MANGDELARE OG TRANSFINITE KARDINALTAL, IIT*

TORKIL HEIEDE og HANS JORGEN HELMS

19. Kardinaltallet ®,. Til udregning af summer og produkter af kar-
dinaltal kan man dels benytte definitionerne, altsi bestemme kardinal-
tal af forenings- og produktmseengder af passende valgte mengder, dels
udnytte allerede beviste sum- og produktformler, det sidste ofte med
fordel i forbindelse med ulighedsregning, altsd ved hjzlp af kardinal-
tallenes ordning.

Vi betragter i denne paragraf summer og produkter, der har med
kardinaltallet x, at gere, og beviser til indledning:

(19.1) n+Ry = R, for ethvert endeligt kardinaltal n .
Beviset forlgber saledes: Vi satter
4 ={1,2,...,n}, B={n+1,n+2,...},
og har da card 4 =n, card B=g,, AnB=0 og dermed
n+Ry = card(4 U B) = cardM = X, .
Pa lignende méde viser vi:

(19.2) xo‘,‘xo = s();
idet vi seaetter
A={1,3517...}, B=1{2468,...},

far vi nemlig AnB=¢ og AUB=%N.
Formlerne (19.1) og (19.2) er begge indeholdt i

(19.3) [+l =1 hvisf S 8,02 2xK,,
der bevises saledes: Lad 4 og B vere mangder med card A =¥, card B=1
og AnB=0. Ifglge setning 15.1v har B en numerabel delmzngde C;
vi seetter B\C=D og har da

B=CuD, CnD = 0, cardC = g,
og dermed [=x,+ cardD. Deraf far vi nu:

1 Forste og anden del stod i NMT, denne argang, s. 11-51 og 108-136.

NMT, Hefte 4, 1062. — 12 [169]
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f+1 = £+ (xo+cardD) = (f+R,)+cardD = Ry+cardD = [,

idet vi benytter, at f+x,==x, ifolge (19.1) eller (19.2).
Ifolge (17.11) kan (19.2) ogsa skrives siledes:

(19.4) Ro'2 = R -
Videre far vi
(19.5) 80+No+&0 = Ro )

idet vi anvender (19.2) to gange:
Ro+Ro+8o = (Rg+Rp) +X = 8o+ Ro = R
og ifelge (17.11) kan (19.5) ogsé skrives siledes:
(19.6) - . Ro'3 = Ry -
Ved induktion generaliseres (19.2) og (19.5) til
(19.7) . Ro+Ro+...+8o = Xy »

geldende for en endelig sum af n addender, og dette omskrives ved
(17.11) il

(19.8) xo'n = xO )

geldende for ethvert endeligt kardinaltal n21 (idet man far n=1 med
ved hjelp af (17.3)).

Rigtigheden af folgende setning er en umiddelbar konsekvens af de
beviste formler i det tilfzlde, at de i setningen betragtede maengder er
parvis disjunkte:

SmTNING 19.1. Foreningsmengden af mengderne i et endeligt system af
hajst numerable maengder er numerabel, hvis mindst én af mangderne er det.

Hvis de betragtede meengder ikke vides at vaere parvis disjunkte,
knytter vi til enhver af de givne mangder A4,, k € K, en med den (ifolge
(11.1)) @kvivalent mengde, nemlig produktmangden Az =4, x {k}.
Mzngderne A} er parvis disjunkte, og der findes en enentydig afbildning
af U, A4, ind i U, g4j, nemlig f. ex. en, der til ethvert element
aeU, x4, knytter et af de elementer (a,k) € U, x4y, for hvilke det
gelder, at a e 4, (der findes til ethvert ¢ mindst ét sidant element
(@,k)). Vi har da:

card U A, < card U Af =Z’cardA,’: S Ro+Ro+ ... +Ry = Rg»

keK keK keK
og vi har vurderet foreningsmeengdens kardinaltal opad. En vurdering
nedad far vi saledes: Lad 4, vare den (eller en af de) numerable blandt
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mengderne A; af Uy 4,24, folger det da, at

card {J 4, = card4, = Ro »
keK

og dermed er satningen bevist.
Formlerne (19.3) og (19.8) giver os s@tningerne:

SaTNING 19.11. Foreningsmeengden af en uendelig mengde og en hgjét
numerabel maengde er ekvivalent med den forstneevnte.

SarNING 19.111. Produkimengden af en numerabel og en endelig mengde
er numerabel.

Rigtigheden af setning 19.11 fremgar i det tilfzelde, at de betragtede
mangder B og A ikke vides at veere disjunkte, af folgende bemzerkning:
Mengderne B og ANB er disjunkte, AN\B er som delmangde af 4 hgjst
numerabel, og Bu(4A\B)=BuUA.

For et numerabelt system af endelige kardinaltal n, gelder formlen

(19.9) 2n, =R,
keK

Tfolge additionens kommutative lov s. 132 kan vi ngjes med at betragte
specialtilfzeldet K =N, i hvilket formlen ifglge (17.14) kan skrives:

(19.10) Ny+Ng+ .o +1+ .00 =Ry,
og vi behgver da blot at bemerke, at mengderne
4, ={1,2,...,n},
Ay = (ny+1L,ny+2,...,m+n,},
Az = {ny+ny+1,m+n,+2, ..., n + 0y +ny)

........................................

er parvis disjunkte og har foreningsmengden N.
Som exempler til (19.10) nevner vi

(19.11) T+14...+14... =Ry,
(19.12) 2424 ... 424... =Ry,
og almindeligt (for et vilkarligt endeligt kardinaltal n > 1)
(19.13) n+n+...+0n+... = R,.

Da venstresiderne ifglge (17.11) ogsid kan skrives 1:8,, 2-8, ogal-
mindeligt 7-8,, kunne disse resultater ogsa fas af (19.8) og multiplika-
tionens kommutative lov s. 130.
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Lad os ogsa n®vne exemplet

(19.14) 142434 ...4n+... =R,
Af (19.9) far man:

SAETNING 19.1v. Foreningsmaengden af mengderne i et numerabelt system
af endelige meengder er hajst numerabel.

Swmtningen folger umiddelbart af formlen i det tilfeelde, at de betrag-
tede mengder er parvis disjunkte, og man kan i si fald endog havde,
at foreningsmeengden er numerabel. Hvis maengderne ikke vides at vere
parvis disjunkte, gar man frem pa lignende méade som i beviset for set-
ning 19.1. At foreningsmeengden ikke behgver at vaere numerabel, ser
man af det exempel, at alle meengderne er den samme endelige maengde.

Hvis det om et numerabelt system af kardinaltal my, & € K, gwlder,
at my, <X, for ethvert k € K, og at m; =r, for mindst ét ke K, si er

(19.15) 2'm, =R, .
keK

Ved ulighedsregning ser man, at det er nok at bevise formlen i det
tilfeelde, at 1y, =, for ethvert k € K, og ifelge additionens kommutative
lov s. 132 kan man ngjes med at betragte specialtilfeeldet K =%, i hvilket
formlen ifglge (17.14) kan skrives:

(19.16) Ro+Ro+...+R+... =Ry.
Et par andre skrivemader er:
(19.17) No'xo = Rg )
(19.18) xoz = No .
Beviset for (19.16) kan fores saledes: Mengderne

4, = {1, 3, 6,10,15,...},
{2, 5 9,14,20,...})
{ 4, 8,13,19,26,...}
{7,12,18,25,33,...},
{11,17,24,32,41, ...}

2

3

4

SN NI NN
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5

der er valgt ved en anvendelse af Cantors forste diagonalmetode (se
8. 47 og s.49), er numerable og parvis disjunkte, og de har forenings-
mengden N.

Af (19.15) far man folgende udvidelse af setning 19.1:
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S&TNING 19.v. Foreningsmengden af mengderne 1 et hajst numerabelt

system af hojst numerable mengder er numerabel, hvis mindst én af mang-
derne er det.

Det tilfelde, at de betragtede mzngder ikke vides at vare parvis
disjunkte, kreever igen en seerlig overvejelse analog med den i beviset for
satning 19.1 gennemforte. Det bemarkes, at s@tningen ogsa kan bevises
direkte ved hjelp af Cantors ferste diagonalmetode.

Formlerne (19.17) og (19.18) giver satningerne:

SATNING 19.v1. Produktmceengden af to numerable mengder er numerabel.

SzTNING 19.vii. Maengden af afbildninger af en maengde bestdende af to
elementer ind © en numerabel meengde er numerabel.

F.ex. er mengden af alle par af hele eller rationale tal (alts& ogsa
mengden af alle de intervaller pa en abscisseakse, hvis endepunkter har
hele eller rationale abscisser) numerabel, og det samme geelder maengden
af alle punkter med hele eller rationale koordinater i planen.

Ved hjalp af (19.11) og seetning 17.11 giver (19.16) os et nyt bevis for
(19.14): For ethvert endeligt kardinaltal »> 0 har vi 1 <n <R, og dermed

Ro=14+14+14+.. . +14+... S 1+24+3+... +0+...
é X0+N0+N0+... +xo+--‘ = xo-
Vi meder her et exempel af den i kommentaren til seetning 17.11 omtalte
art: Selv om n <R, for ethvert n, s er 1+2+3+ ... +n+... alligevel

lig med Ry+Ro+Ro+ ... +Rop+....
Videre far vi, idet vi anvender (19.17) to gange:

RoRo 'Ry = (Ko No) "Ry = Ko Ry = Ry,
altsa

(19.19) Ro"Ro"Rg = Ry,
og dette kan ogsa udtrykkes séledes:
(19.20) Rod = Ro.
Ved induktion generaliseres (19.17) og (19.19) til
(19.21) Ro o - .. Ko = N »

geeldende for et endeligt produkt af n faktorer, og dette kan ogsd ud-
trykkes saledes:

(19.22) Ko™ = R,
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geldende for ethvert endeligt kardinaltal n > 1 (idet man far n=1 med
ved hjelp af (18.3)).
Af (19.21) og (19.22) afleses setningerne:

S&TNING 19.vIIn. Produkimeengden of meengderne i et endeligt system af
hojst numerable mengder er numerabel, hvis mindst én af mengderne er det.

SaTNING 19.1X. Mengden of afbildninger af en endelig meengde ind ¢
en numerabel mengde er numerabel.

F. ex. er meengden af alle n-sat af hele eller rationale tal numerabel,
og det samme galder meengden af alle punkter med hele eller rationale
koordinater i det n-dimensionale euklidiske talrum.

Lad os give endnu et exempel : En cyklelés med et endeligt antal (> 1)

baster, der hver kan indstilles p4 X, méder, kan indstilles pa ialt x,
forskellige mader.

20. Kardinaltalsbestemmelse for et par talmeengder. Som tidligere
naevnt (s. 122) er fglgende swtning en konsekvens af et s. 49 gennemfort

resonnement:

SATNING 20.1. Mengden O of de rationale tal er numerabel.

Vi vil ved hjeelp af det i 19 udviklede give endnu et bevis for denne
seetning. At et tal er rationalt, er ensbetydende med, at det er rod i et
polynomium P(z) af forste grad med hele koefficienter:

P(x) = hyx+hy, ho,hy €S, hy £ 0.
Meengden M af sidanne polynomier er 4benbart @kvivalent med meeng-
den af talpar (hy,%,) e § x (I\{0}), og derfor er
card M = card J-card (F\{0}) = Ro'Ry = R, -
Hvert sadant polynomium har netop én rod, men denne kan godt veere
rod i andre polynomier ogsd; derfor er cardQ < card M =x,. Pa den

anden side fis det af O >, at card > card J=2x,, og alt i alt har man
da card =x,.

Ved en tilsvarende fremgangsméade skal vi nu bevise denne setning
af Cantor:
SaTNING 20.11. Mengden A af de algebraiske tal er numerabel.
Et (reelt) algebraisk tal er et reelt tal, der er rod i et polynomium P(x)
af mindst forste grad med hele koefficienter:
P(x) = hyan+h, jan-14 .., +hx+hy, ho by, .. by gk, € h, *+ 0;

et rationalt tal er altsi et meget specielt algebraisk tal. Meengden . " af
sddanne polynomier af en bestemt grad n er abenbart sekvivalent med
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maengden af n-talset (hg,hy, ...k, 4,k,) € FXxFx .. 3\{0}) og
derfor er

CazrdMn = No'xo' .o .‘xo'xo = N0n+1 = ND
Hvert sddant polynomium af n’te grad har hejst n redder, og nogle af
(eller alle) disse kan godt veere rgdder i andre polynomier ogsi; derfor
geelder det om mzangden U, af de tal, der er rgdder i sddanne polynomier
af n’te grad, at

card, < card M, n = Ry'n = Ry .

Mengderne %A, (n=1,2,3,...) er ikke nogdvendigvis disjunkte, men af
A=Uy_, A, far man dog

card ¥ = card |J %, < Xcard¥, < 8,8, = X, .
n=1

n=1

P& den anden side fas det af >, at
card = cardJ = 8, .

og alt i alt har man da card A =x,.

Setningerne 20.1 og 20.11 giver umiddelbart, at man i exemplerne til
setningerne 19.vi-IX kan erstatte de hele eller rationale tal med de
algebraiske tal.

Man kunne ved betragtning af resultaterne i denne og den foregaende
paragraf fristes til at tro, at enhver uendelig mezngde er numerabel,
altsd at der ikke findes andre transfinite kardinaltal end &,. Hvis dette
var rigtigt, ville sterstedelen af det i paragrafferne 11-20 udviklede vzere
helt trivielt. I neeste paragraf skal vi imidlertid se, at der findes uende-
lige mangder, som ikke er numerable, og dermed transfinite kardinaltal,
som er storre end X,. I den folgende paragraf skal viendog se, at der
findes uendeligt mange transfinite kardinaltal.

21. Kardinaltallet 8. Vi skal bevise folgende setning af Cantor (1873):
S&TNING 21.1. Der findes kardinaltal storre end ®,.
Cantor viste rigtigheden af denne s@tning ved at bevise:

S&TNING 21.11. Om mengden R af reelle tal gelder det, at
cardR > R, .

Ifolge setning 16.vix kan vi bevise denne setning ved at angive en
delmengde M af R, der opfylder card M >x,, og det gor vi nu pa fel-
gende made:

i Enhver uendelig decimalbrgk fremstiller et entydlgt bestemt, posi-
tivt, reelt tal. Der findes reelle tal (nemlig visse rationale tal), som frem-
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stilles af to forskellige, uendelige decimalbroker; men vor maengde M
vil ikke komme til at indeholde sidanne tal, idet vi bestemmer M som
meangden af de reelle tal, hvis uendelige decimalbreksfremstilling har et
0 foran kommaet og ellers udelukkende bestar af cifrene 6 og 7. Det er
klart, at M er uendelig; vi skal i det folgende vise, at M ikke er nume-
rabel. Hertil betragter vi en helt vilkarlig folge af forskellige elementer
af M. Hvis vi kan angive blot et enkelt element af M, der umuligt kan
forekomme i den betragtede folge, er malet naet, thi i si fald er det
klart, at ingen fglge kan indeholde ethvert element af M.

