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ODDVAR BJORGUM IN MEMORIAM

C. L. GODSKE

Professor Oddvar Bjergum, som var fodt pa Voss 7.februar 1916,
dede 22. desember 1961 i Bergen.

Tidligere enn de fleste forskere fant Oddvar Bjergum fram til sitt
spesielle forskningsomrade og til en problemstilling som skulle prege hele
hans intense men alt for korte vitenskapelige virksomhet. For han enné
var ferdig med sitt studium, mens han som amanuensis ved Geofysisk
Institutt i Bergen fra 1939 skaffet seg en grundig og bred oversikt over
den teoretiske meteorologi, ble han interessert i atmosfeerisk turbulens.
Et fundamentalt problem innenfor den teoretiske turbulensforskning
valgte han som spesialoppgave ved den avsluttende matematisk-natur-
vitenskapelige embetseksamen i 1943.

Turbulensforskningen ma karakteriseres som et av de vanskeligste
omrader innenfor den teoretiske geofysikk. F& unge forskere ville valgt
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sitt spesialstudium nettopp innenfor dette felt, enda fwerre ville hatt
mot til & holde fast ved sin problemstilling, nar de etterhvert oppdaget
hvor kompliserte forholdene er innenfor de turbulente bevegelsene i luft
og hav. Men Bjergum hadde bade pagangsmotet og utholdenheten. Tite-
len pa hans hovedfagsarbeide: »Turbulence from a novel point of view«
gir noe av en programerklzring fra en ung og dristig forsker. De vanske-
ligheter han mette bare ansporet ham til nye forsek, sivel nar det gjaldt
turbulensdannelse som fullt utviklet turbulens. Med stor energi gikk
Bjergum inn for et stadig bredere og dypere studium for & skaffe seg de
ngdvendige matematiske hjelpemidler, ikke minst nar det gjaldt studiet
over turbulente skjerstremninger og ikke-linezre effekter.

P4 enkelte av disse omrader ble Bjorgum den rene virtuos. Jeg tenker
da serlig pa vektoranalysen, som ogsi ga ham stoff til noen meget inter-
essante vitenskapelige undersgkelser. P4 en av disse undersgkelser tok
han i 1952 den filosofiske doktorgrad ved Universitetet i Bergen. Bjor-
gums doktoravhandling, som behandler »Beltramifeltene«, vitner om
utpregete formelle evner. Hans elegante fremstilling vakte berettiget
oppmerksomhet, og hans resultater ble vektoranalytisk »lerebokstoff« i
lopet av meget kort tid.

Bjorgum kom imidlertid snart tilbake til sitt egentlige felt, turbulens-
forskningen. I Norge var her lite 8 lere, men i 1946/47 hadde Bjorgum
under sitt opphold ved Imperial College i London knyttet kontakt med
engelske kolleger, til fordel for begge parter. I 1952/53 dro han, etter
invitasjon fra University of California, Department of Meteorology, til
Los Angeles, hvor han arbeidet pa et forskningsprosjekt om turbulent
diffusjon i den frie atmosfeere. I sitt friar 1960/61 var Bjergum knyttet
til Mathematics Research Center (U.S. Army), University of Wisconsin
i Madison. Hans turbulensundersgkelser hadde ledet til s& store praktisk-
matematiske problemer at det ble ngdvendig & fa kontakt med regne-
sentra som disponerte over store elektroniske siffermaskiner. Da han i
host kom hjem, rik pa erfaringer og med nye ideer og planer, syntes alt
& ligge til rette for enda sterre resultater enn dem han hittil hadde opp-
nadd.

Oddvar Bjergum var en ildsjel av de sjeldne. Ble han grepet av en
ide, eksisterte hverken dagliglivet, forskjellen mellom dag og natt,
eller hans egen helse. Han var et ekte barn av forskningsalderen, vi har
alt for f4 av hans type. Likevel, han var ingen utilnsermelig, eksklusiv
forsker som satt med sine problemer i ensom majestet. Han har ogsa
gitt et stort bidrag til norsk vitenskapelig miljg ved sin virksomhet som
universitetsleerer. Som grunnlegger av faget anvendt matematikk ved
Universitetet i Bergen ble han i 1952 utnevnt til dosent, i 1955 til pro-
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fessor i dette fag. En rekke forelesningshefter vitner om hans flid, hans
pedagogiske evner og interesse og hans omsorg for studentene.

Bjorgums interesser strakte seg langt utenfor den teoretiske turbulens-
forskning. Hans kunnskaper om atmosfeerisk diffusjon gjorde ham til en
verdifull sakkyndig for jord- og skogbruk nar det gjaldt biologiske skade-
virkninger ved spredning av gassarter fra industrianlegg. I kollokvie-
virksomheten ved Universitetet i Bergen var han en av de mest virk-
somme, alltid villig nar en foreleser trengtes, alltid viken nar det gjaldt
4 komme til bunns i stoff andre la fram.

Ved de mange kongresser Bjgrgum besgkte (i Norge, England, Holland,
Belgia, Frankrike, Tyskland, Italia og Tyrkia) var han alltid vaken og
aktiv, og benyttet alle muligheter til & skaffe seg ikke bare verdifulle
vitenskapelige kontakter, men ogsé venner i inn- og utland.

Kolleger og venner kommer til & savne ham og minnes ham i takk-
nemlighet.



ON THE COMPOSITE INTEGERS OF THE FORM
c(ak+b)!+1

A. SCHINZEL

It follows immediately from the theorems of Wilson! and Leibniz? that
there exist infinitely many composite integers of the forms (ak+b)!+1
and (ak+b)!—1 if 6>0 and (a,b+1)=1 or (a, b+2)=1 respectively.
This suggests the problem whether for arbitrary integers a>b=0 and
rational ¢ > 0 there exist infinitely many composite integers of the form
c(ak+0b)! + 1. All the cases, except the two mentioned above, for which
I have found a positive answer to this problem are given by the following

THEOREM. There exist infinitely many composite integers of each of the
forms
1) o(4k)!+1, c(4k+2)!+1,
c(6k)!+1, c(6k+2)! +1, c(6k+4)! +1;
2) c(2k)! =1, ¢(2k+ 1)1+ 1, ¢(2k+1)!—1;
3) [b(2k+1)]!+1.
Here b is a positive odd integer and ¢ a positive rational number.

Proor. An immediate generalisation of the theorem of Wilson gives
(p—1—1)1il=(—1)"* (mod p), p prime, 0<s<p—1.
Hence for arbitrary c=d/n (d, n integers):
(1) plni!+¢e(—1)+ld implies pld(p—i—1)!+en
0=isp—1,e=41).
(al—b—2)!
¢

0

Let nowa =4 or 6,b even. For sufficiently large I we have
(mod a), therefore
(al—b—2)!

—1=-1 (mod a),
c

and since positive integers of the form 4f—1 resp. 6t—1 have a prime

1 (p—1)!=—1 (mod p).
2 (p—2)t=+1 (mod p).

(8]
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(al— b —2)! .
factor of the same form, —————— — 1 has a prime factor p,= — 1 (mod a).
c

For sufficiently large I, p, must be >al—b—2>n, and in view of (1):
(2) pld(p—al+b+1)+n. Y
It follows that d(p;—al+b+1)!+n = p,>al—b— 2, whence

lim (p—al+b+1) = oo,

l—>o00
and for [ large enough, ¢(p,—al+b+1)!=0 (mod a). Since p,= — 1 (mod a)
we have p+c(p—al+b+1)!+1, and the number c(p;—al+b+1)!+1
is composite, because by (2)

ple(p—al+b+1)1+1.

Since p—al+b+1=b (mod a), the proof of part 1 of the theorem is
complete.

To prove part 2, let us assume a=2,b=00r1,e= + 1,andif 20—b>d

21—b)!
denote by p; the greatest prime factor of (———)-+e( —1)+1, For I large
¢
enough, each prime factor p of the above number is > 2/—b>n, thus
in view of (1):
pld(p—2l+b—1)+en .

It follows hence that d(p—2l+b—1)!+enz=p>20—b. For sufficiently
large I we have n|(p—2l+b—1)! and thus

(3) ple(p—20+b—1)!+¢.
In particular
(4) ple(p—2l+b—1)1+¢.
Suppose that
(5) pi=c(p—2l+b—1)!+e.
(21—5)! .
If +¢&(—1)’+! has any prime factor p < p,, we have

c
p=c(p—20+b—1)+e¢

in view of (3), and therefore for sufficiently large I:

D—p Z c(p—20+b—-1)+e—c(p—21+b—1)!—¢
=c(p—2l+b-1)![(p—20+b—1)...(p—2l+b)—1]
Z (p—e)p—p-—1) =z 2=-b)(p—p—1) > p—p,

which is impossible. Equality (5) implies therefore
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(20— b)!

BRI s s 2

(6) +e(—1)PH = pf.

For sufficiently large [ we have further
Ble(p—2l+b—1)! = p—e, ‘

h—e _D—¢

20—b =2 —— > > 6d,
2 3

thus d(p;—¢)?(21—b)! and in view of (6):
(o —e’lpf —e(— 1)+

(Bi—e)|x(p—e)e* e —e(—=1)*,  (p—é)lx,
and we get

Hence

21-b)! —
(____)_+3(_1)b+1 =2 pf’ > (20— b)E-Y
c

which for ! large enough gives a contradiction. We must therefore have
mEc(p—20+b—1)!+¢, and in view of (4) the number ¢(p,—2l+b—1)!+¢
is composite. Since p;=1 (mod 2), (

p—2l+b—1 = b (mod 2),

which proves part 2 of the theorem.

In order to prove part 3, we shall show that if b is odd and b(2{+ 1) > 3,
at least one of the numbers [b(2]+1)]!+1 and {[b(2+1)]!—b(20+1)}!+1
is composite. In fact, suppose that [b(2/+1)]!+1 is a prime p. Then, in
view of (1):

PRI+ )] —b2l+ 1)} +1,
and if {{b(21+1)]!—b(20+1)}!+1 is not composite, we have

(BEI+ D] =b2l+ D} +1 = p = BRI+ D] +1,
BRI+ )] —b(2l+1) = b2l +1),
[B2l+1)—1]1 = 2,  b2l+1) = 3,

against the assumption. On the other hand, both numbers (2] + 1) and
[b(20+ 1)1 —b(21+ 1) are of the form b(2k+ 1), which completes the proof.




MANGDELAZARE OG TRANSFINITE KARDINALTAL, I*

TORKIL HEIEDE og HANS JORGEN HELMS

Indhold.
Indledning, litteratur.

Elementer mengdelere :

. Mengdebegrebet.

. Delmaengder.

Foreningsmengde og feellesmeengde.

. Differensmeaengde, komplementermeaengde og diskrepansmengde.
. Klasseinddelinger og sekvivalensrelationer.

. Afbildninger.

. Belegninger.

. Produktmeengder, I.

. Ordnede meengder.

. Velordnede meangder.

S © WD TR W

—

Transfinite kardinaltal:

11. Akvivalente mengder.

12. Produktmengder, IT.

13. Kardinaltal.

14. Endelige mzngder.

15. Uendelige meengder.

16. Ordning af kardinaltallene.

17. Addition og multiplikation af kardinaltal.
18. Potenser af kardinaltal.

19. Kardinaltallet X,.

20. Kardinaltalsbestemmelse for et par talmeengder.
21. Kardinaltallet X.

22. Cantors setning og kontinuumshypotesen.

Indledning. I sin Discorsi e dimostrazioni matematiche, intorno & due
nuove scienze (1638) betragter Galilei to liniestykker af forskellig leengde
og sperger, om det lengste indeholder flere punkter end det korteste, og
han svarer, at det ikke har nogen mening om to samlinger af uendeligt
mange ting at sige, at den ene indeholder flere eller feerre end eller lige sa
mange som den anden. Dette svar begrundes med felgende overvejelse:

1 Artiklen vil blive fordelt over hefterne af Bind 10.

(1]
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Det synes anskueligt klart, at der findes langt flere hele, positive tal end
kvadrattal, og dog kan man hwvde, at der er lige mange; thi til ethvert
kvadrattal svarer et helt, positivt tal, nemlig dets kvadratrod, og til
ethvert helt, positivt tal svarer et kvadrattal, nemlig dets kvadrat.

Galilei forfolger denne tankegang videre siledes: Blandt tallene op til
tallet 100 findes 10 kvadrattal, altsa er & af disse tal kvadrattal; end-
videre er kun 4 af tallene op til tallet 10000 kvadrattal og kun gy af
tallene op til tallet 1000000, og s& fremdeles. Men blandt tallene op til
et uendeligt tal (hvis man kan forestille sig noget sadant, siger Galilei)
m4 der ifolge det ovennevnte argument findes lige s4 mange kvadrattal,
som der findes tal. Heraf slutter Galilei, at begreberne »lige sa stor¢,
ystorre« og »mindre« hverken kan anvendes pa suendelige storrelser« ind-
byrdes eller pa »uendelige storrelser« i forbindelse med »endelige storrel-
ser«, men kun pa rendelige storrelser« indbyrdes.

