JOHAN FREDERIK STEFFENSEN IN MEMORIAM

N. E. NORLUND

Den 20. december 1961 dede Johan Frederik Steffensen i en alder af
88 ar. Hans studier og hans arbejde formede sig pa en usedvanlig méde,
der afviger meget fra andre matematikeres karriére. Han blev fodt i
Kobenhavn den 28. februar 1873. Hans fader var generalauditer og en
hgjt anset konservativ politiker. Efter at have taget artium fra metro-
politanskolen i 1890 fulgte han i faderens fodspor og studerede jura ved
Kgbenhavns universitet, hvor han i 1896 blev candidatus juris, og samme
ar udnevntes han til byfogedfuldmegtig i Fredericia.

Aktuarvidenskaben fangede tidligt hans interesse, og det blev den bro,
der forte ham over til matematikernes kreds. I 1898 fik han anssttelse i
Nordisk Genforsikringsselskab, hvor han tog del i opgerelsen af pramie-
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reserven og andet beregningsarbejde under ledelse af Statsanstaltens be-
regner A.C. V. Petersen. Da der i 1904 blev indfert et tilsyn med livs-
forsikringsselskaberne, blev Steffensen medlem af forsikringsradet og sam-
tidig dets sekretzr. Samme &r kom hans forste publikation, nemlig en
hjzlpetabel til bestemmelse af rentefoden i en annuitet med given kapital-
verdi og varighed, der var frugten af et samarbejde med beregneren
N. P. Bertelsen. To &r senere publicerede Steffensen en almengyldig reekke
til bestemmelse af rentefoden i en annuitet.

I sin ungdom beskzftigede han sig ogsd med den teoretiske astronomi.
I 1907 udgav han i Nyt Tidsskrift for Matematik en afhandling om tre-
legemeproblemet i det tilfzelde, hvor den ene masse er uendelig lille og de
to andre beveeger sig i en cirkuler bane. Han viser, at beveaegelseslignin-
gerne kan integreres ved ligelig konvergente rakker. I en afhandling i
det danske videnskabernes selskabs publikationer undersgger han end-
videre de periodiske baner i det af Hill betragtede specielle tilfzelde af
trelegemeproblemet, og han viser, hvorledes man ved at indfgre polere
koordinater i stedet for de af Hill benyttede rektangulere kan opna en
langt simplere og bedre tilnermelse til den sikaldte intermedizre bane.
Et halvt drhundrede senere har Steffensen fortsat disse undersegelser i to
afhandlinger i Acta mathematica, hvor han lgser Hill’s differentiallignin-
ger ved potensrekker og afleder rekursionsformler for koefficienterne i
disse samt afleder konvergensbetingelser.

I 1912 erhvervede Steffensen den filosofiske doktorgrad pa en afhand-
ling om visse simple klasser af hele funktioner og deres anvendelse i tal-
teorien. Han fortes herved ind pa undersogelser, der er beslegtede med
nogle af Mellin’s og Lindelof’s arbejder. Som motto for disputatsen tog
han felgende citat af Goethe: '

»Zweimal zwei ist nicht vier, sondern es ist eben zwei mal zwei, und das
nennen wir abkiirzend vier. Vier ist aber durchaus nichts Neues. Und so
geht es immerfort bei ihren Folgerungen, nur dass man in den hsheren
Formeln die Identitit aus dem Augen verliert«.

1 1919 blev Steffensen udnzevnt til docent i forsikringsmatematik ved
Kgbenhavns universitet; i tyve ar til 1943 var han som professor for de
aktuarstuderende den, som fastlagde rammerne for studiet. Han har op-
bygget en undervisning, som man ikke havde tidligere, og udgivet en
rekke hojt verdsatte universitetslerebgger i forsikringsmatematik, ren-
tesregning, iagttagelsesleere og interpolationsregning. Den sidstnaevnte
bog er ogsé blevet publiceret pa engelsk i to udgaver, og den har i vide
kredse vundet megen paskennelse for den omhyggelige undersogelse af
restleddene og den eksakte behandling af problemerne, hvorved den ad-
skiller sig fra tidligere forfatteres. I forbindelse hermed beskaftigede
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Steffensen sig med flere nye klasser af polynomier, som er egnede til at
spille en vigtig rolle i interpolationsleeren, og i tilslutning hertil har han
afledt en almindelig summationsformel, der er en generalisation af den
bekendte Euler-Maclaurin’ske formel. Endvidere har han fundet et smukt
udtryk for den rte dividerede differens af produktet af to funktioner f(x)
og g(z). Setter man o(@) = f(@)-g)

og betegner man den rte dividerede differens af ¢(x) med P9, 2q, - - -, 2,)
s& er

r
P« ,) = D f@gs .. .u2,)9(x,, ..., z,),
»=0

et overraskende simpelt udtryk, der som specielle tilfzelde indeholder
Leibniz’s formel for den rte differentialkvotient og de analoge formler for
differenser med konstant interval.

Til de mekaniske kvadraturformler af Cote’s type har Steffensen fajet
tilsvarende'formler af den 4bne type, hvor ordinaterne i intervallets ende-
punkter ikke benyttes. Formélet hermed var at anvende de ny formler til
numerisk integration af differentialligninger, en fremgangsmade der be-
tegnes som Steffensen’s methode.

Foruden alt dette har Steffensen publiceret en imponerende lang reekke
af afhandlinger, som giver vagtige bidrag til losning af andre problemer
inden for interpolationsregningen og inden for forsikringsmatematiken,
men som det vilde fore for vidt at komme nzrmere ind pa her. Hans
undersggelser har vakt opmarksomhed langt uden for de nordiske mate-
matikeres kreds, hvad der blandt andet har faet udtryk ved, at han har
holdt gaesteforelzsninger ved universiteterne i London og Paris.

I &rene 1930-36 var professor Steffensen formand for matematisk for-
ening i Kgbenhavn, og han blev senere wresmedlem af denne savel som
af forskellige aktuarforeninger. Inden for forsikringsverdenen har han
bekleedt en lang rekke tillidshverv, bl. a. veret medlem af, og i ti ar
formand for bestyrelsen for statsanstalten for livsforsikring.

Jeg tror, man kan sige, at professor Steffensen var en lykkelig mand.
Hans matematiske evner, suppleret med en grundig juridisk uddannelse,
gjorde ham i seerlig grad skikket til at varetage de betydningsfulde hverv,
der blev ham betroet. Han fik en ualmindelig lang raekke gode arbejdsar,
hvor det lykkedes ham i stor udstraekning at na de mal, han havde stillet

sig.
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TORKIL HEIEDE og HANS JORGEN HELMS

Transfinite kardinaltal.

11. Akvivalente meengder. Hvis det om to mangder 4 og B g=lder,
at der existerer en enentydig afbildning af 4 pa B, siger man, at A4 er
ekvivalent (i Cantors forstand) med B og skriver

4 ~ B.

Man udtrykker ogsé dette siledes: 4 er lige meegtig med B.
Den herved definerede relation mellem mangder opfylder fglgende tre
love, hvilket berettiger anvendelsen af glosen mkvivalent (se s. 29):

Den reflexive lov: A~A.
Den symmetriske lov: A~B =B~ A.
Den transitive lov: A~B, B~C =A4~C.

Reflexiviteten er klar, idet den identiske afbildning er en enentydig af-
bildning af 4 pad 4. Symmetrien bevises saledes: Hvis f er en enentydig
afbildning af 4 pa B, si er den inverse afbildning f-! en enentydig
afbildning af B pa A. Endelig folger transitiviteten af, at hvis feren
enentydig afbildning af 4 pa B og g en enentydig afbildning af B pa C,
s& er den sammensatte afbildning g o f en enentydig afbildning af 4 pa C.

P4 grund af symmetrien kan man, hvis 4 ~ B, tillade sig at sige, at
A og B er indbyrdes mkvivalente eller lige masgtige. Med en mere suggestiv
udtryksmade kan man sige, at 4 og B indeholder lige mange elementer
(uden at der dermed er sagt noget talmsssigt om, hvor mange der er i
hver af dem). Thi at der findes en enentydig afbildning af 4 pa B, vil
jo lidt losere udtrykt sige, at der lader sig etablere en sammenparring
af elementerne i 4 med elementerne i B, saledes at hvert element i A
er parret sammen med netop ét element i B, og begge maengder derved
er brugt op.

Som exempler p& indbyrdes ekvivalente meaengder kan vi nsevne meeng-
derne 4={1,2,3,4,5) og B= {2,4,6,8,10}, thi afbildningen f defineret ved

1 Forste del stod i NMT, denne argang, s. 11-51.

[108]
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f(a) = 2a for ethvert ae A4

er en enentydig afbildning af 4 pa B.

Setter vi A=N og B={x|x=2a, a € N}, har vi atter 4 ~ B, thi den
ovenfor definerede afbildning f (denne gang med 4 =9t) lader sig anvende.
Lost sagt har vi da, at der er lige s& mange naturlige tal, som der er
lige, naturlige tal.!

Setter vi A=N og B={x|x=a?, a € N}, har vi igen 4 ~ B, thi afbild-
ningen ¢ defineret ved

g(a) = a® for ethvert a e N

er en enentydig afbildning af 4 pa B. Lest sagt: Der er lige s4 mange
naturlige tal, som der er kvadrattal — netop det i indledningen omtalte
af Galilei betragtede exempel.

Vi har her sammenlignet 9t med et par delmsengder af N; nu skal vi
gd den anden vej: Vi viste i 10, at elementerne i mengden J kan op-
stilles i en folge, men det vil jo netop sige (se s. 39-40), at vi har etableret
en enentydig afbildning af N pa , idet der er tale om en fglge med for-
skellige elementer, som tilsammen udger hele . Vi har altsd bevist, at
N~Z. Vi viste ogsé, at elementerne i £ kan opstilles i en folge og far
da ved samme argument, at N ~. Altséd (lost formuleret): Der er lige
s& mange naturlige tal, som der er hele tal og som der er rationale tal.

Af fig. 18 fremgar det, idet den anvendte afbildning er en central-
projektion f med passende valgt centrum p, at to vilkarlige liniestykker,
betragtet som punktmeengder 4 og B i planen, er ekvivalente (eventuelt

q

(B 5
fla) 9(c)

Fig. 18 Fig. 19

1 Erstatter vi faktoren 2 med 365, har vi Laurence Sterne’s exempel (ca. 1760): hans
Tristram Shandy skriver sin selvbiografi s& langsomt og udferligt, at han bruger et ar pa
at skrive om en dag; hvis blot han ikke der, skal han jo nok fa naet at skrive om hver
eneste dag af sit liv.
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mé man i stedet for centralprojektionen benytte en parallelprojektion).
Der er altsa lige mange punkter p4 to vilkérlige liniestykker — jvi. det
i indledningen omtalte Sporgsmél hos Galilei.

Pa lignende made fremgir det af fig. 19, at et vilkérligt halvabent
(4bent) liniestykke ¢ er @kvivalent med en vilkérlig (4ben) halvlinie D,

Da to vilkérlige halvlinier er @kvivalente og ligess to vilkarlige linier
(ses igen ved centralprojektion), far man endelig, at et vilkarligt abent
liniestykke  er skvivalent med en vilkarlig linie 7, thi & kan deles i
et halvibent og et abent liniestykke og F i en halvlinie og en &ben
halvlinie.

Ved hjelp af den enentydige afbildning af en linie Pé R, som man far
ved at gore linien til en abscisseakse, kan man nu slutte, at to vilkarlige
lukkede intervaller {la<z<b) og{x|c<a<d}er @kvivalente; ligesa de
halvabne intervaller {xlasz<b) 0g {z|c=<z} og de &bne intervaller
{xla<z<b} og {zlc<a}, og endelig er et vilkérligt abent interval
{xla<xz<b} wkvivalent med hele %.

Lad os ogsa bevise det sidste direkte: Ved

7 a+b
Sflx) = tg <m< —T>> for ethvert z e 1

defineres en enentydig afbildning faf I={z| a<z<b} pad R.

I tilknytning til s. 43-44 navner vi, at 4V gom mengden af samtlige
afbildninger af {1}ind i 4 m4 veere ekvivalent med 4 ; altsg AW~ 4 — 41,
eller anderledes udtrykt: {1}%4 ~ 4. Man ser, at det ogsa for et vilkarligt
element a gxlder, at

(11.1) {a} 4 ~{a}x4 ~ 4.

Vi slutter denne paragraf med at bevise endnu et par formler, som vi
senere vil f& brug for.

Lad der forst vare givet et meengdesystem (4,,),. x> om hvilket det
geelder, at der findes en meengde 4, saledes at 4 x~A for ethvert k e K.
Man har da, hvis mengderne 4, er parvis disjunkte, at

(11.2) AxK ~J4,.
keK

Thi til ethvert k e K findes der, da A ~4,, en enentydig afbildning O
at 4 pa 4,. Afbildningen f defineret ved

f((@, k)) = gu(a) for ethvert (@, k)e Ax K,

1 Vi underforstar i betegnelserne, at xe $.
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der afbilder parret (a,k), a € 4, k € K i et element af 4,, er en enentydig
afbildning af A4 x K pa U, _4,.

Lad dernwst 4 vere en vilkarlig meengde, og lad D veere maengden
af alle dens delmsengder. Det gewlder da som vist s. 37, at der findes
en enentydig afbildning af D pa mengden {0,1}4 af afbildninger af A4
ind i meengden {0,1}; altsd har man

(11.3) D~ {0,1}4,

I det folgende vil vi, nar andet ikke udtrykkeligt siges, ved ekvivalens
forstd det i denne paragraf behandlede begreb.

12. Produktmangder, II. Som allerede omtalt (s. 40) kan et meengde-
system (4;),.x opfattes som en afbildning af indexmseengden K ind i
en maengde M af meengder. Ifglge s. 32-33 kan dette ogsd udtrykkes
saledes: Mengdesystemet (4,),.x er en delmengde F af K «M be-
staende af netop ét ordnet par (k,A) af elementer fra K og M for hvert
element £ € K (hvor den meengde 4 € M, som er anden komponent i
det ordnede par, der har et givet k€ K som forste komponent, netop
er den, som far betegnelsen 4,). Det er da klart, at K~ F, altsa at
mengdesystemet er skvivalent med sin indexmzngde.

Lad nu K vere skvivalent med en mengde L; der findes altsad en
enentydig afbildning f af K pa L. Betegner vi nu for ethvert element
le L med B; den ved k=f-1(l) bestemte meengde A4,, har vi faet defi-
neret et meengdesystem (B;);.z, altsd en delmeengde G af bestemt type
af LM, om hvilken det gewlder, at L ~(@. Dette nye mengdesystem
siges ofte med en uprecis udtryksmade at vaere det samme som det
gamle, blot forsynet med en ny indexmsngde. De to systemer er akvi-
valente, thi af K~F, K~L og L~G folger F ~G; men de er kun det
samme system, hvis L=K og f er den identiske afbildning af K pa K.

En grund til, at man kunne vere tilbgjelig til at anse de to systemer
for at vere det samme (bortset fra, hvad man lidt ungjagtigt kunne
udtrykke séledes, at det er de samme mengder, der optraeder i de to
systemer, og hver af disse meengder lige mange gange i hvert system),
er den, at forenings-, henholdsvis fezellesmeengden af meaengderne i det
ene system er den samme som forenings-, henholdsvis fellesmaengden
af meengderne i det andet, eller som man siger: Ved dannelse af for-
enings- og fellesmaengde er resultatet uafhaengigt af den benyttede index-
maengde. Anderledes udtrykt: Der gwlder folgende to kommutative love:

UAlc = UBI og nAk = nBz-
keK leL keK leL
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Beviserne forlgber saledes: Til et vilkarligt element p af U x4, fin-
des mindst ét k € K, s at P € 4, og for I=f(k) har vi B,=4, og der-
med peB; og derfor pe U, B, altsi har vi at Upexd,cU, . B;;
analogt vises det, at U, B, < Uiex4y. Og et vilkarligt element
q € Ny g A, tilhgrer for ethvert ke K meengden A, og tilhgrer derfor
for ethvert le L mengden B, og dermed My..B,, altsé har vi, at
Niexdr s Ny By; analogt vises det, at NiezB,< N, A4,

Med disse kommutative love har vi indfriet et lofte pa s. 25.