Vi skaffer os decimalbrgksfremstillingen af et sidant element ud fra
decimalbrgksfremstillingerne af elementerne i folgen ved hjelp af fol-
gende konstruktion: Foran kommaet anbringer vi et 0; hvis den forste
decimal i decimalbroksfremstillingen af det forste tal i folgen er 6, hen-
holdsvis 7, velger vi som forste decimal i decimalbroksfremstillingen af
vort tal 7, henholdsvis 6; derved sikrer vi os, at vort tal bliver forskelligt
fra det forste tal i folgen. P4 samme made sikrer vi os ved valget af den
anden decimal, at vort tal bliver forskelligt fra det andet tal i folgen,
og séledes videre: som n’te decimal i decimalbrgksfremstillingen af vort
tal vealger vi 6, henholdsvis 7, efter som den n’te decimal i decimalbraks-
fremstillingen af det n’te tal i folgen er 7, henholdsvis 6, og opnar der-
ved, at vort tal bliver forskelligt fra det n’te tal i folgen.

Det er klart, at det herved bestemte tal tilhorer M , men ikke findes i
folgen.

Den anvendte fremgangsmade kaldes Cantors anden diagonalmetode:
opskriver man den pégzldende folge af decimalbreker som en »lodret«
felge, begyndende foroven, kan man konstruere den gnskede decimalbrak
ved at lese ned ad det fremkomne skemas hoveddiagonal (fra gverste
venstre hjerne). Hvis decimalbroksfelgen exempelvis ser saledes ud:

0,766677 ...
0,677676 ...
0,7766717 ...
0,676776...
0,666767 ...
0,776766 ...

..............

vil tallet med decimalbroksfremstillingen 0,667677 . .. ikke forekomme
i talfelgen.
P& grund af den fundamentale betydning af setning 21.11 vil vi be-
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lyse den nermere ved at give endnu et bevis for den, nemlig Cantors
oprindelige. Lad os betragte en helt vilkarlig folge (ay,0aq,...,a,,...) af
reelle tal. Hvis vi kan bevise, at der findes blot et enkelt reelt tal, som
umuligt kan forekomme i fglgen, er satningen bevist, thi i si fald er
det klart, at ingen fglge kan indeholde ethvert reelt tal. Lad nu I 1
vaere et lukket interval, der ikke indeholder a,, og I, et lukket delinterval
af I;, der ikke indeholder a,, og saledes videre: for ethvert naturligt
tal m er I, ., et lukket delinterval af I,, der ikke indeholder Gy q. Feelles-
mengden af disse intervaller er ifglge en kendt seetning om reelle tal
ikke tom, og det ses, at ethvert element af den er et reelt tal, som ikke
findes i den betragtede felge (ay,a,,...,a,,...).

Som standardbetegnelse for card®R indferte Cantor bogstavet & (vi
nevner, at man ogsd meder betegnelsen c), og setning 21.11 giver os

altsd formlen:
x > xo .

P4 grund af transitiviteten af kardinaltallenes ordning far man straks,
at ®>n for ethvert endeligt kardinaltal n, og af (19.3) afleses det, at

(21.1) n+R = Ro+X = X .

Vi nevner to swerligt bemearkelsesveerdige delmangder af R, der begge
har kardinaltallet X, eller som man ogsa siger: har kontinuets meegtighed.
Mengden RN\L af irrationale tal er klart uendelig, og ifelge (19.3)
gelder det dermed, at

Ry +card (R\Q) = card (R\Q),
og af

card® = card (Q U (BN\Q)) = cardQ +card (R\Q) = Ry +card (R\Q)

fas da
card (R\L) = & .

P4 tilsvarende made fas det om maengden R\ af (reelle) transcendente
tal, at

(21.2) card (R\Y) = x .1
Vi har altsid bevist:

1 Existensen af transcendente tal sikredes i 1851 af Liouville; resultatet (21.2), der
skyldes Cantor (1874), siger, at de fleste reelle tal er transcendente. Det er vserd at be-
merke, at det kan vere en endog smrdeles vanskelig opgave at afgere, om et forelagt
reelt tal er algebraisk eller transcendent. Hermite viste i 1873187 4, at e er transcendent,
og i 1882 viste Lindemann, at & er transcendent (og gjorde dermed en ende p& det
gamle spergsmaél om cirklens kvadratur). Senere er det vist, at e* er transcendent, mens
det stadig ikke vides, om f. ex. 2% og #" er det.
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SarNING 21.11. Maengden af irrationale tal og mengden af (reelle)
transcendente tal er begge wkvivalente med mengden af reelle tal.

I tilknytning til disse resultater beviser vi en satning, der givet et
sldende indtryk af, hvor lidt de rationale (eller de algebraiske) tal »fylder«
blandt de reelle tal.

SmrNING 21.1v. Tl ethvert selv nok sd lille, positive tal & er det muligt
at bestemme en folge af intervaller, si at ethvert rationalt (eller algebraisk)
tal tilhorer mindst é af disse intervaller og intervallernes samlede leengde
er ¢.

Beviset forlgber siledes: De rationale (eller algebraiske) tal kan op-
stilles i en folge (ry,ry,...,7,,...). Med r; som midtpunkt legger vi nu

et interval af leengden g, med 7, som midtpunkt legger vi et interval af

lengden :E og sa videre: med r, som midtpunkt legger vi et interval af

leengden —2—8; Ethvert rationalt (eller algebraisk) tal tilherer s& i hvert
fald »sit eget« interval, og intervallernes samlede leengde er §+£+ oot

€
%+ ... =¢ ifglge en elementer s@tning om kvotientrekker.

Ifglge s. 110 er et vilkarligt Abent interval sckvivalent med hele 9%, og
det samme ma da ifglge (21.1) geelde for et vilkirligt halvabent eller
lukket interval. Af

{xl0§x<'l}u{x|1§w<2}={x[0§x<2}

far vi da
X+R =R,

der ifelge (17.11) ogsé kan skrives
R‘2=R.

Heraf far vi ved at ga frem ngjagtigt, som da vi ud fra (19.2) beviste

(19.5) og (19.6):
N+R+R8 = K3 =X.

Ved induktion far vi videre
(21.3) R+R+...+X8 = X,
geldende for en endelig sum af n addender, og dermed
X'n =R,

geldende for ethvert endeligt kardinaltal n> 1.
Iovrigt folger (21.3) ogsa direkte af
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n

U{xlk—1§x<k}={x|0§x<n1,
k=1

og pd samme made far vi af
U{x|lc-—1 Sx<kl={|0=a},
k=1

idet {z | 0=z} ifelge s. 110 og (21.1) ogsd er mkvivalent med R, at

N+R+...+8+... =R,
eller ifglge (17.11):

(21.4:) N'xo = NX.

Af de beviste formler fir man de felgende tre swmtninger, idet man
for den sidstes vedkommende tillige benytter multiplikationens kommu-
tativitet:

SaEINING 21.v. Foreningsmeengden af mengderne i et hojst numerabelt
system af mengder, der hojst har kontinuets meegtighed, har kontinuets
meegtighed, hvis mindst én af mengderne har det.

SETNING 21.VI. Produkimengden af en mengde af kontinuets megtig-
hed og en hajst numerabel maengde har kontinuets meegtighed.

S&EINING 21.viL. Foreningsmengden of mengderne i et system af kon-
tinuets meegtighed af hajst numerable mengder har hajst kontinuets meegtighed.

Ligesom tidligere ma man gennemfore en supplerende overvejelse for
at sikre gyldigheden af swmtningerne 21.v og 21.vir i det tilflde, at de
betragtede maengder ikke vides at veere parvis disjunkte. Er maengderne
parvis disjunkte, kan man i smtning 21.vir udelade det sidste »hgjstc.

Hvis det om et system af kontinuets meegtighed af kardinaltal m,,
ke K, gelder, at m, <x for ethvert ke K, og at m; =x for mindst ét
ke K, sa er
(21.5) 2 =R

S ) ke K

Ved ulighedsregning ser man, at det er nok at bevise formlen i det
tilfeelde, at m, =x for ethvert k € K. Vi skal altsa vise:

(21.6) R'R =X
eller anderledes udtrykt:
(21.7) K2 = X.

Man kan bevise disse formler ved at etablere en enentydig afbildning
af intervallet A = {¢ | 0<# < 1} p4 talparmzngden B={(z,y) | 0<xz <1, 0<
y <1}, idet jo card 4 =x og card B=x- (se fig. 23). Cantor gennemforte
i 1878 dette ved hjalp af keedebrgker; hans ferste bevis (1877), i hvilket
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han brugte decimalbrgker, var ikke helt
fuldstendigt, men er senere bragt i orden
af D. Konig, og det er dennes bevis, vi
her vil gengive.

Ethvert af de betragtede tal ¢, z og y kan
P4 enentydig made fremstilles ved en
uendelig decimalbrgk, der har et 0 foran
kommaet og ikke ender pa lutter 0’er. Vi
inddeler decimalerne i decimalbrgksfrem-
stillingen af et vilkarligt ¢ € 4 i blokke,

A T idet vi begynder forfra og tager s& mange
0 t 1 cifre med i hver blok, at det sidste ciffer i
Fig. 23 den ikke er et 0. Til det pageeldende ¢ knyt-

ter vi nu det par (z,y) € B, som er bestemt
ved, at decimalbrgksfremstillingerne af x og y er opbygget af henholds-
vis den forste, den tredie, den femte o. s. v. og den anden, den fjerde,
den sjette o.s. v. af de nevnte blokke. Exempelvis far vi til

t=10,28300704369090004003...
knyttet
€=10,2304609003...
y=10,8007390004....

Hermed har vi angivet en enentydig afbildning af 4 pa B.

Den anvendte blokinddeling af decimalerne skyldes Konig; Cantor
benyttede decimalerne enkeltvis, og for visse ¢ fir man da et « eller y, hvis
decimalbrgksfremstilling ender pa lutter 0’er.

Af (21.5) far man folgende udvidelse af setningerne 21.v og 21.viI:

SzETNING 21.viiL. Foreningsmeengden of mengderne i et system, der
hajst har kontinuets maegtighed, af mengder, der hajst har kontinuets meeg-
tighed, har kontinuets maegtighed, hvis mindst én af mangderne har det.

Det tilfzelde, at de betragtede meengder ikke vides at veere parvis dis-
junkte, mé igen behandles serskilt.
Formlerne (21.6) og 21.7) giver s@tningerne:

SzTNING 21.1X. Produktmengden af to mengder af kontinuets meegtig-
hed har kontinuets meegtighed.

SazrNiNG 21.X. Mengden af afbildninger af en mengde bestdende af to

elementer ind i en mengde af kontinuets meegtighed har kontinuets megtig-
hed.
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F. ex. har mengden af alle par af reelle tal (altsd ogsid meengden af
alle intervaller pa en abscisseakse) kontinuets magtighed, og det samme
gelder meengden af alle punkter i planen, der altsi er skvivalent med
mengden af punkter pi en ret linie (eller endog pa et vilkarligt lille
liniestykke). Da Cantor i 1877 meddelte Dedekind dette resultat, var
han selv s& overrasket, at han skrev: Je le vois, mais je ne le crois pas.

Af (21.6) far vi ved at ga frem ngjagtigt, som da vi ud fra (19.17)
beviste (19.19) og (19.20):

N'R'R =K =R.
Ved induktion far vi videre
(21.8) RR-...oR =R,

geldende for et endeligt produkt af n faktorer, og dette kan ogsa ud-
trykkes séledes:

(21.9) X" =X,

geldende for ethvert endeligt kardinaltal n>=1 (idet man far n=1 med
ved hjelp af (18.3)).
Af (21.8) og (21.9) afleeses setningerne:

SaTNING 21.X1. Produkimengden af mengderne ¢ et endeligt system af
mangder, der hajst har kontinuets magtighed, har kontinwets maegtighed,
hvis mindst én af mengderne har det.

SzTNING 21.X11. Meengden of afbildninger af en endelig mengde ind i
en meengde af kontinuets maegtighed har kontinuets meegtighed.

F. ex. har mengden af alle n-sw®t af reelle tal kontinuets magtighed,
og ligesd mengden af alle punkter i det n-dimensionale euklidiske tal-
rum. Der findes altsa for vilkarlige endelige kardinaltal m og n (1) en
enentydig afbildning af det m-dimensionale rum p4 det n-dimensionale,
og man spgrger naturligt, p4 hvilken made mon dimensionsbegrebet kan
komme til at spille en rolle i denne forbindelse. Allerede Dedekind
formodede, at det havde noget at gere med afbildningens kontinuitet —
den ovenfor betragtede afbildning af 4 pa B er jo ikke kontinuert. I
1890 lykkedes det Peano at give et exempel pa en kontinuert afbildning
af {{|0=t=<1} pa {(»,y) | 0s2=1, 0=y=<1}, altsi geometrisk fortolket
en kontinuert kurve, som gar igennem alle punkterne i et kvadrat;
men afbildningen var netop ikke enentydig, kurven havde dobbeltpunk-
ter. I 1911 viste Brouwer, at hvis en afbildning af det m-dimensionale
rum péd det n-dimensionale er enentydig og kontinuert, si er m=n;
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specialtilizlde af denne satning (for m <3 og n<3) bevistes i arene
1878-1907 af Liiroth.

Lad os slutte denne paragraf med endnu et exempel til seetning 21. x11:
En cyklelds med et endeligt antal (> 1) taster, der hver kan indstilles Pa R
méder, kan indstilles p4 ialt & forskellige mader.

22. Cantors s=tning og kontinuumshypotesen. De i det foregdende
udregnede summer, produkter og potenser, i hvilke der indgik kardinal-
tal, som hejst var ®,, har hele tiden givet resultater, der ogsa hegjst var
Ry, 0g pa tilsvarende made er det gaet, nar de forekommende kardinaltal
hgjst var 8. De to transfinite kardinaltal, som vi hidtil har medt, har
altsd stdet isoleret fra hinanden i den forstand, at vi ikke ved at operére
med kardinaltal op til og med 8, har faet & som resultat.

Men de produkter, som vi har beregnet, har ogsd kun haft endeligt
mange faktorer og potenserne kun endelige exponenter. I det folgende
skal vi forst og fremmest beskaftige os med potenser med transfinite
exponenter, og derved vil vi meget snart f4 den gnskelige forbindelse
mellem 8, og & og desuden stifte bekendtskab med nye transfinite kardi-
naltal. '

Den enkleste potens med transfinit exponent er 1%, og ifelge (18.3)
har vi ,

(22.1) % = 1,

Vi har allerede tidligere uden udtrykkeligt at nevne det beskeftiget os
med en maengde med kardinaltallet 2o, nemlig den i beviset for setning
21.11 betragtede maengde M, som ifplge sin definition er skvivalent
med mangden af alle folger af tallene 6 og 7, altsa meaengden {6,7}% af
alle afbildninger af 9 ind i {6,7} (se seetning 18.11). Da M er en uendelig,
men ikke numerabel delmeengde af R, har vi straks, at Ry <2¥0 <N

Vi skal nu vise, at det for ethvert endeligt kardinaltal n > 2 gelder, at

(22.2) 2% = 7% = y¥o

Vi betragter meaengden 4= {1,2}* af alle folger af elementer fra {1,2}
(vi kunne igvrigt lige s& godt have brugt M), mangden B={1,2,...,n}%®
af alle folger af elementer fra {1,2,...,7} samt maengden C'=N% af alle

folger af elementer fra N. Om disse tre meengder geelder det ifelge soet-
ning 18.11, at : '

card4 = 2%, card B = n% og cardC = RO,

og af AcBc( far vi da 280 < nRo < x¥o, o
P4 den anden side kan vi etablere en enentydig afbildning af C pi en
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(endog =gte) delmengde af A ved til en vilkarlig folge (a,a,, . . .,a,,...)
af naturlige tal at knytte den folge af tallene 1 og 2, der er opbygget
siledes: forst sd mange gange tallet 1 som angivet ved tallet a,, dernzest
sd mange gange 2 som angivet ved a,, dernzest s mange gange 1 som
angivet ved a; o.s. v. Exempelvis knytter vi til felgen

(2,4,1,3,2,12,5,2,...)
denne folge:

(1,1,2,2,2,2,1,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,2,2, .. .) .

