z) alstrade Riemannska ytan R,,, och vice versa.

I ljuset av de exempel som vilkiénda transcendenter erbjuder forefal-
ler ett samband existera mellan att ett virde a dr defekt och att det &r
ett asymptotiskt virde, d. v.s. att limw(z)=a giller p4 nigon mot oo
giende kurva. Exempelvis har w=e? grinsvirdena oo och 0 nir z ir
reellt och gar mot + co, men oo och 0 dr just de viirden e® aldrig antager.
Genom exemplet

2z
w(z) = St—q sin#? dt
0

visade Nevanlinna emellertid att asymptotiska virden ej behéver vara
defekta. Hans formodan att varje defekt virde vore asymptotiskt, veder-
lades 1941 av Marie-Héléne Schwartz [27], som konstruerade en mero-
morf funktion med icke-asymptotiskt defekt virde. Hayman visade
1953 [9] en hel funktion av detta slag, och ar 1957 gav A. A. Goldberg
[8] ett motsvarande exempel pa en hel funktion av #ndlig ordning.

Ar 1932 konstruerade R. Nevanlinna [19] en funktionsklass som ger
18sningen pé foljande problem. Till givna tal a,,...,a, och givna ratio-
nella tal 6,<1 med d,+...+0d,=2 skall konstrueras en funktion, si
att 8,=0(a;) for varje k. Ar 1954 lyckades Goldberg finna funktioner
med oéndligt manga defekta virden [7]. Funktioner med oéndligt manga
virden med positiv forgreningsindex konstruerades 4r 1952 oberoende av
varandra av Huckemann [10] och forf. [12]. Inom vissa grinser kan
talen a; och indices u(a;) hirvid viljas godtyckligt, dock s& att varje
pa) <} och Zu(a)s1.

Dugué upptiackte 1947 [5] det mérkliga faktum att defekten d(a) kan
vara beroende av valet av origo i z-planet, d. v. s. valet av medelpunkten
i de cirklar till vilka definitionerna av m(r,a) och N(r,a) &r knutna.
Hayman visade 1953 [9] att en flyttning av origo t.o.m. kan astad-
komma att helt nya a-virden upptrider med positiv defekt. Detta visar
att redan i det klassiska fallet arten av z-planets uttémning inverkar pa
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virdeférdelningsstorheterna. Detta blir i #n hogre grad fallet, om exis-
tensomradet for funktionen w(z) icke lingre forutsittes vara hela planet
eller en cirkel.

11. Allménnare existensomraden. I det hittills behandlade klassiska
fallet har existensomridet uttémts medelst vixande koncentriska cirk-
lar. Dessas periferier #r nivikurvor fér den harmoniska funktionen
g(z)=Inlz|, reell del av s(z)=g+ih=g+iargz=Inz. I (2) kan i sjéilva
verket A=Inr, virdet av ¢(z) pad r-cirkeln, anses vara integrations-
variabel, och storheterna m,n, N kan anses vara funktioner av 4 i
st. f. av 7.

Om nu w(z) 4r meromorf i ett godtyckligt omrade B, s& ligger det
nira till hands att uttomma B genom omriden begrinsade av niva-
kurvorna @G,:

(17) g(z) =

till en i B harmonisk funktion g(z), som liksom In|z| blir negativt oéndlig
i en inre punkt O och har ett fast grinsvirde vid ndrmande till B’s
rand I'. R. Nevanlinna vickte idén att hinfora m, n och N till kurvorna
G, i st. . till cirklar. En virdeférdelningsteori pa denna bas genomfordes
sedermera av forf. [11].

Ifall omradet B dr hyperboliskt, d. v. s. har en Greensk funktion, sittes
helt enkelt denna = —g(z). Metoden leder dock till resultat endast om
randen I" #r tillriickligt regelbunden for att limg(z)=0 skall gilla lik-
formigt i varje punkt av I'. Polen O for g(z) kan viljas fritt inom B.

Saknar B Greensk funktion {(och blott d&), dr I" av kapaciteten 0, och
omradet B kallas paraboliskt. En sats av H. Selberg [29] (modifikation
av en tidigare sats av Evans [6]) utsdger, att det i detta fall existerar
en funktion g(z), som blir —co i en inre punkt O av B, som f. 6. ér har-
monisk i B och som likformigt gdr mot + oo, nér z nirmar sig I". Med
denna funktion erhélles den stkta uttomningen i alla de fall d& I" har
forsvinnande kapacitet. Olyckligtvis ér Selberg-funktionen ldngt ifran
entydigt bestdimd, s att virdefordelningsstorheterna ofta blir starkare
beroende av valet av g(z) dn av den betraktade funktionen w(z).

12. Forsta huvudsatsen. Lat [a,b] beteckna det kordala avstindet pa
Riemanns sfir mellan punkterna a och b. Lat h(z) igen beteckna den
harmoniska konjugatfunktionen till g(z), s& att s(z)=g+th &ar analytisk.
Den totala tillviixten av b pad G, (som kan bestd av flera slutna kurvor)
utgor 27, Vi definierar nu
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(18) mha) = — — S In[w(z),a]dh ,
27 &
A
(19) N(ha) = Sn(g,a)dg+ln[w(0),a] ,

dir n(4,a) utgor antalet a-stillen med beaktad multiplicitet i omradet
A,={z | g(2) £A}. For a=w(0) behévs en modifikation av (19). Definitio-
nerna av N(4,a) och Ny(4,a) ir analoga. Overgangen fran 1fi jw — a1 till
—In[w,a]dren till virdet obetydlig férindring, som redan for det klassiska,
fallet inférdes av Ahlfors [1], och som erbjuder en stark férenkling av
bevismetodiken.

Man finner nu som férsta huvudsats likheten

A
(20) m(4,a)+ N(,a) = T(2) = SA(g)dg,

—00

dar alltsa T'(4) dr helt oberoende av a, och diar A(A) &r den s. k. Shimizu-
karakteristikan [30]. Den har en enkel geometrisk betydelse: Bilden av
A; pa w-sfiren har ytan wA(4), d. v. s. A(A) anger antalet blad i medeltal
pd den uppkomna delytan av B’s bildyta R,

13. Andra huvudsatsen. Medan den forsta huvudsatsen alltsa helt har
bibehéllit sin gestalt fran det klassiska fallet, s& undergar den andra
huvudsatsen en modifikation, s& snart omradet B icke #r enkelt sam-
manhéngande. Antag att G, bestar av ng(4)+ 1 separata kurvor. Om B
dr p-faldigt ssmmanhingande, ér d& ng(d)=p—1 for A>41,. Ar sam-
manhangstalet for B odndligt, fis limng(d)=occ nir A — oo resp. 0.
Vi definierar nu 1

F*(2) = {nolg)dg .

D4 giller den andra huvudsatsen i formen
g

(21) 2 m(d,ar)+Ny(2) < 2T(2)+F*(2)+8(2) .
1

For S(A) har vi igen olikheterna (9) resp. (10), dir A ersitter Inr. I det
paraboliska fallet dr 7'(A) obegrénsad och (9) kan skirpas till

(22) lim inf S(A)/InT(2) < oo .

A—>00
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Jamfor vi (21) med (8), finner vi att aterigen defektrelationen (16)
giller i det paraboliska fallet och &ven i det hyperboliska nir

1
In—:7TA)-0,
|4]
om blott
F*
(23) m *) =
T)

F*(2)

Om (23) icke giller, maste defektskrankan 2 hojas till 2+lim sup 0

14. Allménnare funktionsklasser. De i det foregdende behandlade ut-
vidgningarna av de klassiska Nevanlinnaska virdeférdelningssatserna
har endast haft avseende pa det omrade dir den betraktade funktio-
nen w(z) forutsittes vara analytisk (av meromorf karaktir). Men upp-
luckringen i antagandena kan #dven gilla sjilva funktionen. Vi betraktar
entydiga funktioner w(z), som i existensomradet B tillhoér en lampligt
avgriansad klass, vilken som delklass innefattar de i B meromorfa funk-
tionerna. De nidrmast ifragakommande klasserna &r inre funktioner och
som delklass ddrav de pseudomeromorfa funktionerna. De senare kan
ocksé karakteriseras ddrmed att de dr glatta (d. v. s. € O1) och kvasikon-
forma i varje kompakt delomrade av B.

I dessa fall har man att utga fran vad som kunde kallas »ointegrerade
huvudsatser«, vilka i det klassiska fallet litet inexakt skulle kunna sigas
fas genom derivering av de forut nimnda huvudsatserna. For forsta sat-
sens vidkommande kan man hér utga fran en observation som i huvudsak
for analytiska funktioners vidkommande gjorts av en japansk trio,
Ozaki, Ono och Ozawa, ar 1951 [21]. For den andra ointegrerade
huvudsatsen har man som utgangspunkt Ahlfors’ teori for &verlag-
ringsytor av 1935 [2], som i vissa riktningar utvidgats och preciserats
av Dufresnoy ar 1941 [4]. I det klassiska fallet kunde 4r 1938 Dinghas
[3] och senare Dufresnoy [4] och slutligen Wille 1957 [32] n& (8) ut-
giende fran Ahlfors’ teori med en aning simre uppskattning av S(r) én
vad (9) och (10) ger. Likartade férfaranden ledde dven forf. till att ar
1958 na modifierade resultat i det pseudomeromorfa fallet [13].

I de aterstaende avsnitten gar vi kort in pa dessa fragor.

15. Forsta ointegrerade huvudsatsen. Deriverar man (20) i avseende
& A, far man den »ointegrerade forsta huvudsatsen«

(24) w,a)+n(d,a) = 4(4),
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dar

1 S 1+aw dw(z) w = w(z).

25 ra) = — — 7
(25) pi,a) 2MG;, w—a 1+ |w|?