Ved dannelse af produktmengde gar det imidlertid anderledes end ved
dannelse af forenings- og feellesmeengde : For produktmeengden af meeng-
derne 4, spiller indexmeengden K en si veaesentlig rolle (man kunne
med en anskuelig udtryksmade sige: som det skelet, produktmeengden
er bygget op pa), at det for de betragtede systemer (Ap)iex 0
(Bie, i almindelighed gewlder, at

X4, + X5,

keK leL

selv i det tilfeelde, at L=K; ja, endogsa selv om de optraedende maengder
er serdeles enkle. Lad os se p4 det s. 41 behandlede exempel fra kombi-
natorikken: Lad denne gang indexmaengden K bestd af mandens krop a
og hans hovede b; meaengdesystemet (Ap)kex udgores af de ordnede par
{a,4,) og <{b,A,>, hvor A4, er mengden af frakker og A, maengden af
hatte. Produktmzengden XiexAy, bestar da af de kombinationer af
frakke pa kroppen og hat Pé hovedet, som han kan optraede i. Afbilder
man nu K pa sig selv ved den afbildning f, som defineres ved fla)=0b
og f(b)=a, knyttes til kroppen meengden B,=A4;,,=A, af hattene og
til hovedet meengden By,=A4;,4,=A, af frakkerne. Produktmeengden
XiexB;, er altsa meengden af de kombinationer af hat P& kroppen og
frakke pa hovedet, som manden kan optraede i.

Hvis man betegner maengden af frakker med F og meengden af hatte
med H og erstatter indexmeengden {a,b} med mzengden {1,2} (hvor altss
kroppen a erstattes med tallet 1 og hovedet b med tallet 2), kan alt
dette ogsa udtrykkes saledes: F x H +H x F'; denne formel er altsi et
specialtilfelde af den ovenfor anforte.

Om end produktmezngderne af mengderne i de to betragtede akvi-
valente systemer ikke er den samme mzngde, si er de dog xkvivalente:

X4, ~XBg,
keK leL

Beviset for denne kommutative lov for produktmzengdedannelsen for-
lober saledes: Lad r vere et vilkarligt element af produktmaengden
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XiexAy, altsd en belegning af K med elementer fra meengderne A,
Til r knytter vi nu et bestemt element s af produktmeengden X; ;B
nemlig den belegning af L med elementer fra mangderne B,, der til
ethvert element [ af L knytter det samme element af B;=A4;,;, som
ved r var knyttet til £=f-1(l). Dermed er defineret en enentydig afbild-
ning af X .4, pd Xi..B;.

Ved et lignende reesonnement beviser man den associative lov:

Xa, ~X Xy,

keK peP keKp

hvor mangderne K, udger en klasseinddeling af indexmeengden K med
indexmangde P (jvi. s. 25).

Som enkle specialtilfzelde af den associative og den kommutative lov
har man naturligvis

(AxB)xC ~ Ax(Bx(C) ~AxBxC , AxB ~ BxA4.

Men desuden far man af den associative lov i det tilfelde, at alle meeng-
derne 4, er den samme meengde A, folgende potensregneregel:

(12.1) A5 ~ X A%
peP
med bl. a. specialtilfaeldet

(12.2) AKVEr | AKiy gKa

Gelder det i (12.1), at alle mangderne K, er ekvivalente med samme
mengde L, far man for det forste, at hojre side er akvivalent med
(A%)P, og dernzwst, idet meengden K =U, pK, ifolge (11.2) er ekvivalent
med L x P, at venstre side er skvivalent med ALXP, idet man benytter
produktmaengdedannelsens kommutative lov. Alt i alt har man da fel-
gende potensregneregel:

(12.3) ALXP ~ (AL)P

Endvidere far man ved lignende overvejelser den tredie potensregne-
regel:

M

(124 (X 4,) ~Xam
keK keK

med bl. a. specialtilfzeldet

(12.5) (A x4 )M ~ AMx A M,

Endelig geelder der ogsa en rakke distributive love; vi ngjes med at
formulere denne ene: Hvis mangderne 4, er parvis disjunkte, si gelder



114 TORKIL HEIEDE OG HANS JORGEN HELMS

X U4, =UXy,,

peP keKp feF peP

m
N

en afbildning af P ind i U, K,
A, D m ‘ m belyse dette ved et enkelt special-
belegninger af P med elementer fra

hvor F=X,.pK,, og et element f € F alts er en beleegning af P med ele-
’ menter fra meengderne K, d.v.s.
4, D hvorved ethvert element p € P afbil-
' des i et element f(p) af K,. Lad os
tilfeelde: Lad P={1,2}, K,={1,2,3},
4 D K,={4,5,6,7}; sa bestar I af samtlige
5
/ K, og'K,, altsa
4, []

F = K,xK,
={(1,4), (2,4), (3,4), (1,5),
e (3,7},
— o — .7
A 4, A og den distributive lov siger da (se
Fig. 20 fig. 20):
(A ud,udy)x (4,04, UAdgU Ay)
= (A;xA) U (AygxA) U (A3xd)U(A;xA45)U ... U (A3x4,).

N

Som et simpelt specialtilfeelde af den distributive lov har man

(12.6) AxU4,=Uwix4,).

keK keK

At man pa hgjre side af lighedstegnet kan benytte K som indexmaengde
i stedet for F, folger af den kommutative lov for foreningsmsengdedan-
nelsen, idet det her gzlder, at F'={1} x K, altsa ifelge (11.1), at F ~ K.
Videre har (12.6) folgende to specialtilfzlde:

Ax(BuUCl) =(AxB)u(A4x0),
(12.7) AxK = U @x k).
keK
Formlen (12.7) har igen specialtilfeeldet
Ax{a,b} = (Ax{a})u(4x{b});
og til sidst skal det neevnes, at man af (12.7) umiddelbart kan aflese

ekvivalensformlen (11.2).

13. Kardinaltal. Efter at vi i 11 har indfert begrebet @kvivalens af
meengder og derved har fastlagt, hvad vil vil forsta ved, at der er lige
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mange elementer i to forelagte meengder, skal vi nu beskaftige os med,
hvad vi vil forstd ved en udtalelse om, hvor mange elementer der er i en
forelagt meengde.

Lad os til indledning se pa et simpelt exempel: Nar man siger, at der
er 3 elementer i mengden P={p,q,r}, s4 mener man dermed, at der er
lige s& mange elementer i P som i meengden {1,2,3}, eller med andre
ord, at P er ®kvivalent med denne mengde. (Akvivalensen kan f. ex.
pavises saledes: Den ved

firy=1, fp) =2, flg =3

definerede afbildning f er en enentydig afbildning af P pa {1,2,3}).

Det vil abenbart vaere nyttigt med et seerligt navn og en serlig beteg-
nelse for meengder af samme type som {1,2,3}. Lad os da vedtage, idet
n er et vilkarligt naturligt tal eller tallet 0, at kalde den ved

N - {wlzeM, =0} ={1,2,...,n} forneN,
9 forn =0

fastlagte meengde N, det ved n bestemte afsnit af N.

Og nu definerer vi: Hvis det om en mangde A4 gelder, at den er akvi-
valent med afsnittet V,, kaldes den en endelig meengde; tallet n kaldes
dens kardinaltal (eller magtighed), og man skriver

card4 =n.

Enhver maengde, der ikke er endelig, altsa ikke er @kvivalent med noget
afsnit af N, kaldes uendelig.

Elementerne af mengden N*=%NU{0} kaldes i deres egenskab af
kardinaltal for endelige meengder endelige kardinaltal; vi bemerker, at
g er den eneste maengde, som har kardinaltallet 0.

Det indledende exempel kan nu repeteres siledes: Den betragtede
mengde P={p,q,r} ses at vere skvivalent med N,; den er derfor
endelig, og card P=3.

Vi har i definitionen ovenfor pa veasentlig made benyttet maengden
N*, som altsa ma foreligge i forvejen; det vil derfor méaske veere rimeligt
at indskyde nogle bemerkninger om denne meengde. Man plejer at ind-
fore N ved hjelp af de af Peano opstillede axiomer, ud fra disse at
definere ordningsrelationen < samt kompositionsreglerne addition og
multiplikation med tilhgrende regneregler, og derefter at opbygge tal-
begrebet via J, & og R til € (de komplexe tal).! Tallet 0, som vi jo

1 En fremstilling af alt dette kan man f. ex. finde i E. Landau: Grundlagen der Ana-
lysis, Leipzig 1930, genoptrykt New York 1945 og senere.
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denne opbygning, nemlig sammen med de hele, negative tal. Men da
disse ikke kommer pa tale som kardinaltal, vil vi foretreekke at tenke
os ikke 9%, men %t* lagt til grund for talbegrebets opbygning. Det giver
ikke anledning til sterre ®ndringer af denne opbygning, og grundlaget
behgver man nsesten ikke at rore ved, idet man ved blot at skrive 0
i stedet for 1 et enkelt sted i Peanos axiomer far N* i stedet for 9, der
s& fremkommer som *\{0}.

Vi antager altsi, at der foreligger en meengde ¥, som optfylder Peanos
axiomer i fglgende formulering:

1. Der findes en enentydig afbildning v of N* pd WEN\{0}, hvor O er et
bestemt, serligt udvalgt element af N*. (For ethvert n € N* kalder man
w(n) efterfolgeren af n, og addition defineres sidenhen, s& at p(n)=n+1,
hvor 1=1(0).)

II. Af 0 M=N* og ne M =>y(n) e M folger det, at M=N*. (Dette
er det sakaldte induktionsaxiom.)

Lad os tenke os, at vi ud fra disse axiomer har defineret ordnings-
relation samt kompositionsregler m. v., s& at vi nu star med N* som en
af helt neutrale, indholdslgse elementer bestaende mengde, der blot er
udstyret med den velkendte ordningsmeessige og algebraiske struktur.
S& anvender vi denne mangde %t* ved tilvejebringelsen af de mengder
(nemlig afsnittene af N), der som en slags standardsammenlignings-
maengder skal bruges ved fastsettelsen af, hvilke mengder der skal
kaldes endelige, og derved bliver elementerne af Jt* til kardinaltal.

Denne fremgangsmade er ikke si merkelig, som den maske i forste
omgang kan virke. Man kunne méske sammenligne situationen med
den, som et lille barn er i, nar det begynder at bruge sine fingre til at
teelle med; barnet har jo fingrene i forvejen — blot uden »rtalmzessig
betydning.

Der foreligger naturligvis bade et existens- og et entydighedsspargs-
mal i forbindelse med den antydede indferelse af N*. Det sidste kan
afgores ved et bevis for, at axiomerne bestemmer Jt* entydigt pineer
isomorfi; det forste ved en pavisning af, at den ved 0=0, y(n)=nU {n}
bestemte mengde opfylder axiomerne. Man kan forgvrigt gi et skridt
videre og definere %* som denne mangde; man far da:

0=0,

1= {0} = {0} :
2 = {0, (0}} = {0, 1} ;
3 =10, {0, {0, 0}}} ={0,1,2} ,

4= {@, 0}, 10, 03, (0. 9. {0, {@}}}} - {0,1,2,3},
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og i almindelighed

pn) ={0,1,2,...,n}.

En sadan opbygning falder uden for denne fremstillings rammer.

Efter disse bemeerkninger om indferelsen af maengden N* fortsetter
vi nu omtalen af anvendelsen af dens elementer som kardinaltal.

For fuldsteendighedens skyld mé& vi sikre os, at en endelig mangde
ikke kan have flere forskellige kardinaltal, altsi at den ikke kan vere
ekvivalent med flere forskellige afsnit af 9. Idet vi bemeerker, at
m<n<>N,<N,, kan vi ga saledes frem: Hvis det om en mengde 4
geelder, at A~N,, og A~N,, hvor m<n, s& ma det ogsd gelde, at
N,,~N, og N,=N,. At dette er umuligt, folger af, at intet afsnit af
N er ekvivalent med nogen wgte delmeengde af sig selv, og dette sidste
vil vi nu bevise ved induktion. Lad M vere den delmengde af N*,
for hvis elementer k det gelder, at IV, ikke er skvivalent med nogen
segte delmengde af sig selv. Hvis vi kan vise, at 0e M, ogat pe M =
p+1e M, far vi af induktionsaxiomet, at M =N*. Det forste er klart,
thi Ny=0 har slet ingen @gte delmeengder. Det andet vises indirekte:
Lad p+1 ¢ M; vi skal bevise, at p & M. Ifolge vor antagelse findes der
en enentydig afbildning f af N ,,; p4 en mangde Sc N, ,; ved f afbildes
N, da enentydigt pa R= S\{ f(p+1)}, og vi har altsa, at N, ~ R. Hvis
nu p+1¢8, har vi SN, og dermed R<N,. Hvis derimod p+1led,
kan vi antage, at p+1=f(p+1); thi i modsat fald findes der et ge NV,
s at p+1=f(q), og afbildningen g defineret ved

9(9) =f(p+1),
glp+1) =flg)
9(x) = f(z) for x € Np+1\{q, P+ 1}

vil afbilde N,,,; enentydigt pa S, og det siledes, at p+1=g(p+1). Vi
har da R=8\{p+1}, og af S=N,,, folger R<N,. I begge tilfeelde
har vi altsd N,~R<N, og dermed p ¢ M.

Kardinaltallet af en endelig meengde er, som det ses, blot en pree-
cisere formulering af det elementere begreb antallet af elementer i den
pageldende maengde. Fordelen ved netop denne formulering er, at den
kan udvides til at omfatte vilkarlige meengder, idet man definerer:

Kardinaltallet af en vilkdrlig mengde A er et symbol, der knyttes #il
A og til enhver med A ckvivalent meengde.

Kardinaltallet af en uendelig meengde kaldes uendeligt eller transfinit.
Pa samme méde som man for ikke nermere angivne endelige kardinal-
tal bruger smé latinske bogstaver (oftest m, n, p eller ¢), bruger man
for ikke neermere angivne endelige eller transfinite kardinaltal sméa goti-
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ske bogstaver (ofte f, [, m eller n), og at mengden A har kardinaltallet ¥,

skriver man saledes:
card 4 =¥.

Det bemarkes, at bade for endelige og for uendelige maengder A og B
betyder udsagnet cardA=cardB ngjagtigt det samme som (hverken
mere eller mindre end) udsagnet 4 ~ B. Dette forstyrres ikke af, at man
for de endelige meengders vedkommende har kardinaltallene foreliggende
som elementer af meengden 9N*; thi baggrunden for dette er jo blot, at
denne meengde blev benyttet ved fastsettelsen af, hvornar en forelagt
mengde skulle kaldes endelig og hvornar uendelig.

14. Endelige mzengder. Med henblik p4 senere at kunne udvide be-
greberne ordning, addition og multiplikation m. v. til vilkéarlige kardinal-
tal skal vi i denne paragraf bevise en del s@tninger, der s=tter disse
begreber, saledes som de foreligger for mangden N*, i forbindelse med
operationer med endelige maengder.

Vi begynder med at bemarke, at da man ved induktion kan vise, at
enhver delmengde af et afsnit af €N er endelig, kan man straks opstille
folgende seetning:

S&TNING 14.1. Enhver delmengde af en endelig mengde er endelig.

Vi har s. 117 bevist, at et afsnit af N ikke er a@kvivalent med nogen
egte delmeengde af sig selv. Dette generaliserer vi nu til:

S&EINING 14.11. En endelig meengde er ikke wkvivalent med nogen cwgte
delmeengde af sig selv.

Beviset fores indirekte: Lad A ~N, og A~A,<A. Ved en enentydig
afbildning af 4 pa N, afbildes A, pa en vis mengde M <N,, og vi
har da, at N,~A~A4,~M og derfor N, ~M. Afsnittet N, er siledes
eekvivalent med en segte delmeengde af sig selv, hvilket er umuligt.

Derefter viser vi folgende s@tning:

S&TNING 14.111. Om to endelige meengder A og B gelder netop ét af
Jolgende tre udsagn:

1° A er wkvivalent med B,
2° A er wkvivalent med en egte delmengde af B,
3° B er ekvivalent med en egte delmeengde af A;

eller kort udtrykt:
1° A~B, 2° A~B,<B, 3° B~4,<A.

Beviset forlgber siledes: Lad 4 ~N,, og B~ N, ; hvis m=n, gelder 1°;
hvis m <n, har vi A~N,<N,~B og dermed 2°; pd samme made ses
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det, at m >n medforer 3°. Altsi gwlder mindst ét af de tre udsagn. Pa
den anden side kan hejst ét af de tre udsagn galde, thi af 1° og 2° fglger
B~ B,, hvilket strider mod setning 14.11. P4 samme made ses det, at
1° og 3° ikke kan gewlde samtidigt. Endelig kan 2° og 3° heller ikke gaelde
samtidigt, thi af B,<B og B~ A, fis B;~A,<4,, og dette giver sam-
men med A ~By, at 4~ 4,, og vi er igen kommet i strid med swetning
14. 11.
Af dette bevis afleses yderligere:

SETNING 14.1v. De tre udsagn i setning 14. 111 geelder metop i tilfeldene
henholdsvis:

1° card A =card B, 2° card 4 < card B, 3° card B<card 4.