Vi har da ogsd x§0<2%, og dermed den gnskede formel (22.2).
Dernzast beviser vi

(22.3) 10% = x .

Mengden P af alle de decimalbrgker, som har et 0 foran kommaet, er
@kvivalent med meengden {0,1,...,9}" af alle folger af elementer fra
mengden {0,1,...,9}, og da denne sidste meaengde har kardinaltallet 10,
har vi ifelge setning 18.11, at card P=10%. Ethvert tal i intervallet
E={x|0<z<1} fremstilles p4 enentydig made ved en decimalbrgk
fra P\Q, hvor @ er mengden af de decimalbrgker, der har et 0 foran
kommaet og ender pa lutter 0’er. Da (P\Q)uQ=P og (P\Q)nQ=0,
har vi, idet decimalbrgkerne i @ fremstiller rationale tal:

card P = card (P\Q)+card@ = card B +cardQ = R+8, = &

og dermed formlen (22.3).
Af (22.2) og (22.3) far vi nu det vigtige resultat, at det for et vilkarligt
endeligt kardinaltal » > 1 gelder, at

(22.4) n¥ = g% = x .
Dette kan ogsd udtrykkes siledes:
(22.5) NNt R L. = Rp'Rpt .. Rt =R
Ved hjelp af (18.4) afleser vi af (22.4) (for n=2) folgende soetning:

S&TNING 22.1. Mengden af delmengder af en numerabel mengde har
kontinuets meegtighed.

Videre bemerker vi, at den i det foregiende betragtede maengde M
er ekvivalent med hele R, og endelig afleser vi af (22.4) ogsa:

S&TNING 22.11. Mangden af afbildninger af en numerabel mengde ind
it en hojst numerabel meengde, som indeholder mindst to elementer, har
kontinuets meegtighed.
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F. ex. har meengden af alle fglger af elementer fra meengden {1,2, .. .,n}
kontinuets maegtighed, og det samme gewlder meengden af alle falger af
naturlige, hele, rationale eller endog algebraiske tal.

Lad os nzvne endnu et exempel: En cyklelds med R, taster, der hver
kan indstilles pad to méader, kan indstilles pa ialt x méider; og det samme
resultat fir man, hvis hver tast kan indstilles pa et vilkarligt andet
endeligt antal (> 1) mader eller pd x, mader.

Vi har tidligere (i formlen (19.14)) angivet summen af samtlige naturlige
tal; vi kan nu beregne produktet: Af

R=22-,,.2-,..£23-...'n... =1:2:3-...°n-...
S Rp'Ro*---"Ng* .- =R
far vi
(22.6) 1:2:3-...°n-... =R.

Ved en ulighedsregning analog med den her gennemforte far man af
(22.4) setningen:

S&TNING 22.111. Produkimengden af mengderne i et numerabelt system
af hojst numerable mengder, der hver indeholder mindst to elementer, har
kontinuets meegtighed.

Ved hjelp af (22.4) vil vinu give et nyt bevis for (21.9), idet vi benytter
potensregnereglen (18.2) og formlen (19.8):

R = (28%0)" = 2%0'n = N0 = x .,

Vi ser her det forste exempel pa anvendelsen af en metode, som redu-
cerer arbejdet ved udregning af produkter og potenser af transfinite
kardinaltal meget veesentligt: I stedet for at gennemfore de ofte noget
besverlige operationer med meengder omskriver man de indgidende kar-
dinaltal til potenser, og hele arbejdet foregir si i exponenterne ved
hjelp af potensregneregler og tidligere beviste formler. Vi skal straks se
denne som man kunne sige logaritmiske regnemetode i brug igen: Idet
vi denne gang benytter (19.17), far vi

R¥ = (QRO)RO = 2R 'R0 = 920 = § "
og vi har bevist:
(22.7) R% = x,
eller anderledes udtrykt:

(22.8) R°R°...°R*... = R.




MZENGDELZRE OG TRANSFINITE KARDINALTAL 185

Setningerne 21.1X og 22.11 indgadr nu som specialtilfeelde i folgende
mere omfattende setning:

SaTNING 22.1v. Produkimengden af mengderne i et system af meengder,
der hajst har kontinuets meegtighed, har kontinuets maegtighed, hvis syste-
met er hagjst numerabell, og mindst én af mengderne har kontinuets meegtig-
hed; og ogsd, hvis systemet er numerabelt, og hver af mengderne indeholder
mindst to elementer. '

Thi (22.8) kan opfattes som en udvidelse af bade af (21.8) og (22.5).
Da (22.7) p4d samme méade er en udvidelse af bade (21.9) og (22.4), ind-
gar setningerne 21.xX1 og 22.1 som specialtilfelde i:

SaINING 22.Vv. Mengden af afbildninger af en mengde A ind i en
mangde B har kontinuets maegtighed, hvis A er hojst numerabel, og B har
kontinuets maegtighed ; og ogsd, hvis A er numerabel, oy B hojst har kon-
tinuets maegtighed og indeholder mindst to elementer.

Som exempler til disse ssetninger navner vi, at mengden af alle
folger af reelle tal har kontinuets meegtighed, og det samme gelder
maengden af alle punkter i det hilbertske talrum (se s. 43).

Ved hjelp af (22.8) vil vi endnu en gang bevise (22.6): Da n<g for
ethvert endeligt kardinaltal, har vi

R=2%<23-...on ... =1:2:3-...°;m-...

IIA 1A

Vi meder her endnu et exempel af den i kommentaren til setning 17.11
omtalte art: Selv om n < & for ethvert n, sd er 1-2:3-...-n-... alligevel
lig med ®-R-R-...'R-....

For vi tager fat pa spergsmalet om existens af kardinaltal stgrre end
R, vil vi bergre den sikaldte kontinuumshypotese, som opstilledes af
Cantor i 1878. Den gir ud pa, at enhver delm@ngde af en meengde af
kontinuets magtighed er endelig, numerabel eller har kontinuets maeg-
tighed, eller med andre ord, at der ikke findes noget kardinaltal mellem
Ry og R.! Der er ikke givet noget bevis for rigtigheden af kontinuums-
hypotesen, og man ved heller ikke, om den muligvis er forkert; vi skal
senere nzevne det vasentligste resultat, der i denne forbindelse er opnaet
i de forlgbne 84 &r.

Hidtil har vi kun medt ét exempel pa et kardinaltal sterre end R,
nemlig X, og kernepunktet i vort bevis for uligheden x>, var, som

1 Idet vi henviser til fodnoten s. 129, kan dette ogsé udtrykkes siledes: X, =X.

NMT, Hefte 4, 1962. — 13
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vi nu vil foretreekke at udtrykke det, en pavisning af, at 2% >y, Vi
skal nu bevise, at denne ulighed gelder alment:

SaTNING 22.Vi. For et vilkarligt kardinaltal ¥ geelder det, at
2F > f.

At setningen er rigtig for f <R, ved vi allerede, men det far vi igvrigt
ikke brug for under beviset, som forlgber saledes: Lad A vare en meengde
med kardinaltallet , og lad F' veere mangden af alle afbildninger af 4
ind i meengden {0,1}. Vi har da card F = card ({0,1}4) = (card {0,1})*"44 =
2% og da man ved til ethvert element a € 4 at knytte den afbildning af
4 ind i {0,1}, som afbilder « i tallet 1 og ethvert andet element af 4 i
tallet 0, far en enentydig afbildning af 4 pa en delmeengde af F, har vi
med det samme card F>card 4 eller 2!>¥f. For at have bevist s@tning
22.vI mangler vi altsd nu at bevise, at card F +card 4. Det gor vi pa
en made, der er ganske den samme som den, der anvendtes i beviset for
setning 21.11 (under pavisningen af, at card M £R,), idet vi beviser, at
hvis en delmeengde G af F er skvivalent med 4 (sddanne delmeengder
existerer som lige pavist), s& kan G ikke vaere F selv. Hertil er det nok
at angive blot et enkelt element af F (d. v.s. en afbildning af 4 ind i
{0,1}), som ikke tilhorer den betragtede mangde G.

At @ er xkvivalent med 4, vil sige, at der findes en enentydig af-
bildning f af 4 pa G; til ethvert element a af 4 er der altsd pa enentydig
made knyttet et element f(a) € @, d. v.s. en afbildning ¢, af 4 ind i
{0,1}. Vi definerer nu en afbildning ¢ af 4 ind i {0,1} ved at sewtte

1, hvis @, (a) =0,

¥(@) = 0, hvis ¢,(a) =1,

og afbildningen v er da klart forskellig fra enhver af afbildningerne ¢,,
eller sagt pa en anden made: y ¢ G*. Da det jo imidlertid er klart, at
pe F, har vi y € F\G som pgnsket, og setningen er bevist.

Ifolge (18.4) er setning 22.vI ensbetydende med folgende vigtige seet-
ning, Cantors setning:

S&ETNING 22.v1iL. For en vilkdrlig mengde A og mengden D af dens del-

meengder geelder det, at
" g cardD > card4 .

Igvrigt kan det givne bevis for setning 22.vI omskrives til et direkte
bevis for Cantors seetning, idet man benytter sig af, at elementerne i
mengden F jo netop er de karakteristiske funktioner for delmeengderne
af A, altsad for elementerne af D (se (11.3) og s. 37).

Af setning 22.v1 afleeser man umiddelbart folgende satninger:
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SzETNING 22.vIm. Der findes uendeligt mange forskellige transfinite kar-
dinaltal.

SaTNING 22.1X. Der findes intet storste kardinaltal.

Som et specialtilfeelde af setning 22.vr far vi:
2% > R

Som exempler pi ma®ngder med kardinaltallet 2% kan nzvnes mengden
af delmangder af R (eller lige s& godt mengden af delmangder af et
interval, af % x R eller af R*) og meengden af afbildninger af R ind i en
meengde bestdende af to elementer. Lad os ogsa nzvne, at en cyklelas
med X taster, der hver kan indstilles pa to mader, kan indstilles pa ialt
2% forskellige mader.

Ved hjalp af potensregnereglen (18.2) og formlen (21.4) gennemforer
vi nu fglgende beregning:

RE = (2%0)% = 2®o"R — ox

og da det af 2<m<ry<n folger, at 2% <n®<R¥ <X, har vi bevist, at
det for ethvert endeligt kardinaltal n>2 gelder, at

2% = n¥ = RY = R¥.

Vi har ikke omtalt potensen 1¥, men af (18.3) far man umiddelbart
1¥=1,
Vi kan af det foregdende afloese:

SETNING 22.X. Mengden af afbildninger af en mengde af kontinuets
maeegtighed ind i en mengde, der hojst har kontinuets meegtighed, har kar-
dinaltallet 2¥.

(Nar vi her, ligesom vi har gjort det flere gange i det foregdende,
taler om en mangde af hgjst kontinuets maegtighed, udelukker vi natur-
ligvis ikke den mulighed, at kontinuumshypotesen kunne vere forkert,
altsd at mengden kunne have et kardinaltal mellem &, og x; heller ikke
selv om de formler, som vi i begrundelsen for en setning henviser til,
ikke omtaler sidanne kardinaltal. Thi alle de pagzldende formler kan
ved ulighedsregning udvides til ogsd at omfatte disse eventuelt existe-
rende kardinaltal; siledes kan man af x§=x* og 8,<f<n slutte x§=
R=x~)

Vi kan nu nzvne flere exempler p4 mangder med kardinaltallet 2%:
mengden af alle afbildninger af % ind i {1,2,.. n},ind i N, ind i O
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eller ind i 9 selv. Meengden af alle reelle funktioner af en reel variabel
har altsd kardinaltallet 2%, og man bruger derfor ofte for dette beteg-
nelsen f. Vi kan ga videre: Mengden af alle afbildninger af R2, af R3,
af R eller af R* ind i R har kardinaltallet f, eller med andre ord: Meeng-
den af alle reelle funktioner af 2,3,...,n,... op til og med 8, reelle
variable har dette kardinaltal.

Lad os til sammenligning med dette vise, at mengden C af alle kon-
tinuerte, reelle funktioner af f. ex. én reel variabel kun har kontinuets
maegtighed.

For det forste har vi, at en kontinuert funktion f: R ind i R er bestemt
ved funktionsverdierne svarende til de rationale verdier af den uaf-
heengige variable (og disse funktionsveerdier kan endog ikke allesammen
veelges frit); thi til ethvert x € R kan vi veelge en folge (7,75, .. .,7,,...)
af rationale tal, der konvergerer mod z, og funktionsveaerdien f(x) er da
bestemt som lim f(r,). Heraf folger det, at

n—>o0

cardC < card(N") = x% = x.

Pa den anden side er enhver konstant funktion kontinuert, og vi har da

ogsé
cardC = x,

og dermed er pastandens rigtighed bevist.

Igvrigt ses det, at ogsd meengden D af alle differentiable, reelle funk-
tioner af én reel variabel har kontinuets meegtighed, thi pa den ene
side er en differentiabel funktion kontinuert, altsa card D <y, og pa den
anden side er en konstant funktion differentiabel, altsd card D = x.

Nu kan man sa g& videre med kardinaltallet | og bevise

(22.9) f+i="H,
idet man gennemforer folgende beregning:
2R 4 98 — OR.Q — 2R+l — oK
Formlen (22.9) kan ogsid udtrykkes

f'2=f7

og dette er, idet n stadig betegner et vilkarligt endeligt kardinaltal (= 1),
et specialtilfelde af

frn=1i,

som sammen med formlerne

1 Her og i de folgende exempler tenker vi for simpelheds skyld (det er ikke nogen
veesentlig indskrenkning) pa funktioner, hvis definitionsmaengde er hele R, hele R2 o. 8. v.
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f'Ro=FRr=P=f=f0=1

=

ved ulighedsregning. Denne sidste bevises siledes:

fas af

f* = (2%)% = 28°%® — 2% — |,

Derefter kan man tage fat pad kardinaltallet 27, der ifglge seetning
22.v1 er storre end f.

Mere alment kan man vise, at der for et vilkarligt transfinit kardi-
naltal f gelder folgende formler:

f+f=fn=fx == =1,

mens det ikke gzlder alment, at ¥ =%, Det kan endog vises, at der til
et vilkarligt kardinaltal m altid findes bade et kardinaltal f>m, s& at
fro=f og et kardinaltal f>m, si at ff>¥§.