Da Georg Cantor (1845-1918) omkring 1870 grundlagde og i de
folgende ca. 25 ar videreudviklede meengdelzeren, var det imidlertid
netop ved hjelp af den definition pa sligestorhed« af meengder, som
ligger i Galileis ovennzvnte resonnement, at han fik hold p& begrebet
antallet af elementer i en uendelig meengde, idet det lykkedes ham at fort-
sette talrekken 1,2,3, ..., n, ... med de sakaldte transfinite kardinal-
tal. Cantors ideer modte til at begynde med den voldsomste modstand,
men spiller nu en sé betydelig rolle i mange matematiske discipliner, at
man med fuld ret kan tale om matematikken for og efter Cantor.

Hensigten med de fglgende sider er at give en fremstilling af nogle
af de resultater, der i de forlgbne 90 &r er opnaet inden for leren om de
transfinite kardinaltal. Da det er tanken at fore behandlingen sé langt
frem som til en formulering af den sakaldte generaliserede kontinuums-
hypotese, bliver det fordelagtigt fra begyndelsen at anvende ret preecise
og derfor i nogen grad abstrakte definitioner; thi man matte ellers
skeerpe begreberne undervejs og dermed blive nedt til endnu en gang at
beskeeftige sig med emner, som (i en mere lgs formulering) allerede var
omtalt. Det er dog ikke meningen at give en strengt axiomatisk frem-
stilling; en sddan ville ogsd ganske spreenge rammerne for en artikel som
denne. Vi vil saledes overalt benytte det sikaldte naive maengdebegreb,
som det i sin tid opstilledes af Cantor, og de paradoxer, som det har vist
sig at kunne fore til, vil vi slet ikke komme ind pé.

For ikke for ofte at skulle afbryde behandlingen af kardinaltallene har
vi fundet det naturligt at samle alle de ngdvendige mengdeteoretiske
forkundskaber i et forste kapitel, der har karakter af en nogenlunde
udforlig oversigt, enkelte steder mere udforlig end det af hensyn til det
folgende er ngdvendigt.
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De med [3], [4] og [13] betegnede arbejder sigter ikke forst og fremmest pa
almen mengdelzre og transfinite kardinaltal, men behandler ogs& andre emner.
Det ber neevnes, at [13] indeholder et meget righoldigt udvalg af evelser, og at
der i [12] findes en litteraturfortegnelse pa 128 sider.

Elementaer masengdelzere.

1. Mzngdebegrebet. Ved en mexngde forstds en samling af vilkdrlige,
Jforskellige objekter, saledes beskaffen, at det om ethvert forekommende
objekt er fastlagt, om det findes i samlingen eller ej. De objekter, der
findes i den pageldende samling, kaldes meengdens elementer og siges at
tilhgre maengden eller at veere indeholdt i den; mengden siges at inde-
holde ethvert af sine elementer og at besté eller udggres af sine elementer.

Begrebet samling, som vi her har brugt, er p4 forhand lige sa lidet
defineret som begrebet meengde, som vi siledes ikke har givet nogen
egentlig definition pa, men blot beskrevet pad en made, som skulle veere
egnet til at fremkalde tilsigtede forestillinger (altsd analogt med Euklids
»definitioner« pa begreberne punkt, ret linie etc.).

Det fremheeves, at der ikke i begrebet mangde indgar noget som helst
om nogen rekkefolge, som elementerne eventuelt kunne siges at optrade i.
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Vi vil seedvanligvis betegne meengder med store latinske bogstaver og
elementer med sma!; skrivemiden a € 4 skal betyde, at elementet a
tilhorer mangden A, og skrivemaden b ¢ 4, at b ikke tilhgrer 4 (ogsd
for andre tegn, som angiver relationer mellem objekter af en eller
anden nermere angivet art, gelder det, at man benzgter dem ved over-
stregning). Det er ofte praktisk at illustrere
sddanne tilhgrsforhold ved en symbolsk teg-
ning som vist pa fig. 1, hvor man forgvrigt i
stedet for en cirkel lige s& godt kunne have
tegnet enhver anden kurve, som deler planen
i to adskilte omrader.

Hyvis to bogstaver @ og b betegner det samme
element, skriver man a=>5 (i modsat fald altsi

A a+b); hvis to mengder A4 og B bestar af de

samme elementer, skriver man 4 =5 og siger

Fig. 1 ogsi, at A og B er den samme mengde. Ud-

sagnet 4B er altsd ensbetydende med, at

der findes mindst ét element, der tilhgrer den ene, men ikke den anden af

de to mangder. Det bemerkes, at i begge de her indferte betydninger

af lighedstegnet geelder (som ogsd i den elementwre matematik, hvor
lighedstegnet kun bruges mellem tal) fglgende tre love:

*b

Den reflexive lov: x = for vilkarligt x.
Den symmetriske lov: =y => y=x for vilkarlige z og ¥.
Den transitive lov: r=1vy, y=2 = x=¢ for vilkirlige z, y og z.

Tegnet = betyder ymedferer¢; vi vil lejlighedsvis ogsa anvende tegnet
<>, der betyder ver ensbetydende med.

Som exempler pi mangder navner vi:

Mangden A, af tallene —2 og 3.

Mzngden A, af alle primtal mindre end 1000.

Mangden A4, af alle negative, hele tal.

Mzngden A, af alle rationale tal sterre end —2 og mindre end 3.
Meengden A af alle (reelle) losninger til ligningen 2? —2—6=0.
Meengden A, af alle (reelle) losninger til uligheden #*—2—6<0.
Meengden A, af alle (reelle) losninger til ligningen 4x + 2y = 6.
Mzngden Ag af alle negative, reelle tal.

1 Denne konvention kan ikke altid overholdes, idet en mangdes elementer jo gerne
kan veare mengder; igvrigt vil vi for visse specielle mangder (herom senere) bruge gotiske
bogstaver.
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Mz=ngden B, af alle punkter pa en given ret linie.

Mengden B, af alle punkter inden for en given cirkel.

Mzangden B; af alle skeringspunkter mellem to givne, hinanden skse-
rende rette linier.

Mzngden O, af alle firkanter i en given plan.

Mzngden O, af alle parallelogrammer i den samme plan.

Mzngden C; af alle rhomber i den samme plan.

Mzangden C, af alle rektangler i den samme plan.

Mzngden C; af alle kvadrater i den samme plan.

Mzngden D, af alle reelle funktioner af en reel variabel.

Mengden D, af alle kontinuerte, reelle funktioner af en reel variabel.

Mangden X, af alle indstillingsmader for en cyklelids med 6 taster, der
hver kan indstilles p4 3 mader.

Mengden E, af alle de indstillingsméder for den nevnte 18s, for hvilke
den ikke kan lukkes op.

Ved valget af betegnelserne er der her taget hensyn til, at de betrag-
tede maengder er af forskellige typer; siledes er meengderne 4, 4,, . .., Ag
talmengder og mangderne B,, B,, B; punktmangder, mens mangderne
0y, Oy, ..., U5 er mengder af punktmeengder. De anvendte betegnelser
kan vi naturligvis andre steder bruge for helt andre mangder. Imidler-
tid kan det veere praktisk for mangder, der ofte kommer i betragtning,
at have én gang for alle fastsatte standardbetegnelser. Vi vil saledes for
visse sarligt vigtige talmeengder benytte store gotiske bogstaver og
nevner med det samme:

Mzangden N af alle naturlige (d. v. s. hele, positive) tal.
Maengden $ af alle hele tal.

Maengden £, af alle rationale tal.

Mzengden R af alle reelle tal.

(Ved valget af betegnelserne & og £ har vi tenkt pa gloserne integer
og quotient.)

Vi bemeerker, at den symbolske karakter af fig. 1 fremgar af, at den
kan bruges som illustration til vidt forskellige situationer; den kan sa-
ledes lige s& vel fremstille den situation, at 4 =A4;, a=3, b=1, som den,
at 4 =C}, a betegner en vis firkant og b en vis trekant i den givne plan.
I tilfzeldet A =B, kan figuren, sddan som den nu er tegnet, tillegges et
mere konkret indhold.

Hvis det pa en eller anden let overskuelig mide er muligt at angive
en opremsning af elementerne i en meengde, bruger man selve oprems-
ningen anbragt i en svungen parentes som betegnelse for meengden.
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Saledes skriver man, idet vi stadig holder os til de ovenfor anferte
exempler:

A, = {-2,3},
AZ = {21 3’ 5’ 73 ]-]-7 "':997},
A, ={-1,-2 -3, ...}

Mengden B, bestar af et enkelt punkt; kaldes det p, kan man skrive:
B,={p}. Det er vigtigt at meerke sig, at elementet p og mengden {p}
ikke er det samme. En mangde, der (som Bj;) bestar af netop ét element,
kaldes en singleton.

Det understreges, at mengden A4, ikke ma forveksles med ftalfalgen

(_17 _2’ _3’ "')1,

thi for folgens vedkommende kommer det ogsé an pa den rekkefolge, i
hvilken elementerne er opskrevet, medens vi blandt mange andre mulig-
heder ogsé kunne skrive:

A3= {..., "37 _2> _1}?
Ay = {-1,-3,-5,...; =2, —4, —6, ...},

og igvrigt kan det samme element jo godt forekomme flere gange i en
folge, mens en mengdes elementer alle er forskellige. Ligeledes kunne
vi ogsd skrive

A, = {997,991, 983, 977, 971, ..., 2},

A, = {3, —2}.

I forbindelse med de to forskellige opskrifter af 4, kan det bemerkes, at
koordinatsattet til et punkt i en plan er noget andet end en talmeengde,
thi (—2, 3) og (3, —2) betegner jo ikke det samme punkt.

En mengde vil ofte vare karakteriseret ved, at dens elementer til-
fredsstiller en eller flere nsermere angivne betingelser. En bekvem beteg-
nelse for en sdidan maengde far man ved for mengden af alle de elementer
x, der tilfredsstiller betingelserne «, 3, ..., u, at skrive:

@, B, ..., u}.

Man kalder x den pagzldende meengdes variable element og siger ogsa, at x
gennemlober maengden. Vi illustrerer denne betegnelsesméade ved hjzlp af
nogle af de s. 14-15 neevnte exempler:

Ay ={z|z = —a, acN}

1 Den maske uvante parentes vil blive omtalt nzrmere sidenhen.
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(eller naturligvis lige s& godt: A;={z|z=—b, be N1,

A3 ={x|z <0 ze},
Ay ={z| -2 <2 <3 zeQ},
dg={z|x <0, zeR}.

Det konstateres let, at
{la?—2—-6 =0, ve R} = {3, -2},
altsd at A;=4,, og videre ser man, at
e ={r|2?~2-6<0,2eR}={x| -2<2 <3, reR}.

Det bemeerkes udtrykkeligt, at det ikke gar an at udelade betingelser
som ze R eller xcQ af betegnelsen, med mindre det er helt klart,
hvilken type elementer der er tale om, thi man kunne ellers forveksle
f.ex. A5 og 4,.

Det ses, at man kan beskrive den opgave at lose en ligning eller en
ulighed som det at opskrive losningsmangden (d. v. s. mangden af de
tal, som tilfredsstiller den pagzldende ligning eller ulighed) p4 en umid-
delbart overskuelig méade. Opgaven at lgse et system af ligninger eller
uligheder kan beskrives analogt.

Meengden A4,, hvis elementer jo er talpar, kan straks opskrives siledes:

Ay ={(®,y) |dx+2y = 6, xe R, ye R},
men ogsa f. ex. siledes:
Ay ={,y) e =1t y=238-2teR);

og hvis talparrene (z,y) fortolkes som koordinatseet til punkter i en
plan, har man her en ret linie opskrevet dels ved en ligning, dels ved en
parameterfremstilling.

2. Delmzngder. Hvis det om to mangder 4 og B gzlder, at ethvert
element af 4 ogsa tilhgrer B (altsd hvis a € A=gq B), siger man, at 4
er en delmengde af (eller er inkluderet i) B, og skriver 4 c B, eller lige
s& godt at B omfatter (eller inkluderer) 4, og skriver B2 A (se fig. 2).
Den herved definerede relation mellem mengder kaldes inklusion og
tegnene < og = inklusionstegn. ’

Idet vi igen henholder os til exemplerne foran, geelder det f. ex., at

Ay S Ay, Ay € Ag, €, 2 Cy, 0y 2 Cy, Cy 2 C,, E, >8R,,

NMT, Hefte 1, 1962. — 2
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og videre, at
Ay & Ay, Ay ¢ Ay, O3 20y O 2 Cs,
og naturligvis
A, £ 0y, Dy 2 B; 0.5. V.