Dette berettiger igvrigt, at man kalder den sedvanlige ordning < af N*
en ordning efter storrelse.
Videre gzlder, som man kunne vente:

SaETNING 14.v. Hvis mengderne A og B er endelige og disjunkte, sd er
card (A U B) = card A +card B .

Thi lad A ~N,, og B~N,. Afbildningen f defineret ved
f(k) = m+k for ethvert ke N,

er en enentydig afbildning af N, pA M={m+1,m+2,..., m+n}. Vi har
da, at B~ M, og idet jo N,,uM=N,,, ., kan vi slutte, at AUB~N,,,,,,
altsa, at card(4uB)=m +n.

Vi fgjer til setningen den kommentar, at dens udsagn ved regne-
undervisningen i skolens forste klasse bruges til definition af summen
af to naturlige tal. Her har vi imidlertid de naturlige tals addition defi-
neret pa forhdnd ud fra Peanos axiomer, og ferst ved denne setning
far den noget at gere med dannelse af foreningsmeengde.

Idet et mengdesystem (A4,),.x ifelge s. 111 er endeligt, nar index-
mengden K er endelig, udvides setning 14.v til:

SETNING 14.vi. Hvis mengderne A, wudgor et endeligt system af ende-
lige, parvis disjunkte mengder, sd er

card |J 4, = Jd'card 4, .
keK keK
Thi ifelge en bemaerkning nederst s. 111 kan vi antage, at K er et
afsnit N, af M. Vi har da Uy xd,=4,U4,U... U4, og ved hjzlp
af setning 14.v fas ved induktion
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P
card |J 4, = card 4, +card 4,+ ... +card 4, = Y card 4, .
keK k=1

Som specialtilfeelde af setning 14.vr fas:

SmTNING 14.vii. Hvis mengderne A, udgor et endeligt system af ende-
lige, parvis disjunkte mengder, der alle er wkvivalente med samme maengde
A, sa er

card |J 4, = card 4-card K .
ke K

card |J 4, = card A +card A+... +card 4 = card 4-p.

keK

Thi

Her har vi at gere med et udsagn, der i den elementeere regneundervis-
ning bruges til definition af multiplikation.
Under benyttelse af formlen (11.2) far vi af setning 14.vir:

SETNING 14.virn. Hois mengderne A og B er endelige, sd er
card (A x B) = card 4-card B .

Vi belyser denne s@tning ved exemplet fra s. 41: Lad 4 ={b,s,t} veere
mengden af frakker og B={m,l} mengden af hatte; produktmeengden
A x B bestar da af de 3-2 par
(b,m)  (s,m)  (t m)
@ 1) (1) (@¢1).
Setning 14.vim udvides (pd samme made som setning 14.v udvidedes
til setning 14.v1) til:

SETNING 14.1X. Hvis mengderne A, udgor et endeligt system af ende-
lige meengder, sda er

cardX A4, =11 cara A, .

keK keK
Som specialtilfzelde af denne setning fas dernsest:
SaTNING 14.X. Hovis mengderne A, udgor et endeligt system af ende-

lige meengder, der alle er ekvivalente med samme mengde A, sd er

card X A, = (card A)dE

keK
Heraf far vi endelig ved at betragte det tilfeelde, at alle mengderne
A,, er den samme mengde A4, idet vi benytter definitionen s. 43:

SETNING 14.x1. Hvis mengderne A og K er endelige, sa er
card (4K) = (card 4)¢X
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Vi vil gere en vigtig anvendelse af setning 14.x1. Lad D veere meeng-
den af alle delmaengder af en endelig mengde K; af formlen (11.3) far
vi, idet card{0,1}=2, at
(14.1) card D = 24K

Idet vi seetter card K =n, stemmer dette med det fra den elementere
kombinatorik velkendte resultat

50>

p=0 P
hvor (Z) betyder antallet af delmengder, hver bestaende af p elementer,

af en mengde pa ialt n elementer, altsi:
(g) = card {4 |card 4 = p, A = K, card K = n}.

Igvrigt kan man jo ogsad fa formlen card D= 2" helt uden anvendelse af
begrebet (Z) , idet D er akvivalent med mengden af muligheder for at

udvelge en delmengde af K. For hvert af de »n elementer i K er der,
nar vi veelger os en delmeengde af K, to hinanden udelukkende mulig-
heder: enten tages det med i delmeengden, eller ogsa tages det ikke med;
der er da 2" muligheder for at udvealge en delmsengde.

Det er veerd at bemsrke det specialtilfeelde af (14.1), at K =0 og der-
med card K =0, D={0} og card D=1=2°,

Vi slutter denne paragraf med af setningerne 14.vi og 14.1x at af-
lese:

SaETNING 14.x11. Forenings- og produkimengder af mengderne i ende-
lige systemer af endelige meengder er endelige.

I sewtning 14.v1 tales der ganske vist om parvis disjunkte meengder;
men til et endeligt meengdesystem (4),.x kan man altid finde et
system (B}),.x af parvis disjunkte meengder, siledes at B,< 4, for
ethvert ke K og U, gB;,=U x4}, idet man kan sette

B, = 4, B, = ANA4,, By = As\(4, U 4y), ...,
.B,n = ‘An\(Al U A2 U... U An—l) )
og man far da

card J 4, = card J B, = Y'card B, < ' card 4, .
keK keK keK keK

NMT, Hefte 3, 1962. — 9
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15. Uendelige mangder. Vi har endnu ikke givet noget exempel pa
en uendelig meengde. Imidlertid geelder, som man ogsi kunne forvente,
folgende setning :

SaTNING 15.1. Mengden N er uendelig.

Beviset fores indirekte; lad altsd 9N veere mkvivalent med et afsnit
N, af %, og lad f vare en enentydig afbildning af % pa N,. Af N, =R
fas f(N,)<f(M)=N,, og dermed er N, skvivalent med en wgte del-
meengde af sig selv, hvilket som vist s. 117 er umuligt.

Cantor indferte for card® symbolet 8, (udtales alef nul; & er det
forste bogstav i det hebraiske alfabet). Vi neevner, at man ogsa mader
betegnelsen a. Enhver mengde A, der er mkvivalent med 9, og for
hvilken det altsa geelder, at

card 4 = Ry,

kaldes numerabel (eller tellelig). Ifglge s. 109 har vi da, at mengden af
lige, naturlige tal og mengden af kvadrattal samt meangderne ¥ og £
alle er numerable mengder; af det dengang sagte fremgar videre sat-
ningen:

SmrNING 15.11. En maengde er numerabel, ndr og kun ndr dens elementer
kan opstilles © en folge.

At elementerne i en mengde kan opstilles i en folge, kan ogsd udtryk-
kes pa den made, at de kan nummereres ved hjelp af samtlige elementer
i N; dette er grunden til, at man netop har valgt at bruge glosen nu-
merabel.

Videre gelder:

SmTNING 15.101. Enhver meengde, der har en numerabel delmaengde, er
uendelig.

Thi hvis den var endelig, matte den numerable delmeengde ifglge saet-
ning 14.1 ogsd veere det i strid med setning 15.1.
Den omvendte setning gelder imidlertid ogsé:

SmrNING 15.1v. Enhver uendelig mengde har en numerabel delmengde.

Vi nojes med at henvise til begyndelsen af den anskuelige begrundelse
for velordningsseetningen 10.1; hvis den pagzldende meengde er brugt
op, for der er valgt en folge ud, er den skvivalent med et afsnit af N
og dermed endelig. Altsi mé& det veere muligt blandt meangdens ele-
menter at udvzlge en folge, d. v. s. en numerabel mengde. (Dette rason-
nement er, som antydet, ikke helt tilfredsstillende; ved hjelp af ud-
valgsaxiomet kan man give et fuldstendigt bevis for swtning 15.1v.)
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En uendelig mangde er altsd netop en meengde, der har numerable
delmeengder. Vi vil nevne endnu en for de uendelige meengder karakte-
ristisk egenskab; hertil viser vifelgende seetning:

S&ETNING 15.v. Enhver uendelig mengde har en eegte delmaengde, som
den er wkvivalent med.

Lad mangden 4 vere uendelig, og lad B={b;,b,,bs,...,b,,...} vere
en numerabel delmeengde af 4, som dermed kan opfattes som forenings-
mengde af de disjunkte mengder AN\B og B. Mangden C=B\{b,}=
{b2,b3,. . ., by, . . .} er numerabel og en @gte delmangde af B; meengderne
ANB og C er disjunkte, og deres foreningsmaengde er en segte delmeengde
af 4 og tydeligvis sekvivalent med A.

Setning 14.11 kan ogsd formuleres saledes:

SaTNING 15.vi. En mengde, der har en egte delmaengde, som den er
@kvivalent med, er uendelig.

Swtningerne 15.v og 15.v1 siger tilsammen, at en uendelig mangde
netop er en mangde, der har swegte delmengder, som den er xkvivalent
med. Denne egenskab kan derfor, som bl. a. Dedekind har gjort det,
bruges til definition af begrebet uendelig maengde.

Vi kommer nu til en helt fundamental sztning, Felix Bernsteins
sekvivalenssetning®:

S&EINING 15.vi1. Hvis det om to mengder gelder, at enhver af dem er
ehkvivalent med en delmeengde af den anden, sd er de indbyrdes ekvivalente.

Lad A~B,=B og B~AycA. Hvis By=B eller 4,=A, har vi umid-
delbart, at A~ B, og vi kan derfor antage, at B,=B og A,<A. Lad @
og v vare enentydige afbildninger af henholdsvis 4 pa B, og B pa 4,.
Vi vil ved hjelp af disse afbildninger trin for trin konstruere en enentydig

1 Der findes mange beviser for denne smtning; for tilladelse til at gengive det her
benyttede takker vi professor, dr. phil. Barge Jessen, som i sine forelesninger plejer at
gennemgd det i folgende ikledning: Ved et afdansningsbal i en danseskole vil hver af dren-
gene (der tilsammen udger mengden 4) helst danse med en ganske bestemt af pigerne (der
tilsammen udger meangden B), og der findes ikke blandt drengene to, der gerne vil danse
med den samme pige. Ligesd vil hver af pigerne helst danse med en bestemt dreng, og ingen
dreng foretreekkes af mere end én pige. Opgaven bestar nu i at arrangere en dans, s at
alle kommer pé& gulvet, og der mindst er én i hvert dansende par, som er tilfreds. Hvis
dette skal opnas, m& de drenge, som ingen af pigerne vil danse med (de udger mengden
4,), have lov til at inklinere (norsk: engasjere). De piger, som disse drenge inklinerer
for (de udger maengden B,), ville gerne have danset med visse drenge (de udger maengden
4,), som derfor, hvis dansen skal arrangeres som planlagt, mé have lov til at inklinere. Sa-
ledes fortswmttes, og om de slutteligt tiloversblevne piger (der udger mangden S) viser det
sig, at de drenge, som de gerne vil danse med, netop er de tiloversblevne (der udger
mangden R).
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afbildning f af A pad B, endog pa s& enkel en made som vel teenkeligt,
idet vi vil spalte 4 i to disjunkte meengder P og R (hvor R er en del-
meengde af definitionsmengden for y=*) og definere f, s& at den pa P
stemmer overens med ¢ og pd R med L

Da definitionsmeengden for p—1 er y(B)=A4,< 4, er y~1 ikke defineret
péa meengden 4,=ANA,+0, og da vi vil opbygge f af ¢ og y~1, bliver

vi nedt til at sette f(a) = p(a) for a €4,

og f afbilder dermed 4, enentydigt pa B,=¢(4,)*0.
Meengden A, =1y(B;) + 0 er en delmengde af 4,, og derfor er 4,n4,=0.

Den afbildes ved p~! pa By, og da f skal veere enentydig og skal opbygges
af @ og =1, bliver vi nedt til at sette
f(a) = g(a) for a € 4,,
og f afbilder dermed A, enentydigt pa B,=¢(4,)+0, og da ¢ er en-
entydig, er B,n B;=0.

Ved stadig gentagelse af denne proces (se fig. 21, hvor ¢ er antydet
ved fuldt optrukne og v ved stiplede pile) fremkommer to mengde-

folger Ay, Ay Ag ooy Ay oev s
By, By, By, oy By o+

idet vi for ethvert naturligt tal n =2 gar saledes frem:

AGI 4, | 45| ...
4 4 4
1 ! ]
! ! !
!
!
!
!
!
[

/
!
I/ / ! | /
[ / / i / —
1 ! [ [ 1 I |
B B]_ Bz B3 « e Bn Bn+1 . S‘ )
1
- Y \
N B, P M
Q
Fig. 21

Mz ngden 4, ,,=vy(B,)+0 er, da p er enentydig, en delmzngde af
ANUD_,A4,, og derfor er A, nUj_,4;=0. Den afbildes ved ! pa
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B,, og da f skal vere enentydig og skal opbygges af ¢ og =1, bliver
vi ngdt til at sette
(@) = pla) for aed,.y,

og f afbilder dermed 4,,., enentydigt pa B,.;=¢(4,,,)+0, og da ¢ er
enentydig, er B, .,nU%_,B,=0.

Mzngderne i hver af de to felger er parvis disjunkte, og f afbilder
derfor meengden P=U%_ 4, enentydigt pd mengden @=U7_,B;.

Vi betragter nu maengderne B=AN\P og §=B\Q. AfQ=¢(P)c¢p(4)=
B,< Bfar vi Q< B og dermed S # @. Ifolge det foregaende er (@) = P\4;,
og da y(B)=A4,=ANA4,, og y er enentydig, m& det gelde, at

p(8) = p(BNQ) = p(B)\p(Q) = (ANAYN(PN\4,) = ANP = R,
og vi har vist, at R=y(S)=+0. Vi kan da stte
f@) = yYa) for ac R,

og f afbilder dermed R enentydigt pa S.
Da PNnR=0 og QnS=0, har vi alt i alt opnaet, at f afbilder
PUR=A enentydigt pd QUS=DB, og vi har siledes bevist, at 4 ~B.
Det bemserkes, at mangden M =B\ B, (der spiller ssmme rolle over
for ¢ som A,=ANA, over for y) er en gte, ikke tom delmzngde af S,
som det ogsi er antydet pa fig. 21. Thi af B < B folger det, at M +0.
Da R+0, har vi ogsd @(R)+0, og af

¢(R) = (ANP) = g(A)\p(P) = B)\@ = BNQ = 8

fas det, at p(R)<S. Tilsammen giver disse resultater, at S\¢(R)<S;
men her stir netop at lese, at M <8, idet

S\g(R) = (Q US)\(Q U ¢(R)) = B\(¢p(P) U p(R))
— B\¢(PUR) = B\gp(d) = B\By = M .

Man kan somme tider fa brug for felgende saetning, der er ensbety-
dende med Bernsteins eekvivalenssetning:

SmTNING 15.vim. Hwis det om tre maengder A, B og C gelder, at
A2B2C og A~C, sd er A~B~C.

Vi viser forst, at setning 15.vii medfgrer setning 15.vim: Af forud-
seetningerne i den sidstnevnte afleses det, at A er akvivalent med en
delmeengde af B, nemlig C, og at B er xkvivalent med en delmangde
af A, nemlig B selv. Ifglge setning 15.vir er da A~ B, og af O~ A fas
derpd C~B, og vi har A~B~C.
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Fig. 22

Derneest viser vi, at setning 15.virr medferer setning 15.vir: Lad
A~By=B og B~A;c A, og lad ¢ veere en enentydig afbildning af A
pé By. Vi har da (se fig. 22), at 4y~ @(4,) = B,, og dermed (idet B~ 4,):

B 2B, 2 ¢4, og B~ ¢d,),

og ifelge setning 15.vimx gwlder det da, at B~ B, eller lige s& godt
By~ B. Dette giver sammen med 4 ~B,, at A~ B.

Man ser ofte Bernsteins sekvivalenssetning bevist ved hjzlp af et
direkte bevis for seetning 15.v1I.

16. Ordning af kardinaltallene. Vi skal i det fglgende udvide den fore-
liggende ordning af de endelige kardinaltal til ogsd at omfatte de trans-
finite; da kardinaltallene er defineret ved begrebet skvivalens, m4 ud-
videlsen af ordningen ogsi ske ved hjelp af dette.