Endelig er det veerd at naevne, at det for vilkirlige transfinite kardinal-
tal £ og I, hvor <1, gelder, at

f+l=f1=1.
Af £<[<2' far man derefter
f[ < Il < (2[)! = 9i'l — ol < fl’
hvoraf man afleser folgende vigtige formel, der skyldes Bernstein:
=2 nirx,<t=I.

Alle disse resultater kan man imidlertid kun n4 ved anvendelse af de
i fodnoten s. 129 nevnte transfinite ordinaltal, s vi vil lade os ngje med
disse antydninger og til afslutning kort omtale den sikaldte generalise-
rede kontinuumshypotese, som gar ud pa, at der for et vilkarligt trans-
finit kardinaltal f ikke findes noget kardinaltal mellem ¥ og 2. For f =g,
far man Cantors kontinuumshypotese: at der ikke findes noget kardinal-
tal mellem 8, og 2% =x (se s. 185), og for f=R fir man, at der ikke
findes noget kardinaltal mellem x og 2¥={. Man kan ogsa formulere den
generaliserede kontinuumshypotese saledes: De transfinite kardinaltal
kan opstilles efter storrelse pa folgende méade:

Ro) .
Ro, 2%0,2@% .1
1 Tdet vi henviser til fodnoten s. 129, kan dette ogsa udtrykkes saledes:

N; = 28, Ry, =28, ...5....
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Det i denne forbindelse hidtil vewsentligste resultat skyldes Godel.
Han beviste i 1938, at hvis det af Zermelo og Fraenkel opstillede
axiomssystem for maengdelmren efter fjernelse af udvalgsaxiomet er
modsigelsesfrit (men det ved man ikke, om det er), s& gwlder det samme
for det axiomssystem, som man fir ved pany at tilfoje udvalgsaxiomet
og som et nyt axiom den generaliserede kontinuumshypotese. Det er
imidlertid stadig et &bent spergsmal, om kontinuumshypotesen kan
bevises eller modbevises ud fra de gvrige axiomer eller om den er uaf-
hengig af dem. Hvis det sidste er tilfzldet, har det ikke nogen mening
at sperge, om den er rigtig eller forkert — ganske analogt med, at det i
plangeometrien ikke har nogen mening at stille det tilsvarende spergs-
mél om parallelaxiomet.




OM REGELBUNDNA KEDJEBRAKS
RELATIVA APPROXIMATION

CLAS-OLOF SELENIUS

1. Relativ approximation medelst konvergenter. I den regelbundna
kedjebraksutvecklingen (jfr Pipping [3])

1
(1) 50 = [bo,bl,bz, . .] = bo+

b, +

by +

av ett reellt tal &, ir begynnelsetermen b, ett helt tal och delndmnarna
b, (»=1,2,...) naturliga tal. I det foljande tédnks & i allménhet vara
irrationellt. D4 ar de fullstindiga kvoterna (jfr Perron [2])

(2) Ev = [bv’ bv+1’ . ']
oindliga kedjebrak. Utvecklingens konvergenter
A

7= [boby, .0

v

ger som kint de bista rationella approximationerna av &,

I det f6ljande behandlar vi regelbundna kedjebraksutvecklingar (RK),
som innehaller minst en (indlig eller odndlig) f6ljd av delnidmnare 1
(vettor«)

@) b,1,1,...,1,1,b 0y (% 2 0)

resp. b,,1,1, ...,
déir b, =2 (» = 1); b, godtyckligt
byow =1 (m=12,...,kresp.m = 1,2,...)
bn+k+1 ; 2.

En siddan foljd av delndmnarettor kallar vi en unisekvens; k &r unise-
kvensens lingd.

I approximationsformeln
Av—l
B v—1

1
VrBf—1

(4) §o—

[191]
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betraktar vi p, som ett matt pa den relativa approximationsformdgan hos
konvergenten A4, ,/B, ;. Vi kallar y, den till delndimnaren b, eller till
index » horande approwimationskonstanten. Aven konvergenten 4, ,/B,_,
siger vi hor till eller motsvarar b, eller ».

Vi undersoker nirmast de y,, som tillhér en unisekvens (3). Alltsa &r
v=x+1,...,%+k. L

Som ett inledande ewempel viljer vi & =}/2081. RK-utvecklingen

(5) £, = 45(1,1,1,1,1,1,1,1,1,1,90)
dr periodisk med perioden b,,...,b;;. Denna innehaller unisekvensen
by, .« ., by, alltsd &r k=10=2 (mod 4). Beriknas konvergenterna

45 46 91 137 228 365 593 958 1551 2509 4060 367909
21 55 ° 89 ~ 8065

3 b EAR ]

8137 21° 34

sd ger en utrikning med hjilp av (4) f6r unisekvensen i den 1:a perioden
foljande approximationskonstanter:

(6) y1 ~ 1,618, y, ~ 2,618, y; ~ 2,119, y, ~ 2,282, y; ~ 2,225,
Ve N 2,226, v, ~ 2,280, yg &~ 2,122, yy & 2,607, y;, ~ 1,629 .

Alltsa ar

(7) Y1 <V10<Vs < Vg < V5 <V < V7 <Vs<Vy<V¥s.

Konvergenttiljarna och -ndmnarna tillvixer snabbt. Beriknar man
de y, (v=12,...,21), som hér till unisekvensen i den andra perioden,
finner man

(8) V221 < Vaa—10 < Y22-3 < Vas-g < Ya2-5
< Voa—6 < VY27 < Vos—4 < Vag—g < Yo2-2-

Av detta skrivsitt framgar, att storleksordningsféljderna for y, i de tva
unisekvenserna ar motsatta. En fortsittning av den numeriska berik-
ningen gor sig allt besvirligare. For utvecklingen (5) géller i varje fall
allmént

Voan+1 < Voant1o < Vaonis < Vaonis < Vaonis
< Voanie < Vasnir < Vaznia < VYoznio < Voonis s

dér n=1,2,... (samt n=0, om icke minustecknen beaktas; jfr (7)-
Forf. har allmént visat [4], att lagbundenheter hos den relativa approxi-
mationen av det slag, som exemplet uppvisar, ir allminna egenskaper
hos regelbundna kedjebrdk. Dessa lagbundenheter utgor grunden fér nya
upptickter inom teorin for halvregelbundna kedjebrak ([4], § 6, § 8,
jr nedan 4) och teorin for den s. k. Pell’ska ekvationen ([4], § 10, nedan 4).
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2. Fordelningen av y,. Vi skall kort skissera ett par allminnare resul-

tat. Utgaende fran de grundliggande formlerna ([2], § 13)

AV“"IEV + Av—2
Bv-—lgv + 'Br—2 ’

AIBZ.—I—AZ—IBA = (— 1)1—1 (Z' =0, 17 .. )

§0=

harleder man litt
Av—l Av —2: v—l—A —le 2 — (— 1)'_1
B B, (B, B,_ B .\’
v—1 v-1(By—16,+ B, _5) B (5v+ v 2)
B, ,

Eo—

Av grundformeln ([3], s. 97)

(9) Bv = bv'Bv—1+Bv—2 (BO = 1’ B—l = O)
foljer da
A4, 1
So - B = B s
»—1 4 2
b,| B
(5'+B,_1 )
varav i enlighet med (4)
‘ B
(10) vy =&+—-b (rz1).
B, ,

Pa grund av

B,
(11) 5= [6,,b, 1, - - -,b4]

v—1

(jfr [2], § 4) antar (10) formen
Yy = [Os b,...pb,,_g, .o ’bl] + [b,,, b,_,,l, .. ] .

For de symmetriska y-differenserna

YVrtk+1-m — Vu+m

erhalls da uttrycket

[O bx+k—m: bx+k—m—1’ LR 1] + [bx+k+1—m’ bn+k+2—ms .. ]
[0 bn+m -1 x+m—-2’ .. 1] [bx+m’ x+m+1s * * ]

eller efter lamplig omordning och tillimpning av (3):

(12) {[0, (1)%—m™.b,,b,_y, .. .,by] — [0, (1), by itor1s Doy - - -1}

+{[0, (1)m1, bn+k+15 ks - - -1 — [0,(1)™1,8,,b, 4, .. "bl]} .

Beteckningen (1)* anger en f6ljd av n delnimnarettor.
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Lat nu k vara jamnt. Ar di uttrycket

(13) [bm bn—l’ s :bl] - [bx+k+1? bn+k+2: . ]

positivt, s& blir bagge klausuluttrycken i (12) positiva resp. negativa?,
beroende pd om m=1 (mod 2) eller m=0 (mod 2). Ar ater skillnaden
(13) negativ, sa ér klausulernas fértecken det motsatta.

Vi kallar nu en unisekvens rak eller omwvind, allteftersom uttrycket
(13) &r positivt eller negativt ([4], s. 34). Uttrycket kan férsvinna endast
for vissa dndliga RK (unisekvensen har d& obestimd »riktning«), men
sddana har vi ju egentligen uteslutit. Vi har alltsa funnit:

Ar i unisekvensen (3) k=0 (mod 2), si giller for dess symmetriska
y-differenser

(14) (_ l)m_1(7u+k+1—m—Yx+m) =0,

allteftersom unisekvensen dr rak eller omvénd.
S& &dr i exemplet (5) den forsta unisekvensen rak (by=2M >b, ;1
=b;;=90). Enligt (14) ar da

(15) y10=71 > 0, y9—¥3 < 0, y3—y3 > 0, y,—y4 < 0, yg—y5 > 0,

vilket stimmer &verens med (7). Den 3:e, 5:e, ... unisekvensen &r
ocksd rak. Diaremot &r den andra (liksom den 4:e, 6:e osv.) unisekven-
sen i (5) omvéand, ty

[611,0105 « + +501] — [Dgg, b3, . . .1 = [90,(1)1°, M] — [90,(1)1°,90,...] < O.

Vi observerar, att (14) inte férutsitter m < k/2.

Vart forsta resultat forutsatte att £=0 (mod 2) liksom i exemplet.
Det kan emellertid generaliseras. Beviset héirfér dr dock mer komplice-
rat ([4], nr 22), varfor vi utan bevis antecknar:

Sats 1. Oberoende av lingden k hos unisekvensen (3) galler
(mDf M Vrrsr—p—Vor) 20 (u = 1,2,...,[34]),
beroende pa om unisekvensen dr rak eller omvind.
I (5) galler dven (jfr (7))
(16) 73=V10 > 0, 4= < 0, y5—ys > 0, y4—y7 < 0.

1 Av tva icke-identiska RK som inleds med n st. (n=1) gemensamma element ér som
ként det storst (jfr t.ex. [2], sats 2.8), vars n-te delndmnare b, f6r jimnt (udda) n 4r storst
(minst).

Formel (13) férutsiitter egentligen x> 0. Formellt kan emellertid minuenden skrivas
(bys «  +s0;, M), M godtyckligt stort.
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Dessa y-differenser dr nistansymmetriska. Med en sidan differens forstar

V1 :
antingen v,y 0~ Vuirki1-m €UGT Yotk 1 m—Virm -

Forf. har visat ([4], sats 18):

SaTs 2. Oberoende av lingden k (= 4) och rikiningen av unisekvensen (3)

giiller
(= DV spse = Vatts1—) > 0 _
(= 1)”~1(y"+2—1—#_7x+ﬂ) M> 0. (,u =L2,..., k- 2)])

I vart exempel medfér detta (16) samt (jfr (8))
Y19~ V12 > 0, Y15— 713 < 0, 17— 714 > 0, y46—715 < 0.

3. Geometrisk tolkning av resultaten. De erhéllna resultaten (ur [4])
kan nu ges en intressant geometrisk tolkning. Vi betraktar forst RK-
utvecklingen (5) och speciellt dess forsta unisekvens. De tillhdrande
Vut+m Dumrerar vi efter storlek, sa att storleksordningsnumret g(m) for det
minsta y-virdet (y,) 4r =1 och for det storsta (y,) =k (alltsd 10). Alltsa

enligt (7):
gt (7) m=1 2 3 4 5 6 7 8 910

gm)=110 3 8 5 6 7 4 9 2.

P& periferin av en cirkel (fig. 1) later vi m-virdena 1,2,...,k=10 mot-
svaras av ekvidistanta punkter 4,. Olikheten y,, —v,,, >0 anger vi i
cirkeln medelst en riktad korda fran A,,, till 4,,. Olikheterna (15) mot-
svaras da geometriskt av de heldragna kordorna 4,4,, 4,_;A4,, osv. och
olikheterna (16) av de streckade kordorna A, A4,, A,4,_,, osv. Vi ser att
de k—1 riktade kordorna tillsammans bildar ett kordatdg A,4,4,...
Ay, A4,, som avbildar hela olikhetsrickan (7).

En sidan geometrisk lagbundenhet existerar fér godtyckliga virden
pd k, vilket kan konstateras, om vi i enlighet med resultaten i 2 kon-
struerar g(m)-féljden och uppritar motsvarande kordor. Fig. 3 visar
kordatéget i fallet £=12=0 (mod 2). I fallen k=1 (mod 2) (se figg. 2
och 4) saknas dock kordan mellan Ag_ ., och A5, Denna komplet-
teras dock pa f6ljande sitt:

Vi satter k=2l+1. Om ! dr jimnt, fas pa grund av (11) och fotnoten:

B +H+ oo T
7;"_1 = [(1)*4,0,,0,y,...,b,] < [(D)™] = [1]

%+l

B -
Dutlre _ [(1)14_2’ b”’ bx_l, .. .,bl] > [1]

B x++1

och p& motsvarande sitt pa grund av (2):

§n+l+1 = [(1)Z+19 bn+k+1’bx+k+2’ .. ’] < [I] < §x+l+2 .
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Fig. 3 Fig. 4

Ar 1 udda, fas motsvarande relationer med omvinda tecken.
Av (10) foljer da
(10) Tol; Vartl S Virlrz >
allteftersom 7 ar jaimnt eller udda. Men detta betyder geometriskt, att
de motsvarande kordorna till sin riktning passar in i kordatagen: i figg.
2 och 4 de punkterade kordorna 4,4, resp. 4,4,.
For omvinda unisekvenser (t. ex. den 2:a i ex. (5)) erhalls kordatag,
som &r kongruenta med de hir angivna; figurerna bibehalls oférindrade,
om m byts ut mot £+ 1—m. Vi har alltsi funnit

Sats 3. Det kordatdg, som karaktiriserar férdelningen av approxima-
tionskonstanterna y,., over en rak unisekvens (3) 1 en RK-utveckling,
erhdlls genom att man utgdende fran kordorna A A,, A,A; drar successiva
kordor omvixlande parallellt med dessa. Ar k udda, dras avvikande hdir-
ifrdan dven strackan mellan Ay 1y 0ch Ag,,q),, Som en korda i tdget.
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For en omvind unisekvens fas motsvarande kordatdg genom permutatio-
nen (m k+1—m).
Ar by =k, (mod 4), sd har de motsvarande kordatigen samma karaktir.