For inklusionen < gelder folgende tre love:

Den reflexive lov: AcA.
Den antisymmetriske lov: A< B, A+B = B A.
Den transitive lov: A<B,Bc(C = A<,

og tilsvarende love naturligvis for inklusionen =. Ligesom her vil vi
heller ikke i det folgende, nar vi anfarer almengyldige love, udtrykkeligt
fremhzeve almengyldigheden ved at skrive: for vilkarlige meaengder 4, B
og C o. lign. Det ses, at disse love formelt
er de samme som de love, der gelder for
de reelle tals velkendte ulighedsrelationer
< o0g =.

Den transitive lov kan illustreres ved
folgende exempel (se igen s. 14-15):

C; < Oy, O, < O og dermed C; = Cy,

og ifglge den transitive lov er der igvrigt
god mening i at opskrive keder som

NeJesD R,

Fig. 2

Af den antisymmetriske lov eller direkte af inklusionens definition
fglger det, at
A< B, BcA=A4A=8,

og heri ligger en ofte anvendt metode til pavisning af, at to betragtede
mengder er den samme. Gennemfgrer man saledes denne fra den elemen-
teere matematik velkendte overvejelse: »Hvis det om et tal x gwlder, ab
22—z —6=0, s3 md det om dette tal ogsa gwlde, at a2 —x+}=%, altsd
(z—1)2=(3)?, og dermed x—}=} eller x—}=—3§, og derfor =3 eller
o= —2¢, s& har man under gentagen anvendelse af den transitive lov
pavist, at A;S 4,; og at gere prove i ligningen 22 —x — 6 =0 med tallene
3 og —2 (eller at foretage en tilbageregning) er det samme som at under-
soge, om A, < A;. Lignende bemzrkninger kunne man naturligvis knytte
til enhver anden ligning og ogsd til et vilkdrligt system af ligninger.
Andre exempler har man i de opgaver, der i mange skoleboger betegnes
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som bestemmelse af et geometrisk sted: man viser, at alle punkter med en
vis egenskab ligger pa en vis kurve, og derefter, at ethvert punkt pé
kurven har den pagewldende egenskab.l

Den reflexive lov udtrykker, at enhver mangde er delmzengde af sig
selv. Ved man om to meengder 4 og B, at A< B og A+ B, siger man, at
A er en eegte (eller egentlig) delmeengde af B, og skriver A =B eller lige
sé godt B > A. Exempelvis har vi C5<C, og (O=Y o

For disse, de sikaldte skarpe inklusioner gaelder folgende love:

Den irreflexive lov: AdA4.
Den antisymmetriske lov: A<B, A+B = BdA.
Den transitive lov: A<B, Bc(C = Ac0,

og tilsvarende for inklusionen > ; alt sammen svarende til, hvad der
gelder for de skarpe ulighedsrelationer < og >.
Det er klart, at

A=B=A4 < B, A<B=>AcB,

og tilsvarende for 2 og = ; de samme regler galder for < og < samt
for = og >. Den vigtige regel

aLb<=>b<a,

som ogsa er rigtig for = og >, gelder imidlertid hverken for < og <
eller for = og . Sagt pa en anden méade: for to reelle tal ¢ og b gelder
altid netop ét af de tre udsagn a<b, a=b, a>b; den tilsvarende regel
geelder ikke for skarp inklusion.

Det bemrkes, at en del forfattere bruger tegnene < og > ide betyd-
ninger, vi her har tillagt tegnene < og .

Det er i mange henseender bekvemt at kunne operere med begrebet
en tom mengde, d.v.s. en mangde, der ingen elementer indeholder.
Exempelvis kan man med dette begreb til radighed tale om lgsnings-
mangden til en ligning uden i forvejen at sikre sig, at ligningen har
lgsninger, ligesom man ogsi kan tale om mengden af skaringspunkter
mellem to rette linier uden at vide, om de skoerer hinanden, jvf. mengden
B, foran.

Om to tomme meengder O, og 0, ma det gaelde, at 0, =0,, thi de inde-

1 Den serlige betegnelse »geometrisk sted« er igvrigt helt overfladig, idet det jo er bade
kortere og enklere i stedet for »det geometriske sted for et punkt, som ...« at sige ymang-
den af de punkter, som ...«.
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holder jo de samme elementer. Der existerer altsd netop én sadan
mengde; den kaldes den tomme mengde og betegnes sedvanligvis g
(man meder dog bl. a. ogsd betegnelserne O og A). For at undgé enhver
misforstéelse fremhaeves det, at talmengden {0} ikke er tom (den er en
singleton); det samme geelder meengden {J}, hvis eneste element er den
tomme mszngde.

Exempelvis anforer vi:

I3

x]£+3 = 3, erR} :{xl]/ﬁ-—]/%-—x: 7, xe%ﬁ} =0.

Om enhver m@engde 4 mé det gelde, at < A4, thi ethvert element
i 0 tilhgrer A.

3. Foreningsmeengde og feellesmeengde. Lad der veere givet to meeng-
der A og B. Den mangde, der bestar af alle de elementer, som tilhgrer
mindst én af meengderne 4 og B (skraveret
pa fig. 3), kaldes foreningsmeengden af A og
B og betegnes A U B (hos nogle forfattere,
iser i ldre litteratur, meder man beteg-
nelsen 4 + B). Sagt pd en anden made:
AU B bestar af alle de elementer, der til-
hgrer A4 eller B (herunder medregnet, ifglge
den i matematisk sprogbrug seedvanlige be-
tydning af glosen »eller«, de eventuelle ele-
menter, der tilherer dem begge).

Idet vi igen henviser til s. 14-15, nevner
vi folgende exempel:

AjUudy = {3, —1,-2, -3, —4,...}.

Der galder fglgende love, som alle let bevises ved hjelp af definitionen
og nemt illustreres ved symbolske figurer:

Den associative lov: (AuB)uC=A4u(Bu0).
Den kommutative lov: 4uB=BuA.

Den idempotente lov: 4AuAd=A4.
Absorptionsloven: A2B < AuB=A.

Et vigtigt specialtilfeelde af den sidste er Augd=A4.
Den mengde, der bestar af alle de elementer, som tilhgrer begge meeng-
derne A og B (skraveret pa fig. 4), kaldes fellesmengden eller gennem-
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snitsmangden af A og B og betegnes AnB
(hos nogle forfattere moder man betegnel-
sen A4-B eller blot AB). Sagt p4d en anden
méde: A nB bestar af alle de elementer, der
B tilhgrer bade 4 og B.
Idet vi igen henviser til s. 14-15, nevner
4 vi, e?t CsnCy=0,. .

Vi fremheever, at det kun er i kraft af, at

vi har begrebet den tomme mangde til dis-

position, at vi kan tale om fellesmaengden

Fig. 4 af to vilkarlige meengder, thi det kan jo

' meget vel indtraffe, at to forelagte mang-

der 4 og B ingen elementer har falles, altsi at AnB=g; i s3 fald

kaldes 4 og B disjunkte (eller elementfremmede). Som exempel nmvner

vi, at 4,nd;=0.

Der gwlder folgende love, som alle let bevises ved hjalp af defini-

tionen og nemt illustreres ved symbolske figurer:

Den associative lov: (AnB)nC=A4n(Bn0O).
Den kommutative lov: AnB=BnA.

Den idempotente lov: AnAd=A.
Absorptionsloven: A=>2B < AnB=B8B.

Et vigtigt specialtilfeelde af den sidste er An @ =0.
De to kompositionsregler U og N sammenknyttes ved falgende to love:

Den forste distributive lov: (AuB)nC=(AnC)u(BnC).
Den anden distributive lov: (4 nB)uC=(4uC)n(BuC).

A B 4
(o]

Fig. 5 Fig. 6

De to distributive love illustreres ved fig. 5 og fig. 6; vi gennemforer et
udferligt bevis for den anden og ngjes med at navne, at den forste kan
bevises pa lignende méade.
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Hvis x € (AnB)uC, ma mindst ét af folgende udsagn gelde: x € AnB,
z € C. Vi reesonnerer nu saledes:

xed=>xcduC
xeB=xeBuC
xeAdul
xeBul
og vi har dermed vist, at

(3.1) AnByuCcdul)n(Bu(l).

Nu den anden vej: Lad € (AuC)n(Bul). Hvis z € C, har vi umiddel-
bart, at x € (AnB)uC. Hvis z ¢ O, har vi, idet

xeAduC
xeBuC,

xeAnB:>{ }:>xe(AUC’)n(BUO),

er:>{ }:>xe(AUC’)n(BUC’),

xe{(dul)n(Bul) =

at begge folgende udsagn geelder: x € 4, x € B. Deraf folger det, at
x e AnB og dermed ogsa x € (ANB)uC. Vi har da ogsd vist, at

(3.2) (Aul)nBul)c (AnB)ul.

Af (3.1) og (3.2) folger den anden distributive lov.

Det ses, at bortset fra de idempotente love, absorptionslovene og den
anden distributive lov er de anforte regler formelt ganske de samme som
de fra sedvanlig talregning velkendte, idet man i disse sidste blot skal
erstatte + og - med henholdsvis U og N og lade den tomme maengde
treede i stedet for tallet 0.

Man kan inddrage flere end to meengder i dannelsen af forenings- og
feellesmeengder ved at seette AUBUC =(AuB)uCog AnBnC=(AnB)nC
(eller ifglge de associative love lige si godt AuBuUC=AU(BUC) og
AnBnC=A4n(BnC)) og videre ved induktion:

Ajud,u... 04, ;Ud, = (4,ud,u... U4, ,))UA,,
Aindyn...nd, 04, =A;nd,n...n4, )nA4,.

Man kan endog na til at definere forenings- og fellesmengde af meeng-
derne i en folge af meaengder:

A,ud,u...ud,U..., Aindyn...nd,n....

Ved hjelp af de associative love kan man vise, at man i alle disse ud-
tryk kan sette og heeve parenteser efter behag.

Imidlertid far vi brug for at kunne tale om forenings- og fzllesmaengde
af maengderne i et helt vilkdrligt system af mengder (begrebet mangde-
system praeciseres nedenfor), og til dette formal er den antydede vej ikke
fremkommelig. I stedet for at bygge op ved hjzlp af de allerede givne
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definitioner pa forenings- og feellesmengde af meengderne i et system af
to meengder generaliserer man selve disse definitioner til et vilkarligt
system. Herved lader man sig lede af, at de lige nevnte maengder
AuBuUC og AnBnC kan karakteriseres direkte, nemlig som msengden
af alle de elementer, der tilhgrer mindst én af, henholdsvis alle meeng-
derne 4, B og C.

Lad der da til ethvert element k£ af en mengde K veere knyttet en
mangde 4,; samlingen af alle meengderne 4; (som ikke ngdvendigvis
alle er forskellige) kaldes mangdesystemet bestaende af meengderne 4,
og mengden K kaldes systemets indexmeengde. Systemet betegnes (4;),.x
eller ofte blot (4,).

Vi belyser denne definition med et par exempler: Hvis K={1, 2},
bestar meengdesystemet (A4;),.x af to mengder med betegnelserne A4,
og A,; hvis K =%, bestar det af mengder med betegnelserne 4,, 4,, .
A

- e
Den meengde, der bestar af alle de elementer, som tilhgrer mindst én

af mengderne A,, kaldes foreningsmeengden af meengderne 4,; og den
mangde, der bestar af alle de elementer, som tilhgrer enhver af maeng-
derne A4,, kaldes fellesmengden eller gennemsnitsmeengden af meeng-
derne 4,. De to mengder betegnes henholdsvis

U4, oz N4
keK keK
eller (i tekstlinier) af typografiske grunde U, x4, og N, A*1
I det specielle tilfzelde K = {1, 2} er disse definitioner ensbetydende med
de tidligere. Hvis K ={1, 2, ..., n}, har vi at gore med de allerede nzvnte

meengder
Ayud,u...Uu4d, og A;nd,n...n4,,

som vi med en modifikation af de ovenfor indferte betegnelser ogsa
skriver n "

U4, oz NA4.

k=1 k=1

Noget lignende gor sig geeldende i tilfeeldet K =0, hvor man har at gere
med meengderne

Ajud,u...ud,u... og And,n...n4;,n...,
der ogsa betegnes
U4, og 4.
k=1 k=1

1 P4 samme made vil ogsd flere af de i det felgende indferte betegnelser optrede
to udgaver.
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Det ses, at tegnene U og M svarer til henholdsvis U og N p4 samme
made som X' og I7 til henholdsvis + og -

Vi nevner et exempel: Lad P vere et fast punkt i planen; hvis K er
mengden af positive reelle tal og 4, cirkelskiven med centrum i P og
radius k, s& bestar U, x4, af alle punkter i hele planen og N, _. 4, af
punktet P.