Forbindelsen mellem @kvivalens af endelige mengder og ordning af
deres kardinaltal er udtrykt i setningerne 14.1m1 og 14.1v. Hvis seet-
ning 14.11 nu gjaldt for vilkarlige mengder 4 og B, s& kunne man
definere saledes: card 4 <card B, hvis 4 er ekvivalent med en agte del-
mengde af B, og dermed ville man s& have en ordning, der ifolge swt-
ning 14.1v ville veere en udvidelse af ordningen af de endelige kardinal-
tal. Men seetning 14.11 geelder ikke for uendelige meengder; thi de tre
udsagn kan geelde samtidigt, idet 1° ifglge s@tning 15.v medferer 2°
og 3°. Det kan igvrigt ikke pa forhdnd afvises som umuligt, at der kunne
existere uendelige maengder 4 og B, for hvilke ingen af dem gzlder.

Hvis det skal lykkes at definere en ordning af kardinaltallene for vil-
karlige meengder, ma opregningen af de forskellige muligheder med hen-
syn til sekvivalens mellem to forelagte mengder og delmangder af dem
udformes pa en sddan made, at den er uafhengig af, om meengderne er
endelige eller ej. Det viser sig nu, at man kan komme igennem ved som

sEli i S R
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udgangspunkt at benytte felgende swmtning, hvis rigtighed er umiddel-
bart indlysende:

SEINING 16.1. Om to vilkdrlige mengder A og B gelder netop é af
folgende fire udsagn:

1° A er wkvivalent med en delmengde af B, og
B er eekvivalent med en delmaengde af A,

2° A er whkvivalent med en delmengde af B, og
B er ikke wkvivalent med nogen delmeengde af A,

3° A er ikke ekvivalent med nogen delmengde af B, og
B er ekvivalent med en delmeengde af A,

4° A er ikke wkvivalent med nogen delmeengde af B, og
B er ikke wkvivalent med nogen delmengde af A ;

eller kort udtrykt:

1° A~B,cB og B~A,cA,
2° A~B,=<B og B~A,cA4,
3° A~vB,cB og B~A;cA,
4° A~vB,cB og B~A,cA.

Det ses, at hvis mangderne 4 og B specielt er endelige, glder ud-
sagnene 1°, 2° og 3° netop, nir udsagnene henholdsvis 1°, 2° og 3° 1 seet-
ning 14.11 geelder, og at udsagnet 4° derfor aldrig kan gwlde. For ende-
lige meengder har vi altsi ganske den samme inddeling som tidligere,
og udsagnene card A = card B, card A <card B og card B< card 4 geelder
altsa netop, nar henholdsvis 1°, 2° og 3° i setning 16.1 gelder.

Og pa nojagtigt samme méade gar det nu ogsi, nar 4 og B ikke forud-
seettes endelige. Vi begynder med at vise, at udsagnet 4° i seetning 16.1
aldrig geelder, altsa:

SmrTNING 16.11. Om to vilkdrlige mengder A og B gelder netop ét af de
tre udsagn 1°, 2° og 3° ¢ scetning 16.1.

Beviset forlober, lidt lgst formuleret, saledes: Ifglge velordningsseet-
ningen kan vi tenke os, at de to forelagte meengder 4 og B er velord-
nede; vi afbilder nu ethvert element af A (s& langt det gar) i det element
af B, der star ps samme plads i henhold til velordningen (se s. 48). Et
af folgende tre tilfzelde vil da indtraffe: A bliver brugt op samtidigt
med B, A bliver brugt op for B eller B bliver brugt op for 4. I alle tre
tilfaelde er mindst en af de to mengder skvivalent med en delmzngde
af den anden, og udsagnet 4° kan derfor aldrig gelde.

Seetning 16.11 kan preeciseres nermere siledes:




128 TORKIL HEIEDE OG HANS JORGEN HELMS

S&ETNING 16.111. Huis det om to vilkarlige mengder A og B gelder, at
A~ B, sd er udsagnet 1° ¢ swtning 16.1 opfyldt, og hvis A~ B, sd er netop
ét af udsagnene 2° og 3° opfyldt.

Thi hvis 4 ~ B, s& er 1° opfyldt med {. ex. B;=B og 4,=A4. Omvendt
er det jo netop indholdet af Bernsteins eekvivalenssetning, at hvis
1° er opfyldt, sd er 4 ~B, og dette kan ogsd udtrykkes siledes: Hvis
A~ B, sa er 1° ikke opfyldt. Men ifelge seetning 16.11 er i sd fald netop
ét af udsagnene 2° og 3° opfyldt.

Videre konstaterer man ved betragtning af sammensatte afbildninger,
at hvis mengderne 4’ og B’ er xkvivalente med henholdsvis 4 og B,
sa geelder udsagnene 1°, 2° og 3° for 4’ og B’, netop nir henholdsvis
1°, 2° og 3° gelder for 4 og B. :

Dermed er vi sa rustede til at definere den enskede ordning af kar-
dinaltallene. Lad der altsa veere givet to forskellige kardinaltal ¥ og I;
vi veelger to meengder A og B, s at card4 =¥ og card B=[. Da f=+I
medfgrer A~ B, gelder for A og B ifglge setning 16.11 netop ét af
udsagnene 2° og 3°, og vi definerer:

f<I (og [>¥), hvis A og B opfylder 2°,
[<ft (og £>1), hvis A og B opfylder 3°.

Havde vii stedet for 4 og B valgt andre meengder A’ og B’ med kardinal-
tallene henholdsvis f og [, s& matte det gelde, at 4’'~A4 og B'~B, og
dermed ville vi i henhold til bemeerkningen ovenfor have fiet samme
relation mellem f og I. Definitionen er saledes (som det ogséd matte for-
langes) uafhengig af det specielle valg af mengderne 4 og B.

Relationen < er ifglge det allerede sagte irreflexiv, antisymmetrisk og
konnektiv; vi mangler s& blot at vise, at den er transitiv. Lad der da
veere givet tre kardinaltal f, [ og m med <1 og [<m, og lad 4, B og C
veere meengder, der opfylder card A =%, card B=[ og cardC=m. Vi har
da, at A ~B,cB~C,<=C og dermed A ~C,<=C; altsa geelder for 4 og C
netop ét af udsagnene 1° og 2°. Imidlertid kan 1° ikke gelde, thi af
C~A,c A ville det (idet A ~B,<B) folge, at O~ B,< B, hvilket ikke
kan vere rigtigt. Altsd opfylder 4 og C udsagnet 2°, og da alt dette er
uafheengigt af det specielle valg af meengderne 4, B og C, har vi bevist,
at f<m.

Altsé har vi faet indfert en ordning af kardinaltallene, og ifglge be-
merkningerne midt pa s. 127 er den en udvidelse af ordningen af de ende-
lige kardinaltal. Med en nerliggende sprogbrug siges vor ordning at vare
en ordning af kardinaltallene efter storrelse, og f<I (I >¥) leses siledes:
f er mindre end [ (I er storre end f), ligesom man, hvis card 4 <card B
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(eller card B> card 4) siger, at 4 er mindre maegtig end B (eller at B
er mere magtig eller meegtigere end A).

Af ordningens definition afleser man de felgende to seetninger, der
giver forbindelsen mellem ordningen og begrebet w=gte delmangde (jvf.
setning 14.1v, der gelder for endelige meengder):

SarNING 16.1v. Hvis det om to mengder A og B geelder, at card A < card B,
sd er A @kvivalent med en cegte delmengde af B.

SaTNING 16.v. Hovis det om to mengder A og B geelder, at A er ekviva-
lent med en cegte delmeengde af B, sd er card A < card B.

Af seetning 15.1v og ordningens definition fremgar det, at det for et
vilkarligt transfinit kardinaltal ¥ geelder, at

(16.1) Ry = £,

hvilket ogsé kan udtrykkes saledes:

SETNING 16.v1. Kardinaltallet %, er det mindste transfinite kardinaltal.

(Dette er naturligvis grunden til, at man i betegnelsen anvender tallet 0
som index.)

P& den anden side gwlder det naturligvis for ethvert endeligt kar-
dinaltal », at

(16.2) n < Ry,

thi setning 15.1 siger, at n+x,, og Ry<n ville ifglge swtning 16.1v

medfgre, at N var mkvivalent med en mgte delmeengde af afsnittet N -

altsd. med en endelig mengde, hvilket ifolge seetning 15.1 er umuligt.
Da kardinaltallenes ordning er transitiv, far vi af (16.1) og (16.2):

Sa&TNING 16.viI. Ethvert endeligt kardinaltal er mindre end ethvert trans-
finit kardinaltal

Endelig aflsser vi af disse setninger:

SATNING 16.vit. Enhver delmeengde af en numerabel mengde er endelig
eller numerabel.

1 Det kan bevises, at kardinaltallenes ordning endog er en velordning, og de trans-
finite kardinaltal kan derfor navngives systematisk og kardinaltallene opstilles efter
storrelse saledes :

0,1,2,...,m, ---;NO,NPNZ, ---’Nn, --«;Nw9xw+1,xw+g, cees ey

hvor w,w+1, w+2,...;... er de sékaldte transfinite ordinaltal, hvis definition og
egenskaber vi ievrigt ikke skal komme ind pa.
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Enhver uendelig delmengde af en numerabel mangde er siledes nu-
merabel; f. ex. er mengden af primtal numerabel, da den er en uendelig
delmeengde af . En mangde, der er endelig eller numerabel, kaldes
ipvrigt (med en ifglge det foregiende berettiget udtryksméde) en hajst
numerabel mangde. Som et exempel pa en sddan kan nzvnes maengden
af elementer i en folge (thi de behover jo ikke alle at veare forskellige).

17. Addition og multiplikation af kardinaltal. Vi vil definere sum og
produkt af to vilkarlige kardinaltal f og I. Lad det om to mangder 4
og B gexlde, at

cardd =f og cardB =1.

Ved definitionen af summen af f og [ vil vi forudsztte, at 4 og B er
disjunkte. Derved begranser vi os ikke til specielle kardinaltal f og I, thi
til to mengder A og B findes der altid to mangder A*~A4 og B*~ B,
sé at A*nB*=0, nemlig ifelge (11.1) f. ex. produktmaengderne 4* =
A x {1} og B¥*=Bx {2}.

Vi definerer:

(17.1) f+1 = card(4AuB), hvis AnB =0,
(17.2) f-1 = card(4 x B) .

Disse definitioner er (som det ogsd méatte forlanges) uafhangige af,

hvilke mengder med kardinaltallene f og [ vi specielt har valgt, thi gzl-

der det ogsd om mengderne A’ og B’, at card4’=¥ og card B'=I, sd
har vi A’~A og B'~B og dermed

A UB ~AuB, his A nB' =4nB =0,
A'xB" ~ AxB.
Ifolge setningerne 14.v og 14.vix er de hermed definerede begreber
sum og produkt af to vilkérlige kardinaltal udvidelser af begreberne
sum og produkt af to endelige kardinaltal.

Af lovene (AuB)uC=AuU(BUuC) og AuB=BuA (s.20) fglger nu
den associative og den kommutative lov for kardinaltallenes addition:

E+0)+m = £+ +m), f+1 =1+%F.

Af lovene (A xB)xC~Ax(Bx(C) og AxB~BxA (s.113) folger den
associative og den kommutative lov for kardinaltallenes multiplikation:

tHm=%t=Cm), fI=I[F.

Endelig folger af 4 x (BuC)=(4 x B)u(4 xC) (s. 114) den distributive
lov:
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£-((+m) =f1+fm,
alt i den smukkeste overensstemmelse med de for de endelige kardinaltal
geldende love. Denne overensstemmelse findes ogsa i felgende regler:
(17.3) F+0="f f1=f,
fl=0<«<f=0eller [ =0,
der fglger af henholdsvis Au@g=4 (s.20), Ax{a}~A (formlen (11.1))
og AxB=0 < A=0 eller B=0 (s. 40-41).

Man kan inddrage flere end to kardinaltal i dannelsen af summer og
produkter ved at saette

f+l+m = (E+0)+m, flm= (1) m,

og videre ved induktion:

(17.4) my+my+...+m, +m, = (My+ny+ ... +1m,_4)+mn,,
(17.5) My Myt My g M, = (Mg My . T, ) oM, .

Ad denne vej kan man endog né til at definere sum og produkt af kar-
dinaltallene i en folge af sidanne, altsa

(17.6) my+my+ o4, ...,
(17.7) F14 D ¢ PRI ¢ |

og det kan ved hjelp af de associative love vises, at man i disse udtryk
kan sette og heeve parenteser efter behag. Vi vil imidlertid hellere med
det samme direkte definere sum og produkt af kardinaltallene i et vil-
karligt system af sadanne.

Lad der altsa til ethvert element % i en indexmeengde K veere knyttet
et kardinaltal m,,; til ethvert k£ € K vealger vi en meengde 4, med

card4;, = my, .

Ved definitionen af summen af kardinaltallene my,, vil vi forudsaette,
at mengderne A4, er parvis disjunkte. Derved begrenser vi os ikke til
specielle kardinaltal m,, thi til et mengdesystem (A4),.x findes der
altid et meengdesystem (4;),.x af parvis disjunkte meengder, saledes
at Af~ A, for ethvert k € K, nemlig ifolge (11.1) f.ex. systemet af
produktmaengderne

Af = A, x {k} for ethvert ke K .

Vi definerer:
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(17.8) Y'my, = card |J 4, hvis 4n4,, = O forleK, meK, | +m,

hek keK
(17.9) ﬂmk = card )(A,c .
keK keK

Disse definitioner er (som det ogsé matte forlanges) uafhzengige af,
hvilke mengder med kardinaltallene ny, vi specielt har valgt, thi geelder
det ogsd om meengderne A4y, k € K, at card A, =my,, for ethvert k € K, sa
har vi, at A~ A4, for ethvert k € K, og dermed

U4, ~U4, hvisd;n4, = 4,nA4, =0 for leK,meK, l+m,

keK keK
Xa,~ Ka,.

keK keK

Ifolge s®tningerne 14.vi og 14.1x er de hermed definerede begreber
sum og produkt af kardinaltallene i et vilkarligt system af kardinaltal
udvidelser af begreberne sum og produkt af kardinaltallene i et endeligt
system af endelige kardinaltal, og det er klart, at de tillige er udvidelser
af de ved (17.1) og (17.2) definerede begreber sum og produkt af to vil-
karlige kardinaltal.

Af den associative og den kommutative lov for foreningsmeengdedan-
nelsen (s. 25 og 111) og for produktmeengdedannelsen (s. 112-113) samt
den s. 114 neevnte distributive lov fas de tilsvarende love for kardinal-
tallenes addition og multiplikation, som ses at vere udvidelser af de
s. 130-131 naevnte love:

De associative love: Hvis (K,),.p er en klasseinddeling af index-
mengden K, si er

2my =23 Ylmy, og Hmk =II Il
keK peP keKp peP keKp

De kommutative love: Hvis der findes en enentydig afbildning f af K
pd L, og I=f(k) = nmy=my, s er

2y, =y og Hmk—ﬂml

keK leL keK leL

Den distributive lov: Idet F' betegner produktmeengden X, .pK,, er

I 2wy =2 J] mye).

peP keKyp feF peP
Vi nevner fglgende regler, hvis rigtighed er umiddelbar:

J'my, = 0, hvis og kun hvis m;, = 0 for ethvert ke K .
keK

2y

keK

card K, hvis my, = 1 for ethvert ke K .
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(17.10) J[ my, = 1, hvis og kun hvis m; = 1 for ethvert ke K .
keK

Videre far man af (3.3):

2my, = 3 ny, hvism, = 0 for ke L,
KeK ke KNI

og af den associative lov, (17.10) og (17.3) far man:

JIm, = J[ my, hvismy, = 1 for ke L.
keK ke K\ L

Endelig far man af X, g 4,=0<>A4,=0 for mindst ét k € K (s. 43):

JJ m,, = 0, hvis og kun hvis m,;,=0 for mindst ét ke K .
keK

Forbindelsen mellem addition og multiplikation skabes af den distri-
butive lov; et seerligt vigtigt specialtilfzelde af denne afleeses direkte af
(11.2), der som naevnt s. 114 er en konsekvens af den der anfegrte distri-
butive lov for forenings- og produktmeaengdedannelse:

Lad der vezre givet to kardinaltal [ og m; veelger vi en mengde K
med card K = som indexmeengde for et system af kardinaltal mi,, der
alle er lig m, geelder det, at

(17.11) ml=m,.
keK

Heraf fas folgende seetning, der er en udvidelse af seetning 14.vir:

SaETNING 17.1. Hvis mengderne A4, udgor et system af parvis disjunkte
maeengder, der alle er wkvivalente med samme mengde A, sa er

card |J 4, = card4-card K .
keK
De i (17.4)—(17.7) betragtede summer og produkter indordnes under
de ved (17.8) og (17.9) definerede begreber sum og produkt af kardinal-
tallene i et vilkarligt system ved fglgende formler, hvor N, som seedvanlig
betegner det ved n bestemte afsnit af O:

(17.12) D my = mtmy+...+m,,
keNy
(17.13) ]I my = ml'mz'.-.'mn,
keNp
(17.14:) ka=m1+m2+.-.+mn+... )
ke
(17.15) Iy =mymye o oomg,- oL
keN

Vi nevner, at man ogsd meder betegnelserne
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n n (o) o0
Y
Zmlm ﬂ"‘k, 2/ ny  og IImk .
h=1 B=1 k=1 k=1

Af (17.12) og (17.14) far vi i det tilfeelde, at alle de optreedende kardi-
naltal my, er lig med det samme kardinaltal m, ved hjzlp af (17.11) fel-
gende formler:

m+m-+...+m =m-n,

MM+ . Mt ... = Mo,y

Af definitionen pa kardinaltallenes ordning s. 128 far man fglgende
seetning, der danner grundlaget for regning med uligheder mellem kar-
dinaltal:

SmrNING 17.11. Huvis det om to systemer af kardinaltal ({),. x 09 (W) ke

geelder, at 1, <y, for ethvert ke K, sd er

2= Ymy og JIG = [[my.

keK keK keK keK
Som vi senere skal se ved exempler, gelder det i almindelighed ikke, at
[, <my, for ethvert ke K medfgrer 2, 5 1, < 2y my, 08 I iV < IT, o1y,
Det skal dog n=vnes, at dette er rigtigt i det specielle tilfelde, at K er
endelig, men beviset for denne seetning falder uden for rammerne af denne
fremstilling.