Ar unisekvensen (3) o#ndlig, i vilket fall & &r ekvivalent med
[1]=3(V5+1), blir y-férdelningen (jfr (10))

’}}n+1<yu+3<yn+5< <V5< <yu+6<yx+4<Yn+2'

For de fyra fallen mod 4 observerar vi, att permutationerna

(9(7:2))

kan framstéllas som produkter av transpositioner:

k= 10: (2 10)(4 8)

kE=11: (2 11)(4 9)(6 7)

k= 12: (2 12)(4 10)(6 8)

k= 13: (2 13)(4 11)(6 9).
Allmént erhalls

(2 k)4 k—2)...(2u k+2—2u), dir u = [3(k+1)].

Pa motsvarande sitt far vi for en omvind unisekvens med samma
langd som ovan:

k=10: (1 29 10)3 4 7 8)(5 6)

E=11: (1210 11)(3 4 8 9)(5 6 7)

F=12: (1211 12)(3 4 9 10)(5 6 7 8)

k=13: (1 212 13)(3 4 10 11)(5 6 8 9).
Vi har alltsa

SATs 4. Fordelningen av approximationskonstanterna y,.,, over en uni-
sekvens (3) dr beroende blott av dennas lingd k och bestims genom permuta-
tionen (m g(m)), dvs.

(2 k)4 k—2)...(2u k+2—-2p), p=[LE+1)]
om unisekvensen dr rak resp.
(12k—1k)34k-3Fk-2)...02u—1 2u k+1—2u k+2—2p),
p = [Hk+2)],

om unisekvensen dr omvind.

Denna sats #r det kvantitativa uttrycket for var forsta huvudsats
([4], § 5): I varje éndlig RK-unisekvens (3) &r den inbdrdes storleks-
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ordningsfoljden for de tillhorande relativa approximationskonstanterna
pa ett mod 2 entydigt sétt bestimd genom sekvenslingden & och blott
av denna.

4. Tillimpningar. Vi skall i stérsta korthet bertra ett par viktiga
tillampningar av de vunna resultaten. Den ena ansluter sig for 6vrigt till
en uppsats av Pipping [3] i denna tidskrift.

I cirklarna i figuren har vi med omringade punkter markerat de [3(k+ 1)]
minsta y-virdena. De ligger ingenstans successivt i unisekvensen, men
dnda si tétt som mojligt.

Vi betraktar nu ett halvregelbundet kedjebrak ([2], § 38)

Byt ——

a
by+——
! by + -,

o) =1,8,21,b,+a,, 2121,

b,+a,,; = 2 oandligt ofta .

Detta betecknar vi pé liknande sitt som de regelbundna kedjebraken
(1): avvikelsen blir den att d& en deltidljare @, ir = —1 kommatecknet
fére namnaren b, ersitts med semikolon.

Genom Lagrange’s transformation (jfr [2], § 40)

(17) [6,-151,0,44] = [b,.1+1; b, +1]

kan en delndmnaretta b,=1 i RK-utvecklingen (1) elimineras, varigenom
ett halvregelbundet kedjebrak uppstar. Flera (icke-successiva) ettor kan
elimineras i tur och ordning eller pa en gang.

Om vi i exemplet (5) streckar under de ettor i de tva forsta periodernas
unisekvenser, vilkas motsvarande y-virden dr minst (jfr fig. 1), sa erhalls

o = 45(1,1,1,1,1,1,1,1,1,1,90,1,1,1,1,1,1,1,1,1,1,90) .
Pa grund av det i 2 sagda foljer understreckningen denna dubbelperiod-

indelning. Tillampas (17) p4 de understreckade ettorna, uppstir den
halvregelbundna kedjebraksutvecklingen (jfr [5], s. 6)

£, = /2081 = 46(;3;3;2,2;3;92;3;2,2;3;3;92) .

Pa motsvarande sitt erhalls 6vergangarna (jfr figg. 3 och 4 samt [5],
s. 11, 31)
fo = ]/-1&5
£ = /819

10(3,2.1,1,1,1,2,3,20) - 10(3,3;2,2; 3,3, 20)
28(1,1,1,1,1,1,1,1,1,56) — 29(;3;3;3;3;58) .

Il

\‘;
f
:
!
5
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I dessa tva fall (k=2 (mod 4)) har utvecklingarnas unisekvenser en och
samma, riktning i samtliga RK-perioder.

De erhéllna halvregelbundna kedjebraken, »kedjebrdk med ideal relativ
approximations, vilka ar 1959 konstruerades och undersktes av forf.
[4], kan for godtyckliga reella tal &, hirledas ur talens RK-utvecklingar.
Saknar en RK-utveckling delndmnare b,=1, 4r den identisk med den
nya utvecklingen, annars ej. Den »idealiskt approximerande« utveck-
lingen dr i Tietze’sk mening ett kortaste kedjebrak. Jamford med alla
andra slag av halvregelbundna kedjebrak saknar den ett maximalt antal
av de konvergenter, som ger den (relativt) simsta approximationen av
&, (andra huvudsatsen, [4], § 6). I detta hinseende dr de nya kedjebraken
oovertraffbara.

For det andra kan nidmnas, att de nya kedjebraken i det fall &, ar
=VD (D ett naturligt tal) motsvarar den metod att losa Bhaskara’s
ekvation

22— Dy? =1

(»Pell’s ekvation«), som indierna utvecklade redan fér 1500 ar sedan.
Denna metod, kind som den cykliska metoden, motsvarar ett utveck-
lande av VD i ett kedjebrak, som angavs [1] och underséktes av Krish-
naswami Ayyangar. Dessa endast for kvadratrétter ur heltal definie-
rade kedjebrik sammanfaller (pd en ovisentlig avvikelse nir) med for-
fattarens ur RK konstruerade helt allmiénna kedjebrak i detta speci-
ella fall ([4], § 10).
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NOTE ON THE DIFFERENCE BETWEEN
CONSECUTIVE PRIMES

N. F. GJEDDEBAK

To clarify considerations the following notations will be useful:

A is some great prime number (say > 1000).

#  is an interval on the real axis of length 2-3-5...4=IT% ;p
(product over primes only).

NDA denotes aninteger not divisible by any of the primes 2,3,5, ..., 4.

rf. denotes the relative frequency of some specified numbers re-
ferred to among the integers in ..

o is a number with certain qualifications.

Gap means the difference between consecutive NDA’s, that is two
NDA’s between which there is no other NDA. (Eventually,
gap also refers to primes.)

Obviously, an NDA which is less than A2 is a prime and vice versa.
Within # there will be [T/ ,(p—1) integers which are NDA’s. The r.f.

==

1
of NDA’s is therefore h1=H;1=2 (1 ——) . We may continue and find that
p

2
when « and & +2 are both NDA’s, the r.f. of &’s is hy= %'H{:Lﬁ (1 ——).

Further the r.f. of o’s is h3=%-g,;-]];1=5 (1—-§) when «, «+2 and «+6
are all NDA’s. And so on. p

Consider now a number «, such that « and x + 6 are NDA’s, but «+ 2
and & +4 are not. The r.f. of such «’s will be p(6)=2hy— 2hs.

We may write

A

h =6.ﬁM. %J.H(l_l)a
P S -D-2) 55 (p-1? e VP
For brevity we shall here introduce the following constants:

[200]
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4 p(p—2) 4 p(p-3) 4 pp—4)
G , G =] ————, G =] ———T—,
2 g( —1)2 i gw—n(p—m : g@—l)(p—s)
4 p(p-5) A p(p—6) A pp-1)
A G. = —— = I
Zp—l)p 4 ° g(p—n(p—s) T tn(e—1)(p—6)

and so on. Then we may write p(6)=4G.h,2—12G,G;h3. To recapitu-
late, this p(6) is the r.f. of gaps of length 6 between consecutive NDA’s.
These considerations may obviously be carried further and we obtain
for the r.f. of gaps of length 2,4,6,...,18 and 20 the following formulas:

P(2) = 2y,
p(4) = 2y,
P(6) = 4y, — 12y,
p(8) = 2y, —12y3+ 18y,
p(10) = §ya— 185+ 36y,
P(12) = 4y,—42y,+ 180y, — 135y;
p(14) = By, —30y;+ 168y, — Py
P(16) = 2y,—30y;+ 216y, — 405y, + 25y,
p(18) = 4y,— 69y, + 600y, — 1485y, + 807596
p(20) = 8y —1Ty5 4 696y, — 2700y;+ 6075y, — 1y,

(The series may be continued, but we have to stop somewhere.)
stands for hJ-ITi_,@,; (taken over usual integers), while we have

@, = 0.660, G5 = 0.721, @, = 0.484,
G, = 0.650, G, = 0.455, @, = 0.712.

(1)

Vi

Up to this point all is simple algebra thdugh a bit complicated. But
let us now look at the situation in the neighbourhood of z =A%, As
suggested by Gauss the relative frequency of primes, ¢(x), in the neigh-

1
bourhood of z is approximately equal to Tons’ Mertens’ formula
ogx

4 1 e—C e=C-1.781 1
1— —_— ~ — —1
11 ( ) log 4 ( )

p=2 p logx logz

1
shows, however, that p(x) is also approximately equal to p=2 ( 1—- —) =h,.
p

After this it lies near to make the conjecture that in the neighbourhood
of x the relative frequency of gaps between consecutive primes is given
by the formulas (1) if we replace , by ¢(z) in the y’s.

Let « be 9820000 and the neighbourhood of x be the interval from
9670000 to 9970000. By counting the gaps of size 2,4,6,...,18 and 20
between primes in this interval, we find the following:

NMT, Hefte 4, 1962. — 14
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Counts of gaps between primes in the interval from 9670000 to 9970000.
Gap Found Formulas Difference

2 1524 1520 +4

4 1532 1520 +12

6 2629 2633 —4

8 1113 1131 —18

10 1489 1450 +39
12 1715 1787 —-172
14 961 968 -7
16 693 705 —-12
18 1243 1246 -3
20 646 642 +4
> 20 4997 4940 + 57
Total 18542 18542 0

This result is strongly indicative of the correctness of the formulas (1)
also when used for gaps between primes. The formula for p(2) was set
up in 1919 by Hardy and Littlewood [1]. Selmer [2] has given a probabil-
istic derivation of this formula. As yet, it has not been proved rigorously.

The proof of all formulas (1) for the relative frequency of gaps between
primes in the neighbourhood of « should possibly be based on the fact
that here all primes are NDA’s and vice versa. What is needed is a demon-
stration of the validity of the formulas (1) for NDA’s in the neighbour-
hood of z, in other words that the neighbourhood of z is in a certain sense
representative of the whole interval .#. As to the r.f. of NDA’s it is,
indeed, representative so that if the formulas (1) are not valid for the
neighbourhood of z, we shall have that the NDA’s in this part of .# are
organized in a pattern inherently different from that of the rest of .#.
The author is convinced that this can not be the case. At least, the
argument may be given intuitively: If we let 4 go through the series of
primes towards infinity, the neighbourhood of z will simultaneously
move along on the real axis. The effect of possible irregularities in the
shifting distributions of NDA’s will be levelled out as every point on the
real axis sooner or later will be covered by the neighbourhood of x
when this interval is ranging for instance from 0.99z to 1.01z. The prob-
lem is to give the argument a mathematical formulation.

REFERENCES
[1] G. H. Harpy — J. E. LirrLEWoOD: Note on Messrs Shah & Wilson’s paper. Proc.
Cambr. Phil. Soc. 19 (1919), pp. 245-254.
[2] E. S. SeLMER: En enkel summasjonsmetode i primtallsteorien, og dens anvendelse pd
»Bruns sums«. Norsk Mat. Tidsskr. 24 (1942), pp. 74-81.




BOKMELDINGER

CarL-ERIR FROBERG — BENGT SIGURD: Datamaskiner och deras an-
vindning inom vetenskap, administration och sprakoversitining. (TEMA-
serien 2.) Bibliotekstjinst, Lund 1962. 147 s. Sv. kr. 14.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 218.)

Skandinavisk litteratur om elektroniske datamaskiner har det hittil
veert lite av, og det er grunn til & hilse ovennevnte bok med glede. Dens
format er beskjedent, men som tittelen forteller har forfatterne satt seg
som mal foruten & beskrive maskinene, ogsd & vise hvorledes den elektro-
niske databehandling radikalt griper inn Pé4 mange omrader i moderne
samfunnsliv.

I bokens forste del skisseres den historiske utvikling fra abacus til
vare dagers gigantmaskiner. Men samtidig far leseren en innfering i
prinsippene for den tekniske oppbygging og programmering av elektro-
niske regnemaskiner. Uten for meget rent teknisk stoff gis en klar og
god introduksjon til moderne utstyr og metoder. Utviklingen av svenske
maskintyper har fatt en relativt bred plass som naturlig er; svenskene
har grunn til & vere stolte av sine bidrag til utviklingen péa dette omrade.

Kapitlet om anvendelsesomrader innleder med at det aldri for i histo-
rien har vert mulig 4 frembringe sa mange feilaktige resultater pa si
kort tid. Sitatet er anfort uten kildeangivelse, og om det er forfatternes
egne erfaringer som kommer til uttrykk, deles de nok av de fleste brukere
av elektroniske regnemaskiner.

Dagens datamaskiner har nadd et utviklingstrinn som gjer dem tek-
nisk skikket til meget varierte anvendelser, og forfatterne nevner et rikt
utvalg. En innvending er at det kanskje nevnes for mange og at gjennom-
gdelsen er svert summarisk. Leseren fir liten hjelp til & se de store
linjer i den utvikling som foregir pa dette omrade. Elektronisk data-
behandling tilstreber vel i mange tilfeller noe mere enn bare problem-
losning. Slagordet er integrering, dvs. & la maskinene ogsd foreta koor-
dineringen mellom omrader som har sammenheng med hverandre.

Kapitlet om sprakoversettelse gir en meget interessant gjennomgaelse
av problemer og metoder, og er en utmerket introduksjon til et emne som
for mange sikkert star i et noe uklart lys.

[203]
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Boken krever ingen spesialiserte forutsetninger, den inneholder utrolig
meget stoff og er skrevet pa en interesse-vekkende mate.

Kdare Floisand

DoNaLD GREENSPAN: Introduction to partial differential equations.
(International series in pure and applied mathematics.) McGraw-Hill
Book Co., New York, Toronto, London 1961. 8+195 pp. sh. 58/-.

(Innholdsfortegnelse i NMT 9 (1961), s. 182-183.)

Bogen er skrevet som en begynderbog for matematik-, fysik- og inge-
nigrstuderende og er beregnet til at kunne bruges i et halvarskursus.
Fremstillingen, der er givet i en klar og inciterende stil, og samtidig i
en moderne og eksakt form, gar bogen letlzselig. Ved valget af stof inden
for den ret begraensede plads har forfatteren gnsket at styre direkte mod
nogle af fysikkens mest kendte differentialligninger (bslgeligningen,
potentialligningen og varmeledningsligningen) og at illustrere, hvorledes
man kan lgse begyndelses- og randveerdiproblemer inden for dette om-
rade bade ved eksakte og numeriske metoder, de sidstneevnte iser med
henblik pa brug af elektronregnemaskiner.