Men (24) géller [14] under det avsevirt allménnare antagandet att w(z)
ir en inre funktion, vilket kan definieras som féljer:

a) w(z) ar kontinuerlig;

b) rotterna till w(z)=a hopar sig icke i det inre av B for nagot
virde a;

c¢) om en tillriickligt liten cirkel kring en punkt z,€ B beskrives ett
varv i positiv led, ckas arg[w(z)—w(z,)] med 2znk, dér k &r ett positivt
helt tal (eller negativt om avbildningen #&ndrar omloppsriktningen,
vilket fall hir uteslutes); det betyder att virdet w(z,) antages med en viss
multiplicitet %;

d) w(z) far hirutéver ha o#ndlighetspunkter (poler), i vars omgiv-
ningar a)—c) giller f6r 1/w(z) i stillet for w(z).

16. Forsta integrerade huvudsatsen. Den »integrerade férsta huvud- |
satsen« (20) giller tyvirr ej for icke-analytiska funktioner utan en ritt |
besvirande tilliggsterm, vars storleksordning icke behover vara mindre
&n den karakteristiska funktionens.

Vi antar nu att den inre funktionen w(z) € (%, sa att w resp. 1/w har
kontinuerliga derivator av forsta ordningen. Man kan da skriva

(26) m(A,a)+N(4,a) = T(A)+ E(4,a) .
Hirvid ar?
1 lw,|2  (0In|w, 0argw,
27 E(a) = —SS _ dg dh
27) ha) = o 1+[wa{2{ 3 on Y
4,

dir

143

Wy = W(R); W, = aw for @ + oo.
w—a

17. Andra ointegrerade huvudsatsen. Vi kan tillimpa ett resultat ur
Ahlfors—Dufresnoys teori f6r 6verlagringsytor, vilket kan betraktas som
en »andra ointegrerad huvudsats«.

Lat L(A) beteckna lingden av GQ,’s bildkurva pa w-sfiren. Da giller [4]

1 Se [14]. Att (27) galler f6r w € O t. 0. m. om s(2) e] ér analytisk men € C1, visade
forf. i ett foredrag i jan. 1963 i Helsingfors. Detsamma kan visas for (28).
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(28) k) 24— DA -~ L)

Denna olikhet kan praktiskt taget betraktas som en relation erhallen ur
(21) genom termvis derivering efter det denna likhet klitts i den med
(11) analoga formen.

Relationerna (26) och (28) kan virdeséttas forst efter uppskattning
av de dari ingdende resttermerna E(4,a) resp. L(4). Men dérvid skall vi
begrinsa oss till den héndelsen att w(z), som hittills blott antagits vara
en inre Cl-funktion, dr pseudomeromorf.

18. Pseudomeromorfa funktioner. Om w(z) 4r en analytisk funktion,
férmedlar den en konform avbildning med undantag for de punkter
dir w'(z)=0. Konformiteten innebér infinitesimal likformighet, sa att
en mycket liten cirkel avbildas pa en kurva som nérmar sig cirkelform
nér radien avtar. Om nu w(z)=u+14v ej nodvindigtvis dr analytisk
men har kontinuerliga partiella derivator u,, u,, v,, v,, s& avbildas en
infinitesimal cirkel med medelpunkten z pa en infinitesimal ellips med
axelférhallandet @(z)z1, den s. k. dilatationskvoten. Undantag utgér
de punkter z dir Jacobideterminanten

J(2) = uw,—vu,

forsvinner. Om Q(z)< K i ett givet omridde och J(z)+0 dir utom i
separata punkter, siges w(z) vara K-kvasikonform i omradet. Ocksé funk-
tioner som icke &r kontinuerligt deriverbara kan vara kvasikonforma,
men definitionen av @(z) méaste di modifieras.

Vi definierar nu en pseudomeromorf funktion pa fsljande sitt. Funk-
tionen w(z)=wu+1iv dr pseudomeromorf i B, om dirstides

A) u och v jimte sina partiella derivator &r kontinuerliga;

B) J(2)>0 utom mojligen i punkter som saknar hopningspunkter i B;

C) Q(z) ar begriinsad i varje kompakt delomrade;

D) w kan undantagsvis bli odndlig i punkter inom B, men di maste
1/w uppfylla A)-C) i omgivningar av dessa punkter.

Det dr klart att en meromorf funktion #r kvasikonform med K=1.
Men &ven det omvinda giller; en 1-kvasikonform funktion w(z) ér ana-

Iytisk.

19. Uppskattning av E och L. I det féljande antar vi, att w(z) ar
pseudomeromorf i B. D4 kan férsta huvudsatsen (26) kompletteras med
resttermsuppskattningen
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(29) B, (Q ~1) ][

som visar att E(4,a) ej kan vara mycket stor om avbildningen w(z) ar
nira nog konform, s& att @(z) dr néra 1.

For uppskattning av resttermen L(4) i den ointegrerade andra huvud-
satsen (28) goér man efter monster av Ahlfors [2] bruk av Schwarz’
olikhet och finner
(30) L3 £ 222Q(N)A'(2),

dir @ betyder medelvirdet

— 1
Q@ = %;Q(Z) ahz)

ds
dz

|w,|da dy
L+fwl

Hirav sluter man litt att i det paraboliska fallet

(31) lim inf L(4)/4(4) = 0
nir A - oo, s& snart antingen
¢ da C QM) dA)
S —— = oo eller S — <
Q%) A2

BL. a. ser vi att detta dr fallet si snart w(z) dr kvasikonform i B. I det
hyperboliska fallet fas likartade kriterier. I de némnda fallen &ar alltsd
Q(2) tillrackligt litet for att garantera att enligt (31) L(4) &r en obetydlig
restterm i bredd med Shimizu-karakteristikan A(4).

20. Andra integrerade huvudsatsen. For att komma till den »inte-
grerade andra huvudsatsen« integrerar vi (28) och finner

(32) S Ny = (g 2T - F*A) - S() ,

1
A

dir S(A) =k, SL(g)dg. Hir fas formellt (32) ur (21), om m dir ersittes
med 7'— N enligt den i fallet nr. 13 giltiga forsta huvudsatsen. Men i
vart fall kan icke N=N—N, ersittas med 7' —m—N, for erhallande
av formeln (21) ur (32), eftersom i det foreliggande fallet forsta huvud-
satsen innehéller termen E.

Det giller igen att se nér S(4) #r av forsvinnande ordning i bredd
med 7'(A). Man finner ater med Schwarz’ olikhet den med (30) analoga
relationen
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2
SO < kagWIT'(), dir q(h) = 2| Ql)dg -
;

Man finner precis som i foregdende avsnitt: I det paraboliska fallet géller

(33) lim inf S(4)/T'(4) = 0,
nér A - oo, si snart antingen
¢ da ¢ q(d)dT
(34) Sm=oo eller S%)TT(Z)<°°’

vilket t. ex. dger rum om Q(z) < K. I det hyperboliska fallet giller (33)
under modifierade forutsattningar.

21. Defektrelationen. Vi méaste nu uttryckligen definiera defekten d(a)
medelst formeln (15), dir naturligtvis variablen r utbytes mot A. Denna
formel #r nu icke likabetydande med (12), eftersom (4) i allménhet ej
géller.

Om vi skriver (32) i formen (jmf. (7))

Zq;' {T(A)—N(Aa;)+Ni(A,a)} = 2T(A)+F*(A)+8(4),
1

dividerar med 7'(A) och beaktar definitionerna (13)—(15) med A i st. f. r
som variabel, s finner vi att

q q ) F*()
(35) ' {0(ag) +p(ar)} £ 3 d(ay)+u £ 241lim sup T

1 1
giller i alla de fall dir (33) giller, alltsa t. ex. nir nigon av relationerna
(34) ar i kraft. Sa snart F*(1)/T(A) — 0 har vi hirvid defektrelationen i
dess klassiska form med 2 som 6vre grins for defekt- och indexsumman.

22. Funktioner pa Riemannska ytor. Till slut ma nédmnas, att utvidg-
ningar har gjorts dven till funktioner, som &r av meromorf karaktir pa
allménnare Riemannska ytor.

Redan 1931 undersckte Ullrich [31] och nagot senare dven H. Sel-
berg [28] i detta avseende algebroida funktioner. Dessa &r meromorfa
pa en n-bladig Riemannsk yta. Hirvid framgick i andra huvudsatsen en
med F* analog term hérflytande ur den givna ytans vindlingspunkter.

Nyligen har Sario betraktat funktioner meromorfa p& allménnare
Riemannska ytor [24, 25]. Den betraktade ytan B (resp. det betraktade
omradet B pa ytan) antages besitta motsvarigheten till en Selbergfunk-
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tion eller en Greensk funktion som likformigt — 0, nir z strivar mot
randen. Hirledningarna av huvudsatserna &r analoga med bevisen for
nr. 12 och 13. Men det ar hir befogat att bygga upp F*(1) ur den Eulerska
karakteristikan for 4, i st. f. ur omradets sammanhangstal.

I detta sammanhang #r det dven av intresse att Sario och Rodin [23]
lyckats konstruera ytor B och funktioner w(z) pd dem, s& att dessa har
ett godtyckligt antal P av Picardska undantagsvirden i sitt existens-
omrade, och detta s& att (35) blir en likhet med vartdera membrum =
P=q.