18. Potenser af kardinaltal. Lad der vere givet to kardinaltal [ og m;
vi veelger en maengde K med card K ={ og bruger den som indexmangde
for et system af kardinaltal my,, der alle er lig med m. Vi definerer:
(18.1) m = f[m,.

keK
Ifolge multiplikationens kommutative lov s. 132 er m' uathengig af det
specielle valg af maengden K.
Vi far straks folgende udvidelse af setning 14.x:

SxrNING 18.1. Hvis meengderne A,, ke K alle er @kvivalente med
samme mangde A, sa er

card X A, = (card 4)°=K,
keK
Thi ifglge definitionen pa produkt af kardinaltal er card X .z A4,=
I, gcard 4,
Heraf far vi ved at betragte det tilfeelde, at alle meengderne 4, er
den samme mangde 4, og idet vi benytter definitionen s. 43, fglgende
udvidelse af seetning 14.x1:
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SEINING 18.11. For vilkdrlige mengder A og K geelder det, at
card (AK) = (card 4)®d X

Vi kunne ogsa have defineret m' direkte ved at vaelge meengder A
og K med card 4 =m og card K =1 og swtte m'=card (4K); men i s3 fald
havde vi méttet give et serligt bevis for potensens uafhsengighed af det
specielle valg af disse to mengder, og vi havde 0gsd som en swtning
mattet bevise den forbindelse mellem potens og produkt, der her er
brugt til potensbegrebets definition.

Af (17.13) og (17.15) far vi i det tilfeelde, at alle de optreedende kardi-
naltal my, er lig med det samme kardinaltal m, idet vi benytter (18.1):

m-m-...-m =m",
meme.LLome.. = mfo,
Af de tidligere behandlede potensmeengderegneregler afleeses nu umid-
delbart folgende potensregneregler:
Af (12.1) fas: >

P
m?? = [ mb
peP

med bl. a. specialtilfeldet (jvf. (12.2))
m = mtemt .

Dernzest fas af (12.3):

(18.2) mil = (mh)};

og endelig af (12.4):

<Hmk)I=Hmk[

k€K ke
med bl. a. specialtilfeldet (jvf. (12.5))

mn) = mb-n'.
Vi nevner endnu felgende regler:

(18.3) L=f 1'=1 0 =1

3 b

som fis af henholdsvis AW~ 4 (s.110), (17.10) og A% = {0} (s. 44).
Endelig vil vi gore en vigtig anvendelse af setning 18.11. Lad D vere

mengden af alle delmezngder af en mangde K ; af formlen (11.3) far vi,

idet card{0,1}=2, at

(18.4) cardD = 2K

Denne formel har vi tidligere mgdt som (14.1), men da var der kun tale
om en endelig maengde K. Man kan ved en lgs betragtning gare resultatet
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(18.4) plausibelt, idet man kopierer det s. 121 gennemforte reesonnement:
D er kvivalent med meengden af muligheder for at udtage en delmeengde
af K. Der er card K elementer i mengden K, og for hvert af dem er der,
nar vi velger os en delmesengde af K, to muligheder: om det tages med i
delmzngden eller ej — der er da 2%™X muligheder for at udvelge en
delmaengde.

Som exempel til (18.4) neevner vi, at mengden af delmeengder af en
numerabel meengde har kardinaltallet 2%,

(Fortsceties © noeste hefte.)




LITT OM KJEGLESNITTENE FRA ET
ASTRONAUTISK SYNSPUNKT

TH. GODAL

Fra & ha veert et fag som meget f& interesserte seg for er celest meka-
nikk né plutselig, av nerliggende arsaker, omfattet med stor og almen
interesse. Som leerer i realfag mé man i vare dager stadig veere forberedt
pé spersmal fra elevene angédende romfartoyers baneforhold. Et grunn-
problem som ofte melder seg i en slik forbindelse er folgende:

Gitt to faste punkter P, og P; i et sentralt gravitasjonsfelt, f. eks.
jordens. Et romfartoy skal bevege seg fra P, til P, i lopet av en bestemt
tid ¢. Hvilken utgangshastighet v, ma det da ha i P, dersom bevegelsen
mellom de to punkter skal foregd uten pavirkning av andre krefter enn
gravitasjonen ?

Ligninger for problemets lgsning hva de sikalte baneelementer angar
blev oppstillet av Gauss! i forbindelse med bestemmelse av banen for
en nyoppdaget planet. Planetens hastighet interesserte ikke Gauss seg
direkte for, og det er vanskelig & trekke noen enkle slutninger vedrgrende
denne av hans relasjoner.

Banen er som kjent et kjeglesnitt. Ved direkte & sperre om hastig-
heten, slik det faller naturlig & gjere nar man star overfor astronautiske
problemer, kommer man derfor automatisk i kontakt med kjeglesnittenes
tangentegenskaper. Som folge av den spesielle fremgangsmaten som vil
bli benyttet i denne artikkel, avslorer der seg tidlig et for den videre
behandling meget nyttig resultat. Der siktes her til den egenskap figuren
illustrerer ved & antyde at linjen ON halverer vinkelen P,OP;.

Idet vi forelgpig ser bort fra kravet om at bevegelsen fra P, til P,
skal forega i lopet av en bestemt tid, skal vi na utlede en meget enkel
relasjon for utgangshastigheten ved & bygge direkte pa bevegelses-
ligningen do &

(1) —=—ce,
e r?

samt den derav avledbare Keplers 2.lov om flatehastigheten:

1 C.F. Gauss: Theoria Motus Corporum Coelestium, Gottingen 1809, s. 114—116.
NMT, Hefte 3, 1962. — 10 [137]
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a0
2 r2— = h = konst.
(2) 7
Her betegner k gravitasjonskonstanten, og e er en enhetsvektor som
peker fra romfarteyet mot gravitasjonssentret. Betydningen av de
gvrige betegnelser fremgéir av figuren.

O er gravitasjonssentret, NP, og NP, banetangenter. Hastighetsvektorene v, og ¥,
(p4 figuren betegnet w,, v;) har sterrelsene v, og v, og er opplest i komponenter ved

e e
vy = PyQy+PoRy, v, = PQ+PR,.

PyQy = P1Q,, PyR, = P,R;. Produktet P;Q," PR, er det samme for alle baner mellom
P, og P,.
Av (1) og (2) faes
k
3 dv =—-edf .
®) -
dv er altsd hva sterrelsen angar proporsjonal med df. Da dv hele tiden

er rettet mot gravitasjonssentret, er det ikke vanskelig 4 innse at spissen
av vektoren v i forhold til romfartgyet beskriver en sirkel med radius
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lik k/h.* Den buen av denne sirkelen som svarer til bevegelsen fra P,
til P, er inntegnet overst pa figuren. Den forbinder spissene av de til
punktet N forskjevne vektorer v, og v;. Tangentene til sirkelen i S,
og i8; er ifglge (1) parallelle med henholdsvis OP, og OP,. Korden S5,
mé derfor vare parallell med halveringslinjen for vinkelen 6, mellom
OP, og OP,. P4 grunn av Keplers 2. lov er trekantene OPyS, og OP,S,
like store; dette gjelder derfor ogsi om trekantene ONS; og ONS;.
Folgelig ma S(S; veere parallell med ON, som derfor halverer vinkelen 6,.

— —
P4 figuren er hastigheten v, opplest i komponentene PyQ, og P,R,,

og likesd v, i komponentene Pl—él og P1_1>31. Det er na ganske enkelt &
bevise det som anfgres i figurteksten om parvis like store hastighets-
komponenter for den enkelte bane, og konstant produkt av sterrelsene
av disse for alle baner fra P, til P;:

Da komponentene P_;)Q0 og P_lbl intet bidrag gir til flatehastigheten,
mé trekantene OP R, og OP,R, veare like store, hvorav straks fglger
PyR,=P,R,. Forskyves de to trekanter PSR, og P,S,R; s& P, resp. P,
faller i N, vil kantene P R, og P,R, begge falle i N7, hvor T er sirkel-
tangentenes skjeringspunkt. I trekanten S;S;7" blir de to vinklene ved
S¢Sy begge lik 30, slik at T'S;=T8; eller PyQ,=P,Q;.

Videre faes at tg}0; er lik Py, dividert med sirkelens radius som jo
er lik k/h. Da h ifglge (2) og figuren er lik 74+ Py R,-sin U, m4 vi altsa ha at

(4) PoQo'PoRo =

tg10,, q.e. d.
7o Sin U g0 4-©

Med figurens betegnelser kan denne ligning ogs& skrives pa den mer
hensiktsmessige form
(5) rove sin® sin (U — @) = ksin U tg 10, ,

hvilket man lett overbeviser seg om ved & kombinere (4) med sinus-
proporsjonen anvendt pa trekanten PyQ,S,.

Ligning (5) er brukbar til litt av hvert. Den er ikke innskrenket til
bare & veere en ligning mellem to gitte posisjoner i en bane og hastigheten
i den ene av disse. Den kan ogsa oppfattes som ligning for selve banen

k
1 Ved integrasjon av (3) faes nemlig v= Ze*+c, hvor e* er frembrakt av e ved
en dreining pd —90°, og ¢ er konstant. Man kan ogsa g& over til rettvinklede koordi-
k k
nater, hvorved (38) blir dvy= — —cos0d0, dvyz—zsinOd(), som ved integrasjon gir

= ——sin 64 ¢, vy=—cos 0+c,.
Vg 7 1 Yy 3 2
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i U og 0, som variable. Vi skal ikke her g& nsermere inn p4 anvendelses-
mulighetene utenfor vart egentlige problem, men bare nevne et meget
enkelt resultat av (5): For gitt P, og P; er utgangshastigheten minst
dersom @=131U. Dette er en generalisering av en kjent regel for kaste-
bevegelse i lufttomt rom, savidt vites tidligere kun bevist for det tilfelle
at tyngdens aksellerasjon er konstant.

For & kunne komme videre med véart opprinnelige problem ma vi
finne et uttrykk for flateinnholdet av sektoren begrenset av OP,, OP,
og banen. Ifglge Keplers 2. lov er da tiden for bevegelsen fra P, til P,
gitt som forholdet mellem dette flateinnholdet og flatehastigheten.
Figuren viser at flatehastigheten er lik }ryv, sin®, og det er ingen van-
skelighet & finne et brukbart uttrykk for dette ved hjelp av (5); @ peker
seg da naturlig ut som parameter. Det gar utmerket godt an & uttrykke
sektorens flateinnhold, og dermed ogsé tiden, ved den samme parameter.
Det viser seg imidlertid & vere mer hensiktsmessig & benytte en annen
parameter, nemlig den halve differens av sterrelsene av den sakalte
ekssentriske anomali i P; og P,. Det var denne parameter Gauss valgte
4 benytte, dessverre uten annen motivering enn at de resulterende
ligninger derved blir sveert enkle.

Etter et nermere studium av figuren faller det ganske naturlig &
forsoke & uttrykke sektorens flateinnhold ved en geometrisk definert
parameter som viser seg & vare identisk med den av Gauss benyttede.
Sektoren bestar av en trekant, hvis flateinnhold intet problem er, samt
et segment. Som kjent er segmentet i tilfelle av en parabel ganske enkelt
lik 2/3 av trekanten P P, N. I tilfelle av en ellipse er segmentet samme
brokdel av trekanten P,P;N som et sirkelsegment er av en tilsvarende
trekant, forutsatt at sirkelens radius er lik l/rorl, dens sentrum O, og
ON er den samme for ellipse som for sirkel. I tilfelle av en hyperbel
har man en fullstendig analog regel med likesidet hyperbel isteden for
sirkel. Begge regler lar seg forholdsvis lett bevise ved & benytte seg av
at ON halverer vinkelen 6,.

For her & holde oss til ellipsen og den dertil herende sirkel, sa vil
det nd innsees at det faller meget naturlig & innfere en parameter g
definert ved

(6) cosg = |/ryry/ON .
Ved hjelp av dette finner man lett at
Segment : Trekant P,P;N = (g—sing cosg) cosg/sin3g

for sirkelen, og folgelig ogsa for ellipsen.
Figuren viser at flateinnholdet av trekanten P,P,N er lik flate-
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innholdet av trekanten P,P,0 multiplisert med MN/OM. Ifplge figuren
og (6) har vi

MN ON-OM |rg,—OM cosg

oM~ ~ OM =~ OMcosg

Betegner vi nd for korthets skyld den for alle baner mellem P, og P,
felles storrelse |/ryr;/OM med A, har vi altsa:

MN _ A —cosg
OM  cosg

Sektorens flateinnhold F' er derfor gitt ved

(7)

(8) F = }ryry sinf, [1+ (4 —cosg)(g —sing cosg)/sin?g] .

Figuren viser at
7o SInD ON

PMsin(U—-®) MN’

som ved multiplikasjon med (5) gir

rov} sin? @ _ ON sin Utgle
P.M MN e

Idet
P M sinU = OM sin}0,,
gir dette ved (6) og (7) for flatehastigheten:
9) 1oV sin® = ll/z sin 30, (rqry)V/4 cos—1/210, (A —cosg)~1/2
Setter vi na for korthets skyld
2k (r4ry)3/* cos®246, = B,
gir (8) og (9) ved divisjon felgende formel for tiden ¢ for bevegelsen
fra P, til Py:
(10) t = B(A —cosg)/2[1+ (A —cosg)(g—sing cosg)/sin3g] .
Med de tilhgrende uttrykk for 4 og B gitt ovenfor er dette en lett
modifisert utgave av en av Gauss’ fundamentale formler.
Tatt i betraktning at faktoren (g—sing cosg)/sin®g er tabulert, ser
en at det ved (10) gar forholdsvis raskt & approksimere g svarende til

gitt ¢. Ved hjelp av (6) faes ved betraktning av trekanten OP,N at den
til ¢ svarende utgangshastighet v, er bestemt ved

cotg® = cotg 0, — [/r_oﬁ’—l cosg/sin }0, ,
samt ligning (5).
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Det hersker uenighet om hvorvidt det er raskere & bestemme ¢ ved
hjelp av (10) enn & bestemme a ved hjelp av

20 —1y—1r;—d 20—ry—r;—d
t = k1/2q3/2 (arc cos— 21 " ginarccos — ° 177
(11) 2a 2a
20 —ryg—r +d 20 —ry—r;+d
+arc cos ——————— —sin arc cos ——m) .
2a 2a

Her betegner a ellipsens store halvakse, d avstanden fra P, til P,. Den
til @ svarende utgangshastighet v, er bestemt ved den fra celest mekanikk
velkjente relasjon

(12) (2k—rgd)a = kr,

sammen med ligning (5).