De forste to kapitler giver et forberedende grundlag i meengdelere,
reelle og komplekse funktioner, seedvanlige differentialligninger og Fou-
rierreekker. Denne optakt udger en tredjedel af hele bogen og begrenser
derved omfanget af det egentlige emne ungdvendig sterkt. Resten af
bogen handler saledes udelukkende om 2.ordens differentialligninger
med 2 uafhsengige variable. I kap. 3 behandles sidanne ligninger generelt,
herunder bl. a. begyndelsesverdiproblemet, karakteristikker, klassifika-
tion og kanoniske former. Kap. 4, 5 og 6 omhandler de ovennwvnte tre
differentialligninger fra fysikken; is@r er bglgeligningen og potentiallig-
ningen (Laplace’s ligning) godt og fyldigt behandlet, medens varmeled-
ningsligningen kun drages frem i et ret specielt tilfelde. Det folgende
kapitel om approximative lgsningsmetoder giver leseren et udmeerket
indblik i sddanne metoders natur og de vanskeligheder, der kan veare
knyttet til deres anvendelse. Det sidste kapitel (kap. 8), der kun er pa
ca. 5 sider, giver i det store og hele kun henvisninger til yderligere lgs-
ningsmetoder.

Litteraturfortegnelsen omfatter 50 monografier, hovedsagelig nyere
boger om emnet.

Til underbyggelse af forstaelsen af teorien er bogen rigt udstyret med
eksempler, hvilket ma fremheves som et stort fortrin for en bog af denne
art. Dertil kommer en lang rekke af opgaver ved slutningen af hvert
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kapitel. Dette opgavemateriale bestar mest af lette opgaver, men ogss
sveerere opgaver er representeret.

Skulle man anfere indvendinger vedrgrende detaljer i stoffet, kunne
der méske veere grund til forst og fremmest at hefte sig ved de heuristi-
ske betragtninger, der ganske vist nok kan have deres berettigelse, men
ofte er alt for lange (op til et par sider) i forhold til udbyttet. Dette gaelder
f. eks. betragtningerne forud for definitionerne 3.5 og 3.6. Endvidere er
en del af eksemplerne helt trivielle og kunne uden skade undvzres, hvor-
imod finesserne som regel ikke bliver belyst. Enkelte af opgaverne er for
uklart formuleret, det gwlder siledes en del opgaver i kap. 7, hvor der
hverken er angivet, hvilken ngjagtighed eller hvilken maskevidde der
gnskes. Endelig er det et typografisk minus, at man ikke tydeligt kan se,
hvor definitioner og seetninger slutter.

Helhedsindtrykket af bogen er dog absolut gunstigt, og der er ingen
tvivl om, at de, der interesserer sig for dette emne og gerne pa en lettil-
gengelig made vil lere noget derom, vil lese bogen med udbytte og
interesse.

Helge Skovgaard

Torp Harr: Matematik for 1 betyg. Analys I-II. (NKI-skolans akade-
miska kurser.) NKI-skolan, Stockholm 1961. Bind I 162 s. Bind II 214 s.

(Innholdsfortegnelse i NMT 9 (1961), s. 183.)

Féreliggande arbete &r en NKI-kurs avsett som komplettering till
Hyltén-Cavallius och Sandgrens lirobok Matematisk Analys I (nedan
kallad HC-S). '

Framstillningen inleds med att de trigonometriska funktionerna defi-
nieras for godtyckliga reella variabelvirden varvid begreppet baglingd
accepteras. Man kan hir moéjligen stilla sig nigot tveksam mot att
infora dels funktionen sin, dels funktionen Sin (sinf=Sin90=1). Ett
avsnitt om trigonometriska ekvationer férefaller oproportionerligt langt.

I ett kort avsnitt repeteras forsta ringens kurs i algebra. Dirvid be-
handlas &ven rotekvationer, dock utan nigon logisk analys av varfor
man méste »prova rotternac.

Det dérpa foljande kapitlet om reella tal inleds med en undersokning
av sambandet mellan rationella tal och periodiska decimalbrak. Dir-
efter definieras ett reellt tal som en oindlig f6ljd av siffror. (Genom en
lapsus i formuleringen definieras hérvid endast reella tal mellan 0 och
10.) Slutligen definieras olikhet mellan ett reellt tal ( =sifferfsljd) och ett
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rationellt tal. Utgdende fran dessa definitioner bevisas direfter det som
i HC-S kallas axiomet om ovre grins. I detta bevis anvinder forf. det
opsykologiska uttryckssittet »vilj e=10-7 i stillet for »vilj n s& att
£2 10" Nagot forvirrande #ér ocksd att forf. taler om en undre grins
till en méngd. — Det férefaller tveksamt om detta kapitel kan bidra till
nyborjarens forstaelse av motsvarande avsnitt i HC-S.

I kapitlet om funktionsbegreppet har det grafiska kriteriet for att en
funktion skall ha en invers funktion fatt en sidan formulering att den
givna funktionen méste ha méngden av alla reella tal som virdeforrad
for att kunna uppfylla kriteriet.

Vid behandlingen av grinsvirden papekas att man ej bér anvinda
uttrycket »grinsvirdet gar mot 4« Motivering: Funktionsvirdena har
uppnétt sin grins och stannat dér. (!) — I ett exempel (ex 4, sid 5:6)
utféres ett induktionsbevis pa ett sitt som anmilaren aldrig sett forut
i en ldrobok.

I kapitlet om kontinuitet bevisas (i ex 2) att funktionen tg &r kon-
tinuerlig i intervallet —z/2+a <2 <n/2—a om 0<a <x/2, ett nagot for-
bryllande pastaende som lisaren far forklarat forst i ex 8 dér likformig
kontinuitet undersoks.

Direfter behandlas derivator. I ett avsnitt om olikheter av typen
Sf(®)>0 for >0 anvinder forf. den opraktiska (men tyviirr inte helt
ovanliga) metoden att férst visa att £(0)=0, f'(x)>0 f6r >0 och sedan
med hjilp av begreppet »vixande« komma fram till den énskade olik-
heten. Om man vill visa string olikhet &r denna metod otymplig; &bero-
pande av medelvirdessatsen blir enklare. — I ett exempel (sid 8:6) har
man anledning kvadrera en viss ekvation som efter kvadrering visar sig
ha tva rétter x; och #,. Genom prévning visas att @, ir en falsk rot.
Alltsa dr z; en rot. (!) '

I kapitlet om geometriska tillimpningar av differentialkalkylen be-
handlas konvexa funktioner (vkonkava uppit« i forf:s terminologi).
Dérvid behandlas endast deriverbara funktioner och konvexitet definie-
ras forst i en punkt (i en omgivning ligger tangenten under funktionen),
dérefter i ett intervall (konvexitet i varje punkt av intervallet). Sam-
bandet mellan denna lokala definition och den géingse (kordan ligger &ver
bégen), som anviinds i HC-S, utreds ej. — Direfter foljer ett mycket
langt avsnitt med analytisk-geometriska problem hérande till gymnasie-
kursen. Tyvirr hojer sig inte behandlingen 6ver den som brukar utfsras
i gymnasiet: andraderivatan utnyttjas flitigt, »forenklade andraderiva-
tan« forekommer och lisaren uppmanas att genom derivering (!) bevisa
att om f dr en positiv funktion si har f och f* extremvirde f6r samma
variabelviirde. — Behandlingen av extremviirden uppvisar nagra dunkla
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punkter. Av ingressen till avsnittet framgar att f6rf. avser att anvinda
samma terminologi som HC-S. Direfter anmérkes att man i fortsitt-
ningen kommer att anta att den funktion f som skall undersokas ir
kontinuerlig och att man allts& far en annan definition (av vad? Anm:s
fraga.) &n HC-S. I en figur finns utritad en funktion som &r diskontinuer-
lig och som i HC-S:s mening har extremvirde i tvad punkter som &r
diskontinuitetspunkter. Det anmirks att dessa punkter inte &r extrem-
punkter. — I en sammanfattning av bland vilka punkter man skall
soka extrempunkterna till en given funktion f har férf. tagit med dis-
kontinuitetspunkterna till f* (vilket &r onddigt ty om f'(x,) existerar och
dr =+0 kan x, ej vara extrempunkt dven om f’ dr diskontinuerlig i punk-
ten z,) men utelimnat de punkter dir f'(z,) ej existerar (vilket &r fel
sdvida inte forf. anvinder den opedagogiska men juridiskt korrekta
terminologien att en funktion #r diskontinuerlig i de punkter dir den
inte dr definierad).

I kapitlet om integraler har f6rf. valt att definiera integral p4 ett annat
sitt 4n HC-S och detta avsnitt avser alltsd att ersitta motsvarande
punkter i HC-S snarare én att komplettera dem. Forf. definierar inte-
gralen som grinsvirdet av Riemannsummorna nir indelningens finhet
vixer. Forst sedan denna definition gjorts inféres éversummor, under-
summor och ovre griansen till undersummorna. Slutligen visas att for
en kontinuerlig funktion har Riemannsummorna denna 6vre griins som
gransvirde.

Tvéa darpa foljande avsnitt om obestimda uttryck resp. serier inne-
haller manga bra exempel samt en varning fér 1’Hospitals regel. Slut-
ligen behandlas baglingds-, yt- och volymberikning.

Som ett sammanfattande omdéme om boken kan sigas att de teore-
tiska delarna inte torde vara nagon studerande till stérre hjilp medan
de avsnitt som innehaller manga exempel kan vara till glidje for svagare
elever.

Jan Lanke

WALTHER LiETZMANN: Methodik des mathematischen Unterrichts. Dritte
Auflage. Bearbeitet von Richard Stender. Quelle & Meyer, Heidelberg
1961. 255 S. DM 18.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 219.)

En matematikklerers utdanning bestar av en akademisk og en peda-
gogisk del, den omfatter det stoffet en skal undervise i (pluss selvsagt
noe mer) og den méiten matematikkundervisningen ber skje pa. Vi kunne



208 LITTERATUR

kort si »hva for noe« og »hvordan«. For den siste delen bruker vi ofte
betegnelsen matematikkundervisningens metodikk.

Det er vel forst i dette arhundret at denne metodikken har utviklet
seg og funnet en viss form. En av dem som pé& en vesentlig méte har
bidratt til dette er uten tvil tyskeren Walther Lietzmann. Han ble fodt
i 1880, tok studenteksamen i 1899 og dgde i 1959. Gjennom de ferste
seksti arene av det 20. srhundret har han skrevet lerebgker, artikler og
metodikkbgker som er kommet i flere opplag, deltatt i komiteer og for-
eninger, holdt foredrag og forelesninger og pa disse og mange andre mater
arbeidet for en bedre matematikkundervisning. Det skal veare vanskelig
4 finne noen som kan peke pé& en lignende innsats. Hans innflytelse rekker
da ogsé langt ut over Tysklands grenser, og fortsatt vil mye av det han
skrev veere til stor hjelp for matematikkleerere bade i hans eget og i
andre land.

Det er over 40 ar siden Lietzmann sendte ut den forste utgaven av sin
metodikk. Den var i to bind, det feorste behandlet »Organisation, all-
gemeine Methode und Technik des Unterrichts« og det andre »Didaktik
der einzelnen Gebiete des mathematischen Unterrichts«. Det var et sveert
verk. I nye utgaver gikk noe stoff ut, annet kom til. Til sist kom en ut-
gave visstnok i ett bind med U. Graf som medarbeider. Endelig kom det
i 50-arene igjen en tobinds, noe tynnere utgave med undertitlene »Der
Unterricht« og »Der Lehrstoffe.

Det som foreligger na er en ny utgave i ett bind, bearbeidet av Ober-
studienrat Richard Stender, en mann som har atskillig erfaring pa
de samme omrader der Lietzmann virket.

Det var sikkert ingen lett oppgave Stender tok pa seg. Pa den ene
siden alt det nye som er kommet til i matematikken og de konsekvenser
det ma fa for matematikkundervisningen, p4 den andre siden vanskene
med & foreta endringer i en bok som er blitt klassisk.

Stender loser problemet pa den méten at han presenterer nytt stoff i
en serskilt Didaktik (jfr. egen bokmelding nedenfor), mens han ellers
noksa noye folger disposisjonen fra Lietzmanns bgker og sa gjor de negd-
vendige endringer og tilfgyelser. Nar Lietzmann gir mer presise rad og
vink, beholder Stender alt, men nir Lietzmann kan hende bruker litt
for mange ord, strammer han teksten inn, og der det trengs, foyer han
inm nytt stoff. Etter min mening er revisjonen gjort pa en utmerket,
samvittighetsfull mate. Vi har fremdeles Lietzmanns bok, og kan glede
oss over det i den som fremdeles har gyldighet, men samtidig er vi up to
date overalt der det er skjedd noe nytt og vesentlig. Stender viser respekt
og pietet, men han har sans for det aktuelle og for det nye som kommer.

Fra Lietzmanns 700 sider er det en stor overgang til Stenders 250.
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Likevel er alt essentielt med. Vi har i samme bok fatt behandlet bade
stoffet, sett med leerernes gyne, og undervisningen, begge deler naturlig
nok seerlig med tanke pa nybegynnere.

Om en skulle peke pa spesielle kapitler, er det ikke lett & gjore et valg.
Personlig liker jeg sveert godt 4. kapitel der plangeometrien far en grun-
dig behandling som sikkert mange matematikklerere vil lese med stort
utbytte. Her har Stender beholdt det beste fra Lietzmann, skaret vekk
det han n finner er av mindre interesse og erstattet dette med nytt,
verdifullt stoff.

Ogsd kapitlet infinitesimalregning er blitt svert leseverdig.

De siste kapitler behandler stoff som en kunne si er pa vei inn i skolen
(vektorer, sannsynlighetsregning, mengdel®re osv.) og gir faglig viten,
men forst og fremst drefter forfatteren hvordan dette stoffet best kan
innferes i skolen.

Lietzmann-Stenders bok inneholder i det hele s& mye godt stoff at jeg
pd det beste anbefaler den ogsé til nordiske matematikklserere.

Kay Piene

JacoB T. ScAEWARTZ: Introduction to matrices and vectors. McGraw-Hill
Book Co., New York, Toronto, London 1961. 10+ 163 pp. sh. 43/-.

(Innholdsfortegnelse i NMT 9 (1961), s. 184.)

Der skrives mange leerebgger om matrixregning i disse ar, i reglen som
indledning til den linezre algebra. Men f& er som nzrvaerende egnet og
beregnet til undervisning p4 gymnasieniveau. Det er i denne forbindelse
bemerkelsesveerdigt, at skent matrixbegrebet er godt hundrede ir gam-
melt, og alle de oftest anvendte egenskaber ved vektorer og matricer blev
udviklede i lgbet af sidste halvdel af det 19. drhundrede, treengte disse
emner ved mange universiteter forst i lobet af 1930erne frem til en fast
plads i begynderkurserne. Imidlertid har den sidste menneskealder ogsa
pd dette omridde medfert en overordentlig afklaring og forenkling af
begreberne, hvilket i forbindelse med deres voksende anvendelsesomrader
leenge har gjort det enskeligt, at undervisningen i disse emner kunne
starte for universitetskurserne. I Danmark vil denne mulighed foreligge,
i hvert fald i det sma, nar den nye gymnasieordning trader i kraft i
lobet af de naste ar. Der vil da veere god grund til at optage elementzer
matrixalgebra blandt de valgfri emner, som skal studeres ca. 2 maneder
i lobet af gymmasiet. Sével elever som lerere kan i denne forbindelse
med fordel stette sig til nerverende fremstilling.

