DE NATURLIGA TALEN

FOLKE ERIKSSON

Foérord. Matematikens forsta grunder, inforandet av de naturliga talen
och de enkla riknesitten, dr fortfarande (jfr. Landaus »Vorwort fiir den
Kenner« i [8]) ett forsummat kapitel i bade undervisning och larobocker.
Anda ar ju grundernas stora betydelse fér den 6vriga matematiken
sjalvklar. Dessutom erbjuder teorin for de naturliga talen, emedan den
inte kriver nagra forkunskaper, ett ovanligt tillfalle att dven for intres-
serade lekmiin (gymnasister?) demonstrera string matematisk bevis-
foring.

En bok som Landaus [8] har den nackdelen att talen betraktas helt
isolerade fran sina praktiska uppgifter t.ex. som nummer och antal
(jfr. Russells kritik av »formalisterna« [10, s. V ff.]). Dessa — och speciellt
begreppet antal — ges déremot sin rattmétiga centrala stallning i vissa
gldre arbeten, t. ex. Dedekind [3] och Helmholtz [6]. Dér bevisas bl. a.
att antalet element i en godtycklig méngd inte beror pa hur man riknar.
For att markera betydelsen av denna sats vill jag kalla den »rdkningens
fundamentalsats«. Tyvarr dr fundamentalsatsens bevis relativt svart,
men det kan knappast férenklas nimnvért ens om man forutsitter alla
resultat om de naturliga talen som finns i t. ex. [8].

Begreppet antal mojliggér den enkla och naturliga definitionen av
produkten ab som en summa av @ st. lika tal b. Rakningens fundamental-
sats kan ocksd utnyttjas vid bevisen av riknelagarna. En del av dessa
blir dérigenom nagot enklare — eller &tminstone »naturligare« — én t. ex.
Landaus, utan att férlora nagot i stringens. De bevis jag ger &r troligen
ritt gamla, d4ven om jag inte hittat precis allt i litteraturen. Inte heller i
6vrigt innehéller min artikel nagot direkt »nytt«, utom mojligen i disposi-
tionen. Artikelns syfte dr framforallt att i nagon mén foérscka sprida
kéinnedom om #ldre tankegangar, som trots sin fundamentala betydelse
tycks ha blivit nistan totalt bortglomda. Dessutom blir val min fram-
stiallning den forsta i sitt slag pa svenska, och som sadan kan den kanske
fylla ett visst behov.

Jag har foérsokt skriva si enkelt och littbegripligt som mdojligt med
speciell tanke p& eventuella lisare med ringa matematisk traning. Spe-
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ciella symboler anvinds darfor s litet som mojligt. Sjilva upplagg-
ningen anknyter ocksd nagorlunda till det sétt pa vilket man som barn
lar sig att rdkna. Nagra forkunskaper forutsitts inte utéver férmagan
att forstd det svenska spraket, i synnerhet orden »inte¢, »och¢, »om . . .,
sdq, »méngden innehaller« m. fl. Den som si vill kan darfor siga att en
viss logik och méngdlira forutsittes. Daremot krivs av ldsaren framst
vilja att tinka efter ordentligt. Det géller ju att sitta sig in i matematiskt
tdnkande. Den som vill snabbt ta del av artikelns huvudinneh&ll kan
eventuellt hoppa 6ver alla nagot lingre bevis (t. ex. vid satserna 4, 5, 11,
12, 13, 14, 17 och 18).

1. Peanos axiom m.m. Den viktiga egenskapen hos de naturliga
talen 1,2,3,... dr deras inb6rdes ordning, dvs. att 1 kommer fére 2 osv.
Denna ordning kan t. o. m. sigas vara den enda egenskapen hos de natur-
liga talen som sddana. Ett naturligt tal har i och for sig ingen enda egen-
skap — det har bara en viss plats i den ordnade méngden av alla naturliga
tal. Det kan betraktas som blott och bart en symbol f6r denna plats (jfr.
Holders term »Stellenzeichen« [7, s. 8]). Med andra ord: De naturliga
talen &r i forsta hand endast hjalpmedel for att beskriva en viss typ av
ordning. Denna ordning karakteriseras enklast genom Peanos axiom nedan.

Eftersom denna artikel handlar uteslutande om naturliga tal, kallas
dessa i fortsdttningen for enkelhets skull oftast bara »al«. De sirskilda
talen betecknas som vanligt med siffror. I sammanhang dér flera olika
tal kan asyftas, anvindes sma bokstiver a,b,.... Dirvid underfoérstas
som vanligt att en bokstav, som forekommer pa flera stéllen i ett sam-
manhang, pa alla dessa stéillen betecknar samma tal. Diremot kan ett
och samma tal mycket vil betecknas med flera olika bokstiver. Att a
och b betecknar samma tal skrives a=b. Om a=5, kan tydligen a er-
sittas med b (eller omvént) i vilket pastdende som helst utan att pa-
staendets riktighet (eller oriktighet) paverkas. Detta anvindes ofta i
bevis i det foljande. Ett specialfall 4r den »transitiva lagen« for likhet:
Om a=>b och b=c, 84 ir dven a=c. Att @ och b inte betecknar samma tal
skrives a#b.

Foljande axiomsystem brukar tillskrivas Peano [9, s. 34], men det
hade till stor del skapats redan av Dedekind [3, s. 20].

AxrtoM 1. Det finns ett tal som betecknas 1.

Axrom 2. Till varje tal a finns exakt eft nista tal. Detta betecknas a.

AxtoMm 3. For varje tal a dr ndsta tal o'+ 1.

Axiom 4. Om »tvd« tal har samma ndista tal, sd dr de dven sjilva lika.
(I formelskrift: Om a’=8’, sd 4r 4ven a=>5.)
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Axiom 5. (Induktionsaxiomet.) Om en mingd M av tal

a) innehaller talet 1, och

b) for varje tal a som den innehaller, dven innehdller nista tal o,
sa innehaller M alla tal.

Axm. Att dven axiom 5 (eller nigot motsvarande) behovs for att
karakteristiken av de naturliga talens ordning skall vara fullstindig ses
18tt med nagot exempel, dir ordningen &r av annan typ men &nda upp-
fyller de fyra forsta axiomen. Ett sidant exempel ar méngden av alla
naturliga tal och alla negativa heltal i ordningen: 1,2,3,..., —1, -2,
—3,... (dvs. férst kommer alla de naturliga talen och sedan de negativa
heltalen inb6rdes ordnade som motsvarande naturliga tal).

Talen #r fritt uppfunna hjalpmedel for tanken (jfr. Dedekinds be-
rémda formulering »... freie Schopfung des menschlichen Geistes nen-
nen¢ [3, s.21]). De kan uppfattas rent abstrakt, som kort och gott
nagonting som wppfyller axiomen. Som jag ser saken ar detta det enda
(och uttémmande) svaret pa fragan: »Vad ar ett tal?«. Nagon annan
definition av begreppet tal, &n den som salunda innehélles i axiomen,
kan jag inte ge. Om man vill forestélla sig talen mera konkret, t. ex. som
vissa siffertecken, maste man i varje fall komma ihdg, att det enda som
betyder ndgot dr talens ordming, sidan den karakteriserats genom vad
axiomen siiger om »néista tal«.

Axiomen skiljer sig inte principiellt fran foérutséttningarna i de sér-
skilda satserna. Man skulle mycket vil kunna klara sig utan speciella
vaxiom« och i stillet ta med alla behovliga férutséttningar i varje sats.
Detta skulle dock vara mycket opraktiskt, eftersom de allmdnna forut-
sdttningar som axiomen innehaller néstan alla behovs i néstan varje sats.
For att undvika ideliga upprepningar &r det darfor lampligt att formulera
dem en gang for alla i bérjan av teorin och ge dem den sédrskilda be-
namningen »axiom¢. Sedan kan alla dessa allménna forutsittningar i de
sirskilda satserna sammanfattas i det lilla ordet »tal¢ eller helt under-
forstas.

Det ar lampligt att avsluta 1 med en sats, som hénger mycket néra
samman med sjilva axiomen:

Sats 1. Varje tal a=1 dr ndsta tal till exakt ett tal b.

Bevis. Betrakta den méngd M som bestar av talet 1 och alla de tal
a=>b' som &r nista tal till ndgot tal.

a) M innehaller 1.

b) M innehéller o’ (for varje tal a) eftersom a’ dr nista tal till a.
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Enligt axiom 5 innehaller d& M alla tal, dvs. varje tal @ + 1 maste vara
nista tal till ndgot tal b. Om nu bade a=>5" och a=c’, s& vore b=c enligt
axiom 4. @ kan alltsd ej vara nista tal till »tva« olika tal.

Axm. Ett bevis, dir induktionsaxiomet 5 utnyttjas pad samma sétt
som i beviset for sats 1, kallas ett induktionsbevis.

2. Ordningsrelationen <. Ordningen mellan talen beskrives vanligen
med satser av typen »a dr mindre &n b« eller i formelskrift »a < b¢. Vi skall
nu se hur relationen < kan definieras uttryckt i axiomens begrepp
»nista tale samt hirleda relationens viktigaste egenskaper. Dessa ar ju
vilkidnda, och en enkel méjlighet vore att ta en del av dem som axiom.
Hir giller det bara att visa, hur de foljer ur vara forutsittningar,
Peanos axiom. Déarvid foljer vi i stort sett samma vdg som Skolem
[11, s. 6{f.]. Emellertid infor vi allra forst f6r varje tal @ »mangden N,
av tal som dr mindre &n eller lika med a«. Dessa méngder spelar en viktig
roll i fortsidttningen, t. ex. vid numrering (jfr. 3).

For att definiera mingderna N, far vi naturligtvis inte anvénda be-
greppet »mindre &n« som vi definierar senare. I definitionen skall vi
ange vilka tal som tillhér N, utan att ddrvid anvinda ndgra andra begrepp
dn de genom axiomen givna »ale, »1« och yndsta tal« (samt ord som »och« och
sméangden innehaller« vilka far uppfattas som i vanligt sprakbruk). En
saddan definition av N, kan nu goras rekursivt, nimligen forst for a=1,
sedan for a =2, osv. Allmént definieras N, for a =b" med utnyttjande av
den foregiende definitionen fér a=b. Vi uppstiller salunda foljande
(odndliga) »kedja« av definitioner. Den forsta (1) a&r mojlig tack vare
axiom 1, och tack vare axiom 2 kan man efter varje definition (a) gora
en nista (a’).

DEerFINITION 1.

(1) Mangden N, innehaller endast talet 1.
(2) Mingden N, innehaller endast talen 1 och 1'=2.

.....

Som kortare beteckning for »a tillhér Ny« infor vi »a < be.

Det maste nu bevisas att N, hirmed ar entydigt definierad for alla
tal a. Lat darfér M vara méngden av de tal a, fér vilka N, 4r entydigt
definierad genom definition 1.

a) M innehaller talet 1, ty (1) &r en definition av NV,, och ndgon mer
definition av N, finns inte i kedjan pa grund av axiom 3.
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b) Om M innehéller a, dr (a') en entydig definition av N,, och pa
grund av axiom 4 innehaller kedjan ingen mer definition av N,.. M inne-
haller d& dven ao'.

Pa grund av a), b) och axiom 5 innehaller M varje tal a, v. s. b.

Nu definierar vi sjilva ordningsrelationen »mindre &n:

DEFINITION 2. »a < b¢ skall betyda »a <b och a+b«. I ord: a siges vara
mindre dn b, om @ tillhér NV, och inte &r lika med b.

Pa grund av definitionerna 1 och 2 kan vi nu utlésa beteckningen
a <b pa det vanliga sittet: »a &r mindre &n eller lika med b«

Vi skall nu nirmast undersoka egenskaperna hos relationen =< (eller
mingderna N,). Vi borjar med ett par enkla satser.

SaTs 2. a<a’ (dvs. a tillhor N,,) for varje tal a.
Bevis. Enligt def. 1 innehaller N,, varje tal i N,,, och N, innehaller a.
SATS 3. 1=a (dvs. 1 &illhor N,) for varje a.

Bevis (induktion).

a) Mangden M av de tal a, for vilka 1 tillhér N,, innehaller 1, enligt
definitionen av N,.

b) Om M innehaller ett tal a, dvs. om N, innehaller 1, s& innehéller
ocksi N, talet 1 enligt definitionen av N, (rad (a’) i def. 1). Detta bety-
der just att M innehaller o'

Enligt a), b) och axiom 5 innehéller M varje tal a, v.s. b.

Nu tar vi en nagot svarare sats, en form av den s. k. transitiva lagen
for ordningsrelationen:

SATS 4. Om a<b och b<ec, sa dr dven a=c.

Brvis (induktion &ver ¢). Lat M vara méngden av alla tal ¢, for vilka
pastaendet giller.

a) M innehaller 1, ty for ¢=1 medfor férutsattningarna enligt def. av
N, att 4ven b=1 och a=1.

b) Om c tillhér M, skall vi nu visa att &ven nésta tal ¢’ gor det, dvs.
att a<c¢’, om a<b och b=c’, dvs. b=c eller b=c¢' (def. 1 (¢')). Om
b<c maste dven a=c, eftersom ¢ antogs tillhra M. Da &r ocksd a=c’
enligt def. av N,. Om b=c’ innebir forutsittningen att a <b just att
asc.

P4 grund av a), b) och axiom 5 maste M innehalla alla tal c, v.s. b.

SATS 5. Om a<b, sd dr dven o' £b'.
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Brvis (induktion 6ver b). Lat M vara mingden av de tal b, for vilka
pastaendet géller.

a) M innehaller 1, ty om @ <1 4r a =1 enligt def. av N;. Da dra’' =2 < 2.

b) Om b tillhér M, skall vi nu visa att dven b’ gor det, dvs. att o' <b",
om a=b’, dvs. a<b eller a=0". (b’ betyder nésta tal till ’.) Om a <5,
ar o’ <0’, eftersom b antogs tillhéra M. Enligt def. av N,. 4r d& ocksa
a'£b0".0m a=0" ar a’=b"" och dirmed a’ < b"’ (fortfarande enligt def. 1).

Pa grund av a), b) och axiom 5 méaste M innehélla alla tal b, v. s. b.

Omvint giller ocksa

SATs 6. Om o’ £b', sa dr dven a<b.

Brvis. Att @’ < b’ betyder enligt def. 1 att a’=50' eller ' <b. Om o' =b’
ar enligt axiom 4 4ven a=>5, och ¢ tillhér da N,. Om o' tillhér N, foljer
det av sats 2 och sats 4 att d&ven a gor det.

For att bevisa, att for godtyckligt givna tal @ och b precis en av relatio-
nerna a<b, a=b och b<a giller, behover vi ytterligare tva hjilpsatser.

Sats 7. For varje a gdller att nasta tal o' inte tillhér N,,.

Brvis (induktion).

a) 1'=2 tillhor enligt def. 1 inte N,.

b) Om a’ inte tillhér N,, kan ej heller ¢’ tillhora N,. Ty om o'’ till-
horde N, skulle enligt sats 6 dven o tillhéra N,.

Pastaendet foljer nu av axiom 5.

AxMm. Av sats 7 foljer speciellt att a+a', eftersom N, innehaller @ men
inte a’. Detta medfor att olikheten a<a' i sats 2 kan skirpas till o <a’
(vilket f. 6. kunde ha visats redan dar).

Sats 8. Om a<b, sa dr a' <b.

Bevis. Enligt def. 2 betyder a <b att a <b och a=+b. D4 ir dven o' < b’
(sats 5) och a'+b" (axiom 4). Enligt definitionen av N, méste da a’ <b.

AxMm. Den »spegelvinda« satsen: Om a <b’, sa ar a b, foljer direkt av
definitionerna 1 och 2.

Sats 9. Om a<b, sd gdller inte b<a.

Bevis. Om a <b, iar o’ £b enligt sats 8. Om da &ven b <a och dirmed
b= a, skulle vi enligt sats 4 fa a’ < a, vilket strider mot sats 7.

Det dr lampligt att hir skjuta in den transitiva lagen (sats 4) i dess
vanligaste form.

SaTs 10. Om a<b och b<c, sa dr dven a<c.
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Brvis. Forutsittningarna innebar bl.a. att a<b och b=c. Enligt
sats 4 dr da a<c. Men vore a=c, skulle det enligt forutsittningarna
gilla bade a<b och b<a, vilket &r omojligt enligt sats 9. Alltsd dr a <c.

SaTs 11. For stvd« godtyckligt givna tal a och b giller precis en av rela-
tionerna a<b, a=b och b<a.

Brvis. Pa grund av def. 2 och sats 9 kan hdgst en av relationerna gilla.
Att ndgon av dem giller visar vi nu genom induktion 6ver b. Betrakta
méngden M av tal b, sidana att for varje a ndgon av relationerna galler.

a) M innehaller 1, ty 1=<a enligt sats 3.

b) Om M innehaller b, giller f6r varje sirskilt @ nagon av tre mojlig-
heter:

1° a<b. Eftersom b<b’ (anm. efter sats 7) &4r da enligt sats 10 dven
a<b'.