I forbindelse med utledningen av sin formel tilsvarende (10) ovenfor
omtaler Gauss ogsé formel (11). Han tilskriver den Lambert og betegner
den som meget elegant. Gauss foretrakk dog & bruke sin egen formel,
som han derfor antagelig mente var mer effektiv enn Lamberts formel.

Det er selvfglgelig mulig & angripe det i denne artikkel behandlete
problem ved hjelp av andre en-parameterformler for ¢ enn Gauss’ og
Lamberts. Det later dog til 4 vaere meget vanskelig & komme frem til
noe nytt som er pd hgyde med det de to klassikere presterte for over
hundre ar siden.

Det kan kanskje til slutt veere berettiget 4 kommentere ligning (12) litt.
Den gir, som en ser, uttrykk for det forbloffende faktum at ellipsebanens
store halvakse er avhengig kun av starthastighetens sterrelse og ikke
dens retning. Det er sveert vanskelig & forsta at en s& fascinerende enkel
relasjon som (12) ikke forekommer mer i anvendelsene enn den gjor.
Ikke sa rent fa enkle og til dels fundamentale egenskaper blir av den
grunn ofte oversett. Det kan kanskje hores utrolig ut, men selv den enkle
generaliserte egenskapen ved kastebevegelse omtalt like etter ligning (5)
ovenfor har forfatteren av denne artikkel, tross iherdig seken, enna
til gode & se bevist av noen annen. Den kan i virkeligheten bevises enda
meget enklere enn ovenfor ved & bygge direkte pa ligning (12).

I det hele tatt finner man ikke meget »esprit de géométrie« i arbeider
om astronautisk baneberegning. Omradet domineres stort sett av hard-
kokte analytikere, som sjelden eller aldri overrasker leseren med geo-
metrisk interpretasjon av noen av sine resultater.

En hederlig unntagelse er engelskmannen professor D. F. Lawden.
Noen av hans resultater er tildels paradoksale. Her skal bare nevnes ett:
Dersom man vil sende et romfartoy fra jorden opp i en sirkelformet
bane ved to impulser, en i starten og en ved inngangen i cirkelbanen,
sé blir summen av impulsene mindre jo sterre radius man velger for banen.



A THEOREM ON CLOSED POLYGONS IN
THE PROJECTIVE PLANE

FR. FABRICIUS-BJERRE

1. Let ¢ denote a closed differentiable curve in the projective plane.
If each point of ¢ is interior point of an arc of order 2 (a convex arc)
and the curve has no double point, the curve, as a whole, is of order 2.
This theorem has been stated by A.Mobius [4], but A. Kneser [3]
has given the first proof of it. J. Hjelmslev [1] has generalized the theo-
rem to curves in spaces of 3 or more dimensions.

E. Kivikoski [2] has stated the corresponding theorem for a closed
polygon in the projective plane. On the following pages we shall give a
new proof for the polygon-theorem. As an introduction we mention some
definitions and properties of polygons in the projective plane.

2. In the plane m points P;, P,, ..., P,, m>3, are given. Consecu-
. tive points are connected by segments whereby we get an open polygon
with the vertices Py, P,, ..., P,, and the sides P,P,, ..., P, _,P,. For
two points P; and P,,,, any of the two segments which connects the
points may be chosen as the side P;P;,;. The polygon will be closed by
addition of a segment connecting P,, and P,. We only consider polygons
for which any two consecutive sides do not lie on the same line.

A line I can have no point in common with the side P;P;, or inter-
sect the side in one point or contain the whole side. In the last case we
say that I has the two points P; and P;,; in common with the polygon,
disregarding the interior points of the side. The order of a polygon =
(open or closed) is defined as the maximum number of points common
for 7 and an arbitrary straight line. The order of a polygon is at least 2
and at most equal to the number of sides.

In the polygon 7 we consider a side P,P;,,, the preceeding side P;_;P;
and the following side P,.,P;., (for closed polygons the indices are
taken modulo m). If it is possible to choose a point P; ; on the side
P, ,P, and a point P;, on the side P, ,P;,, such that the 3-side

P, ,P,P,.,P;,, has the order 2, the side P,P; , is called a convex side in

[143]
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the polygon. If this can not be done, that is if the 3-side has the order 3
for any choice of the auxiliary points P;_, and P;,,, the side is called
an inflectional side.

3. The above definitions enable us to formulate the theorem to be
proved:

If all the sides in a closed polygon m are comvex and m has mo double
points, the polygon has the order 2.

Proor. Let the polygon m have the vertices P;, P,, ..., P,, and the
sides PPy, ..., P, P, P,P,. We first prove the theorem for m =3.
We introduce an affine plane by choosing as the line at infinity a line
u which intersects the complementary segments to the sides P,P, and

Fig. 1a Fig. 1b

PyP;. These sides are then finite segments issuing from P, (fig. 1a
and b). If we connect the points P, and P, by the finite segment PP,
we get a simple triangle, that is a 3-side of order 2, where every side is
convex. If we take the complementary segment, we obtain a closed 3-side
of order 3 where every side is an inflectional side. Thus the theorem is
true for m=3.

Next we assume m 2 4. The 2-side P,P,P, is an open polygon of order 2.
If the polygon 7 does not have the order 2 there exists a number i,
3<i=m, such that the open polygon z;=P,P, ... P, has the order 2,
but the polygon 7, =P,P, ... P,,, has the order 3. We will show that
this assumption leads to a contradiction.

Since the polygon =, is of order 2, the line p through the side PP,
has no other points in common with z;. The same holds for the line q
through the side P; ,P;, and consequently the polygon z; is lying in
one of the two angular domains which are bounded by the lines p and g.
If = 4 the intersection between p and ¢ is a point 7' outside 7;, and a
line » through 7' and in the angular domain where 7, does not lie, has
no point in common with z;. If u is chosen as the line at infinity, the
polygon 7, will be an ordinary convex polygon in the affine plane for which
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the sides P, P, and P;_,P, lie on the parallel lines p and ¢ (fig. 2a and b).
The convex domain bounded by ; and the finite segment P,P, is called
o. For 4=3 the lines p and ¢ intersect in P,, and choosing a suitable

P, B
P,
1
5
q -p
Fig. 2a Fig. 2b Fig. 2¢

line w through P, as the line at infinity, the convex polygon 7, will be
the two half-lines P,P, and P,P, (fig. 2c¢).

The line through the side P,P;,, will intersect either the polygon
7t;1=PP, ... P;_; or the half-line of p with endpoint P; not containing
the point P,. The intersection point is denoted @,, and we first consider
the case where @), is a point of the polygon =, (fig. 2a).

Since the side P;_,P; is assumed to be convex, the side PP, , must
go into the parallel strip bounded by p and ¢, and since # has no double
point, P;,, will be an interior point of the finite segment P,Q,. The
polygon P, ,P,@, ... P, , is the boundary of a convex domain w,,
where w; S w.

We next consider the convex side P,,,P;.,. The line through this side
will intersect the polygon @, ... P, ,P; in a point @,, and since z has
no double point, the vertex P;,, is an interior point of the finite segment
P;,@,. The polygon P,P;,,Q, ... P, is the boundary of a new convex
domain w,, where w, <w;. Continuing in this way we obtain new points

Qs, @4, ..., new vertices P, P;.,, ... and new convex domains
w3, 0y, ..., where each convex domain is contained in the preceeding
one. All the vertices P;,,, P;.5, ... are in the interior of w. After a

finite number of steps we reach the vertex P, , =P, which is, however,
lying on the boundary of w. Hence we have the desired contradiction.

We then turn to the case where @, is a point on the prolongation of
the side P,P, (fig. 2b). Since the polygon =z, is assumed to have the
order 3, the vertex P, ; cannot be a point of the finite segment P,Q;,
and consequently this segment is contained in the side P,P,,,. If we
again use that the sides of the polygon are convex and that the polygon
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7 has no double point, we find, exactly as above, that the sides P,P;,
p.P,,P,P, ... form a spiral-shaped open polygon for which the
vertices P, P,,_;, - .. are placed in the convex domain bounded by the
polygon @,P, ... P,_P;Q,. But since the vertex P, is situated outside
this domain, we have again obtained a contradiction.

Hence we have proved that the polygon 7 is of order 2, that is in the
affine plane x is a convex polygon.

It may be noted that in the above proof we have applied properties
of convex polygons in the affine plane. Kivikoski, in his proof, uses purely
projective methods only.
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BOKMELDINGER

Fr. CHR. HOLB. ARENTZ : Undersogning hvorledes man paa korteste Maade
kan oplose saadanne Aquationer, som indeholde flere eller mange ube-
kiendte Storrelser tillige. Faksimileutgave av avhandling forst trykt i
»Nye Samling af det Kongelige Norske Videnskabers Selskabs Skrifter«,
Andet Bind, Kigbenhavn 1788, s.251-286. Trykt i 500 nummererte eksem-
plarer. Norges Tekniske Hggskole, Hovedbiblioteket, Trondheim 1961.
N.kr. 17.00.

(Innholdsfortegnelse i NMT, denne argang, s. 89.)

I den rekke av faksimileutgaver som i de senere ar er blitt utgitt av
Hovedbiblioteket pa NTH, er ni ogsa tatt med Arentz’ avhandling om
lgsning av linesre ligningssystemer ved hjelp av determinanter. Det er
fortjenstfullt av hovedbibliotekar Thalberg at han pa denne maten
frisker opp erindringen om det eldste norske matematiske arbeide av
noen betydning.

Vi taler i vare dager om den Cramerske metode. Cramers store verk,
Introduction a I’ Analyse des Lignes courbes algébriques, kom i 1750. Det
er pa en 650 sider i kvartformat, men den lgsningsmetode som har gjort
forfatterens navn bergmt, star i et tillegg til boken og opptar bare 3
sider. Arentz, som fikk sitt arbeide trykt 38 ar senere, har dpenbart ikke
kjent hverken Cramers verk eller de bidrag til utvikling av lignings-
teoriene og determinantbegrepet som i mellomtiden var kommet fra
Bézout, Vandermonde, Laplace og Lagrange. Det minner oss om hvor
isolert en vitenskapsmann pa vare breddegrader den gang arbeidet,
og Arentz var jo heller ikke bare matematiker: han var fysiker, filosof
og teolog foruten at han var skolemann.

Prioriteten til determinantbegrepet har som bekjent Leibniz, etter at
man i midten av forrige arhundre oppdaget hans brevveksling med de
I'Hospital. De 'Hospital forstar ikke hva Leibniz mener, nar han hevder
at han kan regne like generelt med tall som med bokstaver, og i det
eksempel Leibniz velger til forklaring, skriver han hver koeffisient bare
som et par indekser: istedenfor f.eks. a,; setter han simpelthen 11.
Arentz bruker ett indeksnummer og plaserer det rett under bokstavet.
Det er sannsynlig at han har fatt idéen til denne skrivematen ved de
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underlige hukommelsesregler han laget for & hjelpe elevene til & huske
arstall.

Arentz forsynte sitt arbeide til slutt med en tabell hvor samtlige ledd
i en determinant til og med 6te orden er oppfert. Lar man blikket lgpe
over de 720 leddene i den siste, far man en sterk felelse av hvor genial
den er den maten vi idag kan skrive en determinant pa. Men den kom
forst i 1841. Det var, mirabile dictu, den 20-arige Cayley som lanserte den
i sitt forste arbeide, On a theorem in the geometry of position.

Ole Peder Arvesen

ANDREAS DIEMER: Das Wesen der automatisierten elektronischen Daten-
verarbeitung und thre Bedeutung fir die Unternehmensleitung. Walter
de Gruyter & Co, Berlin 1962. 240 S., 76 Fig. DM 28.00.

(Innholdsfortegnelse i NMT, denne argang, s. 90.)

Dette er en bok som etter forfatterens mening skal behandle »alle
Fragen (i forbindelse med anvendelse av elektroniske regnemaskiner i
bedriftsledelse) in moglichst eingehender und umfassender Weise« (s. 6),
og han har tenkt & klare dette pa under 240 sider! I s& mate er boken
sveert mislykket.

Boken er riktignok bade inngdende og omfattende, men pd emner som
jeg antar er av liten eller ingen interesse for folk som gnsker en rede-
gjorelse for hva elektroniske regnemaskiner er, og hvordan de kan be-
nyttes som et hjelpemiddel i bedriftsledelse. Forfatteren anser det ngd-
vendig blant annet & forklare hvordan radiorer (s. 29 ff.) og halvledere
(s. 47 ff.) virker og hva hystereseslgyfer er (s. 60 ff.). Til dette bruker han
nesten 50 sider. Det er ikke realistisk & tro at folk med handelsutdannelse
vil ha noe glede av denne delen av boken, og andre som har bedre grunn-
lag og har interesse for disse tekniske aspektene, vil finne det bedre be-
skrevet i mange andre bgker som bare beskjeftiger seg med denne delen
av regnemaskinteknikken. Det tilsvarende argument gjelder ogsd for
den delen av boken (ca. 70 sider) som behandler elektroniske regnema-
skiners logiske oppbygning.

Nar forfatteren annonserer et kapitel med overskriften »Die matema-
tischen Grundlagen«, er man naturlig nok interessert i & se hva dette
métte inneholde. Men nar han som undertitel har »Die Bedeutung der
Zahlensysteme fiir die automatisierte elektronische Datenverarbeitungg,
blir en jo med en gang skeptisk. Kapitlet inneholder en oversikt over
forskjellige mater & realisere det desimale tallsystem pi i en elektronisk
regnemaskin der man bare har bistabile elementer. Man far her et godt
overblikk over de metoder som kommer til anvendelse, og forfatteren
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angir ogsd maskiner hvor de forskjellige systemene brukes. Inntrykket
en likevel sitter igjen med, er at det er altfor teknisk betont for den
leserkrets som boken er beregnet pé.

Bokens siste kapitel, »Das Verfahren der automatisierten elektroni-
schen Datenverarbeitung als Mittel zur Ordnung und Bestimmung der
betriebswirtschaftlichen Prozesse«, inneholder i grunnen noe av det man
venter seg av boken nir man ser titelen. Kapitlet gir da ogsi sd vidt
jeg kan bedemme en god analyse av de prosesser som opptrer i bedrifter,
og peker nok inn i fremtiden med hensyn til hvordan elektroniske regne-
maskiner etter hvert ber komme til anvendelse pa det omradet.

Etter & ha lest boken sitter en igjen med det inntrykk at titelen s& langt
fra er dekkende for innholdet og at innholdet i alt vesentlig er delt i to
deler: en teknisk del som er detaljert, og en databehandlingsdel som
riktignok er fremsynt, men som sé langtfra anviser noen konkrete meto-
der for anvendelse av elektroniske regnemaskiner i bedriftsledelse.

Boken vil kanskje interessere den ytterst engere krets av personer som
allerede er vel fortrolig med anvendelsen av databehandlingsmaskiner,
og som gnsker litt mer forstaelse av det tekniske grunnlaget, men disse
vil nok med letthet finne det like godt beskrevet i allerede eksisterende
bgker.

Anmeldelsen er skrevet ut fra norske forhold med et godt utvalg i
litteratur pa engelsk. Hvorvidt boken skulle ha sterre berettigelse i
Tyskland er det vanskelig & ha noen formening om.

Torstein Kristiansen

Y~avE Domar: Matematik for 1 betyg. Algebra och geometri I-II.
(NKI-skolans akademiska kurser.) NKI-skolan, Stockholm 1961. Band I
170 s. Band II 213 s.

(Innholdsfortegnelse i NMT 9 (1961), s. 182.)

Boken ingar som en del i en korrespondenskurs for ett betyg i mate-
matik. Forfattaren forutsitter, att lisaren har kunskaper, som svarar mot
matematikkursen pa realgymnasiets biologiska gren, eller har goda
kunskaper fran allméinna linjens sociala gren.

Boken ir indelad i nio brev, varav huvuddelen, brev 3-8, dgnas at
geometri och lineédr algebra.

Geometrin i tva och tre dimensioner uppbyggs axiomatiskt utifrdn
de reella talen. Salunda definieras i ett tredimensionellt rum punkter som
ordnade taltripplar, plan som méngden av alla punkter (z,y,z), vilka
satisfierar en ekvation Ax+ By+Cz+ D=0, dir (4,B,0)+(0,0,0), och
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linje som skidrningen mellan tvé icke parallella plan. Skirningen mellan
tvé respektive tre plan, mellan linje och plan samt mellan tva linjer
diskuteras ingdende. Determinanter av ordningen tvé och tre definieras,
och ekvationssystem med tva och tre obekanta behandlas. Ett par sidor
dgnas 4t en konkret illustration av begreppet tredimensionellt rum.