Som rimeligt er i en s& elementer behandling, er matrixbegrebet af-
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graenset til kun at omfatte kvadratiske matricer, og bogen indledes med
3 kapitler, hvori regningsarterne addition og multiplikation indferes.
Herunder fremheeves bestandig ligheder med analoge regler for de reelle
tal og — netop heri ligger den padagogiske veerdi — afvigelser fra disse,
som f. eks. vedrerende den kommutative regel for multiplikation og
nulreglen. Allerede sa tidligt i bogen indfgres matrixpolynomier og
matrixligninger. Cayley-Hamiltons setning bergres uden bevis, mens
entydigheden af Frobenius’ minimums polynomium omtales udferligt;
til forskel fra de gengse elementeere fremstillinger benyttes netop mini-
mumsligningen til beregning af den reciprokke matrix.

I kapitel 4 indfgres vektorer som kvadratiske matricer med lutter
nulsgjler hgjst med undtagelse af den forste sgjle, og forbindelsen med
orienterede liniestykker i planen og rummet etableres. Skalarprodukt
og lengde af vektorer med » koordinater (i ferste sgjle) indferes og
Cauchy-Schwarz’ ulighed bevises. I slutningen af kapitlet omtales i den
indferte terminologi lgsning af visse typer af systemer af linewre lig-
ninger.

I kapitel 5 omtales matrixfremstillinger af komplekse tal og kvater-
nioner, mens kapitel 6 behandler transponering, spor og forbindelsen
mellem pa den ene side det vektorielle produkt af vektorer (kaldet
»cap product«) og pad den anden side Lie produktet af matricer (kaldet
»eross productc); forbindelsesleddet er skevsymmetriske matricer af 3.
orden.

Kapitlerne 7 og 8 behandler ganske kort begreberne egenveerdier og
egenvektorer samt uendelige reekker af matricer. Som man vil se, er der
trods bogens beskedne omfang og let forstéelige, brede stil omtalt en
overraskende mangde af emner. Kun fa trivielle trykfejl blev bemerket
pa folgende sider: p. 59, 108, 124, 130, 135, 148, 160.

Flemming P. Pedersen

RicaARD STENDER: Didaktische Themen aus der neueren Mathematik.
Quelle & Meyer, Heidelberg 1962. 71 S. DM 7.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 221.)

Denne boka er faktisk »Hoyere matematikk sett fra et elementeert
standpunkt« for & vende om titelen pa Felix Kleins velkjente bok. Inspi-
rert bl. a. av reformarbeidet i OECD’s regi vil Stender som et supple-
ment til sin metodikk (jfr. anmeldelse ovenfor av Lietzmanns bok) inn-
fore matematikklererne i disipliner som nd er pd marsj inn i skolen,
men som mange av dem neppe har stgtt pd i sitt universitetsstudium.
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Boka er pa 70 sider, s& det er ikke si mye som blir sagt i hvert enkelt
avsnitt; til gjengjeld er det mange litteraturhenvisninger. Avsnittene er
godt valt, for det som behandles er: mengdelzre, funksjonsbegrepet,
matematikk og logikk, irrasjonale tall, infinitesimalregning, differensial-
ligninger, hyperbelfunksjoner, matriser og determinanter samt moderne
algebra.

Her er mange nyttige og verdifulle merknader. Helt riktig sier Stender
at innforingen av den tomme mengde kan volde vansker. Men det fak-
tum at denne mengden er undermengde av enhver mengde kunne nok
ha trengt en grundigere omtale.

Jeg er helt enig med Stender nar han bygger funksjonsbegrepet Pa
mengdeteoretiske betraktninger. Dette er vel ment & veare et manster
for undervisningen. Derimot synes avsnittet om matematikk og logikk
mer beregnet pa leereren enn eleven, jfr. det sitatet av Freudenthal som
innleder § 3. Ogs& avsnittet om irrasjonale tall gir mest bakgrunnsstoff.
Hvordan reelle tall best skal innferes i skolen, er nok i det hele tatt et
vrient spersmal.

Jeg tror det er helt riktig at differensialligninger kommer inn i skolen,
som et lite avrundet kapitel med eksistensbevis. (Dette ordet mangler
hos Stender, savidt jeg kan se.) Derimot ville jeg ikke ta med hyperbel-
funksjonene i skolen. Determinanter og matriser kan vel forsvare &
komme med, dersom det er plass; det er utmerket oppgavestoff, men
lenger enn til tre linjer og tre spalter ber en ikke gi.

For alle som gnsker reform i matematikkundervisningen er Stenders
bok en utmerket hjelper full av gode ideer og impulser.

Kay Piene

Epvarp StiereL: Einfahrung in die numerische Mathematik. B. G.
Teubner Verlagsgesellschaft, Stuttgart 1961. 234 S., 36 Fig. Leinen
DM 24.80.

(Innholdsfortegnelse i NMT 9 (1961), s. 184.)

Den numeriske matematik falder egentlig i to afdelinger, nemlig for
det forste den egentlige numeriske analyse, der beskzaftiger sig med
fremstillingen af forsvarlige metoder til numerisk losning af analytiske
problemer, og for det andet regnetekniken, der omsatter de fundne
metoder til praktiske regneprocedurer. Denne sidste del er ofte ikke den
mindst vanskelige, idet den i s& hej grad er athsengig af de tekniske
hjelpemidler, der stir til disposition. Selv en si simpel iterativ proce-
dure som en kvadratrodsbestemmelse kan i almindelighed ikke med fordel
udferes ens pa de forskellige typer af bordmaskiner. Af let forstaelige
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grunde beskaftiger nyere veerker om numerisk matematik sig hovedsage-
lig med metoder, der er velegnede for elektroniske regnemaskiner.

Stiefel har i sin bog ikke preciseret, for hvilket regneudstyr de anferte
metoder er teenkt, men metoderne selv og de anforte eksempler synes at
tyde pa, at forfatteren nsermest henvender sig til et publikum, der ikke
har adgang til udstyr udover elektriske bordmaskiner, selvom flere af
de anforte metoder er fuldt anvendelige for elektroniske maskiner.

Som det vel kan veere naturligt for en begynderbog, udmaerker Stiefels
bog sig mere ved omfanget af de behandlede emner end ved dybtgaende
behandling af de enkelte metoder, men man kunne dog gnske, at forfat-
teren i hgjere grad havde veret opmerksom pé, at leseren ikke altid
umiddelbart vil se begrensningen i de enkelte metoder.

Bogen er i sit opleg meget elementzer. De forste fem kapitler forudsaet-
ter sdledes end ikke kendskab til differentialregning, der dog indferes som
en seerlig proces kaldet linearisering. Den elementeere behandlingsméade
fgrer ikke sjeldent til en levende og anskuelig fremstilling af baggrunden
for de forskellige behandlede problemer.

Ved gennemlasning af indholdsfortegnelsen noterer man med tilfreds-
hed, at man her stir overfor en forfatter, for hvem numerisk analyse
ikke er synonymt med interpolationsregning, der efter anmelderens me-
ning optager for fremtredende en plads i @ldre lereboger i numerisk
matematik. P4 den anden side kan man ikke undlade at undre sig over,
at en sa enkel og let handterbar metode som Aitken—Neville interpolation
end ikke er nzvnet.

Den linexre algebra, der er omtalt i forste kapitel, er behandlet uden
anvendelse af matricer og kan derfor forekomme en smule tung i frem-
stillingen. Denne hviler pi udskiftningsprincipet, hvorved en linezr
sammenheng Y =A4X erstattes med en ekvivalent Y'=A4'X", hvor sgjle-
matricerne Y’ og X' fremgér af ¥ og X ved ombytning af et element i
den ene med et element i den anden.

Som praktisk lgsningsmetode for linezre ligninger er angivet den
Gaussiske eliminationsmetode, omend i en fremstilling, der er mere egnet
til at illustrere det grundleggende princip end til at give en praktisk
farbar vej i tilfeelde af lidt sterre ligningssystemer.

Forfatteren ber i hej grad roses, fordi han har medtaget sa vigtige
emner som lineser programmering og udjevning i Chebyshefsk forstand.
Selv om fremstillingen méske er lidt skitsemeessig, udger bogens andet
kapitel dog en udmerket introduktion i dette emne.

Den ikke linexre algebra i kapitel 3 er behandlet med ret klassiske
metoder, sdsom funktionel iteration, Newtons metode, Horners skema
etc. Hertil kommer som venteligt fra en schweizisk forfatter en fremstil-
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ling af Rutishausers QD-algoritme anvendt pa algebraiske ligninger.
Fremstillingen er klar, og dens anvendelsesmuligheder er tydeligt angivet.
Derimod tilslerer de valgte eksempler i nogen grad den omstendighed
ved metoden, at det undertiden kan vzre ngdvendigt at arbejde med et
betydeligt cifferantal for at opna en selv beskeden nojagtighed i de
fundne resultater.

Egenverdiproblemerne i kapitel 5 er fortrinsvis behandlet ved en algo-
ritme til bestemmelse af det karakteristiske polynomium, der derefter
m4, tenkes lost ved een af de i det foregiende kapitel angivne metoder.
Om denne metode til bestemmelse af egenvzerdier er at foretraekke, horer
til de ikke afklarede problemer inden for den numeriske analyse.

I kapitlet om differentialligninger finder man et af bogens morsomste
afsnit, nemlig behandlingen af numerisk integration ved fortsat halvering.
Dette emne er af forfatteren tidligere behandlet i tidsskriftartikler, hvor
han har givet bevis for de af Romberg fremsatte formodninger. Metoden
giver et godt eksempel pa, hvorledes man med en enkel regneteknik kan
opné meget nojagtige resultater. Eksperimenter med metodens egnethed
for elektroniske maskiner er i gjeblikket i gang her i landet.

Bogens syvende og sidste kapitel er viet approximation af funktioner.
Fremgangsmaden har her veret en udnyttelse af den Lagrangeske inter-
polationsformel, der via sin anvendelse pa komplexe stottepunkter forer
til Fourieranalyse og Chebyshefudvikling.

I det forste af de to tilleg vises i en rekke gennemregnede eksempler
forskellige praktiske opstillinger, der med fordel kan benyttes ved an-
vendelsen af de beskrevne metoder.

Det andet tilleg indeholder en del nyttige formler og tabeller.

Stiefels Einfithrung in die numeriske Mathematik er en bog, der abso-
lut kan anbefales enhver, der gerne vil stifte bekendtskab med den
numeriske matematik. Det er en nyttig bog, der bade i kraft af sit ind-
hold og udstyr er sare letloest.

Bj. Svejgaard

WirLiam J. LEVEQUE: Elementary theory of numbers. Addison-Wesley
Publ. Co., Reading (Mass.), London 1962. 8 +132 pp. $ 5.00.

(Innholdsfortegnelse i NMT, denne érgang, s. 94.)

Denna lirobok #r pa sitt och vis en omarbetning av forf:s kinda
Topics in number theory, del 1. Fran och med kap. 5 avviker emellertid
sjélva larostoffet: de kvadratiska resterna har utgatt liksom det svaraste
avsnittet, det om talteoretiska funktioner. I stillet har kedjebrakens
elementéraste egenskaper och gaussiska heltal medtagits. Dessa kapitel
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ar mycket vilavvigda, jimforelsen mellan talkropparna Z(:) och Z(VF))f
ar metodiskt lyckad. Litet obestimd analytik, framst »Pells« ekvation,
dock utan tillimpningarna fran Topics, behandlas i slutkapitlet. Boken
upptar inte alls kvadratiska former (som Davenport), ej heller primtals-
fordelning eller hogregradsekvationer (Nagell).

Ockss framstéllningen skiljer sig patagligt fran den férra bokens. Den
ar tillrittalagd for ett ligre stadium (secondary, undergraduate), som
hir far lira kinna »den gren av matematiken, déir studenten méter den
storsta variation i bevistyper« och »enkla problem, som stimulerar hans
intresse, provar hans férméga och skéirper hans matematiska stringense.
Det kan ndmnas, att av dessa och andra skil bade School mathematics
study group och Committee on undergraduate programs i USA — trots
det militirt-praktiska drag »den nya vagen« dér borta har — forordar
undervisning i talteors pa highschool- och college-stadiet.

Bevisen #r utférligare och évningsuppgifterna fler dn i Topics. Sat-
serna belyses i ritt ménga fall med enkla exempel. I jimforelse med
dessa dr ménga av uppgifterna krivande, men de &r utvecklande och
fullstindigar texten. Allt detta gor att vi i LeVeques nya bok har fatt
en utmirkt kursbok fér nybérjare, en som dértill &r typografiskt till-
talande. Markeringen av bevisslut med smé trianglar dr askadlig, dér-
emot inte satsernas utbrytning ur texten. Numreringen av satser och
formler dr inte 16pande (ett modernt fel ?).

En noggrannare genomlésning foranleder endast nagra helt betydelse-
16sa anmirkningar. I beviset till teorem 7-8 bor vil 1 <4 < p2 éndras till
1<d=<92 I beviset till 5-8 hiinvisas till formel (15), vilket inte kan
stimma. »Tryckfel« berérande visentligheter finner vi pa s. 13, 36, 65,
114 och 132. Opékallat &r det vil att beteckna kedjebraksutvecklingar
med klausul i stillet for med klammer (den forra betecknar f. 6. dven
méngder).

Det #r naturligt att en kursbok for detta stadium i flera hénseenden
motsvarar gingse bocker, t.ex. Davenports. S& belyses i dessa tva
aritmetikens fundamentalsats med det eleganta — fran Hilbert stam-
mande — exemplet med talméngden 4k+ 1, inom vilken faktoruppdel-
ningen dr flertydig. S& upptar bégge bockerna det intressanta kinesiska
restteoremet. LeVeques bok saknar Davenports noter och killhdnvisnin-
gar. Men den ger i gengild i inledningen en strilande framstéllning av
talteorins viisen, grunder och metodik. En fortjinst &r att metodiken
och andamélet med resonemangen genomgéiende preciseras, nigot som
ofta férsummas, fastin det har stor pedagogisk betydelse.

Clas-Olof Selenius
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B. L. vaN DER WAERDEN: Algebra, I1. Vierte Auflage. (Die Grundleh-
ren der mathematischen Wissenschaften 34.) Springer-Verlag, Berlin,
Gottingen, Heidelberg 1959. 94275 S. DM 29.60.

(Innholdsfortegnelse i NMT 8 (1960), s. 46.)

I 1960 og 1959 kom henholdsvis ferste og annet bind av van der
Waerdens algebra igjen i nye utgaver. Forste bind er det s& vidt vi kan
se ikke endret noe p4, men annet bind har undergatt vesentlige foran-
dringer, slik at det er god grunn til 4 gi en omtale av dette bindet. Annet
bind i de tidligere utgaver dpnet med et kapitel om eliminasjonsteori.
Dette kapitlet er i den siste utgaven slgyfet til fordel for to helt nye kapitler
— et om algebraiske funksjoner av en variabel og et om topologisk alge-
bra. La det veere sagt med en gang at dette er et meget heldig bytte som
har gkt verdien av annet bind i en vesentlig grad. Teorien for algebraiske
funksjoner av en variabel er en usedvanlig sentral og fin teori som tillater
mange behandlingsmater: Funksjonsteoretisk, geometrisk og rent alge-
braisk. Det er selvfglgelig det sistnevnte synspunkt som presenteres her,
og det er da forst og fremst valuasjonsteori som kommer til anvendelse.
Van der Waerden ngyer seg med & fore teorien frem til beviset for Rie-
mann-Roch’s sats som jo er teoriens mest sentrale resultat. Fremstil-
lingen skiller seg ikke vesentlig fra hva man f. eks. finner i Chevalley’s
bok »Introduction to the theory of algebraic functions of one variable,
skjent van der Waerden gjer mer bruk av formelle Laurentrekker og
har en litt annen behandling av differensialer. I det vesentlige er det
Weil’s bevis for Riemann-Roch’s sats som gis begge steder.

Kapitlet om topologisk algebra apner med elementeare egenskaper
ved topologiske grupper, topologiske vektorrom, topologiske ringer og
topologiske kropper. Spesielt vises det hvorledes disse topologisk-algebrai-
ske strukturer kan kompletteres. I forbindelse med topologiske kropper
er det naturlig & sporre hvorledes topologien méa vere for at den kan
defineres ved en valuasjon. Det er meget nyttig at van der Waerden
har tatt med et avsnitt som behandler dette sporsmalet, som forst ble
studert av Kaplansky, Zelinsky, Fleischer, Kowalsky og Diirbaum. P&
dette punkt synes ikke van der Waerdens kjennskap til litteraturen &
veere helt prikkfri. Hverken Zelinsky eller Fleischer er nevnt. — Kapitlet
over topologisk algebra avsluttes med en beromt sats av Pontrjagin
som sier at en lokalkompakt, sammenhengende, ikke ngdvendigvis kom-
mutativ, topologisk kropp er isomorf (og homeomorf) enten med kroppen
av de reelle tall, kroppen av de komplekse tall eller den ikke-kommutative
kroppen av kvaternionene.

Ogsd ellers i boka er det kommet med mange nye ting i forbindelse
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med de kapitler som var med i forrige utgave. Alt i alt har dette annet
bind vunnet stort pa de forandringer som er gjort, og van der Waerdens
bok vil utvilsomt ogsé i fremtiden gve en stor innflytelse ved utdannelsen

av unge matematikere.
K. E. Aubert
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OPPGAVER TIL LOSNING

Losninger av oppgavene 231-235 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli
trykt i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den
beste lgsning av hver oppgave. Lesninger av oppgaver i dette hefte mé, for &
komme med i Bind 11, hefte 2, vere sendt innen 1. mars 1963.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes
til oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

231. En kvadrat skall delas i tre ritliniga figurer sa, att de i dessa
inskrivna cirklarna blir lika stora.
A. V. Peljo

232. Vis geometrisk at

3%"'1155: 4(%"’115)3—(

2
k).

GQunnbjorg Gismarvik

Ihs

E
I

233. Bestem koefficienterne i udviklingen

o0
V; = Zap']ZP—%i(z) .
p=0
P. W. Karlsson

234. Antag {3f*(t)dt konvergent samt f(x) 20 for 2 0. Visa att

g@) = —=\roa
Vay
ar begrénsad for alla x 2 0.
Torsten Strom

235. To (egentlige eller udartede) keglesnit k, og k, har netop fire
felles punkter 4, (i=1,2,3,4). Bevis, at en ngdvendig og tilstraekkelig
betingelse for, at punkterne 4, ligger pa samme cirkel, er, at k; (j=1,2)
har en symmetriakse a;, siledes at a, 1 a,. Hvilken swetning fir man
heraf, hvis begge k; er liniepar?

Anders Bager

[223]
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LOSNINGER

220. Konstruer en sirkel som tangerer en gitt sirkel og to gitte rette
linjer. (Det blir maksimalt 8 lgsninger.)
H. Killingbergtro

Losning: Vi tenker os, at den givne cirkel svinder ind til et punkt,
idet den sggte cirkel og de givne linier folger med; den forste idet den
beholder sit centrum, de sidste idet de beholder deres retning. Efter dette
kunstgreb gar den sggte cirkel igennem et givet punkt og rerer to kendte
linier, der er parallelle med de givne i en afstand lig den givne cirkels
radius. Den sggte cirkels centrum kan nu let konstrueres og dermed
cirklen.

. Christian Berg
Ogsé lost av Thomas Strai og Bolli Thoroddsen.

222. En funktion f(x) satisfierar féljande‘villkor:

1) x<0; f(z)=0.
2) f(+0)=e?, O<y<oo.
3) ©>0; f'(x)=eY[1—-f(x—y)].

Visa, att f(z) - 1 monotont, dd z — oo.
Bengt Joel Andersson

Losning: Sétt f(x)=1+g(x). Differentialekvationen &vergar i

(1) g' @) = —eYg(x—y).

I det slutna intervallet (0,y) &r g(x—y)= —1 och lésningen blir hir
g(x) =ze~¥+e~¥—1. Vi observerar att g(x) <0 samt viixande i (0,y) och
later detta bilda grund for ett induktionsbevis. Ur (1) kan med krav pa
kontinuitet g(x) beriknas i det slutna intervallet I,: (ny, (n + 1)y) om g(z)
ar kind i I: ((n—l)y,ny). Antag nu att g(z)<0 samt vixande i I,.
D4 blir g(x) vaxande och ¢'(x) avtagande i I,. Det Aterstar att visa att
g(x)<0 i I,. Eftersom g(x) ar vixande i I, ricker det att visa att
g((n+1)y) <0. Pga. forutsittningarna giller

(2) y9'(n+1)y) < g((n+)y)—g(ny) < yg'(ny),
dvs.
(8) 9((n+1)y) > g(ny)(1—yev),
(4) g((n+1)y) < g(ny) +yg' (ny) .
Ur (3) fas

evg'(ny) > g(ny)(1—ye?),
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som insédttes i (4):

g((n+1)y) < g'(ny) (y—l_eye_y) <0

for alla y. Eftersom alltsi g(x) enligt ovanstiende ér vixande, kontinu-
erlig och <0 for alla z+0, s& existerar lim g(x) =lim g(ny). Ur (2) och

lim f(z) = lim(1+g(x) =1.

Anm. For att endast visa lim f(x)=1 kan differentialekvationen
X*—>00

Laplacetransformeras varvid erhalles

. p+1 1
F(p) = e~ V. » .p+e_y(p+1).
Eftersom lim f(z) =limpF(p) fas lim f(x)=1.
r—>00 p—>0 Z—>00

Torsten Stréom

223. En folge {a,} av reelle tall er definert ved
a’n+llan+1|r = (an_k)!an“klr'i'k ’

der k og r er positive tall, og a, er gitt.

a) Vis at {a,} divergerer for alle a, dersom k> 2.

b) Er 0<k<2, fins et entydig tall « (avhengig av k og r) slik at {a,}
divergerer dersom a,<« og konvergerer dersom a,>«. Vis for siste til-
felle at folgen konvergerer mot k—«.

¢) Sett ay>«, og bestem lim lim lim a,.
r—>0 k—>0 n—>o0

H. Killingbergtro

Losning: Funktionen ¢(x)=x|z|" er voksende; ¢'(x) er aftagende for
z <0 og voksende for z> 0. Haeldningen »(x) for linien gennem (z,p(x))
og (x—lc,cp(a:—k)) er aftagende for x <}k og voksende for x> k. For
k>2 ses mindsteverdien for x(x) da at vere >1, for k<2 derimod at
vaere <1, hvorfor »(x)=1 i s4 tilfeelde for netop 2 veerdier « og B, x <,
B=k—«x. For k=2 bliver a«=f=1. Man ser heraf, at ligningen

*) p) = ple—k)+k

for k> 2 ingen lgsninger har, for k=2 lgsningen =1 og for 0<k<2
lgsningerne « og f. Vi har endvidere
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p®) > plx—k)+k for =z < « og for z > B
o
g o) < plx—k)+k for ax<z<§p.
Af dette folger:

a) Ifald {a,} konvergerer, m& grenseverdien vare en lgsning til
ligningen (*); {a,} ma derfor divergere for k> 2.

b) Ifald a, <« er g(a,—k)+k=g¢(a,.,)<gpa,) og felgelig a,.,<a,;
nir ay<« kan {a,} sa hverken konvergere mod « eller g og altsi over-
hovedet ikke konvergere.

Ifald x<a, <p vil

P(B) > pla,—k)+k = @p(a,.q) > la,) > ¢(x),

og dermed g>a,,;>a,>x. For a<a,<p er talfglgen da voksende og
begraenset og konvergerer folgelig, mod B.

Ifald a,=p fas tilsvarende f<a,.,<a,, og grenseverdien er fS.

¢) For k — 0 vil korderne med heldningen 1 »snsevres sammen« om
punkter, hvor ¢'(x)=1. Vi har ¢'(x)=(1+7)|z|", med ¢'(x)=1 for |z|=
(1+7)-V7, Der ma derfor gaelde

1
limg = (1+7r)"Y¥* -~ for r-0.
k—>0 €

Ove J. Munch
Ogsé lost av Torsten Strom.
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Oppgavene er ogsé publisert i Den Hogre Skolen for 15. nov. 1962.

Vi henstiller til matematikklererne pa reallinjen om & gjere flinke elever opp-
merksom pé konkurransen.

1. a) For hvilke verdier av « gjelder ulikheten

b < 2x+9°
—— X+ d¢
(1) 1+22)*

b) Finn
42

]j. R ———

o0 (1-Y1+22)"

2. Finn flateinnholdene av de kvadrater som har den egenskap at et
punkt inne i det har avstandene 3, 4 og 5 lengdeenheter fra tre av kva-
dratets hjorner.

3. I en rettvinklet trekant ABC er A den rette vinkel. Hoyden pa
hypotenusen er lik %, og hypotenusen BC lik a. Trekk medianen fra 4
til BC og kall skjeringspunktet med hypotenusen for M. Avsett langs

hypotenusen pi begge sider av M et stykke lik 22— (n>1) og kall de
n
fremkomne punkter for D og E. Trekk AD og AE og vis at

4nh

tg LDAE = —————.
a(n?®—1)

[227]
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4. Denne tabellen:

1111 .

1 2 3 4 5 .

1 2 4 7 11 16 .
1 2 4 8 15 26 42
1 2 4 8 16 31 57

er bygget opp slik at et element er lik summen av det venstre nabo-
element og det som stir rett ovenfor dette naboelementet. Eksempel:
26+ 31=57.

Vis at det n-te element i den 3. horisontalrad er lik (n%—n + 2). Finn
det n-te element i 4. horisontalrad.

Finn summen av de n forste elementene i 3. horisontalrad og vis at
differensen mellom denne sum og det (n+ 1)-te ledd i 4. horisontalrad
er lik —1.

Prov om du kan finne andre aritmetiske egenskaper ved det gitte tall-
skjema.

5. I en vilkérlig trekant betegner vi sidene med a,, a, og ag, og de til-
hgrende hoyder med h;, h, og ky. Siden a, blir av A, delt i to deler, Dy
0g q;, Gy blir av h, delt i p, og g, og a, blir av h, delt i p; og g5 Vis at

Py | Py | Pt _

s 1.
hq? hy? hy?

Forsek & angi kjente formler som er spesialtilfeller av dette resultatet.

6. Det er gitt en parabel. Bestem de normaler der den delen som ligger
innenfor parabelen blir minst mulig.

PRISOPGAVE FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier udskriver
herved nedenstdende prisopgave for elever i gymnasier og ved studenterkurser.
Opgaven onskes besvaret s& fuldsteendigt som muligt, og der leegges vaegt pé en
omhyggelig og overskuelig fremstilling. For den bedste blandt de tilfredsstillende
besvarelser udszttes en preemie ps 150 kr., og der kan eventuelt uddeles ekstra-
pramier.
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Besvarelserne indsendes senest 31. marts 1963 til lektor Henrik Meyer, Bakke-
draget 15, Birkerod. P4 besvarelsen skal anferes indsenderens navn, adresse, skole
og klassetrin. Besvarelsen skal ledsages af en erklering om, at opgavelesningen er
selvsteendigt arbejde. (Benyttelse af litteratur er dog tilladt.)

Lad & betegne mengden af funktioner, definerede pad det lukkede
interval I fra 0 til 1.
En funktion f, tilhgrende %, kaldes monoton, hvis enten

x, < x, medfgrer f(x,) <f(x,) for alle z; og 2, i I,
eller
x; < x, medfgrer f(z,) > f(x,) for alle x; og @i I .

En funktion f, tilhgrende &, kaldes enentydig, hvis

%, + x, medfgrer f(x,) + f(x,) for alle x; og 2,1 I .
Underspg,

1) om enhver enentydig funktion i & er monoton.
2) om enhver enentydig og kontinuert funktion i & er monoton.

En funktion f, tilhgrende &, vil vi kalde sammenhengsbevarende, der-
som den har fglgende egenskab:

For alle », og z, i I og for alle ¢ gelder det, at hvis f(2;) <c <f(z,),
84 findes der et tal z; mellem x, og z,, s& f(z3)=c.

Undersog,

3) om enhver sammenhangsbevarende funktion i & er kontinuert.

4) om enhver monoton og sammenhangsbevarende funktion i & er
kontinuert.

5) om enhver enentydig og sammenhangsbevarende funktion i # er
kontinuert.

Bevis, at hvis f, tilhgrende &, er differentiabel i I, s4 er f' sammen-
haengsbevarende.



SUMMARY IN ENGLISH

Torkm. Heiepe and Haxs J ORGEN HELMS: Set theory and transfinite
cardinal numbers. (Danish.)

In the final part IIT of this expository article, further properties of transfinite
cardinal numbers are discussed.

Cras-OLoF SELENIUS: On the relative approximation of regular continued
fractions. (Swedish.)

Let & =[b,, b,, by, .. .] be the regular continued fraction for an irrational num-

ber &,, with convergents 4,/B,=[b,, b, ..., b,]. In the approximation formula,
4, , 1
b= = —,
B,_, »B,_,

the number y, is called the “approximation constant’ corresponding to the de-
nominator b,.

A sequence of denominators bi=11is called a “unisequence”. The author studies
the approximation constants corresponding to a finite unisequence, and arranges
them according to magnitude. This arrangement, which depends only on the length
k of the sequence, is illustrated geometrically in figs. 1-4 P- 196, corresponding to
the different possibilities for & mod 4.

Applications to semi-regular continued fractions and to the ‘““Pellian” equation
are briefly mentioned.

N. F. GieppEBzEK: Note on the difference between consecutive primes.
(English.)

By combinatorial means an attempt is made to derive formulas for the relative
frequency of the different gaps between consecutive primes. For gaps of size
2,4, ...,18 and 20 cloge agreement is found between formulas and reality.
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