Hyvis det for vilkarlige € K og m e K (I4m) gelder, at 4,n 4,,=0,
kaldes meengderne A, parvis disjunkte. I sa fald er ogsi N,.x4,=9,

mens det omvendte ikke behgver
Y at gelde undtagen i tilfeelde som
K={1,2}.

A4 Vinaevnerendnu et exempel : Lad
der pé intervallet I={x | a <z <b}
veere defineret en reel, positiv, kon-
tinuert funktion f, og lad 4,=
{(z,y) | 0=y =f(x)}. Da er, idet vi
fortolker (x, y) som punktet med
X disse koordinater, U, .;4, den af
z-aksen, linierne x=a og x=b samt
Fig. 7 kurven y=f(x)! begrensede punkt-
mengde i planen (se fig. 7). Det

bemerkes, at mengderne 4, er parvis disjunkte.

Ved formuleringen af almengyldige love for kompositionsreglerne U
og N far vi brug for det i sig vigtige begreb en klasseinddeling. Vi defi-
nerer forst: Hvis det om en mangde B og et meengdesystem (4,),.x
gelder, at B < U 4,,

keK
kaldes (A);.x en overdekning af B. Hvis det yderligere galder, at
mangderne A, er parvis disjunkte, at ingen af dem er tom, og at
B = U Ay

keK

kaldes (A;);.x en klasseinddeling af B; det er da klart, at B ikke er tom.
Udtrykt ps en anden mide: Mengdesystemet (4,), .. kaldes en klasse-
inddeling af meengden B, hvis enhver af meengderne 4, er en ikke tom
delmengde af B, og ethvert element af B tilhgrer en og kun én af maeng-
derne A4,. Mangderne A, kaldes i denne situation klasser.

Til en vilkérlig ikke tom maengde B findes der altid klasseinddelinger,
nemlig i hvert fald de to sakaldte trivielle:

K =B, A, = {k} for ethvert ke B,
! Udforligere: {(2,y) |y=0}, {(z,9) |z =a}, {(z,9) |z = b} og {(z,9) |y =f@)}.

a oz b
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hvor altsd ethvert element af B er alene i sin klasse, og

K ={1}, 4, = B,
hvor der kun er én klasse, nemlig hele B. Hvis B kun indeholder ét ele-
ment, er disse to klasseinddelinger dog den samme.

Lad der nu til et vilkarligt mengdesystem (A4,);,.x foreligge en klasse-
inddeling af indexmangden K, altsd et system af ikke tomme, parvis
disjunkte delmeengder K, af K (hvor p gennemlgber en vis indexmsengde
P), siledes at K=U, pK,. Da galder de associative love:

UAk=U UAk og ﬂAk= ﬂ nAk~

keK peP keKp keK peP keKp

Spergsmalet om kommutative love skal vi senere vende tilbage til.
Videre gwlder de idempotente love: Hvis A,=A4 for ethvert ke K,

gelder det, at U A = (N4, = A.
keK keK
Endelig kan man ogsa ved hjeelp af en klasseinddeling af indexmseengden
formulere absorptionslove og distributive love; vi ngjes her med folgende
specialtilfeelde af absorptionslovene: Hvis det for en delmzengde L0
af K gwlder, at 4;=0 for ethvert I e L, s& har man

(3.3) U4, =U4, o N4, =0,

keK keM keK
hvor M ={k|keK, k¢ L} eller, under anvendelse af det nedenfor anferte
begreb differensmaengde: M = K\ L.

4. Differensmaengde, komplementrmzngde og diskrepansmaengde.
Ved differensmengden mellem to mengder 4 og B eller overskudsmeeng-
den af A over B, skrevet AN\ B (eller A — B), forstir man meengden af alle

de elementer af 4, der ikke tilhgrer B (se
fig. 8). Det ses umiddelbart, at
(ANB)uB = Au B,
(AN\B)n B = 0,
B ANB = AN(4An B),
A c B<A\B =0,
4 AnB =AnC < A\B = A\C.

Desuden gzlder de to distributive love:

ANB)nC =AnCONBNO),
Fig. 8 (4 nC)\B = (A\B)n (O\B) ,

hvor de to venstresider endog er den samme mzengde (se fig. 9).
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A Vi navner nogle exempler pa differens-
meengder, idet vi igen henviser til s. 14-15:

A4, = {3),

ANA, = {—1,-3,—4,—5,...},
O\ C, = C\Cs,

O\ Cy = ONC5,

ONC, = ONC, = 0 .

Hvis Bc A4, bruger man om differens-
Fig. 9 mengden AN\ B det specielle navn komple-
mentermengden til B relativt til 4 og skri-
ver den som (j,B eller, nar misforstielser er udelukket, blot (B (se
fig. 10); flere andre betegnelser er i brug, f. ex. B’ og B. Det bemerkes,
at nogle forfattere lader differensmeengde og komplementermeengde vaere
det samme begreb, idet de i definitionen pa differensmangden mellem A4
og B (der i sa fald altid betegnes 4 — B) forudsatter B< A.
For to vilkdrlige meengder 4 og B gelder det
tydeligvis (se fig. 8), at

ANB = (A4 nB).
A

Komplementermengdebegrebet har seerlig in-
teresse, hvis de i en vis sammenheeng optredende
mengder alle er delmaengder af en eller anden
fast maengde H, der s& kaldes den i den pageel-

Fig. 10 dende situation foreliggende universalmengde. 1
tilfeeldet B =% har man saledes, idet vi igen be-
nytter de s. 14-15 neevnte exempler:

64, ={..., -5, —4,-3,-1,0,1,2,4,5,6, ...},
04, = 4,u {0, 1, 1000, 1001, ...} U B,
hvor B betegner mangden af alle sammensatte tal mellem 1 og 1000, og
04; = Nu{0}.

Det overlades til leseren i tilfzeldet B =C, at bestemme mangderne
0C GCs, 00, 0g (s

Endelig har man i tilfzldet Z=E,, at (X, er en mengde bestiende
af ét element (under forudsmtning af, at lasen er, som den ber vere).

For komplementermeaengder med hensyn til en fast mengde £ geelder
folgende regneregler:
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Aul4d = E, 0o = E,
AncA=07 cE=g) GGA=A’ i

samt de sdkaldte de Morgans love:
04uB) =04n0(B, 0dnB)=04ulB,

eller mere generelt:

GUAk=nGAk, GﬂAk=UﬂAk-
keK keK keK keK

Vi har tidligere (s. 22) papeget en analogi mellem regning med meengder
og regning med tal; denne analogi kan i den her betragtede situation
udvides, thi da man har AnE=A4, optreder universalmengden pé
samme made i maengdealgebraen, som tallet 1 ger det i talalgebraen.
Da man imidlertid ogsa har AU E = E, er analogien ikke helt fuldsteendig.
Pi den anden side kan man ved at erstatte + og - med henholdsvis
N og U og betragte den anden distributive lov i stedet for den forste fa
en ganske tilsvarende analogi, hvor B trader i stedet for 0 og 0 i stedet
for 1, og hvor det si er formlen An @ =4, der ikke har noget analogon.

Det ses, at hvis en mengdealgebraisk formel er rigtig, s er dens
duale det ogsa, d.v.s. den, der fremkommer, nar overalt i den givne
formel U erstattes med N og omvendt, U med N og omvendt, = med >
og omvendt og endelig enhver mengde med sin komplementermeangde.
Specielt gelder det, at

A<cB<={(4=2(B,

og heraf folger det, at ligesom man (se s. 18) kan anvende formlen

A< B

A=B¢>{B§A

til pavisning af, at to meengder er den samme, kan man ogsi bruge
enhver af disse tre formler:

A=l 0l Son,
T Ny
a-pe|biole

For fuldstendighedens skyld neevner vi, at den meengde, der bestar
af alle de elementer, som tilhgrer netop én af mangderne 4 og B (skrave-
ret pa fig. 11), kaldes diskrepansmaengden af A og B og betegnes AsB
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(man meder ogsa betegnelsen A4 + B). Sagt pa
en anden made: 4B bestar af alle de ele-
menter, der tilhgrer 4 eller B, men ikke dem
begge; altsé:

AsaB=(AuB)\(4nB).
Imidlertid geelder det ogsa, at
AasB = (AN\B)u(B\4),

Fig. 11 og opfattet pa denne made er 4 B et udtryk

for, hvor nart 4 og B i en vis forstand er ved

at vaere den samme maengde, og begrebet spiller derfor ofte en rolle, nar

man pé en eller anden made approximerer en maengde med andre maeengder.

Der gewlder igen en rakke regneregler, som let bevises og nemt kan
illustreres ved symbolske figurer. Vi nevner:

Den associative lov:  (AaB)aC=Aa(BaC).
Den kommutative lov: 4a B=BaA.
Den distributive lov: (4aB)nC=(AnC)s(Bn0),

og desuden fglgende:

AaB=0<A=21H,
AsB=AuB<AnB =0,
AsB=AnNnB<>AUuB=0<A=B=0,
AsB=0<>A+0=8B,

af hvilke iser den sidste er vard at bemaerke.
Om de i denne paragraf betragtede tre begrebsdannelser kan det sam-
menfattende siges, at ingen af dem er helt analog til talregningens diffe-

rensbegreb, men at de alle tre pa hver sin made afspejler vasentlige
trek ved dette.

5. Klasseinddelinger og =ekvivalensrelationer. Lad der foreligge en
meengde 4 40 og en klasseinddeling af denne (se s. 24). Idet vi om den
klasse, som et element @ € 4 tilhgrer, bruger betegnelsen K o (hver Klasse
far da muligvis flere betegnelser), har vi med det samme, at

(5.1) K,nK,+0=K,=K,.

Om to elementer a og b af 4 vedtager vi nu at sige, at a er wkvivalent
med b, skrevet acob, sifremt a € K,. Der galder nu:

(5.2) acb<=>K, = K,.
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Thi af a € K, fas, idet jo a € K, at K,nK,+0, og dermed ifelge (5.1),
at K,=K,; og omvendt fas af K,=K,, idet a € K,,, at a € K,.
For den betragtede relation o galder folgende tre love:

Den reflexive lov: acoa.
Den symmetriske lov: a o b = b oo a.
Den transitive lov: acob, booe = acve.

Den forste siger jo nemlig blot, at @ € K,, og de to andre bevises ved
hjeelp af (5.2) pa folgende made:

acb=>K,=K,=>K,=K,=>b~a.
ac~b=>K, =K,

boom K, = K, |~ Ha=Ke=aeo.

c

Da den symmetriske lov gelder, er det tilladeligt at benytte udtryks-
maden: a og b er indbyrdes sekvivalente.

Idet en vilkarlig reflexiv, symmetrisk og transitiv relation kaldes en
@kvivalensrelation (hvad vi altsd ovenfor har foregrebet ved straks at
benytte glosen sekvivalent), har vi bevist:

SETNING 5.1. Tl en vilkarlig klasseinddeling af en ikke tom mengde
far man en ekvivalensrelation ¢ denne ved at fastseette, at et element er
wkvivalent med et andet, sdfremt det tilhorer samme klasse som dette.

Den i s®tningen nevnte akvivalensrelation kaldes den til klasseind-
delingen svarende.

I en vilkarlig ikke tom meengde 4 findes der altid @kvivalensrelationer,
nemlig i hvert fald de to sikaldte trivielle:

acob, hvisa = b,
hvor altsd ethvert element af A4 kun er skvivalent med sig selv, og
@ o~ b for ethvert be 4 ,

hvor ethvert element er skvivalent med ethvert andet. Hvis 4 kun
indeholder ét element, er disse to sekvivalensrelationer dog den samme.

Lad der nu i en vilkarlig mengde 4 +¢ foreligge en xkvivalensrela-
tion oo ; vi definerer et system af delmeengder af 4 (med A4 selv som
indexmsengde) ved at sette

K,={x|rca}.

Meaengderne K, som ikke nedvendigvis alle er forskellige, er ikke tomme,
thi da sekvivalensrelationen er reflexiv, har vi for ethvert a e 4, at
a € K,. Det samme raesonnement viser, at ethvert element af A tilhgrer
mindst én af meengderne K,,.
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Hvis det om et element c € A gelder, at ce K, og ce K,, altsi at
cooa 0g coob, sé har vi ifelge den symmetriske lov, at acoc, og dermed
ifplge den transitive, at acob. For et vilkarligt element x af K, gelder det,
at xooa, og af acob fas det da ved den transitive lov, at xoob, altsi at
x € Ky, og vi har saledes vist, at K,< K,. P4 ngjagtigt samme méade ses
det, at K, < K,, og vi har alts& alt i alt bevist:

(5.3) K,nK,+0=FK,=K,.

Mengden af alle de indbyrdes forskellige blandt de meengder, der til-
hgrer det betragtede mangdesystem, er dermed en klasseinddeling af 4,
og det siledes, at to elementer herer til samme klasse, nar og kun nar
de er akvivalente, thi for det forste har vi:

aob=>ack,,
og da b € K, tilhorer a og b i s& fald samme klasse; og for det andet:

aekK,=>acc
beK,=>booc=>cob

Vi har dermed bevist:

=aqa~b.

SETNING 5.11. Tl en vilkdrlig cekvivalensrelation 4 en ikke tom mangde
far man en klasseinddeling af denne ved at fastscelte, at et element tilhorer
samme klasse som et andet, safremt det er ckvivalent med dette.

Den i s®tningen neevnte klasseinddeling kaldes den til sekvivalens-
relationen svarende wmkvivalensklasseinddeling, og dens klasser kaldes
ekvivalensklasser ; ethvert element af en ekvivalensklasse siges at repre-
sentere denne.

Det er klart, at danner man forst den til en forelagt wkvivalensrela-
tion svarende skvivalensklasseinddeling og derpa den til denne sva-
rende @kvivalensrelation, si far man netop den, man gik ud fra, og til-
svarende, hvis man begynder med en klasseinddeling.

Exempler pa til hinanden svarende par af ekvivalensrelationer og
akvivalensklasseinddelinger kan hentes fra alle matematikkens omrader;
lad os neevne nogle fa:

Lad A4 veere meengden af rette linier i en plan og acob, hvis a er parallel
eller sammenfaldende med b; ekvivalensklasserne er parallelbundterne i
den pigeldende plan. Det bemserkes, at man ikke far en sekvivalens-
relation ved at definere: acob, hvis a skerer eller er sammenfaldende
med b, thi denne relation er ikke transitiv. Maengden af liniebundter i
planen er jo heller ikke nogen klasseinddeling af maengden af linier; thi
enhver linie er element af mange liniebundter.

Lad A4 vwre meengden af alle liniestykker i en plan og acob, hvis @
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har samme leengde som b; sekvivalensklasserne er mengderne af lige lange
liniestykker i den pageldende plan.

Lad A vare mengden af alle trekanter i en plan og acob, hvis a er
kongruent med b; @kvivalensklasserne er meengderne af alle indbyrdes
kongruente trekanter i den pageldende plan.

Lad A vere meengden af alle trekanter i en plan og acob, hvis @ er
ensvinklet med b; =kvivalensklasserne er maengderne af alle indbyrdes
ensvinklede trekanter i den pageldende plan.

Lad A vere meengden af alle hele tal og acob, hvis a—b er deleligt
med 2; skvivalensklasserne er mengden af hele, lige tal og mengden af
hele, ulige tal.

Lad A vere maengden af delmengder af en meengde M og acob, hvis
a="b; xkvivalensklasserne bestar hver af ét element, nemlig en vis del-
meengde af M. Det bemerkes, at to forskellige sekvivalensklasser bestar
af hver sin af to forskellige delmengder af M (eekvivalensklasser er jo
disjunkte), men disse to mangder er ikke nodvendigvis disjunkte.

For flere af de nsevnte skvivalensrelationer har man specielle tegn.
For den forste skriver man aHb eller b, for den anden ofte (lidt dri-
stigt) a=>5, for den tredie a22b eller azsb, for den fjerde har man acob
som standardbetegnelse, og for den femte skriver man a=b (mod 2).

6. Afbildninger. Hvis det om to mengder 4 og B gelder, at der til
ethvert element a € 4 pa entydig méade er knyttet et element b € B, siger
man, at der foreligger en afbildning af A ind i B (eller, iseer hvis B er
en talmangde, en funktion fra A til B); A kaldes afbildningens defini-
tionsmengde og B dens dispositionsmaengde.

En afbildning betegnes seedvanligvis med et lille bogstav, og at f er en
afbildning af 4 ind i B, skrives siledes

f: 4ind i B;
man traeffer ogsd skrivemaderne
f: A>B og VES:3

Det til et element @ € A knyttede element b € B kaldes billedelementel
af a (eller den til @ svarende funktionsveerdi) og betegnes f(a); man siger
ogsé, at a afbildes i f(a), og skriver

a—f(a).
Det understreges, at man altsd foretreekker at lade symbolet f(x)
betegne ikke (som det har veeret sedvane) den betragtede afbildning,

men et bestemt af dens billedelementer, nemlig det til elementet x
knyttede.
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Hvis det om to afbildninger f og ¢ med samme definitionsmengde
4 gelder, at f(a)=g(a) for ethvert a € A, siger man, at f er den samme
afbildning som g, og skriver f=g (med den zldre symbolik ville man
skrive f(x)=g(x)); denne relation mellem afbildninger er klart reflexiv,
symmetrisk og transitiv.

I definitionen p& begrebet afbildning optreder uden nsermere forkla-
ring udtrykkene rer knyttet til« og »pd entydig made«. Det ville veere
mere tilfredsstillende at bygge afbildningsbegrebet direkte pa meengde-
begrebet, og vi indskyder derfor et kortfattet afsnit om ordnede par og
meengder af sidanne, s meget hellere som vi derved ogsa far givet en
preecis definition péd begrebet relation, som vi allerede lejlighedsvis har
benyttet og ogsa senere far brug for.

Lad der vare givet to ikke ngdvendigvis forskellige elementer a og b;
vi skal soge at definere det ordnede par (a, b) af disse elementer, d. v. s.
en kombination af en serlig type af disse to, siledes beskaffen, at de
ikke optreder side om side, men i en bestemt rakkefolge, si at a, der
kaldes det ordnede pars forste komponent, pa en eller anden made kan
siges at gd forud for den anden komponent b. Det er allerede nu klart,
at a, b) skal veere noget andet end {a, b}, og dette understreges yderligere
af, at man vil have {(a, b) ={c, d), nir og kun nar a=c og b=d, siledes
at (a, b)+<{b, a), hvis a+b.

Man kan uden sterre besveer gi efter, at man far alle disse ensker
opfyldt ved at bruge definitionen

(@, b) = {{a}, {a, b}},

som udtrykker begrebet ordnet par direkte ved mangdebegrebet (og
iovrigt er en definition af den slags, som bringer et anskueligt klart
begreb pd plads i systemet og dermed har gjort sin skyldighed).

Lad der nu veare givet to mengder 4 og B, der ikke behover at veere
disjunkte, ja, som endog gerne kan veere den samme maengde. Mzngden
af alle ordnede par {a, b), hvor a € 4 og b e B, betegnes AxB (den er
tom, hvis og kun hvis mindst én af mengderne 4 og B er det). En vil-
karlig delmzngde R af A+ B kaldes en relation fra A til B, idet man siger,
at et element a € 4 star i den pageeldende relation til et element b € B
(hvilket kan skrives aRb), sifremt (a, b) € R.

Lad exempelvis 4 veere mangden af alle rette linier i en plan og B
meengden af alle cirkler i samme plan, og lad den betragtede relation R
veaere rer tangent til«. At det ordnede par {(a, b) tilhgrer R, er da ens-
betydende med, at linien @ er tangent til cirklen .

En vilkérlig relation R< A% B har en sikaldt invers, nemlig den del-
maengde R~ af B*A, som bestar af netop de ordnede par (b, a, for hvilke
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det gezlder, at {a, b) € R. I det betragtede exempel udtrykkes den in-
verse relation ved »har som tangent«.

I det specielle tilfzelde A =B (som er det, vi i de foregdende paragraffer
har haft at gere med nogle gange), taler man om en relation i 4. Lad os
som exempel for 4 = newevne relationen »gdr op i« eller rer divisor af«,
hvis inverse er relationen »er multiplum afq.

Hvis der for en relation R i 4 galder folgende tre love (for vilkarlige
elementer af 4):

Den reflexive lov: {a, a) € R.
Den symmetriske lov: {a, b) € R = (b, a) € R.
Den transitive lov:  {a,b)e R, <(b,cd)e R = {a,c)e R,

kalder man relationen en ekvivalensrelation (jvi. s. 29). Den lige naevnte
relation »gir op i« er ikke en skvivalensrelation, thi den er ikke symme-
trisk. Vi nevner, at man kan finde exempler pa samtlige kombinations-
muligheder af gyldighed og ikke-gyldighed af de tre love, som saledes
er indbyrdes uafheaengige.

Lad os igen betragte en relation fra A til B, idet vi altsa lader den
specielle foruds®tning 4 =B falde. Hvis det gelder, at der for ethvert
a € A findes netop ét ordnet par i R, som har a som ferste komponent
(altsa for det forste, at der til ethvert a e A findes et be B, si at
{a, b) € R, og for det andet, at {a, b) € R, {a, ¢c) € R = b=c), kalder man
R en afbildning af A ind i B, og anden komponent af det pagzldende
ordnede par kaldes billedelementet af a. Hermed har vi netop faet fat
pé det, som anskueligt udtrykkes siledes: at der til ethvert element af 4
pa entydig made er knyttet et element af B, og vi er altsa ndet frem til
den gnskede, pid mangdebegrebet hvilende definition pa begrebet af-
bildning. Det ses iovrigt, at relationen = mellem to afbildninger er
opfyldt, hvis de er den samme mengde af ordnede par.

Vi gar nu videre med
fremstillingen af afbildnin-
gernes teori. For enhver
meengde A’ < A4 kaldes den
delmeengde af B, som be-
star af alle billedelemen-
terne af elementerne fra 4’,
billedmeengden af A’ (eller
den til 4’ svarende veerdi-

Fig. 12 maeengde) og betegnes f(4’).
For A’ = A far man meeng-
den f(A4), som ogsa kaldes afbildningens billedmeengde (eller funktionens

NMT, Hefte 1, 1962. — 3
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veerdimengde) (se fig. 12). Hvis f(A’) bestar af ét element, siges f at
vaere konstant pa A’; hvis f er konstant pa A, siges f kort at vere
en konstant afbildning.

Man beviser uden sterre vanskelighed, at hvis A’ og A" er delmengder
af 4, sa er

(6.1) fAd"uA") = f(d')u f(a”),
(6.2) fAd"'nA”) c f(A4')nf(4"),
(6.3) JANAY) 2 f(ANf(A4").

Ethvert element af 4, som ved S afbildes i et givet element b € B,
kaldes et originalelement til &; maengden af sidanne elementer kaldes
originalmengden til b og kan naturligvis godt indeholde mere end ét
element (og kan igvrigt ogsa veere tom, nemlig hvis b e B\ f(4)). Origi-
nalmeengden til et vilkarligt element af f(A4) er et exempel pa en meengde,
pé hvilken f er konstant. Endvidere forstar man ved originalmsengden
til en meengde B’'<f(4) den delmangde af 4, som bestar af alle de ele-
menter af 4, hvis billedelementer tilhgrer B’.

Foreligger der to afbildninger f og g, siledes at dispositionsmeengden
for f er definitionsmeengde for ¢, altsa

frAindiB, g¢: BindiC,
forstdr man ved den af f og g sammensatte afbildning
gof: AindiC
den sledes definerede afbildning (se fig. 13):
g o f(a) = g(f(a)) for ethvert ac 4.

gof

Fig. 13

Hvis det for en afbildning f: 4 ind i B gwlder, at f(4)=B, kaldes b
en afbildning af 4 pd B, og man skriver
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f: ApaB.
Enhver afbildning f: 4 ind i B kan, om det gnskes, betragtes som en af-
bildning af 4 pa f(4).

Hvis det for en afbildning f: 4 ind i B gelder, at originalmangden
til ethvert element af f(4) bestar af ét element (eller sagt pa en anden
méade: at forskellige elementer af 4 stedse har forskellige billedelementer),
kaldes afbildningen enentydig.

Et exempel pa en afbildning, der pa én gang er enentydig og afbilder
definitionsmeengden 4 pa dispositionsmengden B, har man for B=4 i
den afbildning, der lader ethvert element a €A afbildes i sig selv; denne
afbildning kaldes den identiske afbildning af 4 pa 4.

Sammen med en enentydig afbildning f: 4 ind i B betragter man ofte
den afbildning af f(4) pa A4, som fastlegges ved, at ethvert element
b e f(4) afbildes i sit entydigt bestemte originalelement. Denne afbild-
ning kaldes den til f inverse (eller omvendte) og betegnes f-1, og vi har
altsd, idet billedmengden ses at veere hele 4:

f1 f(4) pa 4.0
Da originalmeengden ved f-* til et vilkarligt element @ € 4 ma udgeres
af det ene element f(a), er afbildningen f-! enentydig; den har da en
invers, og da et vilkarligt element « € 4 ved denne afbildes i sit original-
element ved f-1, altsi f(a), har vi:

(f Dt =7 Apa f(4).

Hvis f er en enentydig afbildning, kan man i (6.2) og (6.3) erstatte
inklusionstegn med lighedstegn.

Videre gelder det, at den af to enentydige afbildninger f: A ind i B
0g g: B ind i C sammensatte afbildning gof: 4 ind i C er enentydig, thi
originalmeengden ved g til et element ¢ € C bestar af ét element b € B, og
originalmeengden ved f til dette af ét element a e A, og dette udger
originalmeengden ved gof til c.

Endvidere konstaterer vi, at hvis f er en enentydig afbildning af 4 pd B,
sd er f~1 en enentydig afbildning af B pa 4, og (f-1)-1=f: A pa B; og
videre, at hvis begge atbildningerne f: 4 pa B og g: B pa C er enentydige,
sd er den sammensatte afbildning gof en enentydig afbildning af 4 pa
C, specielt er f~1of den identiske afbildning af 4 pa A; og endelig, at
hvis afbildningen f: 4 pa B er enentydig og A’ en sgte delmaengde af A4,
sd er f(A’) en xgte delmaengde af B.

1 Definitionerne kan ogsé ved hjzlp af relationsbegrebet formuleres siledes: Enhver
afbildning f har, betragtet som relation fra 4 til f(4), en invers relation f~1, Hvis denne
ogsé er en afbildning, kaldes f enentydig, og f~! kaldes den inverse afbildning til f.




36 TORKIL HEIEDE OG HANS JORGEN HELMS

Vi giver nogle exempler pa afbildninger: Den sedvanlige elementare
funktionslere beskeftiger sig med de specielle afbildninger, hvis defini-
tionsmengde og dispositionsmangde begge er mengden R af de reelle tal
eller delmzengder af denne — som oftest intervaller; lad os nsevne de
ved f(x)=a? f(x)=sinz, f(z)=Vz og f(x)=|x| definerede afbildninger.
Men afbildningsbegrebet optraeder i virkeligheden ogsa adskillige andre
steder i den elementere matematik; i geometrien ofte i den skikkelse,
at man ved en afbildning af en meengde af geometriske objekter ind i %
etablerer en sikaldt mdling af disse objekter, siledes ved liniestykkers
leengde, polygoners areal og vinklers maltal (eller »storrelseq); ingen af
disse tre afbildninger er enentydig. Den afbildning, der til enhver tre-
kant knytter summen af dens vinklers maéltal, er et exempel pa en kon-
stant atbildning af meengden af alle trekanter ind i R. Videre er parallel-
forskydninger, drejninger, spejlinger, flytninger og multiplikationer ex-
empler pa afbildninger af en meengde af geometriske figurer pa den
samme mengde (hvis ikke man foretraekker at opfatte dem som afbild-
ninger af mengden af punkter i hele planen (eller rummet) pa sig selv);
disse afbildninger er alle enentydige. Ved en projektion afbildes en
mengde af figurer i en lineeer mangfoldighed (ret linie, plan, Tum) pa
en mengde af figurer i en anden linezer mangfoldighed (eller man kan igen
foretrekke at operere med maengden af alle punkter i de linezere mang-
foldigheder); en projektion er ikke ngdvendigvis enentydig.

At gore en ret linie til en abscisseakse er at etablere en enentydig
afbildning af en serlig type af mangden af dens punkter pa maengden %,
og analogt er indleggelse af et koordinatsystem i planen (eller rummet)
det samme som etablering af en enentydig afbildning af en swrlig type af
mengden af planens (eller rummets) punkter p4 maengden af alle reelle
talpar (eller taltripler).

En mengde bestiende af afbildninger kan optreede som definitions-
mengde for en ny afbildning. Vi naevner et exempel, hvor dispositions-
mengden ogsd er en mengde af afbildninger: den (ikke enentydige) af-
bildning, ved hvilken enhver sedvanlig differentiabel funktion afbildes
1 sin differentialkvotient. Dispositionsmangden kan ogsi besta af geo-
metriske objekter; vi nzvner den afbildning, ved hvilken enhver seed-
vanlig funktion afbildes i sit grafiske billede. Endelig naevner vi et exem-
pel, hvor dispositionsmaengden er R, nemlig den (ikke enentydige) af-
bildning, ved hvilken enhver sedvanlig pd et vist fast interval konti-
nuert funktion afbildes i sit bestemte integral over dette interval.

En afbildning af en mangde K ind i en m@ngde B af maengder har vi
tidligere haft med at gere; thi betegner vi med A4, den til et vilkarligt
element k € K ved afbildningen knyttede mangde (som altsi er et ele-
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ment af B), udger mengderne 4, netop et mengdesystem med K som
indexmsengde (se s. 23).

Lad 4 vere meengden af ekvivalensklasser af kongruente liniestykker
ien given plan; knytter man til enhver af disse klasser den felles lengde
af de liniestykker, der udger den, har man en enentydig afbildning af 4
ind i R. Erstatter man kongruente liniestykker med kongruente tre-
kanter og leengder med arealer, fir man en ikke enentydig afbildning.

Det i setningerne 5.1 og 5.11 udtrykte hovedresultat kan formuleres
saledes: For en vilkarlig ikke tom meengde A findes der en enentydig
afbildning af meengden af ;ekvivalensrelationer i A pa meengden af klasse-
inddelinger af A4, nemlig den, der afbilder en vilkarlig sekvivalensrelation

i den klasseinddeling, som man far ved at regne to elementer af A til
 samme klasse, nar de er skvivalente.

Lad os endelig nevne folgende vigtige exempel: Vi betragter for en
vilkarlig mengde A maengden D af samtlige delmeengder af 4 og meengden
F af samtlige afbildninger af 4 ind i mengden {0, 1}. Idet vi til enhver
delmeengde M af A knytter dens karakteristiske funktion ¢, d.v.s.
den funktion, der er konstant p4 M med funktionsveerdien 1 og konstant
pa (M med funktionsveerdien 0, har vi etableret en enentydig afbildning
af D pa F.

7. Beleegninger. Vi har allerede lejlighedsvis navnt (ikke ordnede)
talpar og taltripler; vi skal nu pracisere disse begreber, idet vi samtidigt
generaliserer dem.

Lad der vere givet to (ikke ngdvendigvis disjunkte eller forskellige)
maengder 4 og B. For vi opstiller en ngjagtig definition pa et par af ele-
menter fra 4 og B, vil vi forsgge at indkredse begrebet ved nogle lasere
betragtninger. Et vilkarligt element a fra A og et vilkarligt element b
fra B skal pa en eller anden made siges at udgere et par af elementer
fra 4 og B, og a skal kaldes parrets 4-komponent og b dets B-komponent;
det er altsd meningen, at det stadig skal erindres, hvilke meengder a og b
er hentet fra. Desuden skal to sddanne par kun anses for det samme,
hvis de har samme A-komponent og samme B-komponent. Man kan
forspge at give alt dette udtryk ved at betegne parret ved (e € 4, b € B);
da det ikke er meningen at opfatte komponenterne som optradende i
nogen bestemt raekkefolge inden for parret, er (be B, a e 4) blot en
anden betegnelse for det samme par.

Af det allerede sagte fremgir det, at parret ikke er det samme som
f. ex. mengden {a}u{b}, og dette kommer endnu tydeligere frem, nar
man betanker, at det ikke forudsattes, at AnB=¢d. Thi lad ce AnB;
det har da god mening at tale om parret (c € 4, ¢ € B), og dette er noget
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helt andet end mwngden {c}u{c}={c}. Ydermere: hvis ce AnB og
de AnB, hvor c+d, sa er {c}u{d}={d}u{c}={c, d}={d, c}, mens

(7.1) (ced,deB) + (de A, ce B),
hvilket bl. a. ogsé kan skrives saledes:
(7.2) (ce A, deB) # (ce B, de A) .

Man kan gere betegnelserne lidt enklere: De to meengder, fra hvilke
man henter de elementer, der skal kombineres til et par, kan man af
rent sproglige grunde ikke naevne samtidigt, og man vedtager da som
betegnelse for parret at bruge (a, b), idet det underforstas, at den forrest
opskrevne komponent er hentet fra den forst naevnte af meengderne og
den bagest opskrevne fra den sidst nevnte. For par af elementer fra
mengderne 4 og B kommer formlen (7.1) (og ogsa (7.2)) derved til at se
saledes ud:

(7.3) (e, d) = (d,¢).

Imidlertid svigter begge de indforte betegnelsesmader i tilfeldet 4 = B.
For den forstes vedkommende opdager man dette ved f. ex. at indsztte
A=Bi (7.1) eller (7.2), og for den andens melder vanskelighederne sig
derved, at man ikke kan afgore, hvilken af to givne maengder man nevner
forst, hvis ikke de er forskellige. Man kunne maske habe, at der blot
var tale om, at betegnelsesméderne var uheldigt valgt, og at det fore-
gaende dog var tilstreekkeligt til fastleeggelse af selve begrebet et par
af elementer fra 4 og B. Men ogsi i selve definitionen gar det galt, thi
hvordan skal man skelne mellem begreberne A-komponent og B-kom-
ponent, nar A =B? Man kunne prove at klare sig ved at tale om for-
skellige exemplarer af den samme mzngde, eller man kunne forspge at
ngjes med de allerede indforte ordnede par; men begge ideer forer til
nye vanskeligheder: den forste kraver en revision af selve meengde-
begrebet, og den anden, der ofte anvendes, lzegger hindringer i vejen
for en generalisation, som vi snart skal gennemfore, idet vi i stedet for at
kombinere et element fra hver mangde i et system af blot to meengder
skal gore det samme for et helt vilkarligt meengdesystem.

Det viser sig nu, at man kan komme igennem ved en ganske lille zen-
dring i opfattelsen af, hvad det er at danne et par af elementer fra
meengderne A og B: hidtil har vi, anskueligt sagt, udtaget et element af
hver af de to maengder og fgjet dem sammen til et par. Nu vil vi veelge os
en fast mengde bestdende af to elementer og lade et bestemt af disse ud-
pege et element fra 4 og det andet et fra B, og parret bliver saledes
bygget op pa denne faste mengde, som kaldes dets indexmengde. For at
have noget bestemt at holde os til vil vi altid som indexmsngde bruge
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maengden {1, 2}, og vor definition kommer, idet vi samtidigt fastsetter
betegnelsen for et par, til at lyde siledes:

Ved et par (eller med en udferligere udtryksmade: et indiceret par) af
elementer fra maengderne A og B forstas en afbildning f af mengden
{1, 2} ind i mengden AUB, siledes beskaffen, at f(1)e A og f(2) € B.
Hvis f(1)=a og f(2)=b, betegnes parret (a, b); a og b kaldes henholds-
vis 1- og 2-komponent af parret. Det bemeerkes, at (a, b) ={(1, a), (2, b)}.
P4 lignende made kan enhver beleegning (se nedenfor) opskrives som en
maengde, hvis elementer er ordnede par. Hvis specielt 4 =B, kaldes
(@, b) et par af elementer fra 4 ; et sadant er altsi ganske det samme som
en afbildning af {1, 2} ind i 4.

Med en lgsere og lidt farlig udtryksmade kaldes a og b ofte parrets
forste og anden komponent; det understreges, at der heri ikke skal ligge
nogetsomhelst i retning af, at de to komponenter forekommer i en be-
stemt reekkefolge i parret (anderledes sagt: det er ikke et ordnet par, vi
har med at gare); det gor de kun i opskrivningen af parret. Lad os belyse
dette ved et exempel: Koordinaterne til et punkt i en plan udger et par
af elementer fra R, og de har ikke af sig selv nogen bestemt raekkefolge;
det er kun, nir man navner dem eller skriver dem op, at man (ifelge
seedvane) forst tager abscissen og sa ordinaten.

Det er klart, at (7.3) (hvor det forudsattes, at c¢+d) gelder for det
hermed definerede parbegreb.

Den ovenfor nevnte generalisation ligger nu lige for: Lad der fore-
ligge et vilkarligt mengdesystem (4;);.x; en afbildning f af index-
meengden K ind i mengden U, g A4,, siledes beskaffen, at f(k) € 4, for
ethvert k € K, kaldes med en anskuelig udtryksméade en belegning af K
med elementer fra mangderne A4,. Hvis f(k)=a,, k € K, betegnes belag-
ningen séledes: (@y)q,eca, kexs eventuelt blot (ay),.x eller (), og ay
kaldes belegningens k-komponent (eller k’te komponent). Hvis specielt
mzngderne 4, alle er den samme meengde A, kaldes (a;); . en belegning
af K med elementer fra 4 ; en sadan er altsa ganske det samme som en
afbildning af K ind i 4.

Man ser somme tider bensevnelsen: et komplex brugt i stedet for den
her anvendte: en belaegning. Vi har valgt den sidste, fordi den pa en mere
handfast made minder om den veasentlige rolle, som indexmeengden
spiller for strukturen af (a;).

Hvis K={1, 2}, far man det allerede behandlede begreb: et par, og
hvis K ={1, 2, 3}, kaldes belegningen en tripel af elementer fra 4, 4,
og A, og betegnes (a,, @y, a;). Mere almindeligt kalder man i tilfeldet
K={1,2, ..., n} belegningen et n-seet af elementer fra 4,, A, ..., A,
og betegner den (ay, ds, ..., a,). Videre kalder man i tilfeeldet K=%0
beleegningen en folge af elementer fra A4,, 4,, ..., 4,, ... og betegner
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den (a;, ay, ..., a,, ...).Ide specielle tilfzelde, at de betragtede maengder
4, alle er den samme mzengde A4, taler man om en tripel, et n-set og en
folge af elementer fra A.

Som et exempel neevner vi den s. 15 omtalte mangde F,: ethvert ele-
ment af den er en afbildning af mangden 7'= {tity, ...t} af de 6
taster ind i mangden I = {i,, i,, i,} af de 3 for en tast mulige indstillings-
méder, altsd en belegning af 7' med elementer fra I.

Det fremhaeves, at der i forbindelse med begrebet belaegning foreligger
et existenssporgsmdl: Findes der til et forelagt meengdesystem (4y),.x
altid en belegning af K med elementer fra meengderne 4, ? Det er klart,
at hvis blot én af meengderne A, er tom, er svaret nej; og vi vil gi ud fra,
at hvis ingen af mangderne 4, er tom, er svaret ja,d.v.s. at der altid findes
mindst én belegning af den gnskede art. Denne forudsesetning er det sa-
kaldte udvalgsaxiom, som vi senere skal vende tilbage til. Det bemserkes,
at dette steerke udvalgsaxiom ikke er nadvendigt til sikring af existens
af n-set.

Lad os til slut notere, at vi har madt begrebet belegning tidligere
uden at anvende glosen: Vi definerede s. 23 et mangdesystem som en
samling af meengder, bestemt ved at der til hvert element % af en index-
mengde K er knyttet en meengde 4,. Anderledes sagt er meengdesystemet
(Ap)rex altsd (som naevnt s. 36-37) en afbildning af K ind i en maengde
M, hvis elementer er maengder (at mengderne 4, ikke behgver alle at
veere forskellige, ligger netop i, at denne afbildning ikke behgver at vere
enentydig). Dette kan vi nu udtrykke saledes: Mzengdesystemet er en
beleegning af K med elementer fra M, som er en maengde af maengder.
At et meengdesystem er en speciel type belegning, giver sig ogsa udtryk
i overensstemmelsen mellem betegnelserne.

8. Produktmengder, I. Lad der vaere givet to mangder 4 og B;
ved produktmeengden A x B forstair man meengden af alle par (a, b) af
elementerne fra 4 og B, altsa:

AxB = {(a,b)|acAd, be B},

eller sagt mere udferligt: 4 x B er mengden af alle afbildninger f af {1, 2}
ind i AuB, for hvilke f(1) e A og f(2) € B.! Det er straks klart, at

AxB % BxA, hvis A + B;

thi B x 4 er mengden af alle afbildninger f af {1, 2} ind i Bu A4, for hvilke
f(L)e Bogf(2) e A.
Produktmaengdebegrebet skyldes Cantor. Vi konstaterer, at 4 x B er

1 Hvis man kun har defineret ordnede par og ikke som i denne fremstilling tillige
indicerede par, m& man lade A x B vsre det, vi her har kaldt 4 *B.
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tom, hvis og (se ovenfor) kun hvis mindst én af faktormesengderne (d. v. s.
A og B) er det.

Lad os hente et exempel fra den elementere kombinatorik: En mand
har en bla, en sort og en ternet frakke samt en mork og en lys hat. Han
kan da optrede med bla frakke og mork hat, med sort frakke og lys hat
0.8.v., og mengden af disse kombinationer er, idet vi holder regnskab
med dem ved hjzlp af indexmaengden {1, 2}, produktmangden af mang-
den af frakker og mengden af hatte.

Der er ikke noget i vejen for, at 4 og B specielt kan vaere den samme
mengde; for 4 x A bruger man ogsd betegnelsen 42 Et velkendt og

bl _(%z,b)
B

AxB

|
|
|
|
]
|
J !
a

A

Fig. 14

allerede bergrt (s. 36 og 39) exempel pa denne situation har man i mang-
den af koordinatset for punkterne i en plan (efter fastleggelse af et
koordinatsystem), thi den er abenbart netop 2. Man kalder ofte, in-
spireret af dette exempel, en produktmeengde det cartesiske produkt af
faktormeengderne og anskueliggor 4 x B som vist pa fig. 14 eller fig. 15
(de pa figurerne indtegnede mangder G omtales nedenfor); og man
kalder R? den euklidiske talplan eller det todimensionale euklidiske tal-
rum (dog forst efter indfgrelse af det sedvanlige, ved kvadratroden
af kvadratsummen af koordinatdifferenserne fastlagte afstandsbegreb).

P& fig. 16 og fig. 17 vises det, hvorledes man kan anskueliggore
produktmeengderne af en ret linie og en cirkel og af to cirkler (opfattet
som punktmeengder) ved hjelp af en cylinderflade og en torusflade.

Vi nevner, at man generaliserer begrebet grafisk billede af en sed-
vanlig funktion pa felgende méade: Lad der foreligge en relation fra A til
B (eller mere specielt en afbildning af en delmangde af 4 ind i B), altsi
en delmangde R (eller en delmeengde f af serlig beskaffenhed) af A* B,
hvis elementer er ordnede par {(a,b) med a€ A og be B. Til ethvert
ordnet par {a, b) € R knytter vi nu parret (a, b) € A x B, og den derved
fremkomne mengde G'={(a, b) | {a, b) € R} kaldes grafen' i A xB af R

1 Det bemszrkes, at det kun er i kraft af, at vi har defineret 4 x B som noget
andet end 4 *B, at vi kan skelne mellem en afbildning og dens graf.
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(eller f) og kan anskueliggores som vist pa fig. 14 eller fig. 15, idet den
jo er en delmesengde af 4 x B. I det pa figurerne betragtede tilfzlde er
abenbart (a, b) ¢ G, altsa (a,b) ¢ R, d.v.s. at a ikke star i den pageel-
dende relation til b.

Ved grafen af R (eller f) i Bx A forstds meengden {(b, a) | {a, b) € R}.
Det ses, at en relation R < AxB og dens inverse R~! < BxA har samme
graf i AxB (ligesom de ogsa har samme graf i B x A). Som exempel
neevner vi den fra den elementeare funktionslere velkendte sag, at den
afbildning f af {x | x>0, x € R} pad R, som defineres ved f(x)=Inz, og
dens ved f~l(y)=e¥ fastlagte inverse afbildning har samme graf i R?2,
nemlig mengden {(z,y) | y=Inz} ={(z, y) | x=¢"}.

7N
_

\/ Fig. 17

Fig. 16
Videre definerer man nu produktmengden af maengderne i en maengde-
tripel (4, B, C):
AxBxC = {(a,b,c)|acd, beB, ceC}

(et simpelt exempel far man ved i det kombinatoriske exempel ovenfor
at tilfgje en mengde bestiaende af 5 halsterkleder) og mere almindeligt

produktmeengden af mangderne i et mengde-n-set (4,, 4,, ..., 4,) og
af meengderne i en meengdefolge (4, 4,, ..., 4,, ...):

AyxA,x ... x4, = {(ay, ay, ....a,) | ap€ 4y, ke{l,2, ..., n}},
Ay xAyx ..o xAyx .o = {(ay, agy o ay, ...) | a,€ Ay, keN) .

Det understreges, at 4 x BxC er noget andet end (4 x B) xC, thi
denne sidste meengdes elementer er ikke tripler, men par, og ligeledes er
AxBxC%+Ax(BxC). Desuden er (4 x B) x C+ A x (B x (), thi ganske
vist bestar begge disse meengder af par, men for den forstes vedkom-
mende er 1-komponenterne par af elementer fra 4 og B, for den andens
er de elementer af 4.
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For AxAx...xA (hvor den samme maengde optreeder som faktor-
mzengde n gange) bruger man ogsé betegnelsen A", idet man samtidigt
swtter A1=A. Mengden af koordinatset for punkter i rummet (efter
fastleeggelse af et koordinatsystem) er siledes %% og denne maengde
kaldes derfor (igen forst efter indferelse af det sedvanlige afstands-
begreb) det tredimensionale euklidiske talrum; ogsd for n >3 kaldes R"
(med analogt afstandsbegreb) det n-dimensionale euklidiske talrum.
Vi naevner, at en vis delmaengde af Rx R x ... xR\ x ..., nemlig meng-
den af alle de talfolger (ay, g, - - ., @y, . ..), for hvilke reekken 277, a,?
er konvergent, kaldes det hilbertske talrum (efter indforelse af et med de
foregiende analogt afstandsbegreb, som netop muliggeres af den nevnte
konvergensbetingelse).

Vi far i det folgende ogsa brug for at kunne tale om produktmengden
af maengderne i et helt vilkdrligt mengdesystem (4;);.x. 1det vi benytter
den i 7 indferte terminologi, definerer vi: Den mangde, der bestar af
alle beleegninger af indexmangden K med elementer fra maengderne 4,
kaldes produktmeengden af mengderne 4, og betegnes

X4,.

ke K
Vi bemeerker straks, at produktmeengden er tom, hvis og (se s. 40) kun
hvis mindst én af faktormaengderne (d. v. s. maengderne 4;) er det.

For K={1,2}, K={1,2,3}, K={1,2, ..., n} og K=" stemmer denne
definition overens med de allerede givne definitioner pa A, x A4,
Ay xAyx Ay, AyxAgx ... xA, og AyxAyx...xA,x...; med en
modifikation af den indforte betegnelse skriver man for de to sidste ogsa

n

XA,‘. og XAk .
k=1

k=1
Hvis meengderne 4, alle specielt er den samme mzangde A, setter man
X4, = 4%,
keK
og denne sakaldte potensmengde er i henhold til definitionen pa X, x4y
meangden af samtlige belegninger af K med elementer fra 4 eller ifelge
en bemeerkning sidst i 7 simpelthen ma@ngden af samtlige afbildninger af
K indi 4. Som exempel kan vi nevne den s. 15 og s. 40 omtalte maengde
E,: den er mangden af alle afbildninger af 7' ind i 7, altsd potens-
mangden I7.
Videre nzvner vi folgende specielle tilfzelde:
AL = Ax A = A2, AV = AxAxA = A3,

AL — A Ax ... xA = A",
A% = AxAx ... xAx....
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Mzngden A™ optreder ikke blandt disse exempler; den vil blive be-
handlet i 11. Mengden A% er meaengden af samtlige afbildninger af @
ind i 4; enhver sddan er en delmengde af @ x4 og derfor tom, og maeng-
den A? bestar da af det ene element & (og er altsa ikke tom): A% = {9}.

9. Ordnede mengder. Ved en ordnet meengde forstar man anskueligt
sagt en mengde udstyret med en regel, der for to vilkarlige elementer
a og b af meengden fastlegger, om a i en eller anden forstand skal siges
at gé forud for b eller ej; et velkendt exempel har man i den sedvanlige
ordning < af de naturlige tal »efter storrelse«. Vi skal i denne paragraf
precisere begrebet ordning nwrmere under benyttelse af det allerede
indferte begreb relation, idet vi lader os vejlede af, at det anskueligt m4
vare et par vesentlige trek ved en ordning, at den er transitiv (hvis
gar forud for b og b forud for ¢, s& gar a forud for c) og ikke symmetrisk
med hensyn til forskellige elementer (to sidanne gar ikke forud for hin-
anden, mens det bliver en definitionssag, om et element skal siges at g
forud for sig selv).

Lad der i en meengde A4 foreligge en relation R, altsa en delmaengde
R af mengden A*4 af alle ordnede par (a, b) af elementer fra A. Vi
har s. 33 formuleret den reflexive, den symmetriske og den transitive
lov for en sidan relation; vi antager nu, at den betragtede relation
R foruden at vere reflexiv og transitiv er antisymmetrisk, d. v. s. op-
fylder folgende lov:

Den antisymmetriske lov: {a,bYe R, (b,ade R =a = b,
eller anderledes udtrykt:
Den antisymmetriske lov: {a,b) € R, @ + b = (b, ay ¢ R .

Man kalder da R en partiel, reflexiv ordningsrelation og A en (ved R)
partielt og reflexivt ordnet maengde.

Med samme betydning som (a, b) € R bruger man ofte, nar der er
tale om en ordningsrelation, skrivemaden a < b (hvilket lzeses: a gar forud
for b), og det med {a, b) € R ensbetydende udsagn (b, a) € R skrives
b>a (hvilket laeses: b folger efter a); tegnene < og > skal naturligvis
minde om de velkendte tegn < og >. Vi kan da gentage definitionen
pa folgende form:

En relation < i en meengde 4 kaldes en partiel, reflexiv ordningsrela-
tion og A en (ved <) partielt og reflexivt ordnet meengde, safremt <
opfylder folgende love:

Den reflexive lov: a<a.
Den antisymmetriske lov: a <b, b<a = a=b.
Den transitive lov: a<b,b<c=a<c,
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af hvilke den anden ofte med fordel formuleres siledes:
Den antisymmetriske lov: a<b, a+b = bKa.

Det maske mest neerliggende exempel pa en partiel, reflexiv ordnings-
relation har man i relationen = mellem meangder; et andet exempel er
D2, idet det gwlder alment, at hvis < er en partiel, reflexiv ordnings-
relation, s& er den inverse relation > det ogsd. Endnu et par exempler
har man i den s. 33 nevnte »gir op i«-relation mellem naturlige tal (at a
gar op i b, skrives igvrigt seedvanligvis a|b) og dens inverse, relatio-
nen »er multiplum af«.

Det bor nevnes, at den tomme maengde og enhver singleton {a} ord-
nes partielt og reflexivt ved definitionen a < b, hvis a=»b, og at en ordnet
maengde bestdende af to elementer ikke er det samme som et ordnet
par, hvis komponenter jo gerne kan vere det samme element.

Den sedvanlige ordning < af de naturlige tal er ikke en ordnings-
relation af den betragtede type, thi den er ikke reflexiv. Vi formulerer
da folgende lov for en relation R:

Den irreflexive lov: {a, a) ¢ R,
som vi med det samme ogsi udtrykker ved hjwlp af tegnet <:

Den irreflexive lov: aK a.

Og vi definerer: En relation < i en maengde 4 kaldes en partiel, irreflexiv
ordningsrelation og A en (ved <) partielt og irreflexivt ordnet mengde,
safremt < er irreflexiv, antisymmetrisk og transitiv. Den inverse rela-
tion > er i sa fald ogsa en partiel, irreflexiv ordningsrelation, og et par
exempler pa sidanne ordningsrelationer har man i relationerne < og >
mellem mengder.

De hidtil betragtede ordningsrelationer kaldes partielle, fordi der i A
kan veere elementer, som de slet ikke bringer i forbindelse med hin-
anden. Det kan jo siledes for to mengder M og N meget vel indtreffe,
at der hverken geelder M =N eller N M (eller: hverken M <N eller
N = M), ligesom det for to naturlige tal @ og b kan heende, at der hverken
gelder a|b eller b|a. Blandt de partielle ordningsrelationer findes
endog relationer, der slet ikke fornemmes som ordnende: en vilkarlig
maengde ordnes partielt og reflexivt ved definitionen: a <b, hvis a=b5.

Vi opstiller da endnu en lov:

Den konnektive lov: a+b = {a, b) € R eller (b,a)e R,
eller i en anden formulering:
Den konnektive lov: (a, by ¢ R, a+b = (b, a) € B.
Vi opskriver ogsa straks begge formuleringer ved hjelp af tegnet <:

Den konnektive lov: a+b = a<b eller b<ad.
Den konnektive lov: aKb, a+b = b<a.
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Og vi definerer: En relation < i en mengde 4 kaldes en total, reflexiv
(henholdsvis irreflexiv) ordningsrelation og A en (ved <) totalt og reflexivt
(irreflexivt) ordnet mangde, safremt < er reflexiv (irreflexiv), antisym-
metrisk, transitiv og konnektiv. Den inverse relation > er i sa fald ogsa
en total, reflexiv (irreflexiv) ordningsrelation, og exempler pa sadanne
ordningsrelationer har man i relationerne < og = (< og >) mellem
naturlige tal eller lige s& godt mellem hele, rationale eller reelle tal.

Vi n@vner endnu nogle exempler: Den ovenfor omtalte ordning af den
tomme mangde eller en singleton er en total, reflexiv ordning.! Meengden
af punkter pid en orienteret, ret linie er netop ved orienteringen en
totalt, irreflexivt ordnet mzngde. Meengden af punkter i en plan kan
ogsé ordnes totalt og irreflexivt: Planen forsynes med et retvinklet koor-
dinatsystem, og for to punkter P, og P, med koordinatsettene (x,, ;)
og (5, ¥,) setter man

P, < P,, hvis z; < x, eller hvis x; = 2y, y; < ¥, .

Efter det samme princip er opslagsordene i et lexikon ordnet, og en sadan
ordning kaldes derfor lexikografisk. En anden lexikografisk ordning af
planens punkter kan man f& ved at benytte et polert koordinatsystem,
og igvrigt ses det at gwlde almindeligt, at produktmeengder som
Ay xdyx ... xA, og AyxAyx ... xA;x ... kan ordnes lexikografisk,
hvis mangderne 4, er ordnede meengder.

Det bemerkes, at en total ordningsrelation efter de her givne defini-
tioner ogsa er partiel; dette kan man, om man gnsker det, undgi ved i
definitionen pa en partiel ordningsrelation yderligere at forlange, at den
betragtede relation ikke er konnektiv.

Undertiden ser man folgende love optrede i ordningsrelationernes
definitioner:

Den asymmetriske lov: {a, by € R = (b, a) ¢ R.
Den sterkt konnektive lov: (a, b) € R eller (b, a) € R,

af hvilke den sidste ofte formuleres saledes:
Den staerkt konnektive lov: {a, b) & R = (b, a) € R.

Udtrykt ved hjelp af tegnet < lyder de to love saledes:

Den asymmetriske lov: a<b=bKa.
Den sterkt konnektive lov: a<b eller b<a,

eller den sidste lige si godt siledes:
Den starkt konnektive lov: a b = b<a.

1 Swtter man i stedet a<b, hvis a % b, fa&r man en total, irreflexiv ordning.




MANGDELARE OG TRANSFINITE KARDINALTAL 47

Der er imidlertid intet nyt i disse love, idet asymmetri er ensbetydende
med irreflexivitet og antisymmetri, og steerk konnektivitet med reflexivi-
tet og konnektivitet. Ved beviserne for disse og lignende pastande kan
man med fordel tenke pa grafen G af den pagwldende relation R, idet
man serligh hefter sig ved grafens »beliggenheds« i forhold til diagonalen
Di A2, d.v.s. mengden D={(a, a) | a € A}; siledes er R reflexiv eller
irreflexiv, eftersom D<@ eller DnG=4.

Lad os bemserke, at der, som man kunne vente, til enhver irreflexiv
ordningsrelation findes en neertbeslegtet reflexiv: Hvis < er en partiel
(total), irreflexiv ordningsrelation, si er < (lees: gar forud for eller er
lig med) en partiel (total), reflexiv ordningsrelation, og analogt gar det
naturligvis for > og >.

I det folgende vil vi, nar andet ikke siges, ved en ordning forsta den mest
specielle af de fire muligheder, nemlig en total, irreflexiv ordningsrelation.

Til afslutning nevner vi, at den samme mangde oftest kan ordnes pa
mange forskellige mader. Lad os for exempel anfere nogle forskellige ord-
ninger (der alle er totale og irreflexive) af %, idet vi pa anskuelig made op-
stiller elementerne i 9 »i reekkefglge« i henhold til de pagzldende ordninger.

Forst den seedvanlige ordning:

1,2, 3,4, ...,n, ...

og dens inverse:
cn,..,4,3,2, 1

og dernazst tre ordninger, som dannes ved en opdeling af 9 i lige og
ulige tal:

1,3,5,7, ...,2n—1,...;2,4,6,8,...,2n, ...,
1,3,5,7,...,2n—1, ...;...,2n, ...,8,6,4,2,
20, ...,8,6,4,2,1,3,5,7,...,2n—1,...,

og endelig ordningen:

1,3,6,10,...;2,5,9,14, ...;4,8,13,19, ...;7,12, 18,25, ...: ..

som er konstrueret ved hjelp af dette skema:

A S
I 3 610 15 ...

S S S
5 9 14 20
avead
4 8 13 19 26
v

7 12 18 25 33

/
11 17 24 32 41

NONON NN
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hvis tilblivelseshistorie kan ses af pilene; ideen i denne metode skyldes
Cauchy.

I nweste paragraf skal vi beskaftige os med en serlig type ordninger,
de sakaldte velordninger. Vi nevner med det samme, at af de her anfarte
seks ordninger af N er den forste, den tredie og den sjette velordninger
og de gvrige ikke.

10. Velordnede meengder. Hvis der i en delmengde B+ ¢ af en ordnet
mengde 4 findes et element, som ved den pageldende ordning gar for-
ud for ethvert andet element i B, siges B at have dette element som sit
forste element. Hvis enhver delmeengde B+ af den ordnede maengde A
har et forste element, kaldes 4 en velordnet meengde ; den tomme meengde
kaldes ogséa velordnet. Det bor neevnes, at begrebet en velordnet meaengde
skyldes Cantor.

Mengden 9 af naturlige tal er som ovenfor naevnt velordnet ved den
seedvanlige ordning <, hvorimod dette ikke gewlder for mengderne §;,
£ og R; thi som exempler pa delmeengder, der ikke indeholder noget
farste element, kan vi nevne henholdsvis

{0, -2, —4,...},{a|0<a<1l,ae} og {a|0<a<l ach}.

Igvrigt kunne den forste af de tre nevnte meengder (lige s& vel som &
selv) have varet brugt i alle tre tilfzlde.

Som et exempel pa en ved den seedvanlige ordning < velordnet maengde
af rationale tal kan man nsvne meengden

{0,4,8,%,...;1,1},13,13, ...; 2,2,22, 23, ...; ...}.

En velordnet meengde A4 opstillet » rekkefolge« vil altid f4 et udseende
af denne type, thi den har (som delmesengde af sig selv) et forste element
a,, differensmengden A\ {a,} har et forste element a,, differensmengden
AN{a,, a,} har et forste element aj, ...; videre har differensmeengden
AN{ay, ay, ...} et forste element b, ...; ... 0.8.v., si leenge de nevnte
differensmeengder ikke er tomme.

Der rejser sig naturligt det spergsmal, om man ved at velge en anden
ordning af f. ex. mengden & kan opna at f4 den velordnet. Svaret pa
dette spergsmal er bekraftende, thi falgen

(0,1, -1,2, -2, ..., 0, —n, ...)

indeholder tydeligvis ethvert element af § netop én gang, og s@tter man
nu ¢ <b, hvis a star for b i denne folge, har man en velordning af .
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Ogsa £ kan velordnes: Man opskriver skemaet

AT S
12 3 4 5

6

7172737475 6
2 2 2 2 2 2
71727374 5 6
3 3 3 3 3 3
717273 4 5 6
4 4 4 4 4 4
7172 3 4 5 6
5 5 5 5 5 5

7

i hvilket ethvert positivt rationalt tal optreder i enhver af sine brgks-
fremstillinger. Skemaet gennemlgbes nu efter de angivne pile, idet man
dog begynder med tallet 0 og efter hvert tal indfejer dets modsatte og
igvrigt kun tager et tal med, den forste gang man meder det. Derved
fremkommer fglgen

(0717_1:%) %2 ‘29%}9 53_3,%’—%5%’_§9% 274 4:59 75:_5:°")’

der indeholder ethvert element af £ netop én gang. Den anvendte frem-
gangsmade kaldes Cantors forste diagonalmetode (ideen i den gir som
navnt s. 48 tilbage til Cauchy), og man far en velordning af £, nir man
setter a < b, hvis a star for b i denne folge.

Det bemerkes udtrykkeligt, at de anforte velordninger af & og £ er
af serligt enkel karakter: vi har i begge tilfeelde stillet elementerne af den
pageldende meengde op i en folge og derved faet velordninger af samme
type som den, man far for % ved anvendelse af den seedvanlige ordning <.
Vi skal senere bevise, at der existerer meengder, der indeholder »for
mange« elementer, til at disse kan stilles op i en folge; s& meget mere
overraskende er det maske, at man kan bevise folgende setning:

SzTNING 10.1. Enhver mengde kan velordnes.

Denne fundamentale seetning, den sakaldte velordningsseining, er op-
stillet af Cantor som en »uundgaelig nedvendighed af rent logisk karak-
ter«. Den tankegang, som ligger bag ved denne pastand, kan refereres
saledes:

Lad der veere forelagt en meengde 4 & 0. Vi velger et element a, € 4,
derefter et element a, € A\{a,} (hvis denne mangde ikke er tom), der-
efter et element a; € A\ {a,, a,} og s& fremdeles. Hvis vi p4 denne made
har faet udvalgt en hel folge (ay, a4, a5, . . ., a,, . . .) af forskellige elementer,

NMT, Hefte 1, 1962, — 4




50 TORKIL HEIEDE OG HANS JORGEN HELMS

og mengden AN\{a,, ay, a3, ..., a,, ...} ikke er tom, valger vi af den et
element b;; af mengden A\{