Sista hilften av brev 4 behandlar affina avbildningar fran ett tredimen-
sionellt rum till ett annat. Dessa avbildningar definieras syntetiskt, och
koordinatframstéllningen hérleds. Detta avsnitt, som ocksd innehaller
en diskussion av begreppet affin geometri, dr littlist men kunde ha
berikats med nagra fler figurer och exempel. I brev 5 fortsitter studiet
av affina avbildningar. Det visas, att det finns exakt en affin avbildning,
vilken avbildar fyra givna punkter, som inte ligger i ett plan, pa fyra
givna punkter, som inte ligger i ett plan. De speciella affina avbildnin-
garna translationer och likstéllighetsavbildningar studeras. Satsen att
begreppet translation ér invariant vid en affin avbildning kunde man ha
undvarit. I detta brev finns ocksé en utredning om majligheten att vilja
andra koordinatrepresentationer i rummet &n den fran borjan givna och
en hirledning av sambandet mellan koordinaterna i olika koordinat-
system. Hjalpmedlet dr hir de affina avbildningarna. Framstéllningen éir
pé& denna punkt ganska summarisk och fattig p4 exempel. Brevet avslutas
med inférandet av vektorbegreppet. En vektor definieras som samman-
fattningen av alla ordnade punktpar, som kan overforas i varandra
genom en translation. Dérefter definieras addition av vektorer och
multiplikation med reellt tal och visas riknelagarna for dessa operationer.
Hér finns ockséd en uttommande diskussion av den geometriska inne-
borden av begreppet lineéirt beroende for tva, tre och fler én tre vektorer.

De tvé foljande breven, som égnas at euklidisk geometri i tva och tre
dimensioner, dr innehallsrika och framstéllningen 4r med ett par undantag
utforlig och lattlist. Undantagen ér behandlingen av koordinatbyte
mellan ortonormerade system och kongruensavbildningar. Koordinat-
framstéllningen av de senare saknas.

Brev 1 och 2 behandlar enkla egenskaper hos olika talomraden (in-
klusive de komplexa talen), kombinatorik, talteori, polynom samt
matematisk logik och bevismetoder. Man glids hér sirskilt 4t det sist
nidmnda avsnittet, som innehaller ett flertal instruktiva exempel och
ovningsuppgifter.

Bokens sista brev innehéller vissa avsnitt ur analyskursen for ett
betyg. Hér forekommer bl.a. ett antal formler for uppskattning av felet
vid vissa approximativa beridkningar av bestimda integraler. Formlerna
bevisas ej och »behover inte liras in utantille. Deras existensberittigande
i en bok som denna synes dirfor vara litet. Enligt recensentens mening
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kunde de med fordel ha ersatts med en utforlig behandling av metoden
med rektangeluppskattningar, som inte ens omndmns.

Om boken i sin helhet kan sigas, att den &r vildisponerad, att exempel
och ovningsuppgifter i anslutning till texten i allmédnhet dr vilvalda men
ofta for fa4 och att repetitionsfragorna i slutet av varje brev bor kunna
fylla sin uppgift vil. Med hinsyn till de férhallandevis ringa foérkun-
skaper, som forfattaren forutsitter hos sina ldsare, kan det ifragasittas,
om inte framstéllningen borde ha varit utforligare pa en del punkter

och betriffande geometrin mindre abstrakt. Kjell Bjorup

JouN G. Hocring — GAIL S. Youna: Topology. Addison-Wesley Publ.
Co., Reading (Mass.), London 1962. 9+ 374 pp. §8.75.

(Innholdsfortegnelse i NMT, dette hefte, s. 157.)

Som det fremgér av innholdsfortegnelsen er forste halvdel generell
(mengdeteoretisk) topologi, mens siste halvdel er algebraisk topologi.
Det har tydelig vert forfatterne mye om & gjore & fa frem de geometriske
aspekter ved topologien. Dette har befridd fremstillingen for den tunge
formalisme som ofte er knyttet til denne matematiske disiplin. Bevisene
er ikke farst og fremst korte og »elegante«, men heller direkte og natur-
lige. Boken er ogsa rikt illustrert med interessante eksempler fra geometri
og analyse. En spesiell kvalitet ved fremstillingen er at denne ved flere
emner fgrer studentene frem til nyere resultater. Dette skjer naturligvis
ved at de mest avanserte satsene bare annonseres og forklares, men sam-
tidig gir forfatterne opplysning om hvor resultatene finnes, nar de ble
funnet og av hvem.

Dyptliggende satser i matematikken bevises ofte pa nye méater etter at
resultatene avklares. Dette har forfatterne tatt konsekvensen av, og flere
viktige emner (eksempelvis Cech-homologiteori) blir tatt opp igjen med
nyere metoder etter at de forst er behandlet og motivert ad »historisk« veg.

Om det rent faglige innholdet kan en gjore seg flere refleksjoner.
Boken gir en serlig klar og konsis fremstilling av de forskjellige typer
av sammenheng et topologisk rom kan ha og relasjoner mellom disse.
Avsnittene om kompakthet er korte, men meget gode. Generelle uniforme
strukturer er derimot bare s& vidt nevnt. Forfatterne henviser her til
Kelly’s lerebok. Den algebraiske topologien utvikles greitt etter standard-
metoder. Beregning av homologigrupper ved insidensmatriser er praktisk
talt ikke bergrt. Istedet blir homologigruppene bestemt ved rent gruppe-
teoretiske metoder, hvilket gir resultatene meget raskt og med lite
arbeide men til gjengjeld krever en del kunnskaper i gruppeteori. En
ratitet ved emneutvalget er for gvrig at den singulere homologiteorien
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er utelatt til fordel for Cech-teorien. Ved en innfering i algebraisk topologi
ville det vel kanskje veere mer naturlig (og nyttig) & studere den singulzre

teorien.
eotient Per Holm

RoBERT ScHATTEN: Norm ideals of completely continuous operators.
(Ergebnisse der Mathematik und ihrer Grenzgebiete 27.) Springer-Verlag,
Berlin, Gottingen, Heidelberg 1960. 8 +81 S. DM 23.60.

(Innholdsfortegnelse i NMT 9 (1961), s. 84.)

Fredholms teori for integrallikninger er blitt generalisert pa flere for-
skjellige méter. En av de forste, og vel den mest vellykte, er teorien til
Riesz for kompakte operatorer. Men noe tilsvarende Fredholms determi-
nant fir en ikke frem i denne teorien. Forst i de siste ti ar er en blitt
klar over hvilke kompakte operatorer det er som har en Fredholm-
determinant. Forfatteren av den foreliggende monografi har ved en
rekke avhandlinger ytet et betydelig bidrag til denne klargjerings-
prosess. Hans viktigste resultater blir her fremstilt p4 en meget klar og
tilgjengelig form. Av forutsetninger trengs i det vesentlige bare elementeer
Hilbertromsteori.

La z, y, z veere elementer i et Hilbertrom. Da betegnes avbildningen
z >z, ypx med z® j. Forste hovedresultat er at en begrenset operator
A er kompakt hvis og bare hvis 4= Y1z, ® §,, hvor 1, er positive tall.
Hvis X2, < oo, sa sies 4 & here til trase-klassen og 24, kalles trase-normen.
Trase-klassen, og dens analoge for et vilkarlig Banachrom, er nettopp
den klassen hvor det har lyktes & utvikle en Fredholmsk determinant-
teori. Forfatteren behandler ikke dette, men han viser at trase-klassen
kan identifiseres med det konjugerte til rommet av alle kompakte opera-
torer, og videre at det konjugerte av traseklassen kan identifiseres med
rommet av alle begrensete operatorer. Trase-klassen er et eksempel pa
et norm-ideal. Med dette menes et ideal I i rommet av de begrensete
operatorene, slik at det over I er definert en norm « som gjor I komplett
og er slik at x(x @)= lx|/|ly|l.

Siste kapitel er viet til en karakterisering av alle de minimale norm-
idealene. Det vesentligste hjelpemidlet her er folgende sats: Hvis 4, B,
U,V er (n,n) matriser, s& vil maksimum av realdelen til trasen av
produktet AUBYV, nar U og V gjennomleper alle unitare matriser, veere
produktsummen av egenverdiene til (44')/2 og (BB')Y2. Otte Hustad

A. P.Seriser: Digitale Rechenanlagen. Grundlagen, Schaltungstech-
nik, Arbeitsweise, Betriebssicherheit. Springer-Verlag, Berlin, Gottingen,
Heidelberg 1961. 16 +432 S., 301 Fig. Ganzleinen DM 69.00.
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(Innholdsfortegnelse i NMT, denne &rgang, s. 93.)

Dr. A. P. Speiser’s verk 4r en utmirkt oversikt over dagens teknik
inom omradet elektronisk databehandling. Boken vinder sig till data-
maskinkonstruktoren och torde vara av foga intresse for anvindaren —
matematikern, systemmannen, programmeraren. Savil nyborjaren som
den i tekniken bevandrade kan ha utbyte av materialet. Forfattaren
nojer sig nimligen inte enbart med att presentera olika kretsar och
EDB-komponenter utan omnéimner dven sidana speciella kretstekniska
problem, som konstruktéren kan stota pa vid anvindningen av kretsen
eller komponenten i fraga (t.ex strokapacitansers och ledningsinduktan-
sers inverkan pa pulsformen).

Efter ett inledande kapitel om binira talsystemet, logisk algebra,
logiska symboler, en datamaskins uppbyggnad i stort och dess program-
mering far lisaren folja tekniken alltifrén olika kretselement och krets-
typer till datamaskinenheter, sddana som minnen och in-utorgan och
direfter mota organisatoriska synpunkter pa utformningen av olika data-
system. Hirvid &r det betecknande att forfattaren ej beskriver teknikens
historia utan helt #gnar sig 4t att skildra nuliget och dérvid limnar
storsta utrymmet it dagens visentligaste tekniska konstruktioner. I
kapitlet om minnen finner man saledes ingen redogorelse for »utdoda
minnestyper« sasom t.ex. Williamsroret utan far i stillet i tur och
ordning 31 sidor om kdrnminnen, 23 sidor om trumminnen, 2 sidor om
skivminnen, 2 sidor om fordrojningsminnen och till slut 11 sidor med
minnestyper under utveckling (tunna filmer, twistorer, tunneldioder
m.fl.).

Enligt anmilaren behandlas alltfér kort olika in- och utorgan trots
att Speiser inleder detta kapitel med att papeka att »konstruktionen och
utvecklingen av in- och utorganen fordrar mer erfarenhet och lingre
tid &n byggandet av elektroniska kretsar«. En bittre balans mellan de
perifera organens problem och centralenhetens hade darfor varit onsk-
vird. Aven avsnittet om datasystemens organisation dr summariskt
hallet. Man hade vintat sig en nagot utférligare behandling av olika
applikationers krav pa systemens uppbyggnad. De ofta mycket avan-
cerade problemen med simultant arbetande maskinenheter har hittills
relativt sparsamt forekommit i litteraturen. De far ej heller hir nagon
storre plats.

Trots detta #ir Speisers bok en utmirkt konstruktérshandbok — inte
minst genom rikligt med illustrationer och litteraturanvisningar. Ca 300
hénvisningar till bocker och tidskriftsartiklar limnas.

Gunnar Wahlstrom

NMT, Hefte 3, 1962. — 11
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K. Autwick: Logarithms. (The Commonwealth and International
Library of Science, Technology and Engineering, Mathematics Division,
vol. 3.) Pergamon Press, Oxford, London, New York, Paris 1962. 13+
102 pp. sh. 8/6, § 1.75.

Introduction 1-2 * Method 1. Multiplication and division involving numbers
between 1 and 10 3-24 * Method 2. Multiplication and division involving numbers
between 1 and 10 — using indices 25-37 * Multiplication and division involving
numbers greater than 10 39-48 * Multiplication and division involving numbers
less than unity 49-68 * Powers and roots—both methods 69-78 * Miscellaneous
examples 79-81 * Answers 83-96 * Tables 99-102.
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New York, London 1962. 13+ 276 pp. sh. 60/—.
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Partial differential equations. Interscience Publ., New York, London
1962. 22+ 830 pp. sh. 120/-.
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of first order 62-153 * Differential equations of higher order 154-239 % Potential
theory and elliptic differential equations 240-406 * Hyperbolic differential equa-
tions in two independent variables 407-550 * Hyperbolic differential equations in
more than two independent variables 551-676 * Representation of solutions 676—
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Index 819-830.

V. A. Ditkin — A. P. Prudnikov: Operational calculus in two variables
and its applications. (International series of monographs in pure and
applied mathematics.) Translated from Russian by D. M. G. Wishart.
Pergamon Press, Oxford, London, New York, Paris 1962. 10+ 167 pp.
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The two-dimensional Laplace transform 3-38 * Basic definitions and theorems
of the operational calculus in two variables and its applications 39-78 * Tables of
formulae 81-162 * References 163-167.

Bernhard Epstein: Partial differential equations. An introduction.
(International series in pure and applied mathematics.) McGraw-Hill
Book Co., New York, Toronto, London 1962. 10+273 pp. sh. 74/-.

Terminology and basic theorems ix-x * Some preliminary topics 1-27 * Partial
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John Wiley & Sons, New York, London 1962. 12 + 455 pp. sh. 51/-.

Sets and functions 1-25 * The rational number system 26-54 * The real number
system. The distance formula, the equations of a circle 55-75 = Trigonometric
functions of numbers 76-111 = Trigonometric functions of angles 112-143 * Alge-
braic expressions. Operations with polynomials 144-167 * Elementary factoring of
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The finite Fourier series 67—78 * Introduction to polynomial approximations 81-90
* Polynomial interpolation — arbitrarily spaced data 91-108 x Polynomial inter-
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integrals 153-164 * Indefinite integrals 165-182 * Introduction to differential
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tion 338-342 * Singularities 343—-347 % Algorithms and heuristics 351-359 * Simul-
taneous linear algebraic equations 360-365 * Inversion of matrices and eigenvalues
366-369 * Some examples of the simulation of situations and processes 370-382 *
Random numbers and Monte Carlo methods 383-393 * The art of computing for
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(Anmeldt i NMT, dette hefte, s. 151-152.)
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OPPGAVER TIL LYSNING

Professor R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo, har igjen
overtatt som oppgaveredaktor. Losninger av oppgavene 226-229 sendes til ham.
Slike lgsninger vil bli trykt i et folgende hefte i den utstrekning plassen tillater,
dog vanligvis bare den beste lesning av hver oppgave. Lesninger av oppgaver i
dette hefte m4, for 4 komme med i Bind 11, hefte 1, veere sendt innen 15. desem-
ber 1962.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes
til oppgaveredakteren, helst sammen med forslagsstillerens egen lgsning.

226. Givet i planen to linier @ og b samt eet punkt P udenfor disse.

a) Konstruer igennem P to pa hinanden vinkelrette linier, hvis skea-
ringspunkter M og N med a og b er siledes beliggende at PM =PN.

b) Bestem beliggenheden af punktet P pa en given ret linie C, nar
PM =PN skal vere minimum eller maximum (PM 1 PN).

Helge Harboe

227. En sats formodet av Fatou og bevist av Hurwitz og Polya (Acta
Math. 40, s. 179-83) sier: Er konvergensradien for X°° a2 lik 1, fins der
en folge av reelle tall ¢y,¢;,...,¢,,...,¢,2=1, slik at 2e,a,2" ikke kan
fortsettes ut over |z| = 1. Beviset er et rent eksistensbevis (ikke konstruk-
tivt). Problemet er na: Bestem en fglge som nevnt for det tilfellet at

. 2
2a,z* er Maclaurinrekken for f(z)= ——.
1-2
Helge Tverberg

228. La R bety klassen av alle funksjoner w(z), regulere og med posi-
tiv realdel i |z| < 1. La videre Ry og R, bety de delklasser av R som er
karakterisert ved at henholdsvis w(0) er reell og at |w(0)|=1.

Bestem i Rz og R, best mulige universelle (d. v. s. gyldige i hele %,
resp. R,) skrankeomrader for w(z), uttrykt ved |z|.

Haakon Waadeland

229, Find summen af reekken

g 1
nz:/: n(4n+1) Per W. Karlsson

[160]
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230. Rekken J'f(x") konvergerer uniformt i omradet av alle tall.
Bestem f(z). ™!

LUSNINGER

215. Vis, at hvis to talfelger {a,} og {b,} for alle n tilfredsstiller
Api1 = alan+b1bn og bn+1 = albn+b1an s
sd gelder for £=2,3, ...

i = aka’n-i'bkbn og bn+k = akbn'l'blcan .
Ove J. Munch

Losning: Antages péastanden at veere rigtig for ethvert n og k=p,

bliver
Apip+1 = a’l(a'pa’n + bpbn) + bl(a’pbn + bpa’n)

= (a’lap + blbp)a'n + (a’lbp + bla’p)bn = p+lan + bp +1bn .
P4 tilsvarende méde er
by, +p+1 = Op +1bn + bp +1% >

altsa er pastanden gyldig for k=p+1.
Da betingelsen imidlertid netop udsiger, at pastanden er gyldig for
vilkarligt n og k=1, er den ogsa gyldig for k=2,3, ....

Bernhard Andersen

Oppgaven er ogsd lest av Per Roar Andenws, Istvan Beck, C.Bengtsson,
Christian Berg, L. Carlitz, P. W. Karlsson, P.Kjeldaas, L. Lindskog, Andrzej
Makowski, A. Mikkelsen, Torsten Strom, Steffen Strebaek, B. Textorius og B. Tho-
roddsen.

218. I mange elementare lereboger i talteori stilles den opgave at

bevise, at
(2a)!(2D)!

alb!(a+b)!

er et helt tal. Bevis, at det endog er et lige tal.
Anders Bager

Losning: Den i n! ingdende potensen av 2 dr 2*» dar

B
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Den i (2n)! ingdende potensen av 2 dr 2"t ty

2n +[2n + 2n + +
—_— —_— — e =N .
[2] 4] [8] n

Den i (2n)!/n! ingdende potensen av 2 ar alltsi exakt 27, och vi kan

skriva
(2a)! (26)! 1 9. 90

Al Bl @b @l
dir @ ar et udda tal.

Att uttrycket &r ett jdmnt heltal kommer av att (a+0b)! innehaller
en potens av 2 som #r hogst 22+0-1,

Ake Kjellstrom

Utsagnet i siste avsnitt ser man lettest slik:

ERATENE R

Red. anm.

Oppgaven er ogsd lest av N. E. Andersen, J. Anderson, Gunnbjerg Gismarvik,
J. Hilden, Steffen Strebsek og Torsten Strom.

RESULTAT AF PRISOPGAVER FOR DANSKE GYMNASIASTER
(Opgaverne i NMT 9 (1961), s. 186-187.)

Der indkom 41 besvarelser. Den udsatte preemie kr. 150 blev tildelt Jorgen
Tornehave, III mn Virum Statsskole. To ekstrapremier pad hver kr. 100 blev til-
delt Erik Pedersen, III mn Abenra Statsskole og Bent Slot, I mn Vestre Borger-
dydskole. Bogpramier tildeltes Karin Beyer, III mn Virum Statsskole, Finn
Folkmann, ITI mn Lyngby Statsskole, Arne Mikkelsen, III mn Kolding Gymnasium,
Flemming Baekgaard Pedersen, IT mn Vejle Gymnasium og Gregers Koch, IIT mn
Ostre Borgerdydskole.

RESULTAT AV PRISOPPGAVER FOR NORSKE GYMNASIASTER
(Oppgavene i NMT 8 (1960), s. 195-196. Smlgn. NMT 9 (1961), s. 188.)

I konkurransen var det 7 deltakere. H.K.H. Kronprinsens premie kr. 200 for
beste besvarelse ble tildelt Byrge Birkeland, elev av 4 Rg., Arendal off. hegre
allmennskole.



EKSAMENSOPPGAVER

Nedenfor fglger matematikkoppgavene til studenteksamen varen 1962 pa de
matematiske gymnasielinjer i de nordiske land.

DANMARK
Matematik I.
1. Les ligningen
sinx —cosz = 4 sinx cos?x .

2. Underseg og tegn kurven
y=(@x-2V5-z.

Tangenten til kurven i punktet (2,0) begrenser sammen med kurven og y-aksen
en lukket figur. Beregn denne figurs areal.

Beregn endvidere rumfanget af det legeme, der fremkommer, nir den nevnte
figur drejes 360° om xz-aksen.

3. En omdrejningskegle, hvis grundflades radius er », har hejden 'rV3. Grund-
fladens centrum kaldes O, og keglens toppunkt kaldes 7T'. 4 og B er to punkter pa
grundfladens periferi saledes beliggende, at vinkel A0B =120°.

Find vinkel ATB.

Midtpunktet af sidelinien 74 kaldes M. Find lengden af BM samt vinklen
mellem linierne BM og OT.

Igennem M legges en plan, som skeerer keglefladen i en parabel med toppunkt
i M. Bestem afstanden mellem parablens brendpunkt og toppunlks.

Matematik I1I.

1. I femkant ABCDE er de tre sider AB, AE og BC alle lig med 4,268, og de
fire vinkler 4, B, C og D er alle lig med 105°,58.
Beregn siderne CD og DE.

2. Angiv de reelle veerdier af @, for hvilke

x
1=

x—1

3. Bevis, at for enhver fast veerdi af v i intervallet 0 <v <z er

x
Y

4(¢2 +¢ cosw)
4t sinv

I

(— o0 <t <o0)

en parameterfremstilling for en parabel.

[163]
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Find koordinaterne til parablens brendpunkt F udtrykt ved v.
Bestem det geometriske sted for F, nir v gennemlgber intervallet 0 <v <.

FINLAND

Lingre kursen.

1. En person har képt 100 aktier & 2500 mk/st. i ett visst bolag. D& dettas
aktiekapital hojdes, utdelades gratis &t aktiondirerna en ny aktie pa fem gamla,
varjémte nya aktier utbjods till inlésen fér 3000 mk/st. Huru manga nya aktier
— utdver de gratis utdelade — boér ndmnda person inlésa foér att pa sin totala
penningplacering erhalla rénta enligt samma procent som férut, férutsatt att
dividenden per aktie férblir oféréindrad ?

2. Den femte termen i en o#indlig konvergent geometrisk serie &r 2. Seriens
forsta, andra och fjarde term bildar, i ndémnd ordning, en aritmetisk serie. Berikna
den geometriska seriens summa.

3. For vilka vérden pa x ar
-2 1

x—3 xz—1

?

4. Bevisa att samtliga parabler y =22 — 2ma +m — 1, oberoende av virdet p& m,
gar genom samma punkt. Vilka &r denna punkts koordinater ? Rita de kurvor,
som svarar mot virdena m =0 och m=1.

5. Bevisa att om z; dr en rot till ekvationen

g +a 2”1+ ... +a, =0,

s& dr ekvationens vinstra membrum divisibelt med z —a;,.

6. Hornen i en liksidig triangel ABC forenas med en godtycklig punkt P pa
bégen AC av den omskrivna cirkeln. Visa att PB=PA + PC.

7. Med mittpunkten av strickan AB som medelpunkt uppritas en godtycklig
cirkel. M& P vara en punkt p& dennas periferi. Visa att PA2 +PB? dr oberoende av
P:s ldage.

8. Av en given cirkel utskéires en sektor, och denna vecklas till mantelyta for
en kon. Vilken skall sektorns centrivinkel vara, f6r att konens volym skall bli s&
stor som méjligt ? Angiv resultatet med en minuts noggrannhet.

9. I en spetsvinklig triangel ABC dras héjdlinjerna AD och BE, och deras
fotpunkter D och E sammanbindes. Visa att DE delar triangeln i en fyrhérning
och en triangel, vilkas areor férhaller sig som tg2C:1.

10. Bestédm pé cirkelperiferin x2 +y2 + 22 — 4y =4 den punkt, i vilken funktionen
‘#? +y? uppndr sitt minsta virde. Beridkna detta.
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ISLAND
1.

1. A(—a,0) og B(0,b) er to punkter pé ellipsen
b2x2 +a2y2 p— a2b2 .

C er skeringspunktet mellem ellipsens tangenter i 4 og B. E(x;,y,) er et punkt
pa ellipsen i forste kvadrant. O er koordinatsystemets begyndelsespunkt. En
ret linie gennem E parallel med X-aksen skeerer liniestykket OC i H. En linie gen-
nem H vinkelret p4 AB skerer y-aksen i N.

a) Beregn koordinaterne for H og N udtrykt ved y,, @ og b.

b) Pavis, at NE er ellipsens normal i K.

¢) Angiv det liniestykke pa y-aksen, langs hvilket N bevaeger sig, nir E gen-
nemlgber ellipsens 1. kvadrant.

d) Udtryk arealet af trekanten EHN ved z, og y, (foruden a og b) og ligeledes
ved v i den sedvanlige parameterfremstilling for ellipsen.

e) Find den storste verdi, som dette areal kan antage.

2. Undersog kurven y=3sin%z +3sinz—J i intervallet 0 <z =2n.

a) Find kurvens skeringspunkter med akserne.

b) Find de punkter p4 kurven, hvor tangenterne er vandrette.

c) Tegn kurven.

d) Beregn arealet af det omrade, der begrenses af x-aksen og kurven og ligger
over z-aksen.

3. En halvkugle og en ret kegle star pa en felles grundflade, som har radius 7.
(Halvkuglens storcirkel er ogsd keglens grundcirkel.) Kuglefladen skarer kegle-
fladen i hgjden }r over grundfladen. Beregn rumfanget af det omrade, som ligger

a) indenfor keglen og udenfor halvkuglen,

b) udenfor keglen og indenfor halvkuglen.

II.

1. En kaptajn befinder sig pa sit skib nogle f& mil fra land. Det er morkt, men
kaptajnen ser to lys pa land. For at kunne bestemme, hvor langt fra land han be-
finder sig, tager kaptajnen sigte p&4 de to lys. Vinklen mellem sigtelinierne er 56°.
Derpé sejler han 1 mil i retning mod B og méler vinklen. Dennegang er den 58°.
Kaptajnen sejler atter en mils vej, men med kurs mod 4, hvorefter han méler
vinklen tredje gang. Den er nu 60°. P4 grundlag af disse mélinger beregner kap-
tajnen afstanden 4B og hvor langt fra linien AB skibet befinder sig, nar den sidste
maling foretages.

Tegn en figur, hvor skibets position betegnes ved F, M og S. Beregn afstanden
AB og afstanden fra S til linien 4B.

2. Givet ligningen

-t +x—-1=0.

a) Los ligningen. De ikke reelle radder skal skrives pa formen a +ib og ligeledes
udtrykt ved r og v.
b) Tegn en figur, som viser reddernes beliggenhed i koordinatsystemet.
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c) Opleft de ikke reelle rodder til 4. potens og beregn summen af resultaterne.
d) Redderne i den givne ligning tillige med ovennzvnte 4. potenser er redder
i en ny ligning af hejere grad. Skriv denne ligning pé den simplest mulige form.

3. Undersgg funktionerne
4
y=a?)l—-z og y=zall-=x.

a) Angiv definitionsomrédet for de to funktioner.

b) Skriv ligningerne for tangenterne i (0,0) og (1,0).

¢) Find maxima og minima.

d) Tegn kurverne.

e) Beregn arealet af det omrade, som kurverne begraenser i intervallet 0 <z <1.

NORGE
Reallinjen.

L. I en kule med radius R er det innskrevet en rett sylinder. Kall hoyden i
sylinderen 2z og finn volumet av sylinderen uttrykt ved R og .

Vis at volumet er storst for en viss verdi av z. Finn denne storste verdien og
den tilsvarende verdien av z.

Formelen for volumet av et kulesegment er 7wh*(R —1h), der R er kuleradien
og h er hoyden i segmentet. Bruk denne formelen til &4 finne volumet av det ring-
formede legemet som ligger mellom kuleflaten og sylinderflaten i det tilfelle at
sylinderen har sitt sterste volum.

Den oppgitte formelen for volumet av et kulesegment kan vi1 finne ved & regne
ut et bestemt integral. Skriv opp dette integralet og utfor integrasjonen.

1

1+ Vgtgw
der z er en vinkel mellom 0° og 360°. Hvilke verdier kan « ikke ha i dette omradet ?
Hyvilke verdier av # i omradet er det som gir en konvergent geometrisk rekke ?

2. T en geometrisk rekke er forste ledd a, = V3 sinz og kvotienten k =

Vis at summen av den konvergente rekken blir s=cosz + Vgsinx.
Lag en skisse av s som funksjon av z. Trekk opp kurven med hel strek der
s er summen av den konvergente rekken, og prikk resten.

3. Punktet 4(a,0) er gitt. Hva blir likningen for en rett linje gjennom A med
vinkelkoeffisient % ? Denne linjen skjwrer den rette linjen =2 i punktet P. Hva
blir koordinatene til P ?

Trekk en rett linje gjennom origo og P, og en ny rett linje gjennom A med
vinkelkoeffisient 1/k. Skjaringspunktet mellom disse to linjene kaller vi S. Nar
k varierer, folger S en kurve. Vis at denne kurven far likningen

(@a—2)z%+2y2 —a(@a—2)z = 0.

Gjor kort greie for hvordan denne likningen skifter geometrisk betydning nar
vilar 4 flytte seg pd z-aksen. Nevn bare arten av kurver. Gjor swerskilt greie for
det tilfellet at A ligger i origo.

Vis at det gar to kurver gjennom punktet (2, 4). Bestem akser og sentrum for
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begge kurvene og tegn dem inn pa millimeterpapiret. Velg 1 em som enhet pé
begge aksene.

Undersek til slutt om det gir noen kurve gjennom punktet (—2, 4).

SVERIGE
Matematiska grenen.

1. I funktionen y =a-e%sin (2 +b) &r a och b konstanter. Visa, att denna funk-

42
tion, oberoende av a och b, satisfierar differentialekvationen %—2 2y + 5y =0.
x

de®
Det forutsittes bekant, att —d—=e$.
w

2. Berikna ytan av det omrade i planet, som begrénsas av z-axeln, kurvan
y=x-p, diir p &r ett tal >1, samt de riita linjerna o =1 och z=a>1. Visa éven,
att ytan har ett grénsvirde, dd a — oo, och bestam detta.

3. Visa, att konstanten k kan bestimmas sd, att formeln 1+2.10+3-10%+
4.103+ ... +n-107-1 =k[(9n —1). 107 + 1] gédller for alla positiva heltalsvirden pa n.

4. Undersok, hur i ett ratvinkligt koordinatsystem den geometriska betydelsen
av ekvationen ma?+ (m?—2)y% =m(m? —2) &ndras, d& konstanten m genomléper
alla reella vérden.

5. Bestdm skérningspunkten P mellan kurvorna y=1%+4ax +a,* och y=a%+
ax +a?, dir a, och a ér tva olika reella konstanter. Visa, att om a glr mot a,, sé
gar P mot en punkt P, Bestém slutligen orten fér Py, nir a, antar alla reella
vérden.

6. Kring en given rektangel med ytan R omskrives en ellips med axlarna paral-
lella med rektangelns sidor. Ellipsens yta E &r si liten som mojligt. Visa, att
forhallandet mellan E och R #r oberoende av rektangelns form.

7. I en parabel har parametern lingden b. Ett segment avskires med en god-
c3
tycklig korda, vars projektion pé& styrlinjen &r c. Visa, att segmentets yta &r e

8. Tre kanter, som utgar fran ett hérn i en tetraeder, har lingderna a, b och c.
De tre vinklarna mellan dessa kanter #r lika stora och lika med v. Bestdm tetrae-
derns volym som funktion av v, och &skadliggér den grafiskt fér de v-vérden,
som kan komma i fraga. Ange speciellt det stérsta virde, som volymen kan anta.



SUMMARY IN ENGLISH

N. E. NorLUND: Johan Frederik Steffensen in memoriam. (Danish.)

An obituary on professor Johan Frederik Steffensen, February 28, 1873 -
December 20, 1961.

TorkiL HeiepE and HaNs JorcEN HELMS: Set theory and transfinite
cardinal numbers, 11. (Danish.)

In part IT of this expository article, transfinite cardinal numbers are intro-
duced and their simplest properties discussed.

TH. GopAL: On the conic sections from an astronautical point of view.
(Norwegian.)

The following problem is raised and solved by simple geometrical considerations:
Given two points P, and P; in a central field of gravitation. Determine the

initial velocity in P, such that a space ship moves from P, to P; in a given
time.

Fr. FaBrICTUS-BIERRE: A theorem on closed polygons in the projective
plane. (English.)

For a closed polygon z in the projective plane, E. Kivikoski has shown that
if all the sides are convex and m has no double points, then the polygon has
the order 2. The author gives a new proof of this theorem.
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