Ett avsevirt skarpare resultat har natts av Matsumoto [15a]: Om
E, &r en godtycklig kompakt mingd av kapaciteten 0, si finns ett
w(z), meromorft i ett paraboliskt plant existensomrade B, si att w i en
omgivning av randen " utelimnar alle virden tillhérande E,,

Det ligger i sakens natur att &ven for pad Riemannska ytor pseudo-
meromorfa funktioner analoga huvudsatser skall kunna uppstillas. Sa-
vitt forf. kédnner till har sidana betraktelser ej énnu genomforts. I den
mén paraboliska ytor (vilka enligt Kuramochi [15] har Selbergfunk-
tioner) eller hyperboliska ytor med pé randen forsvinnande Greenska
funktioner kommer i fraga, férefaller det sannolikt att de i nr. 20 redo-
visade resultaten férblir oférindrade med den ovan anforda betydelse-
forskjutningen hos F'*.

Helt nyss har Sario generaliserat virdefordelningssatserna till ana-
lytiska avbildningar fran en helt godtycklig 6ppen Riemannsk yta i en
sluten [26]. Uttomningen sker medelst omraden, som har reguljir rand
men i &vrigt &r godtyckliga. I den andra huvudsatsen upptrider emel-
lertid karakteristikan och 6vriga termer icke blott en géng integrerade
som i (21) utan tre ganger integrerade.
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CarL HYLTEN-CAVALLIUS — LENNART SANDGREN: Matematisk analys
II (for tvabetygsstadiet vid universitet och hogskolor). Lunds student-
kéars intressebyra, Lund 1964. 124420 s. Sv. kr. 50.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 75.)

Boken utgor en omarbetning av en tidigare version (recension i NMT
8 sid. 88) och utges nu med samma tryck och band som forfattarnas
Matematisk analys I (recension i NMT 6 sid. 37). Vid omarbetningen har
bl. a. tillagts ett inledningskapitel med en allmén framstillning av méiing-
der, funktioner och strukturer.

Ivax Niven: Diophantine approximations. (Interscience tracts in pure
and applied mathematics 14.) Interscience Publ. (John Wiley & Sons),
New York, London 1963. 9+ 68 pp. sh. 36/—.

(Innholdsfortegnelse i NMT 11 (1963), s. 131.)

De diofantiska approximationerna ir ett alltfor vidstrickt omrade for
att kunna tickas av en liten bok som Nivens. Forf. medger ocksa sjilv
att titeln dr anspraksfull och missvisande. Men av den bestimda sektor
boken belyser far vi i stéllet en mycket klar bild. Det gebitet omfattar
homogen approximation av sivil reella (kap. 1) som komplexa (kap. 4)
tal, icke-homogen approximation, sésom Minkowski-satser for produkter
av reella och komplexa linjira former (kap. 2 och 5), samt mangfalder
av irrationaltal 6 (kap. 3). Det sistnimnda kapitlet &r bokens centrala
del och behandlar bl. a. den likformiga férdelningen av brak- och hel-
talsdelarna till n6. I samband dirmed upptas t. ex. Kroneckers teorem
och satser av Skolem och Bang om linjirt oberoende tal 6 i den ratio-
nella talkroppen.

En viktig plats i kapitlen 1 och 4 intar givetvis Hurwitz’ och Fords
teorem om approximation med rationella tal: i det reella resp. komplexa
fallet figer olikheten |6 —h/k| < (ngz)_1 resp. |0 —h/k| < (/3 |%[?)~1 osindligt
ménga losningar och konstanterna &r de bista mojliga. I det reella fallet
anfor forf. dven sitt eget bevis av Segrés resultat rérande asymmetrisk
approximation.

Anmirkningsvirt dr att samtliga resultat i boken pressas fram med
forbigdende av kedjebriksteorins eleganta metodik; i stillet anviinds

[68]
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bland annat Farey-brak. Niven medger, att finare detaljer dirigenom
gar forlorade men motiverar atgirden med att en beskrivning av kedje-
braken inbesparas. Men bor énda inte de allra forsta grunderna av kedje-
bréksteorin anses ingd i den allménna utrustningen hos de patinkta
lasarna ?

En stor fortjanst dr att varje kapitel avslutas med ett avsnitt »Further
results¢, upptagande korta bibliografiska notiser och uppgifter om lingre
gaende resultat (ryska m. fl. andra arbeten saknas dock helt och hallet).
Sadana hir oversikter borde verkligen vara standard i alla monografier
liksom i kurslitteratur. En del av de resultat som hir anges ér till och med
opublicerade.

Forfattarens stil dr klar och redig. Analogierna — liksom de egenartade
skillnaderna dirvidlag — mellan de reella och komplexa fallen, t. ex.-
rorande Eggans och Maiers resultat, framtriader mycket tydligt. Hade
forf. inte undvikit kedjebraken, skulle bevisen i manga fall ha blivit av-
gjort mindre omstédndliga — och givetvis elegantare. — Tryckfel fore-
kommer i formler pa sidorna 4, 7, 19 och 24.

Boken supplerar ritt vil andra monografier frain detta vida filt, sa-
som Cassels’, Koksmas, Hardys och Wrights samt Le Veques. Jag tror
emellertid den skulle vinna pa en utékning av stoffet med till exempel
konvergentapproximation, simultana approximationer, minima for kva-
dratiska former, Roths teorem eller Minkowskis hypotes.

Clas-Olof Selenius

STURE NYDELL: Hur man konstruerar ett nomogram. Biblioteksforlaget,
Stockholm 1963. 70 s. Sv. kr. 9.75.

(Innholdsfortegnelse i NMT 11 (1963), s. 73.)

Boken tar sikte pa & gi en innfering i teknikken ved konstruksjon av
nomogram, og er spesielt beregnet pa tekniske skoler. Det er lagt storst
vekt p4 punktnomogrammer (syftlinjenomogram), og der er fglgende
typer behandlet: Nomogram med 3 parallelle skalaer og Z-nomogram.
Videre nomogram med 2 parallelle skalaer og en krumlinjet skala. Det
stoff som er tatt med dekker de fleste nomogrammer pé det trinn boken
er beregnet pa.

Avsnittet om »konstruksjon av funksjonsskalor gjenom projektion« er

axr+b
x+c
med mindre b=0. Anmerkning pa s. 10 gir inntrykk av sterre anvende-

blitt litt for kort. Den metode som er gitt vil ikke dekke f(x)=
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lighet enn tilfellet er. Det er ikke store justeringer som m4 til, men en
som prover boken til selvstudium vil fa vansker her.

Anvisningene for konstruksjon av nomogrammene er klare. Teorien
er samlet i kap. V sist i boken. Det liker jeg ikke. Her forutsettes bare
kjennskap til rettvinklede trekanter, og jeg ville gjerne hatt begrunnelsen
i forbindelse med hver nomogramtype. Under behandlingen av nomo-
gram med 3 parallelle skalaer savner jeg beskrivelse av noen av de snar-
veier som kan brukes.

Avsnittet om sammensatte nomogram avsluttes med en vakker los-
ning i et dobbelt Z-nomogram. Her er tegnet to nomogrammer for den
samme funksjon (i 4 variable). De to lgsningene illustrerer godt de

muligheter nomografien gir.
£ gr & Johs. Gstvold

NiLs SsOBERG: Funktionslira och analytisk geometri, I. Hermods,
Lund 1962. 6+ 261 s. Sv. kr. 32.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 78.)

Denna lirobok ir skriven for att anvindas vid tekniska gymnasier och
vid sjilvstudier. Den teori som gives illustreras av ett overflod av vil-
valda exempel i texten och problem (6ver 1000) for lisaren. Forfattaren
har dock funnit det limpligt att i denna forsta del lata exempel och
problem med direkt teknisk anknytning vara fataliga.

Betriffande den teoretiska framstéillningen uttalar forfattaren: »En
fraga, som stindigt dr aktuell vid utformandet av en skolkurs i funk-
tionslira, dr den, hur matematiskt stringent framstallningen skall vara,
och det torde rdda delade meningar hirom. Med hinsyn till att borjan
av vissa kapitel i denna del limpligen kan genomgas samtidigt med eller
i direkt anslutning till kursen i algebra och trigonometri, har jag sokt
att successivt oka stringensen, sedan begreppsbildningen till en borjan
byggts upp med hjilp av mer askadliga forestdllningar. Det har dock
synts mig angeliget, att lisaren alltid skall veta i vilken utstrickning
nagot bevisats eller nagot méste godtagas utan stringt bevis«.

Det dr naturligt, att varje matematikldrare, som undervisat nagra &r,
far sina bestimda idéer om vilka teoretiska partier som bor tagas nog-
grant och vilka som man littare kan glida forbi. Detta giller ocks&
undertecknad, som s&lunda p& en och annan punkt har en avvikande
mening. T. ex. synes mig begreppet »funktion« alltfér starkt ha bundits
till begreppet »formel«. Men den detaljen och atskilliga andra blir sikert
dndrade om liroboken i en kommande upplaga skulle anpassas till den
nya gymnasiekurs, som i dessa dagar haller pa att vixa fram.
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Framstéllningen ar klar och tydlig, den som studerar denna lirobok
har fatt ett utmirkt hjilpmedel till trygg behirskning av matematik-

kursen i fraga.
Bo Kjellberg

GosTa WAHDE: Ett-betygskurs 1 matematik, geometri och linedr algebra.
Hermods brevkurs 231 R. Hermods, Stockholm 1963. 385 s.

(Innholdsfortegnelse i NMT 11 (1963), s. 74.)

Under de senaste fem aren har en ny geometrikurs for ett betyg ut-
arbetats vid vira universitet. Tonvikten har dérvid lagts pa linedr alge-
bra och dess tillimpning pa (lineir) analytisk geometri i planet och i
rummet. Kérnan i den gamla kursen, andragradskurvorna, behandlas nu
endast flyktigt. Detta &r naturligtvis nodvindigt av utrymmesskiil,
men ér inte enbart av godo. De enklaste icke-triviala tillimpningarna
av koordinatbyte ges ju i den analytiska kigelsnittsgeometrin. Likasa
saknar man konkreta tillimpningar av teorin for affina avbildningar.
(Enbart genom att bevisa satsen om medianernas skirningspunkt i en
triangel genom affin avbildning torde man knappast 6vertygas om denna
teoris fortrafflighet.) Detta dr dock svagheter man férmodligen maste
acceptera i en geometrikurs, som med héinsyn till matematikens tillimp-
ningar strivar att uppfylla s4 manga krav.

Foreliggande kurs bestar av tio brev. Framstéllningen #r utforlig och
rikligt férsedd med figurer och illustrerande exempel. I varje brev finns
gott och vil tjugotalet 6vningar med fullstindiga losningar. Till varje
brev hor dessutom atta provuppgifter. I slutet av varje brev har gjorts
en sammanfattning av de definitioner och satser, som hor till detta, ett
forfarande som visentligt okar overskddligheten och underlittar in-
lirandet. Ett brev om differentialekvationer avslutar kursen.

N.-O. Wallin
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L. J. Adams: Applied calculus. John Wiley & Sons, New York, London
1963. 9+ 278 pp. sh. 45/-.

Functions and graphs 1-41 * The derivative 42-76 * Applications of the deriva-
tive 77-114 * The indefinite integral 115-132 * The definite integral 133-164 *
Applications of the definite integral 165-190 * Functions of several variables
191-211 * Multiple integrals 212-227 * Infinite series 228-240 * Differential equa-
tions 241-260 * Tables 261-266 * Answers to odd-numbered problems 267-274 *
Index 275-278.

A. F. Andersen — Poul Mogensen: Matematik for det matematiske gym-
nasium, I. 6.udg. Gyldendal, Kgbenhavn 1964. 320 s. D. kr. 45.50.

Det reelle talsystem 1-57 * Ligninger og uligheder med en ubekendt 58-73 *
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A. F. Bermant: A course of mathematical analysis. Part I. (International
series of monographs on pure and applied mathematics 44.) Translated
from the Russian by D. E. Brown. Pergamon Press, Oxford, London,
New York, Paris 1963. 12+ 493 pp. sh. 80/-.

Introduction 1-21 * Functions 22-76 * Limits 77-129 * Derivatives and differen-
tials. The differential calculus 130-196 * The investigation of functions and curves
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A. V. Bitsadze: Equations of the mized type. Translated from the Rus-
sian by P. Zador. Pergamon Press, Oxford, London, New York, Paris
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General remarks on linear partial differential equations of mixed type 1-19 *

The study of the solutions of second order hyperbolic equations with initial condi-
tions given along the lines of probability 2043 * The study of the solutions of
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D. Bushaw: Elements of general topology. John Wiley & Sons, New
York, London 1963. 166 pp. sh. 53/-.

Historical introduction 1-8 * Fundamentals 9-35 * Continuity and homeomorph-
ism 36-43 * The construction of topologies 44-69 * Separation, compactness, and
connectedness 70-101 * Uniform spaces 102-129 * Completeness 130-142 * Appen-
dix 1: Sets 143-152 * Appendix 2: Suggested further reading 153-156 * Answers
to some of the exercises 157160 * Index of special symbols 161 * General index
162-166.

Corneliu Constantinescu — Aurel Cornea: Ideale Rinder Riemannscher
Flichen. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge,
Bd. 32.) Springer-Verlag, Berlin, Gottingen, Heidelberg 1963. 8+244 S.
Ganzl. DM 68.00.

Einleitung 1-4 * Hilfsbegriffe und Bezeichnungen 5-10 * Superharmonische
Funktionen 10-16 * Die Klasse HP 16-20 * Das Dirichletsche Problem 20-32 *
Potentialtheorie 3245 * Energie und Kapazitit 45-54 * Wienersche Funktionen
54-65 * Dirichletsche Funktionen 65-85 * Ideale Rénder 85-96 * Q-ideale Rénder
96-109 * Q-Fatousche Abbildungen 109-119 * Klassen von Riemannschen Flidchen
119-128 * Fortsetzung einer Potentialtheorie 128-134 * Der Martinsche ideale
Rand 134-144 * Das Verhalten der analytischen Abbildungen auf dem Martinschen
idealen Rand 145-154 * Vollsuperharmonische Funktionen 154-166 * Der Kura-
mochische ideale Rand 166—177 * Potentialtheorie auf der Kuramochischen Kom-
paktifizierung 177-220 * Das Verhalten der Dirichletschen Abbildungen auf dem
Kuramochischen idealen Rand 220-222 * Das Randverhalten der analytischen
Abbildungen des Einheitskreises 222-237 * Literaturverzeichnis 237-240 * Sach-
verzeichnis 241-242 * Bezeichnungen 243-244.
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Contributions to differential equations. Vol. I. Edited by J. P. LaSalle
and J. B. Diaz. (A serial issued under the auspices of RIAS and the
University of Maryland.) John Wiley & Sons, New York, London 1964.
54519 pp. sh. 124/-.

S. Lefschetz : Some mathematical considerations on nonlinear automatic controls
1-28 * J. B. Diaz and L. E. Payne: New mean-value theorems in the mathematical
theory of elasticity 29-38 * J. Horvath: A generalization of the Cauchy-Riemann
equations 39-58 * A. Douglis: On calculating weak solutions of quasi-linear, first-
order partial differential equations 59-94 * J.H. Bramble and L. E. Payne:
Bounds for solutions of second-order elliptic partial differential equations 95-127 *
J. H. Bramble and L. E. Payne: Some integral inequalities for uniformly elliptic
operators 129-135 * A.M. Letov: On the theory of nonlinear control systems
139-147 * L. Cesari: Functional analysis and periodic solutions of nonlinear dif-
ferential equations 149-187 * R. E. Kalman, Y. C. Ho and K. S. Narendra: Con-
trollability of linear dynamical systems 189-213 * J. K. Hale: On differential equa-
tions containing a small parameter 215-250 * A. K. Aziz and J. B. Diaz: On s
mean-value theorem of the differential calculus of vector-valued functions, and
uniqueness theorems for ordinary differential equations in a linear-normed space
251-269 * A.K. Aziz and J.B. Diaz: On a mean-value theorem of the weak
differential calculus of vector-valued functions 271-273 * E. Roxin and V. Spinadel :
Reachable zones in autonomous differential systems 275-315*R. D. Driver : Existence
theory for a delay-differential system 317-336 * J. H. Billings: An extension of the
Laplace cascade method to systems of second-order equations 337-370 * T. Yoshi-
zawa: Asymptotic behavior of solutions of a system of differential equations 371-
387 * C. Olech: On the global stability of an autonomous system on the plane
389-400 * J. K. Hale: Functional-differential equations with parameters 401-410
* J. K. Hale: A class of functional-differential equations 411-423 * C. A. Harvey :
Periodic solutions of differential equations x +g(x) =p(t) 425-451 % D. P. Squier:
Regularity properties at interfaces of solutions of elliptic equations 453-459 *
W. Mlak: Note on maximal solutions of differential equations 461-465 * A. K.
Aziz and J. B. Diaz: On Pompeiu’s proof of the mean-value theorem of the differen-
tial calculus of real-valued functions 467-481 * G. Seifert: Stability conditions for
separation and almost periodicity of solutions of differential equations 483487 x
W. A. Harris, Jr.: Linear systems of differential equations 489-519.

Akos Csaszar: Foundations of general topology. (International series of
monographs on pure and applied mathematics 35.) Translated from the
French by Mrs. K. Csdszar. Pergamon Press, Oxford, London, New
York, Paris 1963. 19+ 380 pp. sh. 105/-.

Relations 1-6 * Semi-topogenous orders 7-11 * Topogenous orders 12-23 *
Perfect semi-topogenous orders 24-31 * Biperfect topogenous orders 32-45 * In-
verse image of a semi-topogenous order 46-57 * Syntopogenous structures 58—68 *
Operations on syntopogenous structures 69-97 * Inverse image of a syntopogenous
structure 98-110 * Continuity 111-124 * Product of syntopogenous spaces 125-156 *
Ordering families of functions 157-177 * Quasi-metrics 178-195 * Separation axioms
196-210 * Convergence of grills 211-241 * Completion and compactification 242-276
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* Rank function of a syntopogenous structure 277-305 * Embedding into cubes
306-338 * Totally bounded syntopogenous structures 339-353 * Weight of metriz-
able spaces 354-371 * Bibliography 372-373 * Axioms 374 * Notation 375-376 *
Index 377-380.

Jean Dieudonné: La géoméirie des groupes classiques. Seconde édition.
(Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Bd. 5.)
Springer-Verlag, Berlin, Gottingen, Heidelberg 1963. 84125 S. Ganzl.
DM 38.00.

Collinéations et corrélations 1-36 * Structure des groups classiques 36-77 *
Caractérisations géométriques des groupes classiques 77-90 * Automorphismes et
isomorphismes des groupes classiques 90-116 * Table des notations 116-118 *
Index des définitions et des principaux théorémes 119-120 * Bibliographie 120-125.

L. S. Goddard: Mathematical techniques of operational research. (Inter-
national series of monographs on pure and applied mathematics 38.)
Pergamon Press, Oxford, London, New York, Paris 1963. 7+ 230 pp.
sh. 42/-.

Mathematical introduction 1-32 * Linear programming 33-63 * Transportation
and assignment 64-87 * Queueing theory: the single channel queue 88-140 *
Queueing theory: channels in series or parallel 141-165 * Machine interference
166-186 * Problems of stock control 187-227 * Index 228-230.

Theodore E. Harris: The theory of branching processes. (Die Grund-
lehren der mathematischen Wissenschaften 119.) Springer-Verlag, Berlin,
Gottingen, Heidelberg 1963. 16 +230 S., 6 Fig. Cloth DM 36.00.

The Galton—-Watson branching process 1-34 * Processes with a finite number of
types 34-49 * The general branching process 50-80 * Neutron branching processes
(one-group theory, isotropic case) 80-93 * Markov branching processes (continuous
time) 93-121 * Age-dependent branching processes 121-163 * Branching processes
in the theory of cosmic rays (electronphoton cascades) 164-207 * Appendices 207—
210 * Bibliography 211-224 * Index 225-230.

Carl Hyltén-Cavallius — Lennart Sandgren: Matematisk analys 11
(for tvabetygsstadiet vid universitet och hogskolor). Lunds studentkérs
intressebyra, Lund 1964. 124420 s. Sv. kr. 50.00.

Mingder, funktioner och strukturer 1-31 * De reella talen 32-55 * Punktméngder
och punktfsljder pa linjen och i planet 56-74 * Funktioner av en reell variabel
75-97 * Integraler av funktioner av en variabel 98-117 * Numeriska serier 118-
148 * Funktionsfoljder och funktionsserier 149-191 * Punktméngder och punkt-
foljder i R» 192-201 * Funktioner av flera variabler: grinsvirden och kontinuitet
202-225 * Funktioner av flera variabler: differentialkalkyl 226-270 * Funktioner
av flera variabler: extremvirden 271-285 * Funktionaldeterminanter och exi-
stenssatser fér implicit givna funktioner 286-317 % Dubbelintegraler och trippel-
integraler 318-378 * Linjeintegraler 379-402 * Frenets formler 403—405 * Svar till
6vningar 406-415 * Index 416-419 * Symboler 420.
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Shoschichi Kobayashi — Katsumi Momizu: Foundations of differential
geometry, I. (Interscience tracts in pure and applied mathematics 15.)
Interscience Publ. (John Wiley & Sons), London, New York 1963.
9+329 pp. sh. 115/-.

Differentiable manifolds 1-62 * Theory of connections 63-112 * Linear and af-
fine connections 113-153 * Riemannian connections 154-197 * Curvature and space
forms 198-224 * Transformations 225-265 * Appendices 267—285 * Notes 287-311 x
Summary of basic notations 313-314 * Bibliography 315-323 * Index 325-329.

M. A. Krasnosel’skii: Topological methods in the theory of mon-linear
integral equations. (International series of monographs on pure and
applied mathematics 45.) Pergamon Press, Oxford, London, New York,
Paris 1963. 11+ 395 pp. sh. 70/-.

Introduction 1-9 * Nonlinear operators 11-75 * The rotation of a vector field
77-140 * Existence theorems 141-180 * Problems concerning eigenfunctions 181-
238 * Eigenfunctions of positive operators 239-297 * Variational methods 299—
382 * Bibliography 383-392 * Subject index 393-395.

Lectures on modern mathematics. Vol. 1. Edited by T. L. Saaty. John
Wiley & Sons, New York, London 1963. 9+ 175 pp. sh. 45/-.

P.R. Halmos: A glimpse into Hilbert space 1-22 * Laurent Schwartz: Some
applications of the theory of distributions 23-58 * A. S. Householder: Numerical
analysis 59-97 * Samuel Eilenberg: Algebraic topology 98-114 * Irving Kaplansky :
Lie algebras 115-132 * Richard Brauer: Representations of finite groups 133-175.

Jan Lukasiewicz: Elements of mathematical logic. Translated from the
Polish by Olgierd Wojtasiewicz. Pergamon Press, Oxford, London, New
York, Paris 1963. 11+ 124 pp. sh. 42/-.

Introduction 1-21 * The sentential calculus 22-66 * Selected problems from the
methodology of the sentential calculus 67-91 * The sentential calculus with quan-
tifiers 92-102 * Aristotl’s syllogistic 103-117 * Notes 119-121 * The list of works
quoted 122-124.

P. Mainardi — H. Barkan: Calculus and its applications. Pergamon
Press, Oxford, London, New York, Paris 1963. 6 + 537 pp. sh. 55/

Fundamental ideas 1-55 * Derivative 56—80 * Differentiation and applications
81-106 * Higher order derivatives 107-118 * Trigonometric functions 119-133 *
Exponential and logarithmic functions 134-145 * Differentials and parametric
equations 146-169 * Vectors 170-179 * Anti-differentiation 180—195 * Separable
differential equations 196-209 * Definite integral 210-237 * Applications of the
definite integral 238-268 * Additional applications 269-312 * Technique of inte-
gration 313-333 * Approximate integration 334-343 * Solid analytic geometry
344-382 x Multiple integrals 383-404  Infinite series 405-439 * Differentiation
440-457 * Differential equations 458-474 * Table of integrals 475-482 * Numerical
tables 483-500 * Answers to odd-numbered problems 501-531 * Index 532-537.
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Edward Otto: Nomography. (International series of monographs on
pure and applied mathematics 42.) Translated from the Polish by
Janina Smolska. Pergamon Press, Oxford, London, New York, Paris
1963. 313 pp. sh. 75/-.

Introduction 9-59 * Equations with two variables 60-86 * Equations with three
variables 87-174 * Lattice nomograms 175-201 * Equations with many variables
202-241 * Problems of theoretical nomography 242-309 * Bibliography 310 *
Index 311-313.

Daniel Pedoe: A geometric introduction to linear algebra. John Wiley
& Sons, New York, London, Sydney 1963. 12+ 224 pp. sh. 45/-.

Coordinate geometry of the plane 1-20 * Vectors in two dimensions 21-37 =*
Coordinate geometry of three dimensions 38-63 * Vectors in three dimensions
64-90 * Linear equations with a unique solution 91-113 * Vector spaces 114-147 *
Matrices 148-168 * The concept of rank 169-200 * Linear mappings and matrices
201-216 * Answers to exercises 217-220 * Index 221-224.

Bengt Persson: Analytisk geometri och trigonometri med vektorrikning.
Svenska Bokforlaget/Norstedts, Stockholm 1963. 101 s.

Anvinda beteckningar 1-2 * Parallelkoordinatsystem 3-31 * Rétvinkliga koor-
dinater 32-51 * Cirkeln 52—-60 * Trigonometri 61-88 * Geometriska orter 89-94 *
Svar och anvisningar 95-101.

Robert A. Rankin: An introduction to mathematical analysis. (Inter-
national series in pure and applied mathematics 43.) Pergamon Press,
Oxford, London, New York, Paris 1963. 15+ 607 pp. sh. 80/-.

Fundamental ideas and assumptions 1-34 * Limits and continuity 35-108 =*
Differentiability 109-149 * Infinite series 150-190 * Functions defined by power
series 191-259 * Integration 260-436 * Convergence and uniformity 437-582 *
Hints for solutions of exercises 583-599 * Index 601-607.

Poul Rubinstein: Nomografi. (Emnelesning i matematik.) Gyldendal,
Kgbenhavn 1964. 72 s. D. kr. 8.50.

Indledende eksempler 9-15 # Skalaer og andre afbildninger 16-30 * Dollar-
nomogrammer 31-51 * R-nomogrammer 52-61 * Oversigt 62-67 * Etymologisk
liste over anvendte tekniske fremmedord 69 * Alfabetisk emneregister 71-72.

Thomas L. Saaty — Joseph Bram: Nonlinear mathematics. (Inter-
national series in pure and applied mathematics.) McGraw-Hill Book
Co., New York, San Fransisco, Toronto, London 1964. 12+ 381 pp. sh.
97/-.

Linear and nonlinear transformations 1-52 * Nonlinear algebraic and transcen-
dental equations 53-92 * Nonlinear optimization; non-linear programming and
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systems of inequalities 93—-174 * Nonlinear ordinary differential equations 175-275
* Introduction to automatic control and the Pontryagin principle 276-316 x
Linear and nonlinear prediction theory 317-364 * Appendix 365-372 * Index 373—
381.

Nils Sjoberg: Funktionslira och analytisk geometri, I. Hermods, Lund
1962. 6+ 261 s. Sv. kr. 32.00.
(Anmeldt i NMT, dette hefte, s. 70-71.)

Grafisk l6sning av ekvationer och ekvationssystem 1-15 * Punkten 16-31 *
Raéta linjen 32-57 * Funktion. Gréansvirde. Kontinuitet 58-75 * Derivata. Derive-
ringsregler. Tangent och normal 76-100 * Maxima och minima. Inflexion 101-130 *
Derivatan av produkt och kvot. Multipelrotter. Brutna rationella funktioners
kurvor 131-174 * Rotfunktioner och deras derivator 175-189 * Exponential- och
logaritmfunktioner och trigonometriska funktioner samt deras derivator 190-234 *
Svar till problemen 235-257 * Sakregister 258-261.

Ambros P. Speiser: Impulsschaltungen. Springer-Verlag, Berlin, Got-
tingen, Heidelberg 1963. 12+ 288 S., 274 Fig. Ganzl. DM 36.00.

Grundlagen 1-12 * Einteilung der Bauteile und Funktionen 12-14 * Verformung
mit linearen passiven Elementen 14-34 * Dioden 34-39 * Transistoren 39-73 =*
Elektronenréhren 73-81 * Lineare Impulsverstédrker 81-104 * Operationsverstér-
ker 105-113 * Nichtlineare Verformung 113-133 * Verstirkerstufen im Schalter-
betrieb 134-146 * Flipflops 146-160 * Multivibratoren 160-170 * Kippschaltungen
und ihre Synchronisation 170-182 * Impulsiibertrager 182196 * Sperrschwinger
196-210 * Andere Impulserzeuger 210-216 * Zahler 216-231 * Amplitudenspektro-
graphen 231-236 * Schaltungen in digitalen Rechenanlagen 236-251 * Nanose-
kunden-Impulstechnik 251-273 * Betriebssicherheit 274-280 * Literaturverzeichnis
281-283 * Sachverzeichnis 284-288.

Erling Sverdrup: Lov og tilfeldighet, I-11. Universitetsforlaget, Oslo
1964. Bind I: 13+ 350 s. N. kr. 58.40. Bind II: 7+ 261 s. N. kr. 46.80.

Bind I. En elementer innfering: Innledning 1-6 * Sannsynlighetsbegrepet 7-38
* Diskrete sannsynlighetsfordelinger 39-71 * Empiriske fordelinger 72-89 * Tilfeldige
variable 90-153 * Prinsipper for statistisk induksjon 154-194 * Varians- og regre-
sjonsanalyse 195-243 * Bernoulli- og Poissonforsgk 244-286 * Ikke-parametriske
situasjoner 287-301 * Glidende gjennomsnitt 302-314 * Hypergeometriske forsgk.
Stikkproveundersokelser 315-338 * Appendiks A. Ulikheter for aritmetisk, har-
monisk og geometrisk gjennomsnitt, Schwartz’ ulikhet 339-342 * Appendiks B.
Gammafunksjonen 343-344 * Stikkordregister 345-350.

Bind II. En matematisk viderefering: Samplingfordelinger 1-58 * De statistiske
metoders egenskaper og konstruksjon 59-138 * Varians- og regresjonsanalyse.
Fortsatt 139-204 * Multinomiske forsgksrekker 205-227 * Sekvensanalyse 228-251
* Appendiks C. Ortogonale transformasjoner 252-257 * Stikkordregister 258-261.

A. N. Tikhonov — A. A. Samarskii: Equations of mathematical physics.
(International series of monographs on pure and applied mathematics
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39.) Pergamon Press, Oxford, London, New York, Paris 1963. 164765
Pp. sh. 120/-.

Classification of partial differential equations of the second order 1-14 * Sim-
plest problems leading to equations of the hyperbolic type 15-44 * Method of prop-
agating waves 45-82 * Methods of separation of variables 82-125 * Problem with
data on characteristics 125-133 * Solution of general linear equations of the hyper-
bolic type 133-145 * Problems and appendices to Chapter IT 145-190 * Physical
problems leading to equations of the parabolic type 191-213 * Methods of the sepa-
ration of variables 213-235 * Problems in an infinite region 235-266 * Problems
and appendices to Chapter ITI 266-300 * Problems reducible to Laplace’s equa-
tions 301-314 * General properties of harmonic functions 314-337 * Solution
of boundary-value problems for the simplest regions by the method of separation
of variables 338-348 * Source function 349-360 * Potential theory 360-406 *
Method of finite differences 406-413 * Problems and appendices to Chapter IV
413-451 * Problem with initial conditions. Method of averaging 452-461 * Inte-
gral relation 461-468 * Vibrations of finite volumes 468-484 * Problems and
appendices to Chapter V 485-502 * Heat conduction in infinite space 503—512 *
Heat conduction in finite bodies 512-521 * Boundary problems for regions with
moving boundaries 521-530 * Thermal potentials 530-535 * Problems and appen-
dices to Chapter VI 535-555 * Fundamental problems leading to the equation
Av+cv=0 556-560 * The source function 560-570 * Problems for an infinite
region. The radiation principle 570-580 * Problems of the mathematical theory
of diffraction 580-592 * Problems and appendices to Chapter VII 592-626 x
Supplement : Special functions 627-636 * Cylindrical functions 637—685 * Spherical
functions 686-724 * Chebyshev-Hermite and Chebyshev-Laguerre polynomials
725-744 » Tables of the error integral and some cylindrical functions 745-753 =
Index 754-765.

Marie S. Wilcox — John E. Yarnelle: Mathematics. A modern approach.
Addison-Wesley Publ. Co., Reading (Mass.), Palo Alto, London 1963.
13+ 385 pp. $ 3.85.

Numerals, old and new 1-21 * Numerals with different bases 23-43 * Sets;
properties of operations 45-63 * Geometry, union and intersection of sets 65-97 *
Prime numbers and factors 99-121 * Fractions: symbols for rational numbers
123-145 * Decimal fractions 147-169 * Understanding percent 171-187 * The
number line; positive and negative numbers 189-205 * Open sentences 207-235 *
Ratio and proportion, percent 237-261 * Similar triangles and numerical trigono-
metry 263-293 * Polygons, circles, and solids 295-331 * Probability and statistics
333-365  Table of trigonometric ratios 367 * Answers to selected exercises 368-376
* Index 379-383 * Protractor 385.
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UTGIVENDE FORENINGER

Daxsk MATEMATISK FORENING.
Mede i1 Aarhus:

22.1 W. Maak, Gottingen: Fastautomorphe Funktionen.

Meoder i Kobenhavn:

18.2 T.Bang: Huworledes beviser man simpelt primialsetningen?
4.3 W.Maak, Goéttingen: Fastautomorphe Funktionen.
18.3 J. G. Herriot, Grenoble: Algorithmic methods in the solution of linear partial
differential equations by Bergman’s method of integral operators.
1.4 K. Jacobs, Géttingen: Recent results in information theory.
22.4 K. Jorgens, Heidelberg: Die asymptotische Verteilung der Eigenwerte singu-
larer Sturm—Liouville-Probleme.
14.10 H. Tornehave: Nogle eksempler fra anvendt matematik.
31.10 W. Fenchel: Om orientering af linie, plan og rum.
11.11 A. Lichnerowicz, Paris: Differential operators on a symmetric space.
25.11 L. Garding, Lund: Uniformisering vid Cauchys problem.
16.12 H. Rischel: Holomorfe afbildninger af polyederomrdder.

FORENINGEN AF MATEMATIKLZRERE VED (GYMNASIESKOLER
0G SEMINARIER I DANMARK.

15.10 H. Skovgaard: Om indledningen til den matematiske analyse.
P. Rubinstein: Kan det logiske formelsprog lette de sproglige tilegnelsen af
matematikken?
16.10 O. Callesen: Orientering om Datacentralens wvirksomhed og databehandling.
Besog og demonstration pa Datacentralen.

Foreningen deltog sammen med Aarhus Universitet og Direktoratet for gymna-
sieskolerne i arrangementet af matematiklererkursus pa4 Aarhus Universitet 29.
juli-10. august.

FINLANDS MATEMATISKA FORENING.

10.1 P.J.Myrberg: Katsaus erdisiin funktioteorian probleemoibin [En blick pd
ndgra funktionsteoretiska problem].
G. af Hallstrém: Véardefordelningssatser for vissa inre avbildningar av plana
omrdden.
0. Lehto: Kuasikonformikuvauksen mddritelmisti [Om definitionerna pd
kvasikonform avbildning].
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J. Viisild : Kvastkonformikuvaukset n-ulotteisessa avaruudessa [De kvasikon-
forma avbildningarna © n-dimensionell rymd)].

O. Jussila: Hellyn lauseesta [Om Hellys sats].

G. Elfving: Statistikens grundvalsfragor.

0. Hellman: Erds jonoprobleema [Ett kiproblem].

P. Laasonen: Matematitkan korkeakouluopetuksen ajankohtaisista kysymyk-
sistd [Om aktuella fragor betrdiffande hogskoleundervisningen i matematik].

Y. Juve: Matematitkan kouluopetuksen uudistamissuunnitelmista [Om re-
formplaner inom skolundervisningen ¢ matematik].

I. Simola: Matematiikan opetiajien opetusharjoittelusta [Om matematiklirar-
nas undervisningspraktik].

V. Ennola: Adrellisistd unitddrisista ryhmistd [Om dndliga unitira grupper].

L. Carleson, Uppsala: Ndgra utvidgningsproblem for kontinuerliga funktioner.

F. W. Gehring, Ann Arbor: Carathéodory convergence theorem for quasicon-
formal mappings in space.

K. Strebel, Fribourg: Zur Frage der Eindeutigkeit extremaler quasikonformer
Abbildungen des Einheitskreises.

F. Hirzebruch, Bonn: Die neuen Versionen des Riemann—Rochschen Satzes.

M. Ohtsuka, Hiroshima : Extremal lengths and some of its applications.

E. Mohr, Berlin: Das Spektrum eines Paares zu einander konjugierter ellip-
tescher Differentialgleichungen; Lorenz—Sommerfeldsche Vermutung.

R. Kurki-Suonio: Kieltoppi matemaattisena kdsitteend [Grammatik som mate-
matiskt begrepp].

K. Schréter, Berlin: Uber den Begriff der algebraischen Strukturen.

ISLENZKA STZRPFRAEDAFELAGID .

Ari Brynjoélfsson: Konservering af fodevarer.
Gunnar Bédvarsson: Anvendt matematik.
Porsteinn Semundsson: Solen.

Norsk MATEMATISK FORENING.

E. Thue Poulsen, Aarhus: Konstruktion med passer og lineal.

H. L. Selberg: Noen integralulikheter fra potensialteorien.

J. W. S. Cassels, Cambridge: Rational points on curves of genus 1.
P. Holm: Nok en gang om Bohr-kompaktifiseringen.

Fellesmoter med Norsk lektorlags matematikkseksjon 25.9, 22.10 og 26.11,
smlgn. nedenfor.

23.3

24.3
5.4

22.9

25.9

NoRSK LEKTORLAGS MATEMATIKKSEKSJON.

R. Solvang: Noen erfaringer fra forsoksundervisning med differensiallikninger.
(Stavanger.)

S. Seim: Det ¢ scerlig grad karakterdannende v matematikken. (Kristiansand.)

R. Solvang: Noen erfaringer fra forsoksundervisning med differensiallikninger.
(Trondheim.)

R. Solvang: Modernisering av matematikkundervisningen og de konsekvenser
det kan fd for et fremtidig pensum i faget. (Alesund.)

K. Piene og R. Solvang: Forsoksundervisning i matematikk. (Oslo.)
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R. Solvang: Orientering om forsoksundervisning i matematikk © ungdoms-
skolen. (Arendal.)

T. J. Engelskjon: Nordiske komitéens forsokspensum i geometri. (Skien.)

I. Johansson: Symbolsprdk — vanlig sprdk. (Oslo.)

K. E. Aubert: Innforing av tallbegrepet. (Oslo.)

SvENSKA MATEMATIKERSAMFUNDET.

Moéte i Stockholm:

M. Essén och B. Kjellberg: Om minimimodulen for hela funktioner och en
faltningsolikhet.

R. Andersson: Obegrdinsade Soboleffomraden.

H. Wallin: Ndgra utvidgningssatser for kontinuerliga funktioner.

J. Boman: Om holomorfiomrddet for losningar till en partiell differentialekva-
tion med konstanta koefficienter.

Méte 1 Lund:

A. Hyllengren: Kvoten mellan tvd hela funktioner med samma nollstillen.

H. Waadeland, Trondheim: Fra teorien for schlichte funlksjoner.

1. Wik: Generaliserat linedrt oberoende.

K.-O. Widman: Om randvirden for harmoniska funktioner i flera variabler.
L. Garding: Ndgra problem 4 teorin for partiella differentialekvationer.

J. Friberg: Fundamentallosningar for partiellt hypoelliptiska operatorer.

B. Gamstedt: En Taubersats med restterm.

S. Spanne: En bilateral Taubersats for Stieltjestransformen.

Moéte i Stockholm:

L. Hormander: L%-metoder 4 teorin for funktioner av flera komplexa variabler.
A. Pleijel: Ett Tauberteorem av Malliavin.

Allmén diskussion kring foérslaget till nya matematikkurser i gymnasiet.

7.4

17.11

2-5.1

FORENINGEN I LUND FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.
Varmote:
L. Dahlstrand och H. Leyon: Experimentell kems ¢ grundskolan.
L. Dahlstrand och H. Leyon: Fysikalisk kemi pd gymnasiet.
A. Bjerstedt: Vad dr programmerad undervisning?
M. Moller Jorgensen: Elevlaborationer dver radioaktivitet © skolan.
Hostmote :
M. Hultin : Naturvetenskaparna © allmdnhet och fysiken i synnerhet pd det nya
gymmnasiet.
E. Stenqvist: Kort orientering om lirarhigskolans verksamhet och lokaler.
S. Andersson: Modernisering av kemiundervisningen © Europa och Amerika.
— Litteratur av intresse for kemildraren.
L. Bjellerup: Kommentarer till gymnasieutredningens forslag till kursplan i
kema.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

Arsméte. Se referat i NMT, Bind 11, s. 38.
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VASTSVENSKA FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.
1.12 Arsméte i Goteborg:
S. Glad: Fysiken 4 det nya gymnastet.

FORENINGSNYTT

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

holl sitt ordinarie &rsméte i Stockholm den 2-4 januari 1964. Till ny ordférande
valdes lektor Stig Lindkvist. Vice ordférande blev lektor Fredrik Ehrnst, sekrete-
rare adjunkt Jan Unenge och skattméstare adjunkt Jacob Isander. De némnda
jimte lektor Bertil Englund utgér styrelsens arbetsutskott.

Lektor Ernst Knave, som efter 15 &r som féreningens ordférande nu lémnade
denna post valdes till féreningens hedersledamot.

Vid arsmétet diskuterades &mnena matematik, fysik och kemi pé det foéreslagna
nya gymnasiet, matematiken med F. Ehrnst som inledare, fysiken med E. Knave
som inledare och inledare i kemi var B. Englund.

R. Dahlkvist informerade i ett féredrag om programnmerad undervisning, O. Beck-
man talade om det fasta tillstdndets fysik och B. Dahlbom om meteorologin pé&
grundskolans hogstadium.

Omkring 300 medlemmar bevistade arsmoétet.

FORENINGENES FORMENN

Nedenfor angis navn og adresse til formennene i de utgivende foreninger:

Dansk matematisk forening : Professor Hans Tornehave, Tornebakken 45, Virum.

Foreningen af matematiklerere ved gymnasieskoler og seminarier i Danmark:
Lektor Henrik Meyer, Bakkedraget 15, Birkerad.

Finlands matematiska forening: Professor Olli Lehto, Advigen 13 A 9, Helsing-
fors — Drumsé.

Finlands matematik-, fysik- och kemildrarférbund: Dr. Urpo Kuuskoski, Lin-
nankoskenkatu 12 A, Helsinki.

Islenzska steerdfredafélagid: Professor Steingrimur Baldursson, Gladheimar 18,
Reykjavik.

Norsk matematisk forening : Professor Karl Egil Aubert, Institutt for matematiske
fag, Blindern, Oslo.

Norsk lektorlags matematikkseksjon, Oslo krets: Lektor Torjus I. Engelskjen,
Nadderud h. skole, Bekkestua.

Svenska matematikersamfundet : Professor Lennart Carleson, Matematiska insti-
tutionen, Sysslomansgatan 8, Uppsala.

Foreningen i Lund fér matematisk-naturvetenskaplig undervisning: Docent
Stig Andersson, Bankgatan 12, Lund.

Féreningen fér matematisk-naturvetenskaplig undervisning i Stockholm: Lek-
tor Stig Lindkvist, Edinsvégen 4, Ektorp.

Vistsvenska foreningen fér matematisk-naturvetenskaplig undervisning: Rektor
Arne Pleijel, Hjortmossegatan 160, Trollhéttan.
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UTNEVNELSER

Till professor i matematik vid Helsingfors Universitet: Docent Lauri Myrberg.

Till professor i matematik vid Uledborgs Universitet : Bitréidande professor Yrj6
Kilpi.

Til professor i ren matematikk ved Universitetet i Bergen: Dosent Oddmund
Kolberg.

Till professor i matematik vid Goteborgs Universitet: Laborator Olof Hanner.

Till professor i matematik vid Lunds Tekniska Hégskola: Docent Jaak Peetre.

Till professor i numerisk analys vid Kungl. Tekniska Hégskolan, Stockholm:
Laborator Germund Dahlquist.

Till professor i numerisk analys vid Chalmers Tekniska Hogskola, Géteborg:
Docent Heinz-Otto Kreiss.

Till professor i matematisk statistik vid Lunds Tekniska Hégskola: Docent
Gunnar Blom.

Till professor i skoglig matematisk statistik vid Skogshégskolan, Stockholm:
Docent Bertil Matérn.

Till bitrédande professor i matematik vid Uledborgs Universitet: Docent Klaus
Vala.

Til dosenter i matematikk ved Universitetet i Oslo: Universitetslektor Erik M.
Alfsen og universitetsstipendiat Otte Hustad.

Till laborator i matematik vid Stockholms Universitet: Laborator Hans Rad-
strom.

Till laborator i matematik vid Uppsala Universitet: Docent Christer Lech.

MATEMATIKK-SEMINAR I ATHEN NOVEMBER 1963

I dagene 17. til 23. november 1963 ble det holdt et seminar (»working session«)
om matematikkundervisning i skolen i Athen. Innbyder var OECD og det var ialt
et halvt hundre deltakere, fra universiteter og skoler, i land som herer til OECD.
Ordferer var professor Papaioannou fra Athen. Ved sin side hadde han professor
Howard Fehr fra New York, som var den daglige leder foruten at han hadde spilt
en vesentlig rolle i forberedelsene av seminaret. Fra Norden var innbudt som del-
takere lektorene Erik Kristensen og Ole Rindung fra Danmark, lektor Bjern
Bjarnasson fra Island, rektor Kay Piene og lektor Ragnar Solvang fra Norge og
lektorene Matts Héstad og Lennart Réade fra Sverige.

Hensikten med seminaret var & legge fram og diskutere matematikkpensumet i
OECD-landene, og videre utdanningen av matematikklerere. En hapet at disku-
sjonen skulle trekke fram, og til en viss grad klargjere, reformproblemene og spers-
malet om & endre pensum i relasjon til ndverende og framtidige behov, s vel
som & peke pa midler til & lose disse problemene.

Seminaret skulle gjore det mulig & utveksle opplysninger om og erfaringer fra
arbeidet med & modernisere matematikkundervisningen. Det skulle legges fram
materiale som syntes lovende, lerebgker skrevet for forsek, videre rapporter om
undervisning i moderne begrep og moderne undervisningsmate innen matematik-
ken, rapporter fra forsgksklasser etc. Seminaret skulle endelig utarbeide en rapport
som pekepinn for videre arbeid med moderniseringen. Deltakerne hadde p& for-
hénd fatt meldinger fra de enkelte land, basert p& et sperreskjema. P4 selve semi-




KRONIKK 85

naret var det lagt fram atskillig materiale, leerebgker og sertrykk osv., som illu-
strerte utviklingen og viste at moderniseringen er kommet ganske langt.

Det ble holdt foredrag av Servais (Belgia), Papy (Belgia), Pollak (USA), Athen
(Tyskland), Revuz (Frankrike) og Fehr (USA). Dessuten var det en rekke korte
meldinger fra forskjellige deltakere. Fra Norden var det Erik Kristensen som talte
om innfering av grupper og Lennart Rdde om sannsynlighetsregning. Ole Rindung
ga tilslutt et presist referat som oppsummerte det som var hendt pid seminaret.

Mange deltakere hadde ogs& veert med pa seminaret som OECD holdt i Frank-
rike (Royaumont) i 1959. Seminaret i Athen viste at en nd var kommet et godt
skritt videre. Moderniseringsarbeidet er tydeligvis i god gjenge i mange land, og
det viser seg at det lar seg gjore & bruke det nye stoffet i matematikkundervisningen
i skolene.

Resolusjon.

1. OECD ber sette igang opplysningstjeneste til medlemslandene som forteller
om utviklingen i matematikkundervisningen i disse landene.

2. Konferansen mener at utveksling av folk som arbeider med forbedring av
matematikkundervisningen er av vesentlig betydning og p& langt sikt ogsé eko-
nomisk. Vi tilrdr at OECD og ansvarlige instanser i medlemslandene tar initia-
tivet til & stotte slike besgk.

3. Konferansen mener at forskning i utvidet malestokk ber settes i gang for &
granske mulighetene for bruk av film, fjernsyn og programmert undervisning nar
det gjelder matematikkoppleeringen.

4. Konferansen understreker betydningen av forsegksklasser i matematikk for &
lette innferingen av nye metoder og nytt stoff. Tatt i betrakning at endringer skjer
raskt, tilrdr den at slike klasser ber drives kontinuerlig.

5. Det er innlysende at utdanningen av en vordende matematikklerer ma legge
vekt bade pa det pedagogiske og det faglige.

Hans kunnskaper i matematikk ber bringes opp pé et heyere niva enn det som
vil kreves i lerergjerningen. Dette betyr at lereren mé mestre det fundamentale
i moderne matematikk, sammen med kjennskap til en mangfoldighet av anvendel-
ser av moderne matematikk.

Det pedagogiske innhold mé henge negye sammen med den matematikk det skal
undervises i, og ber innbefatte psykologisk forstaelse av de barn som undervisnin-
gen gjelder.

I begge henseender skal leereren vere slik forberedt at han er i stand til & videre-
utdanne seg selv, og han m4 vere i stand til & tilpasse seg til de vekslende vilkar
som han sikkert vil mete i sitt arbeid. De foregdende betraktninger mé ogsé gjelde
alle de kriseforholdsregler som en kan gripe til for & mete en mangel pa kvalifiserte
leerere.

Dersom det videre er mer enn ett trinn i utdanningen av lerere for hoyere skoler,
er det tilrddelig at utdanningen for et lavere trinn skal veere slik at den setter den
vordende lerer i stand til siden & ga greit over fra et lavere til et hoyere trinn.

6. Forbedring og modernisering av matematikkundervisningen er umulig uten
store anstrengelser for & innfere eller utvide adgangen til etterutdannelse for lerere.
Det er forskjellige méter som dette kan gjeres pé, inklusive utvikling av korre-
spondansekurser, men konferansen vil serlig peke pa nedvendigheten av at leerere
regelmessig vender tilbake til universitetet eller andre institusjoner av samme
standard. Det er ogsé ytterst viktig at lerere mé bli fritatt for undervisning og
bli gkonomisk stettet om det trengs, for & sette dem istand til & ha full fordel av
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de muligheter som eksisterer. Med tilstrekkelig skonomisk stette kan viktige bidrag
til etterutdannelse bli gitt, ikke bare av universiteter og heyskoler, men ogsé av
yrkesorganisasjoner.

7. Fagets kulturelle og praktiske viktighet og de stadig gkende anvendelser
medferer at hver elev ma bli tilstrekkelig opplert i matematikk i den hoyere skole.
I denne sammenheng m& det nevnes at mengder, relasjoner og funksjoner er
grunnleggende for all matematikkopplaring.

Det er nedvendig & veere klar over betydningen av felgende emner for realfags-
spesialister: vektorrom, infinitesimalregning, sannsynlighetsregning og statistikk.

Ogsé andre enn realfagsspesialistene ber fa en grundig og skikkelig matematikk-
undervisning. Deres pensum ber ogsa vere fullverdig matematisk; det ber omfatte
fundamentale begrep, sammen med kjennskap til deres anvendelser. Spesielt ber
disse kurser omfatte sannsynlighetsregning og statistikk.

8. Konferansen mener at bruk av regnemaskiner (computers) mer og mer vil
bli et vesentlig element i var sivilisasjon. Dette faktum ma bli tilstrekkelig av-
speilet 1 pensumet for de hgyere skoler.

9. Konferansen fremholder sterkt at hvert OECD-land ma ga i gang med &
modernisere sine matematikkprogram i skolen s& langt og sa fort som dets utdan-
ningsresurser tillater.

10. Eksamener ber utvikle seg i samsvar med malene for en moderne matema-
tikkundervisning. Det er en stor fare for at eksamener med et fast pensum og
standard-oppgavetyper vil virke hemmende for en forbedring av skolens matema-
tikkundervisning.

11. Den »anvendte matematiker« bygger opp matematiske modeller fra situa-
sjoner i den virkelige verden. Han drar slutninger fra modellene og bygger opp en
tilsvarende matematisk struktur som han siden prever pa den originale situasjon.
Utviklingen av ren matematikk gar fram etter et lignende program.

Vi tilrar at matematikkundervisningen ber bruke det samme menster: eleven
bor konfronteres med situasjoner som vekker ettertanke; han ber sa bygge opp
sin intuisjon omkring disse og s& gé i gang med & gjere dem matematiske.

12. Det er viktig at elevene blir gjort klare over at matematikk er nyttig i sam-
funnet. En av de lette mater til & utvikle denne holdningen er & bruke, fra tid til
annen, anvendelser fra et vidt omréade, som motivering for undervisning om mate-
matiske begrep, og & bruke matematikk ogsé i sammenheng med slike anvendelser.
Dette betyr blant mye annet at matematikklererne mé samarbeide nert med leerere
i andre fag som bruker matematikk.

13. Matematikk er en enhetlig disiplin, den er ikke en rekke isolerte tricks. I
matematikkundervisningen er det nedvendig & bruke struktur som et fundamentalt
verktoy.

14. Matematikkundervisningen har ner forbindelse med undervisningen i andre
fag. Mange fordeler kan oppnds gjennom felles diskusjon av pensa og pedagogiske
problemer. Derfor anbefaler konferansen OECD at ved fremtidige meter som
gjelder undervisning i andre fag, spesielt naturfag, ber ogsé representanter for de
andre fag veere tilstede.

15. Alle matematiske tegn og symboler som brukes i OECD-rapporter og som
ikke vanlig brukes i de tradisjonelle matematiske lerebgker, ber vare fullstendig
forklart og illustrert ved eksempler, i den utstrekning dette siste ansees nedvendig.

K. P.




SUMMARY IN ENGLISH

R. TamBs LycHE: Azel Thue 1863-1922. (Norwegian.)

Written in memory of Axel Thue, the Norwegian mathematician whose most
famous contribution to mathematics was the first step in the theorem now known
as ‘“The Thue-Siegel-Roth-theorem”.

MatTs HisTaD: Activity of the Scandinavian committee for modernizing
the teaching of mathematics. (Swedish.)

The Scandinavian committee has initiated the preparation of experimental
texts on all mathematical subjects taught at all school levels from 7 to 19 years
of age. The article gives a short description of the different texts, and reports on
the experience so far in the cases where the texts have already been used for school
teaching.

JENS ERIK FENSTAD: Algorithms in mathematics: An introduction to
recursion theory and its applications, I. (Norwegian.)

The paper is mainly an expository account of elementary recursion theory.
In part I, some care is given to the discussion of the relationship between the
mathematical concepts of recursive functions and sets and the intuitive notion of
effective decidability. Primitive recursive functions are treated following Kleene.
Recursively enumerable (r.e.) sets are then introduced as being the ranges of
primitive recursive functions (plus the empty set). Recursive sets are defined as
r.e. sets having an r.e. complement, and recursive functions are introduced in
terms of recursive sets. The main theorems on normal forms, the u-operator, ete.
are then derived in a direct fashion. An enumeration theorem for primitive re-
cursive functions is next established directly from the five defining schemata, and
the existence theorem on r.e. sets which are recursively inseparable is deduced.

ErNsT S. SELMER: Registration mumbers in Norway: Some applied
number theory and psychology. (Norwegian.)

In 1964, every person in Norway will get his registration number, consisting of
6 digits for date of birth (year, month, day) and 3 digits to distinguish persons
born on the same day. In addition, there will be two check digits, which are weighted
sums of digits, reduced modulo 11. The weights were chosen so as to detect most of
the errors occurring during registration and punching. An earlier registration of
the population of Oslo was studied carefully to analyze psychological tendencies
in registration errors.
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LexNART RADE: The first digit and the Poincaré roulette problem.
(Swedish.)

The logarithmic distribution of the first significant digits of physical constants
is discussed, including some empirical verifications. An elementary derivation,
using only the mean value theorem for integrals, is given of the approximation
| F o) —x|=2-V[f,], 0=2x=<1. Here F, is the distribution function of ¢="log(n+1),
where 7 is the first significant digit, and f, is the frequency function of g, the
logarithm of the physical constants. Further V[f] is the total variation of f. The
connection between this problem and the Poincaré roulette problem is discussed
and the invariance law of Pinkham is demonstrated.

GUNNAR AF HALLSTROM: On the fundamental theorems of the theory of
value distribution. (Swedish.)

The main results in R. Nevanlinna’s theory of meromorphic functions are
the first and second fundamental theorem and the defect relation. The article
provides a survey of these theorems and related topics, especially generalizations
to functions, meromorphic in multiply connected domains, and also to pseudo-
meromorphic functions and partly to general interior functions.