2° g=b. D4 ar enligt samma anm. b<?b’, alltsd a<¥b'.

3° b<a. Enligt sats 8 ar da b’ <a, dvs. b’ <a eller b’ =a (def. 2).

I varje fall giller alltsd nigon av de tre relationerna mellan a och b'.
b’ tillhor alltsa M.

P4 grund av a), b) och axiom 5 innehaller M alla tal, v. s. b.

Axm. I stillet for b <a brukar man &ven skriva a>b (utlises »a &r
storre dn b«), men genom att alltid anvénda det forra skrivsittet kan vi
undvara tecknet >. En liknande term skall vi dock for bekvamlighets
skull inféra.

DeriniTION 3. Tal b, sddana att a < b, kallas »tal efter a«.
Talen efter a #r tydligen enligt sats 11 de tal som inte tillhor N,,.

Foljande viktiga sats dr en lamplig avslutning pa detta avsnitt (jfr.
sats 27 hos Landau [8, s. 13]).

Sats 12. Varje mingd M av naturliga tal innehdller ett minsta tal, om
den éverhuvudtaget innehdller ndagot tal. (@ &r det minsta talet i M, om a
tillhér M och a <b for varje annat tal b i M).

Bevis. Lat P vara miangden av alla tal p, sidana att p<m for alla
m i M. Eftersom M antogs innehélla nagot tal m, finns det ett tal m’
som inte tillhér P pa grund av sats 11, d4 m<m' (anm. efter sats 7).
P innehaller alltsa ej alla tal. Daremot innehaller P talet 1 enligt sats 3.
D4 maste P innehalla nagot tal a, sadant att o’ ej tillhér P, ty annars
skulle P p& grund av axiom 5 innehalla alla tal. Da a tillhér P, 4r a<m
for varje m i M. Men a maste sjilvt tillhéra M, ty annars vore for varje
m i M a<m och dirmed a’' <m enligt sats 8, vilket strider mot att a’
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ej tillhér P. a tillhor saledes M och a<m for varje annat tal m i M,
v.s. b.

3. Numrering, rikning och antal. Talen anvindes som alla vet i
forsta hand for att rikna velementen i en godtycklig méngd genom att
numrera dem. Vid sidana numreringar anvindes de delméngder N, av
mingden N av alla (naturliga) tal som vi infért och studerat i 2.

DErINITION 4. En tillordning mellan elementen i en godtycklig méngd
M och talen i antingen N eller nigon av delméngderna N, (¢=1,2,...)
kallas en numrering av M, om 1° mot varje element m i M svarar precis
ett tal n(m) i N, resp. N, 2° mot varje tal i N, resp. N svarar precis ett
element i M. Talet n(m) kallas i s& fall m:s nummer, och N, (resp. N)
kallas nummermdngd till M. Om M har en numrering sédges M vara num-
rerbar, annars kallas M icke numrerbar.

Vi kommer nu till den i férordet nadmnda rdkningens fundamentalsats
(Stolz 1885 [12, s. 9], Helmholtz 1887 [6, s. 92], Dedekind 1887 [3, s. 54].
Jfr. d4ven t. ex. Holder [7, s. 15ff.], Brouwer [1, s. 248], van der Waerden
[13, s. 10] och Wilder [14, s. 68].) Hér tar vi satsen i tre etapper (sats
13-15).

Sats 13. En numrering av en mingd N, med N, som nummermdngd dr
mdjlig endast om a=>b.

Bevis (induktion &ver a).

a) For a =1 ar pastdendet riktigt: Annars skulle mot talet 1 i N, svara
atminstone »tva« olika tal 1 och b i NV, (jfr. sats 3), i strid mot definitionen
av numrering.

b) Vi skall nu visa, att om péastdendet dr sant for a=c, s4 méste det
vara sant &ven for a=c’. Antag ndmligen motsatsen, dvs. att N, hade
en numrering med en nummerméngd N, med x=c’. Som i a) ser vi att
x =1, varfor enligt sats 1 z=d’, dir d +c enligt antagandet. Vid numre-
ringen av N, har ¢’ ett visst nummer n(c¢'). Detta ger tvd mdjligheter.

1° n(c’)=d’. I s4 fall vore (p& grund av def. 1 och sats 7) talen i N,
numrerade med talen i N, vilket strider mot »induktionshypotesen« att
satsens pastaende var sant for a=c.

2° n(c')=y=+d'. Enligt definitionen av numrering &r d& d’ nummer
for ett tal z+¢’ i N,. Om talen z och ¢’ far byta nummer (s& att n,(2)=y,
ny(c’)=d’) skulle vi ater f& en numrering enligt 1°, och dirmed samma
slutsats: satsens pastiende giller for a=c’.

Den mingd tal a, for vilka pastdendet géller maste nu enligt a), b)
och axiom 5 vara hela N.
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SaTs 14. Mingden N av alla naturliga tal kan ej numreras med ndgon
nummermdngd N ,.

Bevis. Om det funnes en numrering n(z) av N med N, som nummer-
mingd, kunde den sammansatta tillordningen

(i) n(@) > -2~ n(a)

utnyttjas for att konstruera en numrering av N, som strider mot sats 13.
Man kan anta att n(1)=a. Ty om den ursprungliga numreringen n, vore
sddan att ny(1)+a funnes ett £=1 med ny(x)=a, och en numrering n
av onskat slag fas om talen 1 och # byter nummer. Nu kan varje tali N,
eftersom det ir nummer n(x) fér nagot tal z, genom (i) tillordnas talet
n(z') som nummer. Dirigenom fas en numrering av N, med en nummer-
mingd bestaende av alla tal i N, utom a. Om a1 och a=5" (sats 1) ér
denna nummermingd enligt def. 1 och sats 7 N,, vilket strider mot sats
13. a=1 &r lika orimligt.

Sats 15. Ingen mingd kan ha flera olika nummermdngder.

BEvis. Antag att en viss mingd M hade »va« numreringar med olika
nummerméngder, antingen N, och N, eller N, och hela N. D& vore
varje tal i N, (eller N) nummer for ett bestamt element m i M, vilket
i sin tur hade ett visst nummer n(m) i N, vid den andra numreringen.
Den sammansatta tillordningen

z —m — n(m)

vore en numrering av N, eller N med N, som nummerméngd. Detta &r
omojligt enligt sats 13 eller 14.

DEFINITION 5. Om en mingd M har nummerméingden N,, kallas o
(det »storsta« talet i N,) for antalet element i M.

Sats 15 visar att antalet beror endast av méngden M och ej av num-
reringen.

DEFINITION 6. Om en méingd M har en numrering med nagon méngd
N,, kallas den dndlig. Om M &r numrerbar endast med anvéndning av
hela N, kallas M numrerbart odndlig.

Nar talen anvinds som antal, brukar de kallas kardinaltal till skillnad
fran ordinaltal, som representerar olika typer av ordning. Hér har ordinal-
talen i form av méingderna N, kommit f6rst, medan kardinaltalen inte
inforts forrin nu. Kardinaltalet »tva« har dock for enkelhets skull an-
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vints pa ett par tidigare stéillen, bl. a. nyss i beviset for sats 15. Naturligt-
vis borde jag hittills ha skrivit t. ex. »en méngd N, och en annan méngd
Ny« i stillet for »tva méngder N, och Ny« Men jag har behallit det be-
kvama ordet »tvé« och nojt mig med att papeka oegentligheten har och
genom citationstecken.

Praktiskt dr forstas kardinaltalen viktigast. Manga anser ocksd att de
logiskt sett bor komma forst. Darvid vill man definiera t. ex. kardinal-
talet fem som »klassen av alla méngder med fem element«. (»Klass¢ ar
en term med samma allminna och obestimda betydelse som »méngds.
Vi anvinder den hir for att slippa skriva »méngd av méngder«.) Men si
kan man inte géra direkt, eftersom talet »fem« behovs i denna definition.

Dérfor definierar man forst vad som menas med att tva méngder har
samma, antal element, eller 4r ekvivalenta, utan anvindning av tal. Tva
mingder M och N kallas nimligen ekvivalenta, om det mellan elementen
i de bada méingderna finns en tillordning med de egenskaper 1° och 2°
som en numrering skall ha enligt var def. 4. Sedan kan man indela alla
méngder i s. k. ekvivalensklasser, varvid ekvivalenta méngder hénfors
till samma klass. Bland ekvivalensklasserna igenkénner man latt enhets-
klassen (kardinaltalet 1). Genom successiv forening (jfr. def. av »for-
eningsmingdy i sats 22) av méngder ur enhetsklassen kan man ordna de
ekvivalensklasser som bestar av dndliga méingder efter méngdernas stor-
lek. Slutligen skulle nu t.ex. fem definieras som den femte av dessa
ekvivalensklasser. Men problemet att ordningstalet »femte« f6rekommer
i definitionen aterstar! En annan variant &r att definiera fem som den
klass, dit foreningsmingder av fem olika méngder ur enhetsklassen hor.

Whitehead och Russell definierar i Principia Mathematica inte si
stora tal som 5. Men 2 definieras [s. 359 (!)] som klassen av alla forenings-
mingder av X och Y, dir X och Y &r olika méngder ur enhetsklassen.
De undviker salunda att anviénda ordet »tva« genom att ndmna méing-
derna X och Y med beteckningar. Detta innebér vil i huvudsak att de
definierar »par« genom jimforelse med ett speciellt standardpar, ndmligen
de symboler som jag hir betecknat X och Y. Dessa spelar en roll som
motsvarar den méingden N, spelar i var definition av antalet 2. D4 man
anda maste ha ett standardpar, tycker jag nog att N, ér det enklaste.
For 6vrigt moter en definition av storre tal & la Principia Mathematica
saddana praktiska svarigheter, att man forstar varfor forfattarna stannat
vid 2.

I varje fall anser jag det uppenbart, att en teori grundad pa kardinal-
talen som ekvivalensklasser méaste bli oerhort mycket mer komplicerad
an t. ex. denna artikel. Den medfér manga andra problem &n de som
berérts hir (t. ex.: Andras talet 5, varje ging det fods femlingar?). Vid
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riakning (=Dbestdmning av antal) torde kardinaltalen i Principia Mathe-
maticas mening vara till foga hjalp for vanligt folk.

4. Addition. Numrering och rikning enligt 3 kan tillimpas pad méngder
av vilka slags element som helst. Man kan ju t.ex. rikna folk, dpplen eller
dagar. Speciellt viktigt hér &r att man naturligtvis kan rikna &ven
mingder av tal. Bl. a. kan talen efter a (def. 3) numreras pa ett sidant
gitt att @’ far nummer 1, varefter nista tal fir nista nummer osv. Det
tal som vid denna numrering av talen efter ¢ far nummer b, kallas
summan av @ och b och betecknas a +b (jir. Helmholtz [6, s. 75]). Denna
definition tillimpas direkt i den primitiva metoden att addera genom att
rikna pa fingrarna el. dyl. Vi méaste emellertid bevisa bl. a. att varje tal b
blir nummer fér ett tal a+b. Dirfor ger vi f6rst definitionen av addition
i string rekursiv form som vid def. 1.

DerINITION 7. (1) a+1=a’
(2) a+2=(a+1)

Axm. 1. Parenteserna i hogerleden anvindes som vanligt f6r att mar-
kera att det som stir inom parentesen skall betraktas som en helhet i
forhallande till det ovriga. I hogra ledet av (b') star alltsa: nésta tal till
summan av a och b. I vinstra ledet stir ddremot: summan av a och
nista tal till b, vilket fullstéindigare kunde skrivas a+ (b').

Anwm. 2. (b'), det s. k. »Grassmanns additionsaxiom« [5, s. 301], &r det
formella uttrycket for rekursionsforeskriften ynasta tal far nédsta nummer«.

Vi ger ett induktionsbevis for att def. 7 ar entydig och allmdn. Lat for
ett godtyckligt givet @ M vara méngden av de tal b for vilka def. 7
innehéller precis en definition av a+b.

a) M innehaller 1, ty (1) dr en definition av @ + 1, och den &r den enda
pa grund av axiom 3.

b) Om M innehéller b, dr (b') en entydig definition av a+0b’, och den
ar den enda pa grund av axiom 4. M innehaller da dven b'.

P4 grund av a), b) och axiom 5 innehéller M alla tal, v. s. b.

Axm. Det forefaller sannolikt — ja néstan sjalvklart — att Peanos
definition av a+b [9, s. 35] bor tolkas pd samma sitt som var def. 7
(jfr. Cassina [2]). Jag hoppas, att jag vid def. 1 har lyckats visa, att en
sddan rekursiv definition inte behover forutsitta att man forst infort
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ordningsrelationen <. I s& fall synes »Grandjots invindning« mot Peano
(»Man har ju inte alls definierat a+b«) [8, s. X] oréttvis och svarfor-
klarlig.

SatTs 16. For alla tal a och b dr a <a+b.

Bevis (induktion over b).

a) For b=1 dr a<a'=a+b (anm. efter sats 7).

b) Om a<a+b, foljer det eftersom a+b<(a+b) (samma anm.) av
sats 10 att a<(a+b)' =a+0'.

Satsen foljer p4 grund av axiom 5 av a) och b).

Sats 17. For alla tal a, b och ¢ med b<c dr a+b<a+ec.

Bevis. Vi visar forst att
(ii) a+b 2 a+d, omb=d

genom induktion &ver d.

a) (ii) galler for d=1, ty om b<1 &r b=1 och a+b=a'=a+d.

b) Om (ii) géller for d, skall vi visa att (ii) géller for d’, dvs. att a +b <
a+d', om b=d'.

1° Om b<d', dr b<d (anm. efter sats 8) och dérfor enligt (ii) a+b<
a+d. Men a+d<(a+d) =a+d'. Hirav foljer nu a+b<a+d’ (direkt om
a+b=a+d, annars med sats 10).

2° Om b=d’, ar a+b=a+d .

Pa grund av a), b) och axiom 5 giller (ii) for alla d.

Av (ii) foljer sats 17 som i fall 1° under b), ty di b<e, 4r c=d’ for
nagot d (sats 1).

SATs 18. For alla tal a och b med a < b finns precis eit tal ¢, sd att a +c=b.

Brvis. Det finns hdgst ett sddant tal ¢, ty om ¢ och d vore tva olika
sadana tal, vore enligt sats 11 antingen c¢<d eller d <c. Enligt sats 17
vore d& a+c<a+d resp. a+d<a+c. Det aterstar darfor att visa att
det for varje b efter a finns ndgot c. Om det inte vore sa, skulle méngden
M av tal b efter a, for vilka det inte funnes nagot ¢ s& att a +c=», enligt
sats 12 innehalla ett minsta tal m. m=+a’, eftersom o' =a + 1 enligt def. 7.
Da a<m, méste d& (sats 8) '’ <m=d’ (sats 1), och a’ £d (anm. efter sats
8). Da d inte skulle tillhéra M, funnes ett ¢ s& att a +c=d. Men da vore
enligt def. 7 a+c¢'=(a+c) =d' =m, vilket strider mot att m tillhérde
M. M kan darfor inte innehalla nigot enda tal, v. s. b.

Axwm. Med satserna 16 och 18 har vi (éntligen!) visat att tillordningen
a+b — b, definierad genom def. 7, verkligen ger en sidan numrering av

S
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talen efter @ som namndes i inledningen till detta avsnitt. Talen efter a
bildar alltsd en numrerbart odndlig méngd.

I samband med sats 18 &r det limpligt att definiera subtraktion.

DerFINITION 8. Talet ¢ i sats 18 betecknas b —a och kallas skillnaden
mellan b och a.

Var behandling av sambanden mellan additionen och ordningsrela-
tionen bor kompletteras med féljande omvindning till sats 17.

Sats 19. Om a+b<a+c for nagot tal a, sd dr dven b<c.

Brvis. Enligt sats 11 giller antingen b<c, b=c eller c<b. Om b=c,
vore a+b=a+c, vilket enligt def. 2 strider mot forutsittningen a+b<
a+c. Om ¢ <b, vore enligt sats 17 a+c<a+b, vilket enligt sats 9 strider
mot forutsattningen. Alltsd aterstar endast mdojligheten b <e.

Enligt def. 7 bér man skilja mellan ¢ +b och b+ a. Vi kan dock nu visa,
att dessa bada summor ar lika.

Sats 20. (Kommutativa lagen for addition.) For alla tal a och b dr
a+b=b+a.

Brvis. Antalet tal i N,,, dr naturligtvis a+b, vilket inses om vart
och ett av dessa tal far vara sitt eget nummer. Men samma tal kan ocksd
numreras t. ex. si, att man forst numrerar talen efter a i N, med talen
i N, som vid def. 7, och dérefter numrerar talen x<a (alla dessa tillhor
N,., enligt sats 4) i ordning med b’ osv. Vid denna numrering far talet a
nummer b+a enligt definitionen av b+a. Da dirmed alla tal rZ<a+b
numrerats, dr deras antal b+a, och enligt sats 15 ar da b+a=a+b.

Ordningen mellan tvd tal som adderas inverkar alltsd ej pd summan.
Vid addition av tre tal inverkar det ej heller vilka tva tal man forst
adderar:

Sats 21. (Associativa lagen fér addition.) For alla tal a, b och c dr
(@+b)+c=a+(b+c).

Bevis. Det giller att visa att talet (a+b)+c¢ vid den numrering av
talen efter @ som anvindes i def. 7 far nummer b +c¢. Vid denna numre-
ring far a+b definitionsméassigt nummer b. Numreringen av talen efter
a+b kan fis genom sammansittning av den enligt def. av (a+b)+c
givna numreringen med talen i N, och den numrering av talen efter b
som definierar b+c:

(@+b)+x—>2x—>b+x (x=c).
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Axwm. Genom upprepad anvindning av satserna 20 och 21 fas

(@+b)+c=a+(b+c) =a+ (c+b) = (a+c)+b
= (c+a)+b = c+(a+bd) = ¢+ (b+a) = (c+b)+a
= (b+c)+a = b+ (c+a) = b+(a+c) = (b+a)+c,

dvs. summan av tre tal ir oberoende av sivil ordningen mellan talen
(termerna) som hur de adderas. Pa samma sitt inses att detta giller all-
mént for summan av godtyckligt manga tal. Beviset kan genomféras
strikt med induktion Gver antalet termer (se hinvisning nedan vid
multiplikationen). Man kan dérfor utan oklarhet skriva t. ex. a +b+c+d
i stallet for a+[(b+c)+d].

Additionens praktiska betydelse beror pa féljande sats.

SATs 22. Om a och b dr antalet element i tvd mingder M, resp. My, och
inget element tillhor bada mingderna, sd dr a+b antalet element i forenings-
mdngden, dvs. den mingd som bestdr av alla element © M, och alla element
1 M,.

Bevis. Ur tvd numreringar av M, resp. M, fas en numrering av for-
eningsméngden, t. ex. genom att for varje  <b numret a +x ges till ele-
ment nummer x i M;,, medan elementen i M, far behalla sina nummer.

Totala antalet element i tvéa (eller flera) méingder kan alltsi bestim-
mas genom att man riknar varje mingd for sig och sedan adderar
antalen.

5. Multiplikation. Enligt anm. till sats 21 kan man tala om summan av
ett godtyckligt antal termer utan att precisera hur dessa skall adderas.
I det viktiga specialfallet att alla termerna inbérdes &r lika &r det prak-
tiskt att infora ett sirskilt riknesitt, multiplikation.

DEFINITION 9. ab=produkien av a och b #r en summa dir antalet
termer 4r a och varje term ér b.

Axm. Multiplikationens praktiska betydelse framgar direkt av sats 22
med efterf6ljande kommentar: ab ir totala antalet element i @ st. méangder
med b element vardera. Ur praktisk synpunkt beror darfor multiplika-
tionens anvindbarhet pa att det i verkligheten ofta forekommer att
man vill rikna méngder, som dr sammansatta av ett antal »lika stora«
delméingder (eller atminstone kan tinkas uppdelade i sadana).

Aven hir giller en kommutativ lag: de bada pa helt olika sétt definierade
talen ab och ba visar sig vara lika.
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SaTs 23. For alla tal a och b dr ab=ba.

Bevis (jfr. Holder [7, s. 24] och Dirichlet [4, s. 1{f.]). Médngden M av
olika talpar (x,y) med x<a och y<b kan riknas pa olika sétt. Den &r
foreningsméingd av @ st. mingder M, dir M, betecknar méngden av
alla talpar i M med ett givet tal x <a som f6rsta tal. Genom att anvénda
y som nummer for elementet (x,y) i M,, ser man att antalet element i
M, dr b. Enligt sats 22 med efterféljande kommentar ar da antalet ele-
ment i M summan av a st. tal b, dvs. ab.

A andra sidan ar M foreningsmingd av b st. mingder M?'/, som var
och en bestar av alla talpar i M med ett och samma andra tal y<b.
Foér varje M, finner man antalet element vara a, genom att numrera
(%, y) med x. Antalet element i M &r d& enligt sats 22 med kommentar
ba. Eftersom antalet element i M ar entydigt bestdmt (sats 15), maste
ab=ba, v.s.Db.

Produkten av tva tal (fakforer) dr alltsd oberoende av ordningen mel-
lan dessa. Likasd dr produkten av tre tal oberoende av vilka tva av
dessa man multiplicerar forst (associativa lagen for multiplikation):

Sats 24. For alla tal a, b och ¢ dr (ab)c=a(bc).

BEvis. (ab)c dr enligt def. 9 summan av ab st. termer c. Enligt anm.
till sats 21 och kommentaren efter sats 22 kan dessa termer grupperas
i @ st. parenteser med b st. termer i varje. Summan inom varje parentes
dr da definitionsméssigt be, och hela summan &r a(bc), v. s. b.

Axm. Genom upprepad anvindning av satserna 23 och 24 bevisar man
precis som vid additionen (anm. till sats 21) att alla de 12 mdjliga sétten
att multiplicera tre givna tal ger samma produkt. Allmént inses p4 samma
sitt att ett godtyckligt antal givna tal har en entydigt bestamd produkt,
oberoende av i vilken ordning man multiplicerar dem. Ett fullstindigt
genomfort induktionsbevis for detta finns hos Dirichlet [4, s. 3ff.].

Vi kommer nu till den sista av de grundliggande riknelagarna, den

som ger mojlighet att »multiplicera in« (eller »bryta ut«) en faktor i en
parentes.

Sats 25. (Distributive lagen.) For alla tal a, b och ¢ dr a(b + ¢) = (ab) + (ac).

Axwm. Enligt den vanliga konventionen att produkter i férsta hand
skall uppfattas som helheter far parenteserna i hogra ledet slopas.
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Brvis. Summan av a st. termer b och @ st. termer ¢ &r enligt anm. till
sats 21 densamma, antingen termerna grupperas i a st. par b+c¢ som i
vanstra ledet eller i tva parenteser innehallande alla termer b resp. alla
termer ¢ som i hogra ledet.

Till sist skall vi har visa de tvd satser om ordningens bevarande vid
multiplikation, som #r analoga med satserna 17 och 19 for addition och
grundliggande for rakning med wolikheter« (dvs. ordningsrelationer).

SaTs 26. For alla tal a, b och ¢ med b<c dr ab<ac.

Bevis. Enligt sats 18 och def. 8 ar c=b+ (c—b), varfor
ac = a[b+(c—0b)] = ab+a(c—b)
enligt sats 25. Men enligt sats 16 4r ab<ab+a(c—b).

Sats 27. Om ab<ac for ndgot tal a, sd dr dven b<ec.

Bevis. Enligt sats 11 giller antingen b<c, b=c eller c<b. Om b=c
vore ab=ac, vilket enligt def. 2 strider mot férutséttningen ab < ac. Om
c<b, vore enligt sats 26 ac<ab, vilket strider mot forutsittningen pa
grund av sats 9. Alltsé aterstir endast mojligheten b <c.
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TILLAMPNING AV MONTE CARLO-METODEN PA
BERAKNING AV FLERDIMENSIONELLA INTEGRALER

AIMO TORN

1. Inledning. Att analytiskt fors6ka berdkna flerdimensionella be-
stdmda integraler ar i allménhet ej en litt uppgift. Endast i de fall da
integrationsomridet dr symmetriskt och/eller integranden speciellt enkel
kan man vinta sig ett exakt resultat.

Om en analytisk 16sning ej gar att finna, maste man néja sig med ett
approximativt resultat, t. ex. ett véigt medeltal av integrandens virden
i ett antal punkter. Vi kommer hirmed &ver till metoder, som gir under
det gemensamma namnet numerisk integration.

For numerisk kvadratur (integration dver ett intervall) har en méingd
olika formler hirletts, alltfran de enklaste, t. ex. trapetsregeln och Simp-
sons formel, till mera komplicerade och speciella, t. ex. de som uppstillts
av Chebyshev, Cote, Gauss och Stiefel (se dven [1]), for att bara nimna
négra.

Mycket svart ar det emellertid att hirleda formler f6r numerisk inte-
gration i flera dimensioner dven om integrationsomradet dr symmetriskt.
Har har man funnit ett gebit, inom vilket man under det senaste decen-
niet, frimst tack vare de snabba datamaskinerna, med framgang kunnat
tillampa Monte Carlo-metoden.

Anvindning av Monte Carlo-metoden fér berikning av en bestamd
integral I innebar att man betraktar en stokastisk process med en stokas-
tisk variabel vars medelvirde dr I. Karakteristiskt for metoden ar den
slumpvisa provtagningen, som gor den enkel att tillimpa oavsett hur
integrationsomradet ser ut.

Vid den enklaste tillimpningen av Monte Carlo-metoden uppskattas
integralen I som (se dven [3])

1 1 N
M I- §f(w)dx ~y 2,

dvs. som produkten av integrationsomradets storlek V (i detta fall ar
V =1) och medeltalet av N integrandvirden f(x;). Talen z, ir rektanguléir-
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tordelade (likformigt fordelade) s. k. slumptal, dvs. virden av en rektan-
gulirférdelad stokastisk variabel. Felet vid denna metod avtar som N-1/2,

2. Slumptal. D4 vid Monte Carlo-berdkningar ett mycket stort antal
slumptal behéves och d datamaskinens inlisning och koppling till min-
net ar relativt lingsamma operationer jimférda med dess aritmetiska
operationer, &r det ytterst ineffektivt att anvinda fardiga slumptal i
form av en tabell. Vi maste i stéillet lita maskinen framstilla slumptalen
allteftersom de behoves. Matematiska deterministiska metoder &r darvid
att foredraga framom fysikaliska, emedan de forra tilliter en reproduk-
tion av slumptalen och salunda gor det mojligt att statistiskt testa deras
kvalitet.

Vid matematiska metoder bildas slumptalen enligt rekursionsformler.
Emedan talen kan anges med ett begrinsat antal siffror, &terkommer de
i perioder, vilkas lingd beror av den metod enligt vilken de framstélles.
Dessa tal dr darfor i string mening inte slumptal, och bendmnes &ven
pseudo-slumptal. I praktiken kan blott ett &ndligt antal slumptal tagas
med i beriikningarna och om pseudo-slumptalens period ér lang nog kan
vi darfér anvinda dem lika girna som slumptalen.

Rektangulirfordelade slumptal har tidigare omnémnts. Vi definierar
dem pé foljande sitb:

Talen x; i en talfsljd X siges vara rektangulirfordelade i intervallet
[0,1] om for antalet n(x) av de tal i X, vilka &r mindre &n o (0=x<1),
giller att n(x)/n -« dd n — oo.

De mest anvinda metoderna att bilda rektangularfordelade pseudo-
slumptal i en datamaskin &r de s. k. kongruensmetoderna, som kan in-
delas i tva grupper, de multiplikativa [8, 9, 12, 13] och de additiva [9, 11].
For att kunna lita pa dessa pseudo-slumptal, bor man underska deras
period [2, 11] och testa dem statistiskt [8, 12].

Vi skall beskriva tva metoder for generering av pseudo-slumptal, av
vilka den multiplikativa kongruensmetoden hérrér frin Lehmer, den
additiva fran Rotenberg [11].

1. Multiplikativ kongruensmetod (se aven [5]).

Utgéangsviirdena g och z viljes godtyckliga, varefter talen bildas enligt
foljande lag:
(2) Loy = T2 (mOd M) ’

dir x, =0, s& att x, ir av formen gz (mod M). Emedan de flesta maskiner
riknar i det biniira talsystemet, ar det bekvimt att vilja M =2!, dir !
bestimmes som det antal binéra siffror, som i maskinen &r reserverat for
ett tal. Enligt Barnett [2] erhalles den maximala perioden, 2!-2 tal, om
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= +5 (mod8),

(3) 0 udda .

I1. Additiv kongruensmetod.
Vi viljer utgdngsvirdena a och ¢ godtyckliga, och bildar talen enligt
rekursionsformeln

(4) Xy = (@°+ 1)z, +¢ (modg!), ¢ = 2 eller 10,

diar a=2 och ¢ udda. Metoden lampar sig bade for bindrmaskin (g=2)
och decimalmaskin (g=10), och ger maximal period dvs. ¢’ tal. Ett nytt
tal ,,, innebér t. ex. i det bindra fallet f6r maskinen en flyttning av x,
om q steg till vinster (2%,) och tva additioner (2%, +x,+c). Emedan
multiplikation &4r en langsammare operation #&n flyttning och addition
ar metod II i allménhet snabbare &4n metod I.

De pseudo-slumptal «,, som erhalles enligt (2) och (4) ligger i interval-
len [0,¢']. Talen g8 —«x)x,+« ligger dédremot i det godtyckliga inter-
vallet [«,f].

3. Flerdimensionella integraler. For att erhalla rektangulirférdelade
punkter i n dimensioner, t. ex. i en n-dimensionell hyperkub, avdelar vi
pseudo-slumptalen, bildade enligt nagon av metoderna ovan, i grupper
om 7 element i varje och betraktar dessa som koordinater f6r punkterna.
Att de sa erhallna punkterna faktiskt dr rektangulirférdelade i n dimen-
sioner ar ej utan vidare klart. Davis och Rabinowitz [5] har dock testat
dylika sekvenser, genererade enligt metod I, genom att berikna volymen
av n-dimensionella hypersfirer (n=2,3,...,12) och funnit férfarandet
vara tillforlitligt.

For flerdimensionella integraler géller en formel av samma typ som (1):

T .
(5) S Xz, .. dw, ~ T = = 3f(X).
P i=1
Vi erhaller rektangulirfordelade punkter i omradet K genom att in-
skriva K i en n-dimensionell hyperkub, vilja rektangulirférdelade punk-
ter i kuben pa ovan angivet sitt, och av dessa punkter beakta endast

N f
dem som faller i K. Hérur far vi V=—V,,,, dir m dr antalet punkter
m

i kuben och N de av dessa som faller i K. I de fall d& volymen &r kind
mojliggdr detta samband en vilkommen kontroll av berikningarna.

For att atergd till skattningen (5), kan man vid beridkningarnalimp-
ligen successivt vilja N=2" (v=1,2,...), for att kunna avgora i vilken
man [ »stabiliserar sig.
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Som redan i inledningen namnts avtar felet i Monte Carlo-metoden
som N-12, dar N ar antalet punkter som tagits med vid berékningarna.
Proportionalitetskonstanten ater dr beroende av integranden och inte-
grationsomradet.

For berikning av integraler med singulira integrander giller det att
anvinda Monte Carlo-metoden med urskillning. T. ex. f6r endimensio-
nella integraler med singulariteter av hogre ordning &n hos z~1/2 f6r =0
ger metoden felaktiga virden. Vidare ér i detta fall den statistiska medel-
avvikelsen bedrigligt liten, vilket kunde leda till oriktiga antaganden
angdende resultatens tillforlitlighet [10].

4. Ett exempel. De hiir beskrivna metoderna har av forfattaren till-
limpats pa nagra integraler av intresse inom den moderna méngparti-
kelteorin. Emedan kravet p& noggrannhet i resultaten ej strickte sig
lingre an till en god uppskattning av storleksordningen av de olika inte-
gralerna, och di dessa var synnerligen besvirliga att analytiskt berdkna,
syntes Monte Carlo-metoden i detta fall, trots singuléra integrander [10],
vara en utmirkt losningsmetod. Fér kontroll av Monte Carlo-metoden
utriknades bland andra foljande niodimensionella integral dven genom
serieutveckling och integration term foér term:

kl <k

d3ke, d3ke, A3k | 4

(6) =S e, K kgl > Ty
K[q (@ +Fy+Ey)][q - (g +Ey+ E5)] k==Fk,Ey,E,.

Hir &r k, en konstant och vektorn q &r bestdmd till sin riktning medan
dess belopp ¢ ir en parameter. Integrationsomradet K definieras av att
k; (1=1,2,3) 1) fér ¢ > 2k, ligger i sfaren |k, <k, och 2) foér ¢<2k; i
samma sfir, dock ej i den del, som dr gemensam med en annan sfir med
samma radie, beligen si att sfirernas medelpunkter sammanbindes av
vektorn g, som utgar fran den senare sfirens medelpunkt. For volymen
V av integrationsomridet K galler

47 h\ |3
V= [?_thz(bg)} K,
med
1-L for g < 2,
h = 2k,
0 for q > 2k;.

Som slumptal anvindes pseudo-slumptalen 2(z,—3), vilka ligger i
intervallet [—1,1], dér i enlighet med metod I
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Za1 = 707, (m0d2%), 2z = 5 (mod 2%%)

x, = 27%%, .,

I tabell I jamfor vi, fér nagra virden pa parametern ¢, de resultat vi
erholl enligt Monte Carlo-metoden med de pa analytisk vig berdknade.

Monte Carlo-berdkningarna utfordes pa datamaskinen Wegematic 1000
(Alwac III E) vid Abo Raknecentral.

Tabell I
J
q beg?
s
ke Riktigt M.C. med
virde 1024 punkter
0.6 11.8 11.9
1.0 15.9 16.4
1.2 16.5 16.5
1.4 15.2 15.1
1.6 13.1 13.1
1.8 10.1 10.0
2.4 2.7 2.8
3.0 1.0 1.0

Resultat erhdllna vid Monte Carlo-berdkningar av den niodimensionella integralen J
(se (6)) for olika virden pa parametern g, jimférda med motsvarande, analytiskt utriknade
resultat.

Tabellen visar att det relativa felet i Monte Carlo-virdena ej 6verstiger
5%, varfor resultaten maste anses vara tillfredsstillande.

5. Forbittrad metodik. I det behandlade exemplet erholl vi med Monte
Carlo-metoden resultaten snabbare och med mycket mindre arbete an
med det analytiska forfarandet. Detta beror pa att i Monte Carlo-
metoden hela arbetet enkelt kunnat 6verforas pa en datamaskin. Maskin-
tiden, vilken snabbt ckar med kravet p& stérre noggrannhet hos resul-
taten, 4r emellertid dyrbar. Det dr dérfér onskvirt att géra metoden
effektivare &n den ér i den enkla form som héir beskrivits (N slumpvisa
abskissor alla med vikten 1/N).

Med viktssampling, vilket innebdr att vikterna viljes si att varje
intervall blir representerat i proportion till sin betydelse for slutresulta-
tet, och med olika slag av korrelerad samplingsteknik kan man med
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Monte Carlo-metoden uppna en mera tillfredsstillande precision i resul-
taten [4, 5, 6, 7], vilket &r av storsta betydelse, d4 metoden i ménga fall
ar den enda anviéndbara.
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EN GENERALISERING AV L’HOSPITALS REGEL

SIGBJORN HALVORSEN

I det folgende er f(x) og g(x) reelle funksjoner av en reell variabel.
Regelen for bestemmelse av lim f(x)/g(x) nar kvotienten tar formen 0/0
eller co/co, ved betraktning av f’(z)/g'(z), har flere varianter, se f. eks.
[1], p. 293-296, [2], pp. 130-141. Vi betrakter i det folgende eksplisitt
bare grenseoverganger fra venstre.

1. f(x) og g(x) forutsettes deriverbare (altsd ogsd kontinuerlige) for
x=E&, og videre g'(§)+0. Er da f(£)=g(£)=0, sa gjelder

(1) tim £ _ /)

Her er da f(x) og g(x) ikke palagt noen kontinuitetsbetingelser for x + &.

IIa. lim f(z)=limg(z)=0, og f(x), g(x) deriverbare for z,<x<§¢. P4

x—>& x—>&

dette apne intervall skal ogsi g'(x)=+0. Dersom né

2) im L@
z—>§& 9 (x)

88 vil ogsa

(3) lim @ =k.
x—>& g(x)

Her kan & og k veere endelige eller uendelige.

IIb. g(x) - 4+ oo nar x — &, f(x) og g(x) deriverbare samt g'(x)=+ 0 for
zy<x <& Da gjelder som under ITa at (2) medferer (3).

Bevis for (1):

f@) =1
jlx_) = v—¢ —>f(§) nar x — &, q.e.d.
gx)  gx)—gé) ¢'(é)
r—§

[103]
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Setningene under ITa og b kan vises (som det gjores i de fleste leere-
beker i differensialregning) ved hjelp av Cauchys utvidede middelverdi-
setning ([1], p. 244):

(4) flz) = (@) = £ (@) for minst en z,, ; < z, < 3,

g(@g) —g(z;)  g'(w)
nér f(z), g(x) er kontinuerlige for ; <z <,, deriverbare for z, <X <,
9(@) #g(x5), samt f'(x) og ¢'(x) ikke samtidig lik null for x, <z < .

For beviset av (3) er det mindre vesentlig om & er endelig eller ikke;
disse to tilfeller kan ogsé feres tilbake pa hverandre gjennom en variabel-
substitusjon. Derimot ma hvert av tilfellene g(x) — 0 og g(zx) —~ oo be-
handles seerskilt.

Setningene under ITa og b gir s& ved gjentatt anvendelse pa seg selv
utvidelsen

(5) tim L) _ i L7

x—>& g(x) x—>& g(n)(x) ’
ndr den siste grenseverdi eksisterer eller er uendelig, og det for hver k,
0<k<n, gjelder enten lim f®(z)=limg®(x)=0 eller g®(x) - co nar
x — &, samt g™(x) £ 0 for xy<x <&,

Den analoge utvidelse gjelder ogsa for (1), hvilket bevises enten ved
substitusjon av f®-(z) og g»-V(z) for f og g i (1), og bruk av (5) med
n—1 for n, eller ogsi ved & bruke den form av Taylors formel ([1],
Pp. 289-290) som ikke forutsetter eksistensen av f®(x) og ¢®™(x) for z + &.

Setningene under I og II er uavhengige; i anvendelser hvor begge
metoder er brukbare, gir IT ofte hurtigere resultatet enn I. Et enkelt
eksempel pa dette (fra [1], p. 295):

flx) = tgx—=, g(x) = x—sinz, £ = 0.
f(0) = g(0) = f'(0) = ¢g’(0) = f"(0) = g"(0) = O,
J(0) =2, g"(0) =1,

f'(x)  1+cosx

Her er

mens

g'(x) cos?x

F.Lettenmeyer [3] ga i 1936 et enkelt bevis for setningen under
IIb, hvor han helt unngikk bruken av Cauchys utvidede middelverdi-
setning. Hans bevismate kan brukes til 4 vise en generalisering av den
setning som er gitt gjennom (2) og (3). Selv om denne generaliserte set-
ning er s& narliggende at den sannsynligvis er utledet for, har den ikke
funnet veien til noen av de alminnelige leerebgker i differensialregning.
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At Lettenmeyers enkle bevis heller ikke synes & vere serlig benyttet,
gir nok en grunn til & gjore setningen kjent.

Under for gvrig samme forutsetninger som ITa, henholdsvis ITb oven-
for, men nar f'(z)/g'(x) ikke nedvendigvis nermer seg noen bestemt
grenseverdi nar x — &, gjelder fglgende setning:

B.

) o=limint ~? < tim it Y® < tim sup L@ < tim sup L) =
x—>& g (x) x—>& g(x) xz—>E& g(x) x—>& g (x)
Bevis: a) lim f(z)=limg(z) =0.
x—>& x—&

For xy<x <& antas g'(x) < 0 (dette er ingen innskrenkning fra forutset-
ningen ¢'(x)+0, ifolge en setning av Darboux om de mellomliggende
verdier av den deriverte funksjon ([1], p. 245); ¢'(x) <0 betyr da at
g(x) er valgt >0. Med « og B definert gjennom (6) kan vi til enhver
£>0 finne en z, slik at for o<z <¢ gjelder

x—e < f_@ < f+e

g'(x)
J'(@)—(x—e)g'(x) < 0, f'(@)—(B+e)g'(x) >0,

dvs. f(x) — (x —&)g(x) er en avtagende, f(x) — (8 +¢)g(x) en voksende funk-
sjon. Dette vil igjen si at

Jf@) —(x—e)g(x) > 0
f@)—(B+e)y) < 0

Divisjon med g(x)> 0 gir

Herav:

for zg <z < £.

a—e <J&2 < B+e for xy < x < &, q.ed.
g(z)
b) limg(x) = + oo, ¢'(x) >0 for xy<z <&,
r—>&
altsa
(x—2)g'(@) < f'(x) < (B+e)g'(x),
som gir

J (@) — (x— €)g(x) voksende

f(x)—(B+e)g(x) avtagende for 2y < » < §.

En mulighet er na at f(z) — (x — ¢)g(x) nermer seg en endelig grenseverdi
nar z — £ Det samme ma da gjelde funksjonen f(x)— (x — ¢)g(x). Men
herav folger at differensen }eg(z) ogsd gar mot en endelig grense, hvilket
er umulig etter antagelsen. Fglgelig kan vi slutte at
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@)~ (x—e)g(x) > +oo,
og analogt

f(@)—(B+e)g(x) > —oo, nér z - &.
Velges s& x, stor nok til at g(x) >0 for z, <z <&, felger

x—¢ <@ < f+e, qed.
g(@)
Utvidelsen av (6) analog til (5) gir seg selv.
Det er videre klart at denne bevismetode tillater et uendelig antall
felles nullpunkter for f'(x) og ¢'(x), med opphopningspunkt i &, nar g'(x)
bare ikke skifter fortegn.

En anvendelse av (6): Har vi f. eks.

(f) 2 0, og videre g > 0,¢9' <0, f>0, g0,

9
0 -5)

lim ‘f = lim sup —.
z—>& g x—>§

finner vi

v

0,

IIA

QI

r
gl

altsa ifelge (6):

Ovenfor er antatt o > — oo, f < + 0o. Nar f. eks. = + oo, altsa f'(z)/g'(x)
ubegrenset oppad, setter vi

f:(x) = K(x), med K'(z) = 0
g'(x)
Vi har ,
f,ﬁ)< K@) +e for zy<az<§é,
g'(x)

og f. eks. g(x) - o0, ¢'(x) > 0 for zy<x < £ gir
J'—UK+eyg] < —K'g <0,

folgelig som ovenfor:
f(@)—[K(2)+elg(x) > —oo,

%<K(x)+e for zy <z < €£.
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ORDNADE STICKPROV FOR
EXPONENTIALFORDELADE STOKASTISKA
VARIABLER MED TILLAMPNING PA
MINORITETSPRINCIPEN

LENNART RADE

Inledning. Lat & vara en kontinuerlig stokastisk variabel och
(61,89, - - -, &,) = {&;}7 ett stickprov pa &. Detta innebér att {£,)7 &r n
oberoende stokastiska variabler, alla med samma sannolikhetsférdelning
som & Om vi nu ordnar variablerna i stickprovet i storleksordning, s&
foreligger ett ordnat stickprov pa &, som vi betecknar {{,}7. Detta &r
alltsd den permutation av {&,}}, som uppfyller villkoret {; <, < ... <E,.

Ordnade stickprov har varit foremal fér en intensiv forskning (se
t. ex. [7]). Man kan nimligen med endast nagra av variablerna i det
ordnade stickprovet konstruera latthanterliga och effektiva statistiska
metoder. Detta beror pa att i det ordnade stickprovet innehaller de
enskilda variablerna en viss information om de &vriga variablerna.
Man vet ju att k—1 av variablerna i stickprovet dr < och n—Fk ar
= ;.. Bitt klassiskt exempel pa detta dr metoden att anvinda variations-
bredden (,—¢; for att skatta standardavvikelsen for den stokastiska
variabeln &. Vid vissa tillimpningar #r ocksd ordnade stickprov den
naturliga metodiken. Vid livslingdsundersékningar, dir man samtidigt
belastar t.ex. n elektronrér och bestimmer deras livslingder, erhilles
dessa i form av ett ordnat stickprov.

I denna artikel skall vi betrakta ordnade stickprov pa en exponential-
fordelad variabel, ett fall som intar en sirstdllning i detta sammanhang.
Vi skall ocksé som en tillimpning underséka det relativa bidraget av de
storsta termerna till en summa av exponentialférdelade stokastiska
variabler.

Exponentialférdelningen. En stokastisk variabel & siges vara exponen-
tialférdelad med parametern 4, om den har frekvensfunktionen
fl@)=2e*, 220, 1>0.
[107]
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Dé giller for sannolikheten P(£>x) samt for medelvirdet E[£] och
variansen Var[£] att

o0 o]

P@>m=5nmm=rmEm=SqWM=%
x 0

Var[¢] = So(x-—%)zf(x)dx = EIE

Vi bevisar nu en sats, som entydigt karakteriserar exponentialfordel-
ningen. Den kan ofta anvindas for att motivera ett antagande om
att en variabel ¢ ar exponentialférdelad. Den ir ocksa véisentlig i sam-
band med ordnade stickprov.

Sats 1. En stokastisk variabel & dr exponentialfordelad om och endast om
P >x+y|é>y) = PE> x) for varje x > 0 och y > 0.

Brvis. Med P(4 | B) avses som vanligt den betingade sannolikheten
for A under forutsittning att B intriffat. Som bekant ir P(4 | B)=
P(AnB)/P(B).

Om ¢ ar exponentialférdelad, s3 ar

PE>a+y;&>y) PE>aty)

PE>zty|é>y) =

P(£ > y) ~ PE>y)
e~ @+y)
= = e = P& > x).

Om & andra siden P(é>z+y [é>y)=P(¢>2), 2>0, y>0, si éar
P(l>z+y)[PE>y)=PE>2). Om vi di infor beteckningen Q(x)=
P(§> ), sa méste G(z) uppfylla f6ljande funktionalekvation:

G +y) = Gx)G(y) .

Den enda anviindbara kontinuerliga 18sningen? till denna &r i detta fall
G(x)=e* med 1> 0.

Om vi tolkar & som livslingden for nagot slag av objekt, s& betyder
relationen P(é>z+y | &>y)=P(& >1), att sannolikheten for att objek-
ten skall leva atminstone en viss tid 2 ar oberoende av fran vilken tid-
punkt denna tid riknas. Men detta innebir att objekten inte aldras.
Atomer hos radioaktiva dmnen synes uppfylla detta krav liksom vissa
typer av elektronrér, diremot ej ménskliga individer.

! Angéende denna funktionalekvation se +. ex. de la Vallée Poussin: Cours d’ Analyse
Infinitesimale, tome 1, sid. 40 eller Feller: An introduction to probability theory and its
applications, sid. 413.
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Ordnade stickprov pa exponentialférdelad variabel. Lat nu {£,}7 vara
ett stickprov p4 en exponentialférdelad variabel £ och {{;}} motsvarande
ordnade stickprov. Vi kan tanka oss att vi gor en livslingdsundersok-
ning, dar vi fran en viss tidpunkt belastar n identiska elektronrér som
har exponentialférdelade livslingder. Da #r {(,}7 de tidpunkter, da i
tur och ordning ett elektronrér slocknar. Vi skriver nu

Crvn = G+ (Ge—C)+ ..o +(Chsa—Cr)s k=1,2,...,n—1.

Vi berdknar forst sannolikheten P(¢; >x). Detta ar emellertid sanno-
likheten att samtliga n elektronrér skall leva &tminstone x tidsenheter,
t. ex. timmar. Vi far da

Py > x) = ()" = e7in=,

{, &ar alltsd exponentialférdelad med parametern An. Om vi sitter
{y=0;/n eller 6;=nl,, si &r J; exponentialférdelad med parametern A.

Vi bestimmer nu sannolikhetsfordelningen for (£, —C), k=1,2,.. .,
n— 1. Vi forutsatter forst att , =y och beriknar den betingade sannolik-
heten P((y4y— 0> | G=y)=P(lrn>2+y | Le=1).

Héndelsen {{;,,>2+y |, =y} innebér att vid tidpunkten y Aterstar
n—k elektronrdr, som samtliga lever i &tminstone z timmar. P4 grund
av att nigot aldrande ej foreligger, s& &r

Plria—Cp > x|l = y) = (e#)nF = e-tnhm,

Men da detta uttryck ej beror av y, sd dr den hirledda betingade sanno-
likheten lika med motsvarande obetingade. Vi har alltsa

P(Ck+1_‘ck > x) = eg—An—k}x

Detta innebar att ({,,,—(,) dr exponentialférdelad med parametern
AMn—k). Om vi sitter (., —C,=0,1/(n—k) eller 8.1 =(n—k)(Cpi1—Cx)s
84 ar den stokastiska variabeln §,_, exponentialférdelad med parametern
A. For k = 1,2,...,n har vi alltsa

) ) k)
Ck=C1+(Cz—51)+...+(gk_gk_1)=_7;1+n_21 +n—7]l:+1

dar de stokastiska variablerna {d,}} alla dr exponentialférdelade med
parametern A. Vi visar nu att dessa, eller ekvivalent {((,,,—Cp)}n %
ar oberoende:

P(lpi—Cr > 2 | =% 6—8 =Yoo s 8= Cpm1 = Yi)

=P(lr1—Cx > |l =Y o= Y1+¥a -l = Y1+Ust ... +Y)
— e—}.(n—k)z_
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Den sista relationen far vi med analogt resonemang som ovan. Tids-
intervallen ({y.;—¢;) ar alltsd oberoende, d& den hir betraktade betin-
gade sannolikheten ej beror av Y1:¥Y2 - - -»Yy. Vi har dirmed bevisat
foljande sats:

Sars 2. Om {{,}} dr et ordnat stickprov pd en stokastisk variabel, som
ar exponentialfordelad med parametern ), sd dr

0 0y O
Ck _;+n—1+'“+n—k+1’

ddr {0}7 dr oberoende och expomentialfsrdelade med parametern A.

Av sats 2 framgir att ordnade stickprov fér exponentialfordelade
variabler har en mycket enkel struktur. D& vi hir kan framstilla ¢,
som en summa av oberoende stokastiska variabler, kan vi tillimpa alla,
satser om sidana. Vi far t.ex. omedelbart att for medelvirdet B[]
och variansen Var[¢,] giller

mGl =1 3 L Vapgg oL 3!
=7 T ar = )
i A v=;:k+1 v * 12v=n—k+1 v?

ty medelvérdet av en summa av stokastiska variabler &r alltid lika, med
summan av variablernas medelvirden, och fér en summa av oberoende
stokastiska variabler 4r variansen lika med summan av variablernas
varianser.

Vi kommer att i fortsittningen fa anvéndning for fljande lemma:

Lemma 1. Ldt {£}7 vara likaférdelade, oberoende och positiva stokas-
tiska variabler och {0, }* godtyckliga konstanter. Dé dr

E[oc1§1+oc2§2+ . +<xn§n] _ %ttt ... ta,
§1+§2+...+§n n

Bevis. Enligt kiinda satser om medelvirden géller

byt ogbyt ... +0‘n5nJ -
E = B ,
[ E+Et ... +&, 2 ]

dir my=&/(&+ &+ ... +&,). Av uppenbara skil har variablerna 7,
samma medelvirde och di X7 5, =1, s &r Elng]=1/n. Harav foljer
lemmat.

Om vi hir speciellt viljer o, =1 for 1 Sk<p och ;=0 for p<k=<n,
88 finner vi

E[§1+§2+...+§p] P

= én-
146+ .. +E, n P

ey
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Minoritetsprincipen. Vi liter som férut {{,}¥ vara ett ordnat stick-
prov pa en stokastisk variabel, som vi antar vara positiv. Vi skall be-
trakta foljande stokastiska variabel:

- Cn—p+1+cn—p+2+ coot Gy
Citlat ... 4L,

Vi betraktar med andra ord kvoten mellan summan av de p storsta
variablerna och totala summan i ett stickprov. Variabeln anger alltsa
hur stor del av summan, som kan tillskrivas de p stérsta variablerna.
For n géller uppenbarligen p/n<n<1. Den undre grinsen erhalles for
§1=Cs=...={, och den 6vre for {;=C,=... =Cpp=0.

Det &r en empirisk erfarenhet, att de stérsta termerna i en summa
av positiva stokastiska variabler svarar for en mycket stor del av den
totala summan. Vi kan uttrycka detta sa, att en liten minoritet av ter-
merna svarar for en majoritet av summan. Fér denna princip anvinder
vi hér beteckningen minoritetsprincipen. I [4] ges flera praktiska exempel
P& minoritetsprincipen. Foretag har t. ex. funnit att kanske 209, av
deras kunder koper 809, av foretagets produktion eller att nagra fa av
deras artiklar svarar f6r en mycket stor del av deras omséttning.

Vi skall hir belysa minoritetsprincipen genom att betrakta variabeln
7 under forutséttning att {{;}} dr ett ordnat stickprov pa en exponential-
fordelad stokastisk variabel.

Sars 3. Ldt {{;}7 vara ett ordnat stickprov pd en exponentialférdelad
stokastisk variabel. Om = (27, .\ C)(Z7_1Lh), sd galler att medelvirdet

av 7 dr
p o1
E[n] == (1 + —) .
n k=2pZ1 k
Om vi sdtter p=[an] (heltalsdelen), 0<x <1, sd dr
1
En] = oc(l—ln(x)+0(—) .
n
Bevis. Om vi anvinder det i sats 2 for ¢, hirledda uttrycket, kan vi
skriva # under formen

P V4 P
ﬁﬁ;tﬁﬁﬁ”+;ﬁ%w+%wﬂ+“ﬂwn

O+t ..o+ 0,y 0y pirt ... 40,

7’]::

Dé variablerna {§,}} &r oberoende, kan vi tillimpa vart lemma 1, som
omedelbart ger den forst angivna formeln for E[x)].
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Vi viljer nu « s& att 0 <x <1 och sitter p= [en], ddr [an] dr heltals-
delen av an. Med anvindande av den vilkinda uppskattningen

"1 1
D -= lnn+0+0(—> , O = Eulers konstant ,
ok n

far vi satsens andra del.
Foljande tabell ger viirden pa E[y] for ndgra virden p& « och n:

n x=01a=02|a=03]|a=04| =05

10 0.293 0.486 0.629 0.738 0.548
100 0.326 0.518 0.658 0.764 0.844
1000 0.330 0.521 0.661 0.766 0.846
o0 0.330 0.5622 0.661 0.767 0.847

Vi ser av denna tabell att redan f6r & = 0.2 och n = 100 sa &r E[xn] > 0.5.
Man kan alltsd vinta sig att redan 20%, av termerna i genomsnitt skall
svara for mer an hilften av totala summan. Asymptotiskt svarar 30
och 409, av termerna for 66 respektive 77%, av summan.

Vi hirleder nu dven Var[y]. Vid beviset anvinder vi elementéra egen-
skaper hos y2- och betafordelade stokastiska variabler'. Vi bevisar forst
foljande lemma:

Lemma 2. Ldt {£,)" vara oberoende lika exponentialférdelade stokastiska
variabler. Dd dr

n n 2
S S
k=1 k=1

n(n+1)

z [(oc1§1+oc2§2+ . +zxn§n)2] _
E+&+.. . +E,

Brvis. Om vi sitter 7, =&,/(6;+&+ ... +&,) sa far vi, om vi kallar
det sokta medelvirdet for u,, att

1 En stokastisk variabel, som ér x3-férdelad med r frihetsgrader, har frekvensfunk-
tionen —
f(x) = S o x(r—z)/z 3_2/27 z ; 0 ’

I(r[2)

och en stokastisk variabel, som ér betafordelad (p, g), har frekvensfunktionen

I'e+a) ., -
= 1-2)% 0 1.
1@ =g & 0T 0T
I det senare fallet ér
P p(p+1)
E[£] = h B[] = ——
[¢] p+4q o 4 (p+ 9)(p+g+1)

Se t. ex. [1], sid. 243.
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py = X o ?Bm1+ 3 oqo Bl .
E=1 k=1
itk
Pa grund av symmetri dr medelvirdena E[7,?] inbordes lika. Detsamma,
géller for medelvardena E[n;n;], k+¢. Om vi dessutom anvinder att

n n 2 1_z'
Z“k“i = (2“}0) - 2, o2,
iy k=1 k=1 k=1
. k+4
s far vi
n n 2 n
Yy = Hln? Ig“k2+E[’7k’7i] {(2 O‘k) - 10210%2}~

Enligt lemma 1 &r E[#n,]=1/n. Medelvirdena E[57] och E[n;n,] far vi pa
foljande sitt:

Vi kan utan inskrinkning anta att variablerna {£,}} &r exponential-
fordelade med parametern A=34. Detta innebiar emellertid att {&,}} ar
y2-fordelade med tva frihetsgrader och att 7, dr betaférdelad (1,n—1).
(Se [1], sid. 243.) Men dé& ar E[n7]=2/n(n+1). Vidare &r summan av
variablerna {z,}} lika med 1. D4 giller ocksa

N+ N+« « o F1R+ -+ o 0 = Mg -

Om vi hir bildar medelvirdet av vardera ledet, far vi

2 1
—1)E[n, _— =
(n ) [nznk] +n(n + 1) n
eller
Elnm,] = , 1%*k
(%] Y v+
Det sokta medelvirdet blir da
n n 2
> o+ (2 “k)
g = k=1 k=1
2 n(n+1)

som anféres i lemma 2.
Om vi speciellt viljer «;=1 for 1<k<p och «;=0 fér p<k=mn, si
far vi

E[(§1+§2+ e +£p)2] _p(p+1)
E+E+ ... +E, n(n+1)

Vi beriknar nu litt variansen f6r variabeln #:

Sars 4. Lat {C,}} vara et ordnat stickprov pd en exponentialférdelad
stokastisk variabel. Om n=(2}_, 15[ (27_18), sd giller for variansen
for n att

NMT, Hefte 3, 1963. — 9
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Var[n] =

14p 3 - p(1+ > lﬂ
n(n+1) pk=p+1k2 n kmp1k .

Bevis. Da Var[y]=E[n?] — E[5]? foljer satsen omedelbart av sats 3
och lemma 2 med oy=p/(n—k+1) for 1=sk=n—p och ;=1 for
n—p+1=2k<n. Jaimfor med beviset for sats 3.

Av uttrycket for Var[] ser vi, att om p=[xn] med 0<x <1, s géller
att lim Var[#]=0. Av kinda satser inom sannolikhetskalkylen f&ljer

n—>oo
da, att n konvergerar sannolikt mot x(1—Ina) dd n — oo, d. v.s. for
varje 6> 0 giller ), P(ln—a(l—Ina)] > €) = 0.

n—-o0

Slumpmiissig delning av ett intervall. Antag att vi slumpméssigt
viljer n—1 punkter {z,}7! i intervallet 0<z <1, d.v.s. 18t {a;}7"
vara ett stickprov pa en stokastisk variabel, som har en likformig sanno-
likhetsfordelning i [0,1]. Vi delar dé in intervallet [0,1] i » delintervall,
vars lingder vi kallar 7;,7,, . . .,7,. Det rider ett intimt samband mellan
denna problemstéllning och stickprov pa exponentialférdelade variabler.
Man kan nimligen visa, att variablerna {7,}7 har exakt samma sanno-
likhetsfordelning som {£./(£,+ &+ ... +&,)}1, dar {§,}} ar ett stickprov
pa en exponentialfordelad variabel.

Den ovan betraktade variabeln

— Cn—p+l+cn—p+2+ v +Cn
Lot lot .o+,
kan vi da tolka pa foljande sitt: Dela en stav av lingden 1 i n delar.
Variabeln # anger d&4 sammanlagda lingden av de p storsta delarna.

Enligt det foregiende vet vi att t.ex. 209 av delarna asymptotiskt
skall utgéra mer &n halva staven.

Slutkommentar. Problemet att slumpmaéssigt dela intervallet [0,1] i
n delar har méanga tillimpningar inom olika omriden av sannolikhets-
kalkylen och statistiken. Det har behandlats utforligt i litteraturen. Se
t. ex. [2], [3] och [5].

Problemet tycks ha omndmnts forsta gangen i Whitworths [8] klassiska
arbete Choice and Chance fran ar 1897. Problem nr. 680 i denna bok
lyder néamligen:

En stav delas slumpméssigt i tre delar.

Jag tar den storsta delen, min fru den nést
storsta och mitt barn den minsta. Visa att
vara forvintningar férhaller sig som 11:5:2.
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Detta resultat verifieras litt med sats 3 ovan. Whitworth anvinder
en geometrisk metod for att lsa problemet.

Avsikten med denna artikel har ej varit att ge nagra egentligen nya
resultat utan att referera nagra lattillgingliga fragestillningar inom ett
aktuellt omrade av den matematiska statistiken. Behandlingen av ord-
nade stickprov pa exponentialférdelade variabler bygger pa Rényi [6].
Lemma 1 &r en obetydlig generalisering av hans problem 40 pa sid. 202.
Minoritetsprincipen har diskuterats rent praktiskt i [4] under namnet
80-20-regeln. Nagon matematisk motivering for den har ej foérut givits.
Medelvérdet E[7] i sats 3 har hirletts av bl. a. Mauldon [5], men med en
annan metodik &n hér. Mauldon héirleder i sjilva verket sannolikhets-
fordelningen for 5. Se dven [2].
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Forlag, Kebenhavn 1962. 10+ 341 s., 156 fig. D. kr. 48.50.

PouL. O. ANDERSEN — Sti¢ BtLow — Haxs JorcEN HuLMs: Mate-
matik for gymmasiet I. Gyldendal, Kgbenhavn 1963. 390 s., 289 fig.
D. kr. 48.00.

(Innholdsfortegnelser i NMT, denne &rgang, s. 28 og s. 70.)

Ved anmeldelse af bgger kommer man let ud for felgende problem-
stilling: Skal anmelderen give en lidenskabsles oplysning om en bogs
indhold, altsd — sat pa spidsen — bare gengive bogens indholdsforteg-
nelse i lidt fyldigere og kommenteret form, eller skal han lade sig person-
ligh engagere i sagen og dermed skrive en anmeldelse, der er farvet af
hans eget syn pa tingene? Svaret er naturligvis i almindelighed, at han
skal soge en passende mellemvej. I det foreliggende tilfeelde melder
problemet sig imidlertid ligesom i forsteerket grad, da det som folge af
den nye leseplans bestemmelser ikke blot drejer sig om fremstillingen af
traditionelt stof. Her geelder det beger, der p4 gymnasieniveau behand-
ler ting, der aldrig for har veeret genstand for undervisning i det danske
gymnasium.

I denne situation har anmelderen (selviglgelig!) sat sig for at vare
saglig, men dog ikke anderledes, end at han vil soge at give sin egen
vurdering. Da fremstillingen af et stof og selve dette stof jo hgrer uad-
skilleligh sammen, vil han ikke kunne undgé samtidig ogsé at tilkende-
give sin mening om valget af det nye pensums indhold og omfang.

Begge de anforte lereboger er beregnet pé det matematiske gymna-
siums forste klasse. Der m4 altsa fra begge sa@t forfattere kunne forventes

1 P3 grunn av de mange viktige prinsipielle spersmél som reises i den foreliggende
anmeldelse, har redaksjonen funnet det riktig & publisere den i artikkels form. Hvis noen
lesere skulle fole seg uenige med anmelderen i hans vurderinger og synspunkter, vil NMT
i rimelig omfang sta apent for innlegg i saken.

[116]
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endnu to beger, til brug pad den matematisk-fysiske gren, og en eller to
for den samfundsfaglige og den naturfaglige gren. Derudover vides det,
at der er andre lerebogssystemer pé vej. Det kunne derfor synes naturligt
at vente med anmeldelse, til de forskellige leerebogssystemer foreld fuldt
feerdige; men da dette kan vare 2-3 ar, kan det veare rimeligere allerede
nu at anmelde de to ovennevnte bgger, s meget desto mere som det mé
formodes, at forskellen mellem gammelt og nyt giver sig steerkere til
kende i de nu foreliggende 1. bind end i dem, der senere fremkommer til
brug i 2. og 3. gymnasieklasse.

Inden for 1. gymnasieklasses pensum bestar det nye i forste rekke i,
at der fremtidig skal undervises i elementszr meengdelere, herunder
bl. a. afbildning af en meengde »ind i« og »pa« en maengde (det generelle
funktionsbegreb), samt i vektorregningens begyndelsesgrunde (indbefat-
tet skalert produkt), og det er derfor de hertil svarende kapitler af
begerne, som fortrinsvis vil blive omtalt. Imidlertid smitter det nye stof
i en vis forstand af pa det gamle, idet dette nu kan behandles med nyt
vaerktoj og betragtes fra nye synspunkter, hvilket ogsa kan give anled-
ning til bemeerkninger. Til gengeeld for det tilkomne stof bortfalder visse
dele af det tidligere, saledes bl. a. noget af trigonometrien og af den analy-
tiske geometri.

De to bgger vil nedenfor blive anmeldt hver for sig. Anmeldelserne vil
i det vaesentlige blive formet saledes, at de er paralleltlobende, for derved
at lette mulighederne for sammenligning.

Jeg begynder med den forst nevnte bog. Det skal indremmes forfat-
terne uden betingelser, at bogen er godt skrevet. Fra et rent matematisk
synspunkt er det en forngjelse at leese den. Man kan merke, at forfat-
terne har vidst, hvordan de ville have stoffet fremstillet, og jeg tror, det
mé siges at veere lykkedes for dem. Ogsa det formelle er i den bedste
orden: Adskillelsen mellem hovedtekst og eksempler (og gvelser) star
klart, og det hele virker typografisk overskueligt.

Noget anderledes forholder det sig efter min mening med det padago-
giske. At en bog er klart skrevet, er jo ikke ensbetydende med, at stoffet
er fremstillet pa4 den pedagogisk bedste made overfor det alderstrin, der
skal bruge den. Jeg tror, at bogen stiller for store krav til de 15-16-ariges
evne (og lyst!) til abstraktioner og generelle synspunkter. Selv om for-
fatterne adskillige steder tager eleverne (og lererne?) ved handen for at
hjelpe dem, er jeg bange for, at bogen er blevet meget sver. Skylden
herfor ligger dog ikke hos forfatterne alene, men ogsé i de pensabestem-
melser, som krever nyt og vanskeligt stof behandlet. Jeg skal nedenfor
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uddybe disse kritiske bemeerkninger nermere, idet jeg gir over til at
omtale bogens forskellige afsnit.

I de to forste kapitler behandles meengdeleren og den matematiske
logik. Selve begrebet meengde optreder ganske stilfzerdigt uden nogen
egentlig definition; en sidan ville jo ogsd kun bestd i en erstatning af
ordet »maengde« med et andet ord som »samling« el. Ign. og derfor ikke
vaere af megen verdi. De forste symboler, som €, <, < og {z| ...},
indfgres smertefrit, og efter hvert symbol far man at vide, hvordan det
»leeses«. Senere kniber det. Det siges f. eks. klart nok, hvad AnB og
AUB »betyder«, men ikke, hvordan disse udtryk »leses« eller »sigesc.
Det svarer til, om man nok vidste, at symbolet + star for addition, men
ikke kendte glosen »plus«. Hvordan skal man f. eks lese den distributive
lov

AnBul)y=AnB)uAn(C)?

Man skulle dog gerne kunne lese den op uden at méatte sige: »Feelles-
meangden for A og foreningsmeengden for B og C er lig foreningsmaengden
for fellesmengden for A og B og fxllesmeengden for 4 og C«! Jeg kan
kun foresld at lese n som »feelles med« og U som »forenet med; men det
er ikke serlig godt eller mundret. Et par korte (latinske?) gloser ville
vaere bedrel. Dette er forgvrigt ikke et problem, som specielt er knyttet
til den her betragtede lerebog; det angar simpelthen meengdeleren som
disciplin. Men jo lavere undervisningsniveau man arbejder pa, desto
vigtigere er det, at man ikke blot kan skrive, men ogsa tale ubesveret.

Den tomme mangde @ introduceres side 6 med en bemeerkning om,
at det »har vist sig frugtbart at indfere en mzngde uden elementers.
Man bliver ikke senere gjort opmeerksom pé, hvornar denne frugtbarhed
indtreeder, og hvori den bestér; men det er jo en let sag og kan overlades
til leereren. P4 side 7 omtales den tomme mangde igen; jeg citerer:

Idet A betegner en vilkérlig meengde, kan felgende udtalelse anses for sand:
»Ethvert x, der tilherer g, tilherer ogsé A«.
Af denne grund vedtager vi, at for en vilkarlig mengde 4 er
gc A.

Vendingen ranses for« virker ulden. Eleverne vil vente, at i hvert fald
inden for matematikken er sandhedsbegrebet absolut. Men usikkerheds-
fornemmelsen fortoner sig noget, da man far at vide, at formlen < 4
bygger p4 en vedteegt. Problemet dukker imidlertid op pany i mere gene-
rel form pa side 11 i eks. 12.5 (som skulle hedde 12.4), der lyder:

1 Det engelske »cap« og »cup« synes absolut uegnet.
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Svarende til, at vi regner & som delmeengde til enhver maengde, regner vi en
implikation
u@) = g

for korrekt, hvis u(x) ikke er sand for noget .

Er »korrekt« synonymt for »sand«? Eller er der en subtil nuance skjult
mellem ordene? Det er hard kost for eleverne, og for at de ikke skal
tabe modet, kommer bogen dem i mede med felgende bemserkning:

Denne vedtegt synes méske urimelig ved forste ojekast.

Ja, men ikke méske! Jeg er desveerre ikke tilstreekkelig kyndig i mate-
matisk logik til fuldtud at kunne bedgmme, hvor »frugtbar« den viser
sig at veere ved disciplinens videre udbygning; men ved en sidan ved-
teegt sendrer man jo i hvert fald den gengse betydning af visse sproglige
vendinger, specielt af ordet »sandhed« (eller »korrekthed«). Dette kan man
selviglgelig gore; men jeg tvivler sterkt pa, at det pa det her forelig-
gende niveau er nogen peedagogisk fordel, endsige ngdvendighed. For-
fatterne sgger da ogsd yderligere at mildne luften ved folgende tilfajelse:

Man m4 imidlertid tenke pd, at implikationen kan leses:

»Ethvert «, der tilhorer sandhedsmengden for u(z), tilhgrer sandhedsmeeng-
den for g(x)«

Jeg ved ikke, om det hjzelper sa meget. Til belysning af sagen udleverer
jeg et stykke af mit privatliv:

Hvergang jeg kommer fuld hjem, banker jeg min kone.

Dette er faktisk sandt (i ovennevnte betydning). Jeg vil dog seette pris
pa, at udtalelsen ikke refereres ude af sin sammenhzeng.

Ved indferelsen af intervaller (side 40-41) defineres »abent« og »lukket«
som i leeren om generelle punktmsengder, altsi:

Et interval er abent, nar det kun bestar af indre punkter, og lukket,
nar det indeholder sine (eventuelle!) endepunkter. Efter disse definitioner
udger hele tallinien (—oo<x < + o) et interval, som bade er dbent og
lukket. Dette ma for eleverne »ved forste gjekast« forekomme temmelig
paradoxalt. Selviglgelig opleser paradoxet sig ved nzermere eftersyn,
d. v. s. ved erindring af definitionerne. Men hvortil denne chokbehand-
ling ? Hvorfor ikke ngjes med de »gamle« definitioner, hvor glosen »ukket
kun bruges i forbindelse med intervaller, der har endepunkter (og inde-
holder dem)? Vindes der noget? Hovedsetningerne om kontinuerte
funktioner m4 da blive lidt tungere at formulere; men det vil jo vise sig.
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I kapitel III indferes vektorbegrebet og den dertil knyttede algebra,
og i kapitel IV anvendes vektorregningen derpa til behandling af den
rette linie i analytisk plangeometri. Medens denne anvendelse foregir
let og elegant, finder jeg, at selve indfgrelsen af vektorbegrebet sker
ungdvendig svert. Heri er forfatterne ifglge forordet nermest enige med
mig (naturligvis panser ordet »unedvendig).

Der startes side 52 med en bemeerkning om, at det er »intuitivt klarte,
hvad der menes med ensrettede halvlinier, hvorefter bogen »dekker det
intuitive begreb« med en meget besverlig definition, der for mig inde-
holder andre lige sa intuitive begreber. En sddan definition mé naturlig-
vis forst og fremmest bruges til at bevise, at nir to halvlinier er ens-
rettede med samme tredje, er de indbyrdes ensrettede; men her giver
bogen blankt op og erklerer, at denne s@tning »vil vi gd ud fra uden
narmere bevis«. Yderligere bruges definitionen, s& vidt jeg har kunnet
se, kun et eneste sted, ved beviset for setning 7.1 pa side 56.

Havde det ikke vzeret meget lettere og naturligere at fastholde begrebet
rensrettethed« som intuitivt klart (altsd anse det for et grundbegreb), at
forudseette det transitivt og sa yderligere bygge pa simple kendte paral-
lelogramegenskaber (méske i lidt skerpet form ved medtagelse af orien-
teringer) ¢ P4 et passende sadant grundlag har man straks alt om paral-
lelforskydninger og deres sammensatning og kan opbygge vektorreg-
ningen.

En (egentlig) vektor defineres i bogen som mengden af indbyrdes
ensrettede og lige lange liniestykker, og hvert enkelt af disse siges at
»repraesentere« vektoren. For treenede matematikere lyder dette jo smukt,
men for de mindre trenede elever i 1. gymnasieklasse er det da en be-
lastning. Hvorfor dog ikke ligefrem definere en vektor som et orienteret
liniestykke, suppleret med den oplysning, at to vektorer, som er ensret-
tede og lige lange, betragtes som »ens« eller som »to eksemplarer af samme
vektor«? Dette er dog et langt naturligere grundlag for det faorste mede
med vektorbegrebet.

Kapitlerne V og VI, der handler om afbildninger og funktioner, er
heller ikke lige at lgbe til. Det kan selviglgelig veere nyttigt at fremhaeve
afbildningsbegrebet (og symbolet .~); men hvorfor presse det gammel-
dags funktionsbegreb helt ind i denne ramme ¢? Hvorfor blot i et eksempel
(side 115) neevne, at man »ogsa undertiden tillader sig« (med halvdarlig
samvittighed ?) at tale om »funktionen f(z)«? Hvorfor ikke sige, at et
vudtryk i x«, f(x), fastlegger en afbildning, og derefter bruge betegnelsen
»funktionen f(x)« bade om udtrykket og den tilherende afbildning? I

‘realiteten er det jo dog alligevel det, der sker.
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Helt barokt virker det, at et »polynomium« side 192 defineres ved
X~ "+ Gy 2" a X tay,

nir dog hele den fglgende fremstilling (om polynomiers division) kun
handler om udtrykket til hgjre for ~, medens afbildningstanken helt er
ude af billedet og ogsé meget vanskelig vil kunne fastholdes. Hvad vindes
der paedagogisk pa det foreliggende niveau ved denne kunstige form ?

Af de felgende kapitler méa jeg begreense mig til at fremdrage enkelte
ting. Kapitel IX behandler induktion. Om dette emne siges i undervis-
ningsinspektionens vejledende bestemmelser:

Under omtalen af naturlige tal ber induktionsaksiomets fundamentale rolle
og dets hyppige anvendelse som bevismiddel papeges.

P4 dette punkt ma vejledningen nok siges at vare gaet lidt over gevind.
Da det jo ikke kan vzere meningen, at gymnasieundervisningen skal give
en konstruktiv opbygning af de naturlige tal (Peano m. fl.), ma disse
altsd netop opfattes som naturlige (eller maske endda overnaturlige ?),
d.v.s. som eksisterende fra begyndelsen. At man ved at gi skridtvis
frem i talreekken kan na til »alle« naturlige tal, bor eleverne have lov at
betragte som en selvfolge og ikke som et fundamentalt (!) aksiom.

Kapitel XTI, der handler om algebra, er heller ikke helt let. Hvorfor skal
der bruges n®sten en hel side (262) til at vise den simple ting, at isomorfi
mellem to grupper er en gensidig egenskab ? Og definitionen side 264 af en
logaritmefunktion som en en-entydig, monoton og isomorf afbildning af
mengden af positive tal p4 mangden af alle (reelle) tal, hvorved multi-
plikation svarer til addition, er neppe noget, som gymnasiaster labber i
sig som kattekillinger sgpdmzaelk. — Hermed vere ikke benagtet, at defi-
nitionen, hvis den bliver forstaet, giver betydelic matematisk indsigt.
Beviset for sadanne funktioners eksistens udssttes til senere.

De to her behandlede boger vil, med benyttelse af initialerne i forfat-
ternes efternavne, i det folgende blive betegnet henholdsvis KR og ABH;
jeg gar nu over til omtalen af den sidstnevnte. Ogsa denne lmser man
med interesse. Jeg kan sige med det samme, at jeg tror, den pa en del
punkter vil vare noget lettere tilgengelig for eleverne end KR, fordi
den holder sig mere pa det jeevne og ikke vover sig si hgjt op i abstrak-
tionernes tynde luft. Til gengzeld nir den i ren fremstillingskunst ikke
op p4 hgjde med KR. Rekkefglgen for de forskellige emner er ikke
ngjagtig ens i de to beger; disse sméforskelle lader jeg imidlertid ligge
og tager nedenfor emnerne i samme orden som ved omtalen af KR.
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Om det formelle m4 jeg sige, at ABH virker ikke s overskuelig som
KR. Alt, tekst, eksempler og gvelser fremtreeder med samme slags typer.
Bogstaverne med matematisk betydning er ikke sat med kursiv, ja end
ikke de matematiske setninger er kursiveret. Det hele lgber derfor let
i ét. Og endnu en lille, men veaesentlig ting: Det er neesten utilgiveligt i en
matematisk lerebog at bruge samme type for bogstavet I og tallet 1.
Prgv f. eks. at lese eks. 19, side 223!

Ved maengdeleren vil jeg vaesentlig holde mig til symbolerne og deres
anvendelse. Om deres »udtale« geelder det samme som sagt under omtalen
af KR. Det skal nevnes, at ABH indfgrer flere symboler end KR, séle-
des kvantorerne 3 og ¥ samt R (»star i relation til«) og dens negation II{.l

I forbindelse med indfgrelsen af den tomme meengde ¢ folgende be-
meerkning : P4 side 42 »defineres« en meengde som »en samling genstande,
der kaldes mangdens elementer«. Efter denne definition er det ulogisk
pa side 43 at tale om »en mengde helt uden elementer«. Den tomme
mengde ber indferes ved en s@rdefinition. Efter omtale af begrebet del-
maengde pa side 45 star:

Den tomme mangde @ er delmengde af enhver meengde.

Der medgives ingen kommentar. Skal eleven selv sgge efter et bevis,
eller er det et aksiom? Eller en vedtegt (som hos KR)?

Om brugen af symbolerne vil jeg iovrigt principielt mene, at den ber
indskrenkes til fglgende to tilfelde:

1) en direkte indevelse pa lette eksempler (ligesom man pa passende
alderstrin indgver den lille tabel — eller bogstavregning),

2) som middel til at ggre en matematisk situation eller tankersekke
mere klar og overskuelig.

Lad os betragte eks. 20, side 57. Jeg citerer:

Hvis a er et positivt tal, findes et tal b, siledes at b2 =a. Dette kan skrives:

acERAa>0 = 3IbeR:2 =aqa.

Her har vi et typisk eksempel pa tilfeelde 1). Vel fylder symbolikken kun
ca. halvt s mange cm pa en linie som den sproglige tekst; men den
virkelige berettigelse af eksemplet mé ligge i indgvelsen af symbolerne.
Et par yderligere bemerkninger til netop dette eksempel: Fremhavelsen
(ved symboler) af @ og b som reelle tal er vel egentlig her (som ogsé& ofte
andre steder) overflgdig, da eleverne jo ikke kender andre tal; den er
jo heller ikke med i den sproglige tekst. Anvendelsen i symbolikken
af kolon i betydningen »siledes at« er ikke forklaret noget sted i bogen.

1 Symbolerne I og V indferes dog i KR, bind II, der er fremkommet, efter at
denne anmeldelse er skrevet.
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Den nzvnte »indgvelse« af symbolerne forekommer mig imidlertid at
blive ved alt for leenge; det er jo ikke et mal i sig selv at omskrive s3
stor en del af matematikken som muligt til en art stenografi. Adskillige
steder formuleres endda de forskellige matematiske satninger og begreber
kun i symbolsprog, hvorved man i hgj grad savner en simpel fortolkning
p& modersmélet. Saledes synes det lidet rimeligt (side 109) kun at nevne
Fermat’s store seetning pa formen

{z,y,z|a"+y" = 2", neN, n > 2} =0,

nar den let kan udtrykkes i ganske enkle sproglige vendinger som en
egenskab ved ligningen am 4 ym=2n,

Eller for at naevne et swrligt grelt eksempel: ABH definerer slet ikke
vet« primtal p, men kun »primtalsmengden P«. Jeg citerer ord- og sym-
bolret! (side 96):

Definition: Vi definerer meengden P af primtal pé felgende méade:

pEP < [p¢{0’l’_1}A(a|p = ae{l’_lﬂp9_p})]‘

Dette udlegges ikke nermere; men det overlades til eleven selv at finde
ud af, hvad der virkelig star, og om det kan bringes til at stemme med,
hvad han matte erindre om primtal fra tidligere undervisning. Hverken
den givne »formel¢ for Fermat’s satning eller den lige anforte primtals-
definition synes mig at kunne henregnes under noget af de naevnte til-
feelde 1) og 2).

Induktionsaksiomet optraeder selvislgelig, men skrives her (side 87)
med symboler pd formen

[ScNaleSa(keS = k+1ef8S)] = S=N.

Herved bliver ogsa dette temmelig indviklet — selv om sagen illustreres
med tinsoldater, der valter pa stribe.

Efter disse kritiske bemserkninger vil jeg gerne fremheve folgende:

1) Begrebet vektor defineres (kapitel 7) ligetil som et orienteret
liniestykke, siledes at ensrettede og lige lange vektorer regnes for ens.

2) Funktionsbegrebet indferes (side 70ff.) generelt som en afbildning.
Dersom meengden A afbildes p4 mengden B, skrives 4 ~ B eller
B=f(A4). I det vigtige tilfeelde, hvor bade 4 og B er talmengder, benyt-
tes normalt skriveméaden y=f(x).

3) Logaritmefunktionen (for grundtal 10) fastlegges umiddelbart
(kapitel 11) ved nogle af sine simple egenskaber, og med ganske jevne

1 De matematiske bogstaver er dog sat med kursiv.
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ord, hvorefter den kan bruges til simplifikation af talregninger. Beviset
for dens eksistens er (som hos KR) udskudt til et senere bind.

Alt dette vil en normalt begavet gymnasieelev nok kunne bringes til
at forstd, og pa disse veesentlige punkter synes ABH mig at komme
gymnasiasterne i mode pa en naturligere méade end KR. Dog ma jeg
tilfgje, at trods den simple vektordefinition virker indfgrelsen af vektor-
regningen noget kompliceret. Det skyldes bl. a., at det skalere produkt
(ligesom forgvrigt hos KR) optraeder for de trigonometriske funktioner.

Det skal endnu n®vnes, at man spredt i bogen finder diverse historiske
oplysninger, suppleret med billeder af navnkundige matematikere samt
faksimile-gengivelser af sider af deres beromte varker. Hermed sgges
efterkommet et gnske i den fgrnaevnte officielle vejledning, og det mé vel
ogsé virke som et oplivende og afvekslende element. Virkelig verdi far
matematikkens historie dog nok forst, nar man lever sig ind i begrebernes
udvikling gennem tiderne, og noget sidant har eleverne i gymnasiet vel
normalt hverken tid eller modenhed til.

Til begge beger er udgivet et fyldigt supplement med opgaver (hen-
holdsvis 759 og 870 opgaver).

Som afslutning vil jeg gerne udtale, at man mé& paskenne det store
arbejde, som begge set forfattere har udfert — og formodentlig er i
gang med at fore videre. Jeg har haft en del at kritisere. Maske nogle vil
synes, at nar man som jeg naermer sig pensionsalderen, beor man vere
varsom med kritik af noget nyt, for man er ikke lengere i pagt med
fremtiden. Nuvel, kritik har man vel altid lov at rette, nir den ikke er
sarende i formen. Og over 40 ars undervisning af unge mennesker, der
lige er udgiet fra gymnasiet, mé vel have givet en sum af erfaring om
gymnasieundervisningen, der kan veje noget op mod den konservatisme
og mangel pa andelig bevaegelighed, som siges at folge med alderen.

Samlet i en neddeskal gar min kritik ud pa felgende: Indforelsen af
det nye gymnasiepensum betyder i sig selv en vanskeliggorelse af faget
for eleverne. Hertil kommer imidlertid, at det ikke i tilstreekkelig grad
er lykkedes for forfatterne at lette overgangen til det nye, idet bogerne
er blevet for store af omfang (henholdsvis 341 og 390 sider) og p4 mange
punkter for kreevende i formen til at kunne kaperes af elever med det
forhandenverende timetal og pa det foreliggende modenhedstrin.

Det er ikke let at skrive lerebgger i matematik, men det er dog en
frivillig sag. For matematiklererne, der skal undervise, er der derimod
ingen frivillighed; de er i august i r blevet panodet et meget vanskeligt
job. De vil sikkert gore, hvad de kan, for at redde det i land. Lad os hébe,
at mengden af vellykkede resultater ikke bliver .
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SERGE LANG : Introduction to differentiable manifolds. Interscience Publ.
(John Wiley & Sons), New York, London 1962. 10+ 126 pp. sh. 53/-.
(Innholdsfortegnelse i NMT, denne &rgang, s. 29.)

Den foreliggende bok er en interessant nykommer, forelgpig nokss
enestéende i sitt slag. Forfatteren annonserer at hensikten med den er &
fylle den lakune i litteraturen som finnes mellom de tre differensialteo-
riene differensialtopologi, differensialgeometri og teorien for ordinsre
differensiallikninger. Mer presist kunne vi si at forfatteren ensker &
presisere det naturlige aktualitetsomrade for disse teoriene samt & angi
apparaturen felles for disse i sin mest generelle form. Herav skulle det
fremgd at boken ikke er noen innfering i differensialgeometri i vanlig
forstand. En finner ikke nevnt begreper som krumning, torsjon, affin
sammenheng o. s. v. Vi presiserer dette for 4 unngd mulig misforstielse
m. h. t. innholdet.

Som tittelen forteller er det de differensiable mangfoldighetene som
er det sentrale emnet i fremstillingen. I motsetning til vanlig betyr imid-
lertid differensiabel mangfoldighet i dette tilfelle ogsa uendeligdimensjonal
differensiabel mangfoldighet, altsa slike hvor tangentrommet i hvert
punkt er et Banachrom. At teorien for differensiable mangfoldigheter
lar seg utvikle for slike beror i det vesentlige pa at eksistensteoremet for
ordinszre differensiallikninger og teoremet for implisitte funksjoner fra
analysen ogsé gjelder i Banachrom. Andre trekk ved boken som springer
i gyet er den konsekvente bruk av begreper og teknikker hentet fra diffe-
rensialtopologi og homologisk algebra. Vi nevner i fleng kategorier og
funktorer, morfismer og eksakte sekvenser, vektorbunter og operasjoner
pa slike, »pull back’s« o. a. S& langt fra & virke tyngende (merkelig nok)
har disse gitt fremstillingen ualminnelig klarhet. Ellers nevner vi at inte-
grasjonsteorien som er anvendt, begrenser seg til integrasjon av regulerte
funksjoner (uniforme grenser av trappefunksjoner) og er som sddan meget
enkel og oversiktlig (enklere enn vanlig Riemann-integrasjon).

La oss si litt om det niva boken ligger pa. I folge forfatterens inten-
sjoner skulle boken sammen med et grunnkurs i derivasjon og integrasjon
av vektorvaluerte funksjoner utgjere et l-semesters kurs for forste ars

[125]
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hovedfagsstudenter eller begavete 1.-avd. studenter. Anmelderen finner
et slikt opplegg noe hardt. Det forutsetter i hvert fall at studentene er
temmelig stg i lineeer algebra og har godt kjennskap til de enklere delene
av generell topologi. Dessuten ber en nok vare motivert for stoffet fra
minst en av de tre disiplinene nevnt forst i anmeldelsen. For ovrig er
boken selvforsynt, og stoffet har fatt en elegant og sikker utforming av

en kompetent matematiker.
Per Holm

M. M. PosTxiROV: Foundation of Galois theory. (International series of
monographs on pure and applied mathematics 29.) Translated from the
Russian by Ann Swinfen. Pergamon Press, Oxford, London, New York,
Paris 1962. 10+ 109 pp. sh. 42/-.

(Innholdsfortegnelse i NMT 10 (1962), s.219.)

Galoisteorien er utmerket som en innfering i algebra, den gir en intro-
duksjon til s viktige omrider som gruppeteori, og eksemplifiserer en
betydningsfull teknikk, tilordning av en gruppe til en ligning, som leder
til interessante og for en nybegynner lett forstaelige resultater. Og hvem
har ikke som ung elev hort om Abel og ulgsbarheten av femtegradslig-
ningen !

Den foreliggende bok, av omfang vel 100 sider, er en usedvanlig grun-
dig og vederheftig skrevet innfering i den elementere del av Galois-
teorien. Sider av dette stoff som ofte i innferingsbeker far en litt suspekt
behandling, blir her dratt frem i dagen og underkastet en klar og ut-
tommende diskusjon. La oss spesielt nevne to punkter. At enhver rot-
utvidelse K av en kropp P er inneholdt i en normal rotutvidelse, blir
f. eks. i Birkhoff og MacLanes utmerkede innferingsbok avfeiet med
noen fa og hgyst ufullstendige linjer. I Postnikovs bok far dette punkt
en meget tilfredsstillende behandling, bygget pa et lemma som gir en
tilstrekkelig og nedvendig betingelse for »transitivitet av normalitet. I
van der Waerdens store lerebok er den generelle n-te grads ligning et
formelt uttrykk sammenskrevet med »ubestemte« koeffisienter; hvilken
matematisk eksistens et slikt begrep har, er hgyst uklart. Postnikov gir
i siste del av kapitel 3 og i kapitel 4 av del I en meget klargjorende disku-
sjon av hva den generelle n-te grads ligning er, og hva det vil si & lose
den ved rotutdragning. Selv mer erfarne matematikere vil kunne ha
glede av & lese disse bemerkninger.

Forutsetningene for & studere denne bok er meget sma. For de resul-
tater han ikke viser, gir Postnikov hele tiden referanser til en elementer
lserebok av Kurosh. Som oftest er disse resultater av ganske triviell
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karakter, men av og til vil en nybegynner, utelukkende med henvisninger
til en pa russisk skrevet lerebok, komme i vansker, f. eks. med & innse
at et symmetrisk polynom kan skrives som et polynom i de elementer-
symmetriske polynomer. Her kan man bebreide »translation editor« for
utilstrekkelig bearbeidelse av den oversatte tekst. En lerebok i mate-
matikk bgr ikke vaere noe monument til forfatterens sere og derfor be-
handles med den storste pietet. Den skulle nermere vere et forsgk Pa
kommunikasjon mellom forfatter og leser, og da burde det enten, i tillegg
til referansene til Kurosh, veert gitt henvisninger til lereboker en vestlig
leser lettere kunne sla etter i, eller, kanskje bedre, den vitenskapelige
redakter for oversettelsen kunne ha fatt skrevet et lite appendiks hvor
de nedvendige resultater ble gitt.

Det kan veere av interesse & bemerke at dette er den tredje oversettelse
av denne bok til engelsk; de andre to er kommet ut i Nederland og India.
Man kunne gnske en bedre koordinering mellom forlagene i deres over-
settelsesvirksomhet !

Utmerket som boken er, s& vil det allikevel vare vanskelig & innordne
den i den regulewre universitetsundervisning. Som innfering i algebra er
boken for snever, til et spesialstudium av Galoisteori er den for elemen-
teer. Men for den entusiastiske student er den utmerket som en bok &
»lese ved siden av«. Og den ville vere meget velegnet til bruk f. eks. pa
et sommerkurs for matematikklektorer i den hgyere skole. Galoisteori
forer frem til interessante resultater, samtidig som den kan benyttes
som en introduksjon til den moderne matematikks formalisme ved bl. a.
& fremheve de underliggende mengdeteoretiske konstruksjoner, mens et
kurs i ren mengdelzre lett leder til en grkenvandring i trivialiteter kledd
1 en drakt av nye og uvante symboler.

Jens Erik Fenstad
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OPPGAVER TIL LUSNING

Det har i den senere tid vist seg meget vanskelig & holde oppgaveseksjonen
giende med passende problemer, da det er kommet meget f& brukbare forslag fra
leserne. Redaksjonen ser seg derfor ngdt til — i hvert fall inntil videre — & avvikle
oppgaveseksjonen, pa en slik méte at det blir publisert losninger av de hittil stilte
oppgaver, men at nye oppgaver forelepig ikke vil bli gitt.

Hvis det skal veere mulig & gjenoppta oppgaveseksjonen senere, mé redaksjo-
nen ha nye forslag til oppgaver fra leserne. Slike forslag, helst ledsaget av forslags-
stillerens egen lesning, kan sendes til oppgaveredakteren, professor R.Tambs
Lyche, Matematisk Institutt, Blindern, Oslo.

LOSNINGER

221. I samme plan har man fire cirkler C 4, Cp, Cy og Cp. Enhver af
cirklerne bergrer de andre udvendig, og systemerne C ,C5Cp og C5CcCp
er ligedannede. C', har radien a=1. Hvor store er de andre radier ?

B. Thoroddsen

Losning: Radierne betegnes 1, r, 2 og 73. Ved benyttelse af formlen
(29) i NMT 8, side 167 fas (for n=4)

<1+1+1+1 i 2(1 1+1+1 0
ror? r3> +ﬁ ré r’5> -
der umiddelbart reduceres til

r8—25—prt— 481227 +1 = 0.

Dette er en sikaldt reciprok ligning, hvor man (efter division med 73)
kan indfere z=r+1/r som ny ubekendt. Da

1 1
- =22-2, P+—=2"-3,
r r

far man
23—222_42 = 0.

Idet kun z>1 kan benyttes, giver dette

z=1 +]/3 )
[133]
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saledes at
]_ _—
r+-=1+)/5.
r

Heraf finder man de to reciproke lgsninger

r=3(1+V5+)/2+2/5) .

At eventuelle lgsninger matte vare parvis reciproke, folger allerede af
opgavens formulering.

David Fog
Ogsé lost av Bernhard Andersen.

213. Man har fem klot K, K5, Ky, Kp och Ky. Varje klot tangerar
de fyra andra utantill, och klotkonfigurationerna K ,KzK K, och
K 3K oK pK 5 ir likformiga. K, har radien R =1 cm. Hur stora &r radi-
erna i de ovriga kloten?

Harry Bjork

Losning: Denne opgave kan loses ved ganske samme metode som
ovenstaende nr. 221. Den ovennzvnte formel giver her (med n=25)

(1+1+1+1+1)2 3(1+1+1+1+1> 0
ror? o3 ot T )

der reduceres til
P8 T2 423 —pr+1 =0.

Indforelse af r+ 1/r=2z giver i dette tilfzelde
2d—23—4224241 =0,
der omformes til

(22—22—1)(2%4+2—-1) = 0.

Da som for kun z> 1 kan bruges, fas

2= 1+]/§,

r+; = 1+1/§.

altsa

Heraf findes de to reciproke lgsninger

r=3(14V22)/-1+2/3).
David Fog
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236. Det er gitt tre punkter A, B og C pa en rett linje, slik at B ligger
midt mellom A og C. Del linjestykket AB i n like store deler med bare
linjalkonstruksjoner.

Per Roar Andences

Losning: 1) Konstruktion af en linie parallel med den givne linie AC
gennem et punkt D uden for AC (fig. 1).

DA tegnes, E vzlges; EB, EC og OD tegnes; CD skerer EB i F;
AF tegnes, den skerer EC i G. Da er D@ parallel med AC.

2) Deling af 4B i lige store dele (fig. 2).

Der konstrueres en linie parallel med AC. P& denne vzlges to punkter
P, og P,, hvorefter man umiddelbart kan konstruere punkter P,, Py, . . .,
s4 P,P,=P,P;=.... Nar man har punkterne P;,...,P,,,, kan man let
dele AB i n lige store dele.

E

D%\G FRA L P%’
yu
A B c A B c
Fig. 1 Fig. 2

P. W. Karlsson

Ogsa lest av Bernhard Andersen, Inge-Lise Hansen og Torsten Strém.

238. Lat O vara en punktformig ljuskilla inuti ett speglande klot
(medelpunkt C). Visa att alla fran O utgiende ljusstralar som ligger pa
en fran C vind regelbunden kon med en diameter i sfiren som axel
efter varje reflexion tangera ett och samma klot fullstindigt bestdmt av
O:s avstdnd fran C' och ljuskonens Sppningsvinkel.

Torsten Strom

Losning: Det er nok at se pa stralen i et diametralsnit af kuglen.
Stralerne tangerer en kugle med centrum i C' og radius a sinx, hvor
a=0C og x=den halve topvinkel af keglen.

Bolli Thoroddsen
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239. Visa att talen k? (Ove J.Munch: Om potensproduktsummer,
NMT 7 (1959), s. 14) kan framstéllas genom

| e 1\ PHL
kﬁ = ———p - \ ( ) e~"2dz N
271 ) z

€—100

dér ¢ <0 ar godtyckligt. Hérled med hjélp hirav den asymptotiska for-
meln i uppgift 174.
Gerhard Arfwedson

Losning: Integranden kan skrivas

p+1 + 1
2v—n)( _ 1)P+1— p -p-1
et
De termer dér v =n forsvinner om integrationsvigen kompletteras med
en halvcirkel i vinstra halvplanet (6ver vilken integralen férsvinner da
radien vixer). Betrakta alltsa

n—1 n
+1 p+1
—_ 2v—n)( __ 1)p+1—» p -p-1 _— (1 p+1—-n+v( ) -p-1 .
R G e e O P
Serieutveckling och integration 6ver den angivna vigen kompletterad
med en halvcirkel i hogra halvplanet samt ev. nodvindiga 6vriga kom-
pletteringar ger enligt residuesatsen

c+i00
p! 0 n ,,p p+l
— = —npl — 1) —(—=1)p+1-ntr
2 ) SOz = —p1 ( Py ()
100

= (- 1)""’(p+ 1) = kP, v.s.b.

n—v "’

Den ursprungliga integranden kan fér z=4y skrivas

: p+1
( Sm %y> . eh‘y(p+1—2n)

3y

vilket visar att maximitermen fas fér n=[4(p+1)]. Elementéira upp-
skattningar visar att integranden for stora p kan ersittas av sin serie-
utveckling kring origo dvs.

sin fy\ P+
( §y> A e~V O+D |

1y

alltsa

|
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+00

I
Max &, ~ %’; S o~V @05 dy
7”/—00

vilket med Stirlings formel ger
Max k2 ~ ppe“p]/ﬁ .
n

Torsten Strom

240. La p, q og r (q+r) veere naturlige tall. Sett
s 1
S(p;q.r) = PR
2 e o)

og finn 8(p; ¢,r) uttrykt ved endelige summer. Bruk resultatet til 4 vise at

.R- Tambs LyCh@

Losning: Omedelbart fas med hjilp av Abels kontinuitetssats

de .

1
1 o xr—-l —_ xq—l
S(p; ¢,r) = \

—r. — P
q-ry 1-2

Ett sitt att uttrycka integralen som summan av éndliga summor ar att
utfora division s& langt som mojligt i integranden, direfter partialbraks-
utveckla den brutna rationella funktionen, sammansld konjugerade
termer och integrera termvis. De numeriska detaljerna ér elementéra och

redovisas ej. Metoden ger

1 L |
Spian) = -2 A3 Sy L ()= 1 (- 1)

yv=1T—VYP 19— VP

[3(p—D)] 9 ) 2 9
+2 2 [(cos ﬂ—cos nvq) ln<2 sin 72) + (sin e sin n_w) (f—n—vﬂ } .
P P P P p/\2 p
Ytterligare komprimering av summan kan ske men har ej ansetts be-
hoévlig. Nodvindigt for ovanstiende uttrycks giltighet dr att 2°_; definie-
ras =0; n ar det storsta heltal for vilket r —1 —np =0 (motsvarande for

m och q).
Den givna summan #r 12-8(12; 4, 3) vilket ger det onskade uttrycket.

Torsten Strom



EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen viren 1963 pé de
matematiske gymnaslinjer i de nordiske land.

DANMARK
Matematik I.

1. Vis, at der findes et komplekst tal ¢, s& polynomiet

2% — (1 +20)x + (1 —57)
gar op i polynomiet

P(x) = 2°— (1 +2¢)at + (1 — 5¢)a% — it + (12 +t)r —10—1¢ .

Los for denne veerdi af ¢ ligningen
P(x) =0.

Losningerne enskes angivet pa formen a +1b, hvor a og b er reelle tal.

2. I en a-klasse er der 7 drenge og 1 pige, og i en b-klasse er der 6 drenge og 4
piger.

P43 hvor mange mader kan der dannes et udvalg bestdende af 3 elever fra a-klas-
sen og 3 elever fra b-klassen,

1) nar der kan velges frit mellem eleverne inden for hver af de to klasser?

2) nar det skal indeholde pigen fra a-klassen, 1 pige fra b-klassen og 4 drenge ?

3) nar det skal indeholde 3 piger og 3 drenge?

3. Givet et liniestykke m, et liniestykke p og en vinkel v. Konstruer en trekant
ABC saledes, at siden AC =m, vinkel C =v og liniestykket OM =p, hvor M er
midtpunktet af AC, og O er skeringspunktet mellem BM og vinkelhalverings-
linien fra C.

Diskussion kraeves.

Beregn de ubekendte sider og vinkler i trekant ABC, nar m =2, p =sin33°,67
og vinkel v="77°34.1

1 Her var indlebet en trykfejl, idet der skulle have staet v=67°,34. I den anledning
resolverede undervisningsministeriet, at der skulle afholdes en ny preve, og at begge
st matematik I skulle bedemmes, men kun det bedste danne grundlag for karakter-
givningen.

[138]
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Matematik I (ny preve).

1. Find ligningerne for de to rette linier, der fremstilles ved ligningen

222 +ay—y:+3x+1 =0.
Les derefter ligningssystemet
20t +xy—y: +3x+1 =0
ity +2x+ y+1 =0.

2. I en given kugle med radius R er indskrevet et legeme, der bestér af en om-
drejningscylinder, hvis endefladers periferier ligger pa kuglefladen, og to omdrej-
ningskegler, hvis grundflader falder sammen med hver sin af cylinderens ende-
flader, og hvis toppunkter ligger pa kuglefladen.

Bestem cylinderens hgjde, s legemets rumfang bliver s& stort som muligt.

3. Der er givet en stump vinkel v og to liniestykker p og ¢q. Konstruer en tre-
kant ABC, hvori vinkel 4 er lig med », siden AB lig med p og vinkel B’s halverings-
linie lig med gq.

Diskussion kreves (stadig under forudseetning af, at den givne vinkel er stump).

Beregn de ubekendte vinkler og sider i trekanten, nér »=102°37, p=1,261 og
q=1,666.

Matematek I1.

1. En hyperbel gar gennem punktet M(—4, 6), og dens asymptoter har lig-
ningerne

mV§+y =0 og ml/é—y =0.

Find hyperblens ligning.

Hyperblens tangent i M betegnes m, og det brendpunkt, der har positiv ab-
scisse, betegnes F.

Find koordinaterne til det punkt, der ligger symmetrisk med F med hensyn til m.

2. Givet en pyramide T'—ABCD, hvori grundfladen ABCD er et trapez (4D
parallel med BC) med siderne AB =BC =CD =a og AD =2a. Linien T'C er vinkelret
pé grundfladen, og TC =a.

Find toplansvinklerne langs grundfladens kanter.

Vis, at pyramiden har en omskreven kugle, og find dennes radius.

3. Undersog og tegn den kurve, hvis ligning er

9oz
Y=1e
Beregn arealet af den figur, der begreenses af kurven, z-aksen samt linierne x = —2

og x=—1.
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FINLAND

Lingre kursen.

1. Kirlen 4 och B innehéller samma saltlosning. Fran 4 borttages $ av 16s-
ningen i kérlet och den avligsnade méngden ersdttes med vatten. P& detta sétt
forfares sammanlagt fem ganger. Fran B avldgsnas p& motsvarande sétt tio
ganger 7 av 16sningen. Huru ménga procent starkare &r 16sningen i B én 16sningen
i A efter den sista vattenpafyllningen ?

2. Forsta termen i en viss serie dr tva tredjedelar av den andra, den andra ér
2 av den tredje, denna i sin tur ¢ av den fjirde o.s.v. Seriens n:te term &r .
Uttryck summan av de n forsta termerna medels n och w.

3. Lés ekvationen (£)* — (§)° =1. Ange resultatet med tre decimalers noggrannhet.

4. Till parabeln y=x%+1 dras tangenterna frén origo. Berikna arean av den
figur, som begrinsas av tangenterna och parabelbdgen mellan tangeringspunk-
terna. Rita figur.

5. Hirled formeln fér derivering av en kvot.

6. En likbent triangel har basen @ och benen b. Berikna lingden av den del av
en basvinkels bissektris, som faller inom triangeln.

7. Genom en godtycklig inre punkt P i en triangel dras paralleller till dennas
sidor. Hirvid uppkommer tre mindre trianglar med P som gemensam hérnpunkt.
Uttryck den ursprungliga triangelns area 4 medels de smé trianglarnas areor A,,
A, och A4,.

8. I en rit cirkelkon #r en halvsfir inskriven sé, att dess yta tangerar konens
mantel och dess bas ligger i konens basplan. Berédkna forhallandet mellan halv-
sfirens och konens volymer, di i konens axelsektion toppvinkeln ér 2v. Fér vilket
virde p& v ér nimnda forhallande storst ? Motivera extremvirdets art.

9. Los fullstéindigt ekvationen sinz +sin2x 4 sin3dx =0.

x2

10. Berikna maximi- och minimivérdena fér funktionen y =
tionerna fér kurvans asymptoter. Rita figur.

. Bestdm ekva-
x—2

ISLAND
I.

1. P4 parablen y=a?/p ligger punkterne A(wy,y,) og B(x,, ¥,), hvor z, <x,.
Gennem midtpunktet M af korden AB trekkes en linie parallel med y-aksen til
skaring med parablen i C. Lengden af OM =h.

1) Beregn h.

2) Beregn arealet af det segment, som AB afskeerer af parablen, og vis, at det
har veerdien 2kk, hvor k =z, —;.

3) Punkterne A og B tenkes nu bevaegelige pa en sdidan made, at parabelkorden
AB’s projektion pa toppunktstangenten holder sig konstant. Hvad viser bereg-
ningerne i 1) og 2) om arealet af segmenterne, som begrenses af korden 4B og
parabelbuen AB under beveaegelsen af 4 og B?
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4) Find det geometriske sted for midtpunktet M af korden AB, nir dennes
projektion pad toppunktstangenten er k.

2. 1) Beregn regdderne i ligningen

22+ (2 +2)x+2i = 0.
2) Ligningen
22+ 2(1 +4)28 + (3 +29)22 + (6 +6¢)x +61 = O

har en rent imaginer rod x =b. Bestem de verdier, som b kan have, og derpa alle
ligningens redder.

3. Givet f(x) =sinz +cos2z; 0 <z =2n.

1) Find funktionens nulpunkter.

2) Find dens maksima og minima.

3) Tegn kurven y=f(x).

4) Beregn arealet af det omrade, som begrenses af kurven og akserne i inter-
vallet 0=z = %n.

5) Dette omrade drejes nu en omgang om z-aksen. Beregn omdrejningslegemets
rumfang.

II.

1. En kasse har de lodrette kanter A4, =BB, =CC,=DD, =16, hvor 4,B,C,D,
er grundfladen. Kassens lengde er AB =24, bredden AD =9. Midtpunktet af
kanten BB, er P, midtpunktet af DC er @ og midtpunktet af AB er E.

1) Tegn en figur, som viser kassen. Trak ogsd liniestykkerne 4,R og PQ, og
beregn deres leengde. ’

2) Bestem den vinkel, som linien PQ danner med grundfladen.

3) Bestem vinklen mellem linierne 4,R og PQ.

4) Bestem vinklen mellem planen PQR og grundfladen.

5) Beregn rumfanget af tetraedret 4,PQR.

2. Givet punktet A (a, 0) og parablen y2? =px, hvor p er et fast tal mellem 0 og 2a.

1) Find de punkter P, og P, pd parablen, hvis afstand fra 4 er den mindst
mulige.

2) Pavis, at AP, og AP, er parablens normaler i P, og P,.

3) Nar vi nu lader p gennemlebe hele intervallet 0 <p <2a, vil P, og P, blive
bevagelige punkter. Bestem deres geometriske sted, og ger rede for dets art og
beliggenhed.

3. 1) Givet funktionen

_ Vx—2
flx) = m

Beregn f (2+V—é) med 3 decimaler og pavis, at dette er den sterste vardi, som
f(x) antager.

2) Les ligni

) Los ligningen (Inz)? —Inz =In (¢2).

3) Beregn integralet

e

nz+1
§

dzx.

x
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Reallinjen.

1. En rett kjegle med grunnflateradius » og heyde lik 2r blir skaret av en kule-
flate. Kjeglehgyden er en diameter i kula.

Regn ut overflaten av den delen av kjeglen som ligger utenfor kula.

Kula og kjeglen blir skaret av et plan som er parallelt med kjeglegrunnflaten og
som har avstanden x fra toppunktet i kjeglen.

Vi tenker oss forst at skjeringsplanet ligger mellom toppunktet i kjeglen og
snittsirkelen for kuleflaten og kjegleflaten. Finn, uttrykt ved r og x, arealet av den
sirkelringen som ligger mellom kjegleflaten og kuleflaten. Finn den sterste verdien
dette arealet kan ha og den tilsvarende verdien av z.

Vi tenker oss s at planet kan skjere kula og kjeglen béde ovenfor og nedenfor
snittsirkelen. Finn de verdiene av x som da gjer arealet av sirkelringen lik arealet
av snittsirkelen.

2. Sirkelen 22 +y% =R? og punktet (a, 0) pa den positive z-aksen er gitt. Sirkelen
skjeerer y-aksen i punktene 4 og B.

Finn likningen for en parabel som har toppunkt i (a, 0) og som gar gjennom
A og B. Hva blir brennpunktet og parameteren i parabelen, og hva blir likningen
for styrelinjen ?

Nar a >R, har parabelen, foruten skjeringspunktene 4 og B to andre skjeae-
ringspunkter med sirkelen, C og D. Finn koordinatene til C og D uttrykt ved a
og R.

Vi tenker oss né at (a, 0) er et fast punkt, mens R varierer. Punktene C og D
vil da felge en kurve. Finn likningen for denne kurven og forklar hva likningen
betyr geometrisk. Lag figur pa millimeterpapiret for B =3 og a =5. Bruk 1 cm til
enhet.

Vis at parabeltangenten i punktet C skjerer z-aksen mellom (a, 0) og (2a, 0).

3. Forklar uten bevis hvordan funksjonen a* varierer med x nir « er et reelt
tall og a er et positivt tall. Stett forklaringen med en enkel skisse.
Vi har gitt funksjonen

sinz
y = (_1_) 1-2sinx
3 .

Her er z en vinkel i omradet 0 <o <2zn. Finn de x-omrédene der y >1 og de z-om-
radene der y <}. Gjor greie for hvordan det gr med y nir x nermer seg 3.
Vi setter
sin
2=,
1-2sinx

Regn ut den deriverte av z og bruk den til & finne maksimal- og minimalverdiene
av z og de tilsvarende verdiene av .

Bruk det du har funnet om funksjonen z til & finne maksimal- og minimal-
verdiene av funksjonen y. Regn ut disse verdiene av y.
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x—1\2
1. Undersok kurvan y = (—) med avseende p& asymptoter, maximi-, minimi-
x

och inflexionspunkter, samt upprita den i dess huvuddrag.

2. Kurvan y=sin2x f6r 0 Sz <4n begrinsar tillsammans med z-axeln ett &nd-
ligt omrade. Berdkna férhallandet mellan ytorna av de delar, i vilka omradet
delas av kurvan y=sinzx.

3. En hyperbel har i ett rétvinkligt koordinatsystem ekvationen x? —y? =2. F' ar
den brannpunkt, som ligger pa positiva z-axeln. Tangenten till hyperbeln i en
punkt P p& kurvan skér den réta linjen =1 i punkten S. Visa, att vinkeln PFS
ar rat.

4. I funktionen y =a-ek** &r a och k konstanter. Det finns ett virde pa k sadant,

dz d;
att funktionen, oberoende av a, satisfierar differentialekvationen d_?: +x d—y+y =0.
x i

de®
Bestam detta k-viarde. — Det forutsédttes bekant, att T =e?,
i

5. I en rdt cirkuldr kon #r toppvinkeln rét. Ett plan genom konens spets
bildar vinkeln v med basytan. Planet skir vidare mantelytan utefter tva genera-
triser, som med varandra bildar vinkeln u. Visa, att cosu =cot2wv.

6. I ett ratvinkligt koordinatsystem uppritas kurvan y =x2. Normalen till kur-
van i punkten 4 (—1; 1) rakar kurvan ytterligare i punkten B. Var p& kurvan
kan en punkt P ligga, om kurvans normal i P skall skéra den férst némnda norma-
len mellan A och B?

7. I ekvationen 2 +2y? + 2ax +1 =0 &r a en konstant. Ange, for vilka vérden pa
a ekvationen betyder en ellips, utanfor vilken punkten (1; 1) &r belédgen.

8. Undersok, hur méanga reella rétter ekvationen

1+ z + a? + x® + zn 0
1'1-2 1-2-3 BTN
har for n=1, 2, 3 resp. 4. — Det erfordras inte men betraktas som en fértjénst,

att man utstricker undersékningen till det fall, d& n &r ett godtyckligt positivt
heltal.



SUMMARY IN ENGLISH

Forre Eriksson: The positive integers. (Swedish.)

The treatment of the arithmetic of positive integers in for example Landau’s
«Foundations of analysis’ pays no attention to the fundamental use of numbers
in counting (as ‘‘Anzahl”). This seems artificial and unsatisfactory. A more natural
approach is found in older works of Dedekind, Helmholtz and others. The present
paper is intended to give this natural theory of the positive integers in a stringent
form, based on Peano’s axioms. The plan is in brief the following:

Tirst the relation of order < is introduced recursively. Then the notion of
«Anzahl” is defined in connection with the “fundamental theorem of arithmetic
(or counting)”’: The number of elements in any finite set is uniquely determined.
This is used in the treatment of addition and multiplication. The sum a+b is
defined as by Peano, and Landau’s criticism against this definition is rejected.

Atvo TORN : Application of the Monte Carlo method on multi-dimensional
integrals. (Swedish.)

After a short survey of the general problem, including mathematical methods
for the generation of random numbers, the author discusses an application on
a 9-dimensional integral arising in the theory of many-body systems.

S1eBIORN HALVORSEN : A generalization of L’ Hospital’s rule. (Norwegian.)
«I’Hospital’s theorem” for the determination of so-called indeterminate ex-
pressions is given the following generalization :

J'(x) fle) _ o f(=@) J'(@)

lim inf *—— < lim inf>—— < lim sup—— = lim sup -

et 9@  ose 9@ o g@) — z>e '@
It is most probable that this theorem is not new; however, it seems to have
escaped the attention of authors of textbooks in differential calculus. The ordinary
theorem is mostly proved through the use of Cauchy’s extended mean-value
theorem. This is avoided in the present proof, which is very elementary.

LENNART RADE: Order statistics for exponentially distributed stochastic
variables with application to the minority principle. (Swedish.)

A simple representation, due to Rényi, of order statistics for an exponentially
distributed stochastic variable is derived. As an application, the mean and variance
are calculated for the quotient of the sum of the p greatest and the sum of all
the order statistics in a random sample for an exponentially distributed stochastic
variable. The connection with the problem of random division of an interval is given.

Davip Foa: New teatbooks of mathematics for a new curriculum. (Danish.)

With the beginning of the new school year, extensive changes in the Danish
plans for the high school teaching of mathematics came into force. In this connection,
several new textbooks have been published or are in preparation. The two first
published textbooks are reviewed in the present paper.
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