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ON A COMBINATORIAL PROBLEM

P. ERDOS

Let & be a family of sets. § is said by E. W. Miller [3] to possess
property B if there exists a set B such that

FnB+@g forevery Feg,
F & B for every F e .

Miller used the letter B in honour of Felix Bernstein, who in the early
years of this century proved that the perfect sets have property B and
using this “constructed” a totally imperfect set of power continuum
(that is, a set of power continuum which does not contain a perfect set).
I put constructed in quotation mark, since he used the axiom of choice
(in fact, without the axiom of choice the existence of a totally imperfect
set has never been proved).

Several other well known theorems can be formulated in terms of
property B. For example, a well known theorem of van der Waerden
states that if we split the integers into two classes, then at least one
class contains for every k an arithmetic progression of k& terms. This
theorem can be formulated as follows: The family of all arithmetic
progressions of k terms does not have property B.

Hajnal and I [2] recently published a paper on the property B and
its generalizations. One of the unsolved problems we state asks: What
is the smallest integer m(p) for which there exists a family § of finite
sets Ay, ..., A4, each having p elements, which does not possess prop-
erty B?

For p=1 there is no problem since m(p)=1. Trivially m(2)=3 and
by trial and error we showed m(3)="7. m(3)<7 is shown by the set of
Steiner triplets (1,2,3), (1,4,5), (1,6,7), (2,4,7), (2,5,6), (3,4,6), (3,5,7).
It is easy to see that every set which has a non-empty intersection with
each of these sets must contain at least one of them. By a somewhat
longer trial and error method we showed m(3)> 6. Thus m(3)="7. The
value of m(p) is not known for p> 3 and it does not seem easy to deter-

mine m(p) even for p=4. We further observed that m(p) < <2Pp— 1) by

(5]
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defining the family & as the set of all subsets taken p at a time of a set
of 2p—1 elements.
We shall now show that for all p>2:

(1) m(p) > 2071,
and for every ¢> 0 if p> py(e):
(2) m(p) > (1—¢)27 log2.

A % Will denote the number of elements of 4,, and 4 \A; will denote
the set of those elements of 4, which are not contained in A;. Instead
of (1) and (2) we shall prove the following

TurorEM 1. Let {4}, 1<i<k be a family §F of finite sets, Z,-: ;= 2. If

L B |
(3) 2=z
i1 27 2
or

k
1 1
4 1-—) ==
“ {{( 2“%‘)‘2

holds, then & has property B.

(1) clearly follows from (3) and (2) from (4). In fact (4) clearly implies
(3), and we include (3) only because its proof is very simple.

I do not know the order of magnitude of m(p) and cannot even prove
that
(5) lim m(p)*/»

pP—>0

exists. Quite possibly the limit in (5) is 2.

Put Uf=1A¢= T,T=n.1f & is a family of sets, %—§ will denote the num-
ber of sets in the family. Denote by &, the family of sets S for which

(6) ST, 4;nS+0, A, &8, 1<i<k.

We have to show that if (3) holds then %T >0 (since this implies that
the family of sets 4;, 1<i<k satisfying (3) has property B). Denote
by &; the family of sets S satisfying

(7) S<cT,A4;, <8 or 4,n8=0.

Clearly an S<T is in the family §, if it is in none of the families S
L=<k (that is, it satisfies (6) if it does not satisty (7) for any ¢, 1<¢<k).
By a simple sieve process we thus have

- ko—
(8) Srz 2= 2 &+ 1.
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The proof of (8) is indeed easy. 2" is the number of all subsets of 7',
and to obtain ¥, we have to subtract away all the sets of &;, 1<i<k.
But the sets which contain 4,ud, have been subtracted away twice
and there is at least one such set (namely 7'), which explains the sum-
mand + 1 on the right hand side of (8). We evidently have

(9) T = 2,
since clearly there are 2"~ sets S<T satisfying 4;<8 and 2"~ sets
satisfying 4,nS=4¢. From (8) and (9) we have Fp=1if (3) is satisfied.

This proves the first statement of Theorem 1.
To prove the second statement we need the following

LemmA. Let T<T,, i:mgn. The number of subsets S<T, which do
not contain any of the sets A;, 1 <i <k is greater than or equal to

1
(10) 2’"11 (1-5).
with equality if and only if the sets A; are pairwise disjoint.

We use the set 7', T only to make our induction proof easier. Denote
by f(4,,...,4;; T;) the number of subsets S of 7'; not containing any
of the sets 4;, 1=i<j, and by f(4,,...,4;; A;,;,T;) the number of
sets S<T, which contain 4;,,, but do not contain any of the sets 4,,
12455

If the sets A, are pairwise disjoint we evidently have

(1) f(dy.. AT 2m—n]] 2% _1) = m]](1_27z)

=1
since we obtain the sets S< T, Ai¢S, 1<i <k by taking the unions of
all the proper subsets of the sets 4; with any subset of 7',\7. Thus
there is equality in (10).
Assume next that the sets 4, are not pairwise disjoint, say 4,n4,+0.
If k=2, a simple argument shows that

1 1
f(4,, Ay Th) = 2m—2m—e1_gm=ea 4 gm=h > 27"(1—”271) (1__2—‘;‘—2),

where n=A4,U4,<x;+«, Thus for k=2 (10) holds with the sign of
inequality. Assume next that if we have any £—1 (k= 3) sets which are
not pairwise disjoint, then (10) holds with the sign of inequality. We
shall show that the same is true for k sets 4,,...,4;, 4,n4,+0.

By a simple argument we have

(12) f(Ay, .. ATy = f(Ay, - A T —f(Ay - Apgs 4, T)
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By our induction hypothesis we have
k-1 1
(13) FAy .. A Ty > 2m]](1-5&).
i=1
Further clearly

(14) f(Al’ .o "Ak—l; Ak’Tl) = f(’A'l\Ak’ .o "Ak—l\Ak; TI\AIC) .

To every subset S’ of 7',\ 4, which does not contain any of the sets
ANA,, 15¢<k—1, we make correspond 2* subsets S of 7', which do
not contain any of the sets 4;, 1<¢<k—1. It suffices to consider the
sets

(15) S'us’, 8 cA,.

Clearly if two subsets S," and 8," of T',\4,, are distinct, all the sets
(15) are distinct. Thus we have
fAy, .. AT

(16) JANA, . A NA TINAy) < 9%k

From (12), (13), (14), and (16) we obtain

k 1

Fly .. Ay Ty) = f(Ay, . Ay s Ty) (1_51@) > 2’”_17(1—5?@-):

=1
which proves the Lemma.

The Lemma in fact follows immediately from the following special
case of a theorem of Chung [1]: Let E,, 1<¢<k be k events of probab-
ility B;, E; denoting the event (of probability 1—pg,) that E; does not
happen. Assume that for every ¢, 2<i<k:

(17) PE,v...VE, ,|E,) 2PE,uU...UE,_)),

where P(E | F) denotes the conditional probability of E happening if
we know that F has happened. (17) implies

k
(18) PENn...nE,) = {{ (1-5,),

with equality only if there is equality in (17) for every 4, 2<i<k. We
obtain our Lemma by defining the event K, as the event that S<T,
contains A4,.

To complete the proof of Theorem 1 we have to show that if A4,
1<i<k satisfies (4), then J,>0 (see the proof of (3)). Clearly
2n—f(A4q,...,4,; T) equals the number of subsets S of 7' for which
A ;<=8 holds for some 7, 1 <4 <k, and it also equals the number of subsets
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S <T for which A,<T\S8 for some 4, 1<i<k. Denote by L the number
of subsets S<T for which 4, <8 and A4, <7T\8 for some 4, and 1,
A simple argument shows that

(19) Fp = 22—2(2"—f(Ay, .. ., A T)) + L.

If the sets A4; are not pairwise disjoint, then (4), (19) and our Lemma
implies %T > 0. If the sets A, are pairwise disjoint (in fact if 4,n4,=0),
then L>0 since A,<A,, A,cT—A,. Thus in any case (4) implies
%1' >0 and hence Theorem 1 is proved.

By slightly more complicated arguments we could prove the following

THEOREM 2. Let A,,4,, ... be a finite or infinite sequence of finite sets
satisfying .
=. > —_) > =
A; 22 and ]zI(l 2%,) 25
and A, Ay, ... a finite or infinite sequence of infinite sets. Then the

family {A;}u{4;'} has property B.

Now one can ask the following problem which I cannot answer: Let
{A,} be a finite or infinite family of finite sets which does not have the

property B and for which A;=p=2 for all i. What is the upper bound
C® of JI,(1—27%) and the lower bound C, of 2;27%? Very likely
C®=% and Cy=$%. Probably

lim C® = 0, lim 0, = .
p—>00 p—>00
If f(4,,...,4;; T)>2"1, our proof immediately shows that the
family {4,}, 1<i<k has property B, but if f(4,,...,4,; T)=2"", the
family {4,}, 1<i{<k does not have to have property B, for instance if
it consists of the subsets taken p at a time of a set of 2p—1 elements.
A family of sets & is said to have property B(s) if there exists a set
B such that FnB+9 and FnB<s for every F of .
Hajnal and I asked [2] what is the smallest integer m(p,s) for which
there exists a family & of sets 4;, 1<i<m(p,s) not having property

B(s) and satisfying 4;=p, 1 <3 <m(p,s). Clearly m(p,p)=m(p), and we

remarked that m(p,s) = (20+z+ 1) .
Using the methods of this note we can show that positive absolute

constants ¢; and ¢, exist so that

(T4+¢)s < m(p,s) < (L+c¢y)%.
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EN SETNING OM MULTILINEZARE POLYNOMER

HELGE TVERBERG

Et multilinesert polynom P i n variable #;,%,,...,x, er et polynom
som er lineswert i hver av de variable, d. v.s. at for hvert ¢=1,2,...,n
skal vi kunne sette P=Ax;+ B;, der 4; og B; er polynomer i 2,2, . . .,
Ty 1,%i415 - - -, ¥y Eller sagt pd en annen maite: er cx,™x,™...x,™ et
ledd i polynomet, skal alle «; veere lik 0 eller 1.

I det folgende skal vi vise en enkel sats om multilinezre polynomer,
og vi skal gi et par enkle anvendelser av denne satsen. Vi skal bare bevege
oss i de reelle talls omrade, og s kan leseren selv generalisere der han
synes det kan generaliseres. Satsen er:

La det wveere gitt to multilineere polynomer P(xy,%,, ..., %,) 0
Q(25,s, . . .,x,) med folgende egenskap: P forsvinner for et vilkdrlig tall-
seft (ay,as, . . .,a,) hvis og bare hvis Q forsvinner for det samme tallsettet.

Da vil det finnes et tall ¢+ 0 slik at P =c@Q.

Beviset fores ved induksjon etter n. Polynomet ax+b forsvinner for
enten ingen, alle eller én verdi z, av x, ettersom a=0, b+0; a=b=0;
eller a0, og i siste tilfelle er x,= —b/a. Dette viser at satsen er riktig
forn=1.

Anta si at n> 1. Vi skriver P og @ som Az, +B og Cx,+D. Settes
x, =0, ser en at B og D er to multilinezre polynomer i n— 1 variable som
oppfyller betingelsen i satsen. Altsa er B=cD med c=+0. Multipliseres
@ med ¢, noe som ikke influerer pa »nullpunktene« for @, og heller ikke
pa konklusjonen i satsen, ser en at vi kan anta D=B. Settes z,=1, og
x,= —1, f4r en pd samme méate identitetene

A+B = ¢,(C+B)
—A+B = c¢y(—C+B),
som gir
(cg—¢)C = (¢;+¢y,—2)B .
Er né ¢, =c,, ma enten B=0 eller ¢,=c,=1. Er B=0 har vi @=Cx,,
P=¢,0x,=c,Q. Er ¢,=1 blir A=C og altsd P=1-Q. Dersom c¢; =0,
finner vi ¢ og A som multipler av B, og kan sette P=B(1+ax,),

(1]
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@=DB(1+px,). N4 er nullpolynomet multilinesert i n— 1 variable og for-
svinner for alle verdisett (a,,a,, .. .,a,_,;). Det vil si at hvis B forsvinner
for alle verdisett ma B veere lik ¢-0=0, altsi P= @=0, og vi kan f. eks.
sette P=1-Q. Hvis (a,a,, . . .,a,_,) er et verdisett slik at B(ay,ay, . . . a, ;)
=B+ 0, settes disse verdiene inn i P og @, og en ser av tilfellet n=1 at
x=f og at P=1-@), altsé ¢;=c,=1, som gir en selvmotsigelse.

S& var det anvendelsene. Er a, b og ¢ 3-dimensjonale vektorer, gjelder
som kjent at
@y Ay Qg
a(bxe)=|b; b, b,
€, €y Cq

Ut fra koordinatfremstillingene av skalar- og vektorprodukt er det klart
at venstresiden av denne ligningen er multilineer i de 9 variable @y, ...y Cqy
og en ser ogsé at hgyresiden er det. Fra determinantleren vet vi at hgyre-
siden forsvinner bare nar de tre vektorene er koplanare, og den geome-
triske definisjonen av venstresiden sier at den er null bare nar a,boge
er koplanare. Satsen kan altsi anvendes, og et spesielt valg av vektorer
viser at konstanten c i dette tilfelle er lik 1, altsi at ligningen ovenfor er
riktig.

Den andre anvendelsen er pa satsen om multiplikasjon av determinan-
ter av samme orden. La oss betrakte to n-te ordens kvadratiske matriser
A4 og B, og la x og y betegne n-dimensjonale vektorer. Ut fra teorien for
linewre ligningssett er det da lett & verifisere den folgende kjede av
ekvivalenser:

|[AB| = 0 <= (x)(x + 0 & ABx = 0)
<> (dx)(® + 0 & Br = 0)v(Ir)y)(y + 0 & Ay = 0 & Br=y)
<= |Bl=0v [B|+0&|4|=0< B =0 v |4 =0
< |A4]|-|B| = 0.
En ser dessuten umiddelbart ut fra definisjonen av matriseproduktet
AB og av determinanten at bade |AB| og |4 |B| er multilinezere poly-

nomer i 2n? variable (elementene i 4 og B). Settes f.eks. A=B=E
(enhetsmatrisen), ser en ogsa her at konstanten ¢ blir lik 1.




MATRIX-SYMBOLIK ANVENDT PA
DIFFERENTIALREGNING

PETER KIERKEGAARD-HANSEN

Ved problemer, som skal lgses ved hjelp af differentialregning, som
for eksempel ekstremabestemmelse, kan man komme ud for at skulle
differentiere med hensyn til mange variable. Dette medferer et stort
skrivearbejde, og beregningerne bliver ofte uoverskuelige. Ved sidanne
opgaver vil man med fordel kunne anvende matrixregningens symbolik.

I professor K. W. Johansens hafte »Matricer, Teori-Praksis« er for
vektorer og matricer anvendt symboler, som kan benyttes sivel i hand-
skrevne som i maskinskrevne beregninger. Man har der valgt at skrive
en vektor som et lille bogstav med én streg over og en matrix som et
stort bogstav med to streger over. Anfores for en matrix eller en vektor
alle dens elementer, indrammes disse af en kantet parentes [ ]. Af typo-
grafiske grunde skrives en sgjlevektors elementer dog i reglen ved siden
af hinanden. Dens karakter af sgjlevektor markeres da ved anvendelse
af parentesen { }, saledes at den f. eks. kan have udseendet

T =| U1 | = W1¥2 - Yu}-
Ya
Yn |
Idet en stjerne betegner transponering, skrives den transponerede
sojlevektor, reekkevektoren,
I = Y192 - Yal -
Har samtlige elementer i vektoren 7, veerdien 1, skrives den
(1) g={l1...1}.

Ved hjelp af vektorer kan en produktsum z=27  a0b; skrives pi
formen x=a,;b,. Kvadratet pa denne stgrrelse bliver

(2) 2? = (@5, (b3a,) = @i (6,5, -

(13]
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Ved differentiation af en vektor med hensyn til én variabel skal hvert
af vektorens elementer differentieres med hensyn til den variable. For
sgjlevektoren 7, far man siledes
N LU
dx dx dx dz |’
idet differentialkvotienten atter opfattes som en sejlevektor. P4 lignende
méide skrives differentialkvotienten af en rekkevektor pany som en
rekkevektor. Mere almindeligt differentieres en vilkarlig matrix ved
differentiation af alle dens elementer, og hvert elements differential-
kvotient skrives pa den plads i den nye matrix, som svarer til elementets
plads i den oprindelige. (Det er naturligvis her som i det folgende forudsat,
at alle omtalte differentialkvotienter eksisterer.)

I overensstemmelse med (3) skrives differentialet af en sgjlevektor ¢,
som sgjlevektoren

4) Ay, = {dy, dy, ... dy,},
og differentialet af en rakkevektor 7* som rakkevektoren
(5) dyy = [dy, dy, ... dy,] .

Det skal herefter vises, hvorledes symbolikken kan udvides til ogsé at
omfatte differentiation med hensyn til en vektor.
Betragtes en funktion i m variable,

(6) y:f(xlﬂxz""’xm),

kan disse opfattes som elementer i en sojlevektor z,,={z, z,...x,),
hvorfor (6) kort kan skrives

Yy =J@n).
Differentialet af funktionen (6), der udtrykkes ved
0 0 0
(7) cly:-—ydx1+—ydx2+...+ ydxm,
0, 0, %,

kan ved hjalp af vektorsymboler skrives

oy oy oy
=l ... — | {de;dx, ... dx )
[8951 0, 8xm} (e, de, Tms >
eller, jfr. (4),
oy oy oy
8 d = — T e s T d— .
®) Y [8:61 0, 8xm] m

Indferes i (8) symbolet
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%) oy [9y oy oy

‘ o™ oo 7y )

for reekkevektoren, gradienten, kan differentialet skrives pa formen
%

10 dy = —dz,, .

(10) Y=o, “m

Indferelse af symbolet (9) er ensbetydende med

REGEL A: En skaler storrelse differentieret med hensyn til en sgjle-
vektor opfattes som en raekkevektor, hvis enkelte elementer er den ska-
lere sterrelses partielle differentialkvotienter.

Ved hjelp af denne regel opnar man altsi at kunne skrive differen-
tialet (7) pa den korte form (10).

Opfattes de variable ;, 2,, ..., z,, i (6) som elementerne i en rekke-
vektor Z» =[x, @, ... x,,], kan (6) skrives y=£(@},). Indferes analogt med
(9) symbolet

oy oy oy oy
(11) o A A A
Z,, 0%, Oz, 0z,

kan differentialet (7) ogsa skrives, jfr. (5),
%
12 dy = dz¥ = .
(12) Y= At s
Skriveméaden (11) er ensbetydende med
REeGEL B: En skaler storrelse differentieret med hensyn til en rakke-

vektor opfattes som en sgjlevektor, hvis enkelte elementer er den skalsere
storrelses partielle differentialkvotienter.

Det bemerkes, at

(13) _a_y =(ay>*

oz \oz,
1 overensstemmelse med, at (10) ved transponering giver

a *
(dy)* = dy = dz*, (éj) :

0T,

Betragtes herefter n funktioner v, y,, . . ., Yy skrevet pa formen

Yn = yl_ = _fl(im)_ >
f.yz fz(im)

nl  |fa@n)]
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ses af regel A, at differentiation af hvert af vektoren 7,’s elementer med
hensyn til Z,, giver en rakkevektor. Skrives disse reekkevektorer pa de
til y-elementerne svarende pladser i sojlevektoren, fremkommer Jacobis
matrix, der symboliseres ved

Y, oY, _8_y_1 oYy, %_1_

Ty |0, | 0w, wy " 0w, |
0%, oz, oxy, = oz,

W | | OYn Yy %Y
0%y | | 0%y Oxy, O

Dette er ensbetydende med

ReeeL C: En sgjlevektor §, differentieret med hensyn til en sgjle-
vektor z,, er Jacobis matrix. Matricens i'te reekke er reekkevektoren

oy, o7,
éyi. Den j’te sojle er sgjlevektoren A,
0T, x

)

Analoge betragtninger forer til, at rakkevektoren 7 differentieret
med hensyn til rekkevektoren Z} bliver den transponerede Jacobi-
matrix, dvs.

Fn _ [ OGn\*
14 n_ ()
(14) oz <8§m)

I det felgende vil symbolikkens anvendelighed blive illustreret ved
nogle eksempler.

Eksempel 1. Ved differentiation med hensyn til vektoren %, af funk-

tionen y=f(,), hvor hver af de variable Uy, Us, . . ., Uy, er funktioner af
de m variable x,, Loy« . ., Tpy, TAT man

0 oy ow
(15) Y Y o

0T, 00,

o

Dette indses saledes: Ifglge regel A er 5_:! en rekkevektor, og ifelge
ou Y

regel C er a_ii_k Jacobis matrix. Produktet pa hgjre side bliver saledes en

reekkevektor, hvis 7te element
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0y ou; Oy Ou, oy Ouy
Ou, 0x; Oug Ox; 0wy 0
. ., %y . . .
er lig med det i’te element — i raekkevektoren pa venstre side.

Z;
Kan vektoren %, deles i subvektorer, f. eks.

Uy, = {@10y...a4,b1by. .. 050100 ..c,...} = {@,04C,...},

far man _
oy Oy Ouy [ay oy oy ] oa,
0%, Om, 0%, Loa, obs oc, ' ||0Z,|’
b,
oz,
ac,
oT,,
eller -
0 oy oa oy ob oy oc.
(16) y_y_ai_*_ Y O Y %y

0%, oa,o%, Oby0%, 00,0%,

Eksempel 2. Ved differentiation med hensyn til Z,, af den skalere
storrelse I e
y = ag Aub, = bf Ajkay,
hvor a,=f;(Z,), b;=g,(,), og elementerne i A4, alle er konstanter, far
man, jfr. (16),
oy oyoam, Oyob, . - oa, - b
Tk T T pE g Tk g% 2t
5z, 4, o%, T ab,0m, Aty T4
Er specielt @=b0=7%,,, dvS. Yy =Z.% 4,umZm> 0L €r A symmetrisk, bliver

(]_7) Eg/_

Il
|
3%
s?;"
3
+

Eksempel 3. Praktisk anvendelse for symbolikken far man f. eks. ved
udledning af fejlophobningsloven [2, side 117]. Middelveerdien af en
linezer funktion

y = C+61’;Em ’
kan skrives

miy} = c+miakz,} = c+aimiz,} .

Variansen pa funktionen bliver, jfr. [2, side 106], og (2),

NMT, Hefte 1, 1963. — 2
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Oy} = m{(y —m{y})z} = m{(ﬁﬁb(fm—m{im}))z}
= TG~ T, )@~ T ¥,
= GEN(Ey— MAZ, )@y~ T ) N, = T Ty
hvor Ty = [V} 0y} ... Doy )]
Oy, 2y} O{x,)} oo Uy, @}

| V(@ 1} V@ @) - .. O{,}

er momentmatricen for 7,, jfr. [1, side 295].

En ikke lineser funktion, y=f(,), omskrives ved hjelp af Taylors
formel til

0
Y =S @) = fOEN + = (En— T,

nar der ikke medtages led af hgjere orden end forste. Ved anvendelse af
dette linexre udtryk bliver variansen

0y — oy
18 [ o~ = .
(18) ) 0%, M . im oz,

Herefter betragtes n funktioner, der ved hjelp af Taylors formel kan
skrives pa den linezre form

N OYn ~
xm
Kovariansen pa elementerne y; og y; er

WMyuy;} =M {(yi —M{y;})(y;— m{%’})}

Y _ _ _ _ a?/j Y; — a?/j
=m oz, (xm_m{xm})(xm_m{xm})*a‘ﬁ = ay?m mmm—a_ﬁb ’
saledes at momentmatricen 37 for 7, bliver
Yy-nn
= [0y, — 0 oYy = 0 Yy — Yy, |
g, -[Mg M g gy
ynn | 0, ©mmoEk  0F, ¢ mmox 0%, T ™mmog
Wy W g O o O,
0%, % mmogk 0, ©mmogk 0%, = mmoxk
g W Wy U ey
| 0%, =mmogy  OF, e mmogk ' oF T aommgpk

—
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der kan omskrives til

— oY | — 0yy 0y, Y
M A xTemm [ ]

ynn ai'm

%,
o,

— = v ok
oz, 0%, o,

Y,
oz

m—

— Op — 0Fn\ *
- P, (T
Yy -nn axm x-mm axm
Er specielt de m variable Z,, indbyrdes uafhzngige, og har de samme
varians O{z}, bliver J=l[w_mm=2’){x} B> 08

eller, jir. (14),

(19) 7 = (@Yv{x} .

ynn o oF, \0Z,,
Eksempel 4. Som praktisk eksempel fra udjevningsteorien kan be-
tragtes den linesre regressionsanalyse med m uafhzngige variable z,,
for hvilke der foreligger n valgte veerdiseet. For hvert af disse forudsettes,
at den afheengige variable ¥ er normalfordelt med middelveaerdien
m{y | 5m} = “+B;(Em_9{im}) s
hvor, jfr. (1),

- 1 -
9{@n} = |91} | = |20 Typ - ¥y [€
9{z,} To1 Lo - -+ Tap
angiver gennemsnittene af henholdsvis ,, «,, . . ., x,, over de n verdiset.
Endvidere forudsattes, at variansen af y er den samme for alle Z,,:
= 2
Wy | &Z,} = o*.

Som sken for M{y |Z,} anvendes

Y = a+by(@p—9{En)) = a+byz, = a+z;b

m-m ?
hvor %,=7%,—9{Z,}. Parametrene, {ab,b,...b,}={ab,}, bestemmes
saledes, at summen af kvadraterne pa de observerede veerdiers afvigelser
fra den empiriske regressionsplan bliver minimum. Indferes vektoren!

1 Af hensyn til symbolikken i [2] er der her anvendt et stort bogstav med én streg over
som symbol for en vektor.
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Y, = ae+Z,mb,, »
hvor = .
Zym =20 ] =21y %12 “1m |
5%
Z2.m %91 292 Zom
2"; 212 z
nem_| L ®nl “n2 * “nm

kan summen af afvigelsernes kvadrater skrives
q = (gn_ I_fn)*<gn_ ?n) .
For at bestemme ekstremum, der kun kan vere et minimum, sxettes

differentialkvotienterne af g med hensyn til de indgaende parametre
lig 0. Forst bestemmes parameteren ¢ ved differentiation med hensyn til a,

jfr. (17): 5 i, — )
_ q Yn— no_ om YV —7) —
@ - 8(277,,’— Yn) da Z(yn Yn)*( 6) 0.

Idet 2" 2,=0, dvs. E*an =0,,, omskrives ligningen til
Jhe—ag*e—e*Z,, b — j*c—an — 0

hvoraf man bestemmer

Derefter bestemmes parameteren b,, ved differentiation med hensyn
til b,,, jfr. (17):

0 ) oF,—Y — =
"—i = ‘_L—M = E(gn_ Y’n)*(*’an) = 6:&,
8bm a(yn—' Yn) abm

der omskrives til
(Y~ g{y}é - angm)*znm = 6:» .
Swttes %, =7, —9g{yle, fir man ved transponering
erm(l—l’n - Z—nmgm) = Opy »

hvoraf parameteren b,, bestemmes,
(20) b = BrBonn) 21,
De to produkter i dette udtryk er, jfr. [2, side 73 og 86],
7* 7 [SSD, SPD SPD

Tyre C ot T1%m | 2
SPD,,,, 88D, ...SPD,,
| SPDq,4, SPD,,,, ... SSD, |
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der er symmetrisk, og

Z* a, = {SPD,, SPD SPD, .} .

Zoy * "

Variansen pa parameteren o er

v{a} = v{g{y}} =

g2

Indfores u,, = gn—g{y}é i (20), far man, da Z’fm"=6m,

(Zmn —nm)-_l Zmngn .
Momentmatricen for parameteren b,, bliver derfor ifolge (19)
= 0b,, (0b,\ *
=-m(Zm) p
My = 5 (ayn) {y}
= L) Ll B D)V} = B L) 01} 5

og variansen pi Y =a+b%(Z, —9{Z,}) kan, da a og b,, er uafhangige,
udtrykkes ved, jfr. (18)

Y — Y ot ~
oY) = vyt o T,y = Tk G 9 B ) o= 9 En )
m
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Harvey ConN: A second course in number theory. John Wiley & Sons,
New York, London 1962. 13 + 276 pp. sh. 60/-.

(Innholdsfortegnelse i NMT 10 (1962), s. 154.)

I matematiska lirobocker ar stoffet alltfor séllan infogat i sitt histori-
ska och evolutionella sammanhang. Att s& ir fallet beror vil dels pa
bristande pedagogisk blick hos forfattaren, dels pa svarigheterna att
forena kravet pa sadant sammanhang med kravet pa systematik. Darfor
antecknar man med glidje Cohns forssk att supplera den algebraiska,
talteorin med redogérelser for dennas uppkomst och utveckling. Detta
sker dock hir pa bekostnad av systematiken, varfor struktureringen av
dmnet verkar otillfredsstillande och framstéllningen onodigt rorig. Av
toretalet framgar att forf. rentav forutsitter korrelation mellan kronologi
och svarighetsgrad: en first-semester course skall na fram till 1900-
talet, nu i denna kurs skall studenten foras till »the twentieth century by
motivating some heroic nineteenth-century developments in algebra and
analysis«.

Forutom inledande och avslutande oversikter omfattar boken tre
delar. I den forsta, Background material, behandlas talteoretiska, grupp-
teoretiska och algebraiska begrepp som kongruens, kvadratisk reciproci-
tet, restklasser, abelska grupper, representation genom kvadratiska for-
mer, kvadratiska talkroppar och heltal. Dessutom upptas bas- och gitter-
teori och i ett med tva stjirnor markerat avsnitt geometrisk talteori
(Minkowski-gitter). Forklaring till de olika stjirnorna har jag inte funnit,
de anger troligen en overkurs, omfattande generaliseringar (kroppar av
hogre grad) eller svarare moment, sisom foérekomsten av euklideisk
algoritm, »Pells« ekvation, klassnummerformler o. dyl.

Del 2, som #gnas idealteorin for kvadratiska talkroppar, ger en avan-
cerad framstillning av entydig upplosning i ideal, av idealklasser och av
klasstrukturen i kvadratiska talkroppar. I anslutning hértill ges en for-

trifflig tabell 6ver sadan struktur for ]/7;, |m| < 100, tagen ur Sommers In-
troduction & la théorie des nombres algébriques (1911). Tabellen upptar
for savil imaginéira som reella kroppar basen [1,®], diskriminantens fakto-
rer, idealen och idealklasserna samt genusstrukturen (klass och karaktir).
Den ér déirfor virdefull oavsett att toxten och uppgifterna ofta hinvisar
till den. Del 2 avslutas med desbersmda, polynomen«a?+x+¢,0<z < q-2,

[22]
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vilka som bekant for limpliga ¢ (t. ex. 41, Euler) antar enbart primtals-
virden. Hir bevisas att si dr fallet, om och endast om R (Vﬁ) har
klassnumret 1 — ett vackert resultat.

De vunna resultaten tillimpas sedan i del 3 pa de djupgdende samban-
den mellan primfaktorisering i talkroppar och primtal i aritmetiska
serier (Dirichlet), liksom pa sambandet mellan kvadratiska former och
ideal. I bokens mirkliga och mirkligt korta (6 sidor!) »introductory
survey« ger forf. en snabbskiss just av de hiir sambanden. Den ér elegant,
ocksd om valet av de tva objekten kanske inte dr signifikativt for boken
i sin helhet. Avsnittet om kvadratiska former i del 3 omfattar kompletta
mingder av formklasser och representationsproblem, bigge genomforda
medelst skisserande exempel. Den kvadratiska reciprociteten fordjupas
fortjanstfullt och sist kommer ett stjirnat avsnitt Compositions, orders
and genera, vilket anknyter till inledningens eleganta demonstration av
kompositionsteorem for kvadratiska former. Denna teori utvecklade
Gauss 75 ar fore idealteorin till stor allmingiltighet och med en intuitiv
kraft, som anses ha fi motstycken.

Cohns text kompletteras med hundratals uppgifter, de flesta av dem
enligt min mening alltfér krivande for den arskurs det hir &r friga om.
Likasa kriver texten, om ockss beskuren p& dverkursen, ritt mycket av
lisaren. Framstéllningen #r svarfattlig och osystematisk med hanvis-
ningar kors och tvirs. Induktionen saknas ofta och upptagna tradar
lamnas liggande. Det avslutande registret &r bristfalligt: ord som class
number, group, Eulers lemma och ideal class saknas.

For 6vrigt dr boken emellertid en utmirkt vigvisare i den algebraiska
talteorins labyrint, denna viirld av hopplds oregelbundenhet och mystisk
regelbundenhet. Talteorins roll av urkiilla for algebra och analys ar denna

boks centrala idé. Clas-Olof Selenius

BrrNHARD EpSTEIN: Partial differential equations. An introduction.
(International series in pure and applied mathematics.) McGraw-Hill
Book Co., New York, Toronto, London 1962. 10+ 273 pp. sh. 74/-.

(Innholdsfortegnelse i NMT 10 (1962), s. 155.)

Denne boken skal, i folge forfatterens forord, »help fill a serious need
for introductory texts on the graduate level«. Det vil den nok ogséd
gjore; men for man gar til anskaffelse av boken, bgr man merke seg en
annen passus fra samme forord: »the stress has been on existence
theory rather than on the effective determination of solutions of specific
classes of problemsc. Dette er meget konsekvent gjennomiort.

Kapitlet om forste ordens ligninger er kort, men godt, bortsett fra at




24 LITTERATUR

beviset for satsen om eksistens av en integralflate gjennom en gitt rom-
kurve bare gjelder lokalt, mens denne innskrenkningen ikke fremgar
klart av bokens tekst. I neste kapitel er derimot det tilsvarende faktum
angéende hyperbolske annen ordens ligninger beherig kommentert.

Bokens svakeste del er de to kapitler (vel 60 sider) som brukes til &
bygge opp teorien for Banach- og Hilbertrom fra grunnen av og frem til
Fredholms alternativ for komplett kontinuerlige operatorer. De virker
avgjort malplaserte; resultatene de gir, brukes ikke ofte i de folgende
kapitler, og leseren ender med & spekulere over om ikke det hele med for-
del kunne veert erstattet med en fremstilling som sto mer i stil med
resten av boken.

De to neste kapitlene, om elliptiske ligninger, er imidlertid riktig bra.
Det forste gir potensialteorien frem til Harnack’s satser og de viktigste
resultatene om Poissons ligning ; i det neste har forfatteren samlet de fem
»vanligste« bevisene for eksistens av en lgsning av Dirichlet’s problem.
Dette er badde morsomt og instruktivt, men skjer selvsagt pa bekostning
av annet stoff. Konforme avbildninger og »Riemann mapping theoremq
er noksa utferlig behandlet.

Varmeledningsligningen har fatt en noe kort, men bra behandling ved
Fourier- og Laplace-transformasjoner; og boken avsluttes med et meget
instruktivt kapitel om Green’s funksjoner, atskillelse av de variable, og
egenverdiutviklinger.

Bortsett frai kapitlene om vektorrom, der det ser ut til at forfatteren har
kjedet seg like grundig som leseren antagelig vil gjere, er stilen klar og
inspirerende, og viser utpreget evne til & fa frem hovedlinjene i teorien.
Dette skjer delvis, og etter min mening litt for ofte, ved at detaljer, bade
utregninger og enkelte resonnementer, blir »left to the reader as exercise
3«. Jeg er heller ikke alltid enig med forfatteren i hans bruk av »obviouslyx,
»it is readily seen« osv., men ogsé her kan vel meningene vaere delte.

En sproglig innvending: at en Cauchyfolge i et normert rom betegnes
som »convergent in norme, og s& rommet defineres som komplett hvis alle
slike folger ogsa er »eonvergent«, virker ungdig forvirrende.

Alt i alt synes jeg, tross enkelte innvendinger, at boken er riktig bra,
og jeg vil ikke betenke meg pé & anbefale den til studenter (og andre)
som er interessert i de emner som behandles.

Papir, sats og innbinding er meget tiltalende. Bent Birkeland

MorTON HAMERMESH: Group theory and its application to physical
problems. Addison-Wesley Publ. Co., Reading (Mass.), London ; Pergamon
Press, London, Paris 1962. 11 + 509 Pp. sh. 25/6.

(Innholdsfortegnelse i NMT 10 (1962), s. 156.)
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Gruppeteorien representerer uten tvil en av de mest fruktbare ideer
i matematikken. I motsetning til mange andre omrader innen matema-
tikken, f. eks. analysen, har gruppeteorien opprinnelig utviklet seg uten
impulser fra fysikken, men er likevel blitt et redskap som en tysiker idag
ma kunne beherske. Dette henger sammen med at det gruppeteorien
egentlig behandler er symmetri og invariansegenskaper, begreper som
ogsé spiller en fundamental rolle i moderne fysikk. En fysiker vil imidler-
tid finne at et grundig studium av gruppeteorien er vanskelig, ogsé pa
grunn av det faktum at den del av lereboklitteraturen som behandler an-
vendelsene ikke er sarlig rikholdig. En ny bok i gruppeteori som seerlig
har fysikkens behov for gye, vil derfor alltid bli mottatt med stor interesse.

Forfatterens hensikt med denne bok har vert & gjore gruppeteoretiske
metoder til et nyttig redskap istedenfor til et esoterisk studium, uten
derved 4 sla av pa kravet til matematisk stringens. Boken gir en grundig
fremstilling av de deler av gruppeteorien som er spesielt viktige for fysiske
anvendelser, slik som krystallografi, faste stoffers fysikk, atom-, mole-
kylar- og kjernespektroskopi, og elementarpartikkelfysikk.

Forbindelsen mellom gruppeteorien og fysikken bestar i at egenfunk-
sjonene for en fysikalsk operator, f. eks. Hamiltonoperatoren, danner en
basis for en representasjon for den gruppe av transformasjoner av kon-
figurasjonsrommet til det fysikalske system som lar denne operator
invariant. Et av hovedproblemene i denne bok er derfor & vise hvordan
man konstruerer representasjoner ut fra fysikalske betraktninger. Et
annet hovedproblem er 4 vise hvordan representasjoner leder til klassi-
fisering av egenfunksjoner, som igjen leder til utvalgsregler av de for-
skjelligste slag. Den sentrale rolle den symmetriske gruppe spiller bade i
den abstrakte gruppeteori og i anvendelsene, kommer med rette klart
frem i forfatterens fremstilling.

Det er en glede & kunne konstatere at det har lykkes forfatteren &
skape en bok pa et hoyt pedagogisk nivé som er av stor betydning for
fysikken, og som utvilsomt vil bli meget benyttet som referanseverk.
Forfatteren forutsetter kjennskap til kvantemekanikken, men ikke til
gruppeteorien. Det vil imidlertid veere en stor fordel om grunntrekkene
av gruppeteorien var kjent fra mer elementzere fremstillinger. Kjennskap
til lineeer algebra, og en viss ferdighet i algebraiske manipulasjoner er

nedvendige for lesning av en bok av denne type.
Alf Lofthus

J. E. HorMANN : Frans van Schooten der Jingere. Franz Steiner Verlag,
Wiesbaden 1962. 54 S. DM 12.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 28.)
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Etter de store skapende genier ma som regel begeistrede og trofaste
mellommenn rydde plass for og hegne om de nye idéer. Ikke alle var sa
heldige som Leibniz da hans differensialregning festet rot i Basel hos
eminente matematikere som brgdrene Bernoulli. Til gjengjeld fant
Leibniz i samtiden liten eller ingen forstielse for sin matematiske logikk
og sine »determinanter«. Englenderen Harriotts koordinatgeometri dede
med ham, fordi ingen elev var begavet og energisk nok til 4 kommentere
og utgi hans verk. Derfor ble Descartes’ analytiske geometri den radende.
Han hadde formidleren Mersenne som venn og traff tidlig den unge
Schooten (1615-60) som seinere gjorde La Géometrie lett, tilgjengelig for
alle matematikere.

Schooten virket direkte som lerer pé elever som Hudde og Huygens,
og gjennom sine latinske Descartes-utgaver pa mange fler, bl. a. pa den
unge Newton. I Newtons notatbgker kan hans studium av Schooten—
Descartes folges si & si side for side. Utenom Descartes bearbeidet
Schooten ogsa skrifter av Vitte. Schooten dede relativt ung men hadde
allerede sett og gledet seg over at det grodde omkring ham. Hans mest
begavete elever kom til orde med vektige tillegg til Descartes-utgavene.
Schootens mer selvstendige verk Orgamica Descriptio virket ogsa befruk-
tende, pd Newton for eksempel, og boken er den dag i dag & anbefale for
interesserte gymnasiaster nar de skal til med analytisk geometri.

Ingen ringere enn J. E. Hofmann har na gitt Schooten den biografi
han fortjener. De forste 25 sider er en lettlest framstilling av Schootens
verk og vita. I det rike kritiske apparat i bokens siste halvdel kan en
alltid stole p& at hver minste detalj er noyaktig kontrollert. Med sin
enestiende oversikt over datidens matematiske litteratur kan Hof-
mann presist angi hvilke idéer opptrer for farste gang og hva de antagelig
er spiret fram av. Boken har 28 diagrammer til teksten og fire helsides

portretter.
Johs. Lohne

Mark Kac: Statistical independence in probability, analysis and number
theory. (The Carus Mathematical Monographs 12.) John Wiley & Sons,
New York 1959. 14 +93 pp- $ 3.00.

(Innholdsfortegnelse i NMT 8 (1960), s. 44.)
Forfatteren sier i forordet at hans hovedhensikt med boken er & vise
(2) at veldig enkle observasjoner ofte kan veere utgangspunkt for rike og

fruktbare teorier; (b) at mange tilsynelatende ubeslektede utviklinger i
virkeligheten er variasjoner av det samme enkle tema,
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Gennomgangstemaet i de fire forste kapitlene er den stokastiske uavhen-
gighet. Den statistiske modellen som behandles mest i de tre forste
kapitlene illustrerer forfatteren ved kast med en mynt. Han far fram
sammenhenger med mal og integraler pa den reelle tallinjen ved folgende
avbildning: Hver av de 2" mulige sekvenser av krone og mynt i en serie
pé n kast avbildes ved et intervall av lengde 2-™ i intervallet fra 0 til 1.
Forfatteren betrakter videre et spill hvor en spiller vinner eller taper en
dollar etter som kastet gir krone eller mynt. P4 avbildningen svarer dette
til at vi betrakter de sakalte Rademacher-funksjoner. I kapitel 2 og 3
beviser forfatteren den svake store talls lov, den sterke store talls lov
og den sentrale grenseverdisetning for den nevnte statistiske modellen,
og i bevisene bruker han Rademacher-funksjoner og Fourier-transfor-
merte.

I kapitel 4 behandles forskjellige sammenhenger mellom sannsynlig-
hetsteori og tallteori. Forfatteren beviser en rekke tallteoretiske set-
ninger angéende »tettheter« som er definert som grenseverdier for relative
hyppigheteriden naturlige tallrekken, og middelverdier som pé tilsvarende
méate er definert som grenseverdier. Sannsynlighetsteorien kan ikke an-
vendes direkte da tetthetene i alminnelighet bare er endelig additive,
ikke numererbart additive som det forutsettes at sannsynlighetene er,
men en god del av bevisene kan feres i analogi med sannsynlighets-
teoretiske beviser.

Boken behandler ogsa forskjellige andre temaer og har mange gvelses-
oppgaver. Den er meget pedagogisk skrevet. Deler av boken er meget
lettleste. Andre steder er teksten s& kortfattet at det er mere anstrengende
4 arbeide seg gjennom bevisene.

~ Anmelderen vil til slutt peke pa en sammenheng som ikke er omtalt av
forfatteren, nemlig sammenhengen mellom det emne som behandles i
kapitel 4 og diskusjonene omkring sannsynlighetsregningens grunnlag.
Reichenbach og Tornier argumenterte i forskjellige avhandlinger og
boker i 30-arene for at en sannsynlighet ber defineres som grenseverdien
for en relativ hyppighet. En av de begrunnelsene Tornier har for denne
definisjon er anvendeligheten av sannsynlighetsteorien i tallteorien.
Renyi publiserte i 1955 en generalisering av Kolmogorovs aksiomsystem
hvor begrepet »betinget sannsynlighet« er det fundamentale begrep.
Renyi nevner en rekke anvendelsesomrader hvor en trenger denne
generalisering, og ett av de omrader han nevner er tallteorien.

Olav Reiersol
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Richard Courant — Herbert Robbins: Was ist Mathematik? Aus dem
Englischen iibersetzt. Springer-Verlag, Berlin, Gottingen, Heidelberg 1962.
164399 S., 287 Abb. DM 36.00.

Die natiirlichen Zahlen 1-41 * Das Zahlensystem der Mathematik 42-92 x
Geometrische Konstruktionen. Die Algebra der Zahlkérper 93-129 * Projektive
Geometrie. Axiomatik. Nichteuklidische Geometrien 130-179 * Topologie 180-206 *
Funktionen und Grenzwerte 207-250 * Maxima und Minima 251—301 * Die Infinite-
simalrechnung 302-372 * Ergénzungen, Probleme und Ubungsaufgaben 373-391 *
Hinweise auf weiterfilhrende Literatur 392-393 * Namen- und Sachverzeichnis
394-399.

J. E. Hofmann: Franz van Schooten der J tingere. Franz Steiner Verlag,
Wiesbaden 1962. 54 S. DM 12.00.

(Anmeldt i NMT, dette hefte, s. 25-26.)

Aus Leben und Wirken 1-8 * Auswahl aus den mathematischen Schriften 9-25 *
Anmerkungen 26-45 * Register 46-54.

Henning E. Jensen — Bent Rasmussen : Syvende klasses regnebog. Gyl-
dendal, Kgbenhavn 1962. 194 s. D. kr. 14.75.

Hele tal 5-19 * Decimaltal 20—33 * Broker 3454 * Procentregning 55-63 * Rentes-
regning 64-70 * Verdipapirer 71-79 Forholdsregning 80-89 * Delingsregning 90—
97 * Fremmed mont 98-104 * Handelsregning 105-116 * Areal og rumfang 117-
131 * Grafisk afbildning 132-134 * A- og B-opgaver 134-159 * Stof til supplerende
timer 160-177 * Bogstavregning 178-194.

Erik Kristensen — Ole Rindung: Matematik I. G. B. C. Gads Forlag,
Kobenhavn 1962. 9+ 341 s. D. kr. 48.50.

M=zngder og udsagn 1-23 * Talmeengder 24-51 * Vektorer 52-92 x Den rette linies
analytiske fremstillinger 93-109 * Afbildninger 110-131 * Reelle funktioner 132—
181 * Ligninger og uligheder 182-197 * Akvivalensrelationer 198-203 * Induktion
204-213 * Hele tal 214-234 x Algebra 235-271 * Praktiske anvendelser af logaritme-
funktioner 272-288 * Trigonometriske funktioner 289-318 % Geometriske anven-
delser af trigonometriske funktioner 319-334 * Sagregister 335-339 * Symbolliste
340-341.

Erik Kristensen — Ole Rindung: Opgaver til matematik I. G. E. C. Gads
Forlag, Kgbenhavn 1962. 140 s. D. kr. 19.50.

Opgaver til bogens enkelte afsnit 7-111 * Blandede opgaver 111-138 * Appendix
138-140.
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Serge Lang: Diophantine geometry. (Interscience tracts in pure and
applied mathematics 11.) Interscience Publ. (John Wiley & Sons), New
York, London 1962. 10+ 170 pp. sh. 57/-.

Absolute values 1-18 * Product formula 19-41 * Heights 43-59 * Properties of
heights 61-70 * The Mordell-Weil theorem 71-90 * The Thue-Siegel-Roth theorem
91-119 * Siegel’s theorem 122-140 * Hilbert’s irreducibility theorem 142-162 =
Bibliography 163-165 % Table of notation 167 » Index 169-170.

Serge Lang: Introduction to differentiable manifolds. Interscience Publ.
(John Wiley & Sons), New York, London 1962. 10+ 126 pp. sh. 53/-.

Differential calculus 1-15 * Manifolds 16-33 * Vector bundles 34-52 * Vector
fields and differential equations 53-78 * Differential forms 79-89 * The theorem of
Frobenius 90-96 * Riemannian metrics 97-111 * The spectral theorem 112-118 *
Local coordinates 119-122 * Bibliography 123 * Index 125-126.

Lloyd L. Lowenstein: Beginning algebra for college students. Third edi-
tion. John Wiley & Sons, New York, London 1962. 9+ 266 pp. sh. 38/-.

The natural numbers; addition and multiplication 1-22 * Verbal problems 23—
28 * Powers and exponents 29-37 * The integers; addition and subtraction 38—63 *
The integers; multiplication and division 64-80 * Fractions 81-105 * The rational
number system 106-119 * Polynomials 120-143 * Polynomials and the rational
operations 144-159 * The real number system 160-176 * Functions and graphs 177-
195 * Equations 196-219 * The complex number system 220-228 * The quadratic
formula 229-239 * Answers 241-260 * Index 261-266.

Yudell L. Luke: Integrals of Bessel functions. McGraw-Hill Book Co.,
New York, Toronto, London 1962. 15+ 419 pp. sh. 97/-.

Basic formulas 1-41 * Integrals of the type {?tW, (t)dt 42-72 * Representations of
{*#“W,(t)dt in terms of Lommel functions 73-94 x {?e~*t#K,(t)dt and an associated
Bessel function 95-119 * Reduction formulas for {?e P4 W, (At)dt 120-126 * Airy
functions 127-143 * Incomplete gamma function and related functions 144-194 *
Repeated integrals of Bessel functions 195-222 =+ Integrals involving Struve
functions 223-233 * Schwarz functions and generalizations 234-252 x Integrals
involving products of Bessel functions and Struve functions 253-270 * Miscellaneous
indefinite integrals involving Bessel functions 271-289 * Definite integrals 290—348 *
Tables of Bessel functions and integrals of Bessel functions 349-385  Bibliography
386-403 * Index of notation 404-409 * Author index 410-413 * Subject index 414~
419.

Georg Polya: Mathematik und plausibles Schliessen. Band 1: Induktion
und Analogie in der Mathematik. Ins Deutsche iibersetzt von Lulu Bech-
tolsheim. Birkhauser Verlag, Basel, Stuttgart 1962. 403 8. S.fr. 38.00.

Winke an den Leser 19-20 % Induktion 21-32 * Verallgemeinerung, Speziali-
sierung, Analogie 33—-65 * Induktion in der Geometrie des Raumes 66-99 * Induktion
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in der Zahlentheorie 100-122 « Diverse Induktionsbeispiele 123-142 * Eine allge-
meinere Formulierung 143-166 * Vollstandige Induktion 167-184 Maxima und
Minima 185-214 = Physikalische Mathematik 215-251 * Das isoperimetrische
Problem 252-282 * Weitere Arten plausibler Argumente 283-310 * Schlussbemer-
kung 311 * Losungen 313-401 * Bibliographie 402-403.

Hans Sagan: Integral and differential calculus: an intuitive approach.
John Wiley & Sons, New York, London 1962. 13+ 329 pp. sh. 45/,

Functions 1-72 * Areas 73-160 x Rates 161-252 * Volumes 253-289 * Appendix
291-318 * Answers to even-numbered problem 319-324 * Index 325-329.

Selected numerical methods. Editor: Christian Gram. Regnecentralen,
Kgbenhavn 1962. 12 + 308 pp. D. kr. 70.00. (Distribueres av Jul. Gijel-
lerup, Kgbenhavn.)

Chr. Andersen — T. Krarup, Linear equations: Direct methods 1-17 * Iterative
methods 17-28.

Chr. Gram — P. Naur — E. Thue Poulsen, Partial differential equations: Linear
elliptic equations of the second order 30-66 * The heat equation 67-100 * Hyperbolic
equations 100-105 * Key. Technical terms 106-113.

Chr. Andersen — . E. Christiansen — O. Moller — H. Tornehave, Conformal
mapping: General theory 114-145 * Integral equation methods 145-232 * The
application of the Lichtenstein — Gershgorin integral equation 232-245 * Conformal
mapping of nearby circular regions onto the unit disc using expansion in powers of
a “small parameter” 245-261,

Th. Busk — B. Svejgaard, Polynomial equations: Tterative methods 263-281 =
Direct methods 282-295.

References 297-305 * Index 306-308.




OPPGAVER TIL LOUSNING

Losninger av oppgavene 236-240 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli
trykt i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den
beste lesning av hver oppgave. Lgsninger av oppgaver i dette hefte mé, for &
komme med i Bind 11, hefte 3, vaere sendt innen 1. august 1963.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes
til oppgaveredakteren, helst sammen med forslagsstillerens egen losning.

236. Det er gitt tre punkter 4, B og C pa en rett linje, slik at B ligger
midt mellom 4 og C. Del linjestykket AB i n like store deler med bare

linjalkonstruksjoner.
Per Roar Andences

237. a) Bestem den mindste trekant af given form »indskrevet« i en
given trekant, siledes at hver af den sggte trekants vinkelspidser ligger
pa een af den givne trekants sider.

b) Bestem den sterste trekant af given form »omskrevet« om en given
trekant, siledes at hver af den sggte trekants sider gar igennem een af

den givne trekants vinkelspidser.
Helge Harboe

238. Lat O vara en punktformig ljuskilla inuti ett speglande klot
(medelpunkt C). Visa att alla fran O utgaende ljusstralar som ligger pa
en fran C vind regelbunden kon med en diameter i sfiren som axel
efter varje reflexion tangera ett och samma klot fullstindigt bestdmt av

0:s avstand fran C och ljuskonens Gppningsvinkel.
Torsten Strom

239. Visa att talen k} (Ove J.Munch: Om potensproduktsummer,
NMT 7 (1959), s. 14) kan framstéillas genom

+400

p! ‘ e? — 1\ P+l
kP = — S ( —) e~ "4dz
271 2

c—100

dir ¢ <0 ar godtyckligt. Hirled med hjilp hirav den asymptotiska for-

meln i uppgift 174.
ppg Gerhard Arfwedson

(31]
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240. La p, q og 7 (¢=+7r) veere naturlige tall. Sett
had 1
S(p;q’r) = 2—\ ’
n—o (PR+q)(pn+7)

og finn S(p; q,7) uttrykt ved endelige summer. Bruk resultatet til & vise at

gm—m:§( —l/—§)+3ln]7§'

R. Tambs Lyche

LOSNINGER

228. La R bety klassen av alle funksjoner w(z), regulere og med posi-
tiv realdel i |2| < 1. La videre Rr og R, bety de delklasser av R som er
karakterisert ved at henholdsvis w(0) er reell og at |w(0)|=1.

Bestem i R, og R, best mulige universelle (d. v. s. gyldige i hele R,
resp. R;) skrankeomrader for w(z), uttrykt ved |z|.

Haakon Waadeland,
Losning: Genom transformationen
w(z) —w(0)
wy(2) = —
w(z) + w(0)

avbildas Rew >0 pa cirkelskivan lwi(2)] <1 med w,(0)=0. Schwarz’
lemma ger da att [wi(z)[Z 2] 1 |z|]<1 d. v. s.

w(z) —w(0) :
wﬁ(z)Tij Sl ifel <1,
vilket ger
[w(@)] = [w(0)] < |w(z) —w(0)| < |2]- jw(z)+8(0)| < 2l (lw(z)| + [w(0))
d.v.s.
1) @] < (o) %}]’:f .

I &, dr |w(0)]=1o0chi Rz ar [w(0)| =w(0) vilket tilsammans med (1) 16ser
problemet. .
Torsten Strom

229. Find summen af rekken
g 1

o1 (4n+1) Per W. Karlsson
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Losning: For k>0 visas enkelt

! 1 — k-1

bad 1
Y=k 1_§ —

n=1n(kn+ 1) N

Abels kontinuitetssats rattfardigar integrationen. Med k=4 fés

\oF

1
= 4-3m2-Z,
1n(4n+1) 2

n

Torsten Strom

Ogsé lost av M. Michael Brady, Ake Kjellstrom, Lennart Lindskog og Andrzej
Makowski.

NMT, Hefte 1, 1963, — 3




PROBLEMTAVLING FOR SVENSKA GYMNASISTER

Ocksd 1962 har Svenska Matematikersamfundet i samarbete med Svenska
Dagbladet arrangerat en stort upplagd tévling med en férsoksomgang vid de olika
laroverken foljd av final i Stockholm. Med vederborlig tillitelse publicerar vi
hérmed uppgifterna i finalomgéngen.

1. Bestédm alla polynom f(z), sddana att
f(22) = f'(@)-f"(x) .

2. P4 en sida i en kvadrat med sidolingden 1 ligger tva variabla punkter och
pd motstiende sida en tredje variabel punkt. Punkterna utgér hérn i en triangel.
Mellan vilka grinser varierar radien till triangelns omskrivna cirkel ?

3. Bestém alla par (w, y) av heltal  och y som satisfierar ekvationen

y2—3ry+x—y = 0.

4. Vilka av foljande péstéenden #ér sanna ? Svaren méste motiveras.

a) Atminstone ett av pastdendena
slinjerna I;, I, och I, ligger i ett plan« och »linjerna I, I, och I; dr sidana att varje
linjepar har en skérningspunkt«
ar en foljd av det andra. (Linjerna &r linjer i rymden.)
b) Det finns ett tal N s& att varje heltal 2N &r summan av tvé fjirdepotenser
av heltal.
c) Det finns tal a,, a,, ..., an s& att

a, cosz+a, cos2x+ . . . +ay cosnxe > 0
for alla z.

5. En regelbunden tetraeder med kantlingden 1 &r given. I dess inre ligger en
rorlig kub med sidan a. Kuben kan forflyttas inom tetraedern s& att vilken som
helst av dess sidoytor kan fas att vila mot tetraederns basyta. Bestdim ndgot a
for vilket detta &r mojligt. (Ju storre virde pd a som bestémmes, desto hogre
blir poidngutdelningen.)

Forsta pris tilldelades Bérje Leander, Kristianstads léroverk. Andra och tredje
pris delades mellan Torgny Tholerus, Norrkopings ldroverk och Tore Persson,
Linképings tekniska laroverk.

[34]
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MOTEREFERATER FOR 1962 FRA DE
UTGIVENDE FORENINGER

DanNSK MATEMATISK FORENING.

19.2 Bj. Svejgaard: Den elektroniske regnemaskine GIER.
12.3 N.E. Nerlund: Den hypergeometriske differentialligning.
22.3 H.Tornehave: Om aksiomatisk indforelse af reelle tal.
26.3 E. Artin, Hamburg: Jordanalgebren.
9.4 P. Civin, Oregon: Algebras associated with a group.
30.4 C. Halberg, University of California, Riverside: On linked operators and their
spectra.
16.5 P.Erdss, Budapest: Problems and results in set theory.
24.9 R.Kadison, Columbia University: Certain aspects of operator theory.
15.10 Chr. Gram: Elektronregnemaskinens anvendelse til losning af varmelednings-
problemer.
5.11 R. Sikorski, Warszawa: Determinants in Banach spaces.
19.11 H. Zieschang, Gottingen: Ebene diskontinuierliche Gruppen.
6.12 Chr. Gram: Motiveringen for og udviklingen af det internationale algoritmiske
sprog ALGOL.
10.12 P. Naur: Analyse af ALGOL tekster og udforelse of de gennem ALGOL defi-
nerede processer med automatiske cifferregnemaskiner.

FORENINGEN AF MATEMATIKLZERERE VED GYMNASIESKOLER
0G SEMINARIER I DANMARK.

16.10 T. Gutmann Madsen: Udsagnskalkylen.
17.10 F. Handest: Lidt om determinant.

Endvidere arrangerede foreningen i samarbejde med undervisningsinspektionen
og Aarhus Universitet matematiklererkursus p4 Jonstrup Statsseminarium 30. juli
-10. august.

FIiNnLANDS MATEMATISKA FORENING.

14.2  P.J. Myrberg: Analyyttisista funktioista, jotka toteuttavat toisen asteen kerto-
sidnnon [Om analytiska funktioner, som uppfylla en multiplikationsregel
av andra graden].

14.3 R. Nevanlinna: Lukurenkaista ja niiden alueilla mddritellyisti funktioista
[Om talringar och funktioner med definitionsomrdden ¢ dessa].

4.4 B.Maissen, Zirich: Uber Lie-Gruppen mit wverallgemeinerten Parameter-
raumen.

19.9 P.J.Myrberg: Eris Abelin funktionaaliyhtilon yleistys [En generalisation av
en funktionalekvation av Abel].
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M. Tienari: Kvasikonformikuvauksen jatkaminen Jordankaaren yli [Fortsdtt-
ning av en kvasikonform avbildning éver en Jordan-bdge].

H. Rikkonen: Ilmatorjuniatykin kinetiikasta [Om luftvirnskanonens kinetik].

P. 8. Alexandroff, Moskva: Einige neuere Resultate aus der allgemeinen
Topologie.

Y. Kilpi, Abo: Kvanttimekaniikan vaihtorelaatioista [Om kvantmekanikens
utbytesrelationer].

FINLANDS MATEMATIK-, FYSIK- 0CH KEMILARARFORBUND.

Arsmote. Diskussion om forslag till nya kurser i fysik och kemi. Demon-
strationer i fysik. Foredrag av Y. Juve: Rikilinjer for en modernisering av
matematikundervisningen.

Kurs i ekonomisk fostran. Foredrag av matematiskt innehall :

A. Nyberg: Inledning till sannolikhetskalkyl och statistik, samt: Hur under-
visa statistik ¢ laroverk?

M. Kaikkonen: Om Booles algebra.

H. Saarikoski: Reformkursen ¢ geometri for mellanskolan.

U. Kuuskoski: Samhdllsmatematik i mellanskolan.

Féoreldsnings- och exkursionsdagar i Alavus. Foéredrag och demonstrationer
i fysik och kemi. Oberstudiendirektor Hans Heise: Matematik- och fysik-
undervisning 1 Vist-Berlin.

ISLENZEA STARDFRADAFALAGID.

A.T. Lonseth, Oregon: The impact of computers on mathematical education.
A.T. Lonseth: Parallel lines.

NorSK MATEMATISK FORENING.

K. E. Aubert: Dedekindske ringer og x-idealer.

N. A. Barricelli: Utviklingslere og tallmags.

A. Magnus, University of Colorado: Kjedebrok og rasjonale approksimasjoner
av potensrekker.

O. Njéstad: Generaliserte uniforme strukturer.

E. Hewitt, University of Washington: Some multiplicative linear functionals
on the measure algebra of a locally compact abelian group.

K. E. Aubert: Noen nye resultater om x-idealer.

L. Fleischer: Ikke-arkimedisk matematikk.

E. Alfsen: Et generelt Radon-Nikodym teorem.

Norsk LEKRTORLAGS MATEMATIKKSEKSJON.

Matematikken pd gymnaslinjene. Innledning til diskusjon ved S.Hansen,
J. Andersen og O. Orheim. (Bergen.)

K. Dahlen: Nye begreper ¢ vektoralgebra. (Oslo.)

R. Solvang: Nytt pensum i matematikk pd reallinjen. (Hamar.)

R. Solvang: Nye veier ¢ skolematematikken. (Bodg.)

I'. Holm: Det generelle konvergensbegrep. (Oslo.)
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Resultatene av forsokene med matematikk pd reallinjen. Innledning til diskusjon
ved K. Piene, I. Jahr og O. Ytrehus. (Oslo.)

SVENSKA MATEMATIKERSAMFUNDET.

Mote i Stockholm:

L. Nystedt: Fortsdittning av polyharmoniska funktioner.

H. Brolin: Undantagsmdingder vid tteration av andragradspolynom.

K. Haliste: Uppskattningar av harmoniska mdtt.

A. Persson: En generalisering av 2-normala rum.

Mote i Stockholm:

S. Lyttkens: Resttermsproblem vid Taubersatser.

H. O. Kreiss: Ett perturbationsproblem vid ett system av partiella differential-
ekvationer.

Mote i Stockholm:

J. Odhnoff: Existens och entydighet av fria rander.

F. A. Haight, Los Angeles: The problem of crossing a road.

G. Aronsson: Interpolation med minimal gradient, dvs. hur kan en sandhog
se ut?

C. Lech: Noetherska moduler.

Modernisering av skolans matematikundervisning. Inledning av M. Héstad.
Diskussion.

FORENINGEN I LUND FOR MATEMATISK-NATURVETENSKAPLIG

UNDERVISNING.

Varmote:

L. Sandgren: Modernisering av matematikundervisningen.

I. Leden: Vilka krav stiller universitet och hdgskolor pd studenternas kemvi-

kunskaper? Redogorelse for en liten enkét.

O. Lundquist: Ndgra fysikaliska demonstrationsexperiment.

Hostmote:

B.-A. Lindblad: Raketer for rymdfart.

@G. Lindner: Hdgenergetiska drivmedel for rymdfdrder.

E. Ehnmark: Veckans dagar.

O. Eklof: Astrofysikkursen pd gymnastet.

C. Schalén: Rymdforskningens betydelse for astronomien.

FORENINGEN FOR M ATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

Arsmote. Se referat i NMT, Bind 10, s. 101.

VASTSVENSKA FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.

O. Rindung: Den nye danske leseplan © matematik.

M. Hastad: Orientering om den Nordiska kommittén for modernisering av
matematikundervisningen.

G. Holmstrom: Fystkundervisningen © sammanhdlina klasser.
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19.11 Arsméte i Géteborg.
B. Englund: Klassisk och modern stereokems.
K. G. Friskopp: Vad dr PSSC-fysik?
20.11 O. Eklof: Astrofysik, ett nytt moment ¢ gymnasiets fysikkurs.
J. Klein: Grundskolans kursplan ¢ fysik.
A. Elfving: Qrundskolans kursplan © kems.

FORENINGSNYTT

FiNLANDS MATEMATISKA FORENING.

Vid &rsmotet 14.2.1962 valdes styrelse: Ordférande prof. Olli Lehto, viceordf.
prof. G. Elfving, skattméstare bitr. prof. O. Tammi, sekr. fil.kand. K. Suommen,
medlem docent I.S. Louhivaara.

Arsmotet kallade till féreningens hedersmedlemmar kansler P. J. Myrberg, prof.
Frithiof Nevanlinna och ledamoten av Finlands Akademi professor Rolf Nevanlinna.

P& grund av i utlandet uttalad onskan arrangerade foreningen i anslutning till
viirldskongressen i Stockholm, efter densamma, ett kollokvium o6ver Analys i
Helsingfors. Kollokviet holls den 24-25 augusti 1962 och samlade 73 deltagande
matematiker. Vid detsamma hélls 20 féredrag om 45 minuter och 2 om 20 minuter.

NorskK MATEMATISK FORENING.

P& generalforsamlingen 4.6.1962 ble det besluttet at medlemskontingenten
f.o.m. 1963 skal settes til kr. 10 pr. &r. Ved samtidig abonnement pd NMT betales
ialt kr. 20 pr. &r. Kontingenten kan betales til foreningens postgirokonto nr. 139 91
eller sammen med abonnementet pd4 NMT til tidsskriftets postgirokonto nr. 164 52.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

holl Arsmoéte i samband med skolveckan 2-5 januari 1963, anordnad med anledning

av Li#roverkslirarnas Riksforbunds 50-drsjubileum. Till féreningens ordférande

resp. vice ordférande omvaldes lektor Ernst Knave och rektor Walter Ekman samt

till sekreterare resp. kassaforvaltare adjunkterna Jan O. Unenge och Jacob Isander.
Under arsmotet holls foljande foredrag och demonstrationer:

G. Nilheden: Podngbedémningar av skrivningar © fysik.

T. R. Gerholm: Fysikkurserna pd det nya gymnasiet. Diskussion.

S. Hilding: Hur kan matematikundervisningen moderniseras? Diskussion.
S. Andersson: Undervisningsexperiment ¢ kemsa.

U. Sinnerstad: Astrofysikkursen pd gymnasiet.

I. Lindqvist: Kemiundervisningen pd gymnasiet.

FORENINGENES FORMENN

Nedenfor angis navn og adresse til formennene i de utgivende foreninger:

Dansk matematisk forening : Professor Hans Tornehave, Tornebakken 45, Virum.
Foreningen af matematiklerere ved gymnasieskoler og seminarier i Danmark:
Lektor Henrik Meyer, Bakkedraget 15, Birkered.
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Finlands matematiska forening: Professor Olli Lehto, Advigen 13 A 9, Helsing-
fors — Drums6.

Finlands matematik-, fysik- och kemildrarférbund: Dr. Urpo Kuuskoski, Lin-
nankoskenkatu 12 A, Helsinki.

Islenzka sterdfredafélagid: Professor Steingrimur Baldursson, Gladheimar 18,
Reykjavik.

Norsk matematisk forening: Professor Karl Egil Aubert, Matematisk Institutt,
Blindern, Oslo.

Norsk lektorlags matematikkseksjon, Oslo krets: Lektor Torjus I. Engelskjen,
Nadderud h. skole, Bekkestua.

Svenska matematikersamfundet: Professor Ake Pleijel, Matematiska institu-
tionen, Solvegatan 14, Lund.

Foreningen i Lund fér matematisk-naturvetenskaplig undervisning: Rektor
Johan Hemmingsson, Kronborgsvigen 8 B, Malmé V.

Féreningen f6r matematisk-naturvetenskaplig undervisning i Stockholm: Lektor
Ernst Knave, Nickrosvigen 14, Solna.

Vistsvenska féreningen for matematisk-naturvetenskaplig undervisning: Rektor
Arne Pleijel, Hjortmossegatan 160, Trollhéttan.

UTNEVNELSER

Til professor i statistik ved Kebenhavns Universitet: Lektor, dr. phil. G. Rasch.

Til professor i matematisk statistik og operationsanalyse ved Danmarks tekniske
Hojskole: Lektor, dr. phil. Arne Jensen.

Til professor i teoretisk statistik ved Handelshojskolen i Kebenhavn: Amanuen-
sis, lektor E. Lykke Jensen.

Till professor i tillimpad matematik vid Abo Akademi: Lektor, docent Bertil
Qvist.

Till professor i tillimpad matematik vid Tekniska Hogskolan i Helsingfors:
Bitriadande professor Olli Lokki.

Till professor i matematik vid Tekniska Hogskolan i Helsingfors: Professor
Pentti Laasonen.

Til professor ved Verkfredideild Haskéla Islands: Loftur borsteinsson verkfrad-
ingur.

Til professor i anvendt matematikk ved Universitetet i Oslo: Professor, dr.philos.
Enok Palm.

Til professor i anvendt matematikk ved Universitetet i Bergen: Dosent, dr. philos.
Sigve Tjotta.

Till professor i matematik vid Uppsala Universitet: Laborator, Fil. dr. Yngve
Domar.

Till laborator i tillimpad matematik vid Chalmers Tekniska Hégskola, Goteborg:
Fil. dr. Vidar Thomée.

MZANGDELZRE OG TRANSFINITE KARDINALTAL

Det er inngétt en avtale mellom NMT og Universitetsforlaget, Oslo, om at forla-
get skal utgi i bokform den artikkelserie av Heiede og Helms som under ovenstéende
titel ble publisert i NMT, bind 10, 1962. Artiklene vil bli supplert med en oppgave-
samling, og boken (som utgis i serien Scandinavian University Books) vil foreligge i
1963.



SUMMARY IN ENGLISH

P. ErDOS: On a combinatorial problem. (English.)

A family § of sets is said to possess property B if there exists a set B such
that FNB+0 and F & B for every Fe@. The main result of the paper (Th.
1 p. 6) concerns conditions for property B when § is a finite family of finite
sets. The results are generalized to infinite families in Th. 2 p. 9.

Herce TVERBERG: A theorem on multilinear polynomials. (Norwegian.)

Let two multilinear polynomials P(x;, %, . . ., n) and Q(xy, Ty, ..., %) vanish
for exactly the same n-tuples (@, %, . - .,&y). It is then shown that P =cQ, where
¢%0 is a constant. As an application, a very simple proof of the multiplication
rule for determinants is given.

Perer KierkEcAARD-HANSEN: The application of matriz symbolism in
differential calculus. (Danish.)

When it is wanted to differentiate functions with respect to several variables,
application of matrix symbolism can be useful. For this purpose, the author
introduces the symbols (9) and (11) p.15, and the Jacobian matrix notation
p- 16. (Vectors and matrices are denoted by one and two bars, respectively.)
Applications are made to problems of statistics, in particular to linear regression
in several variables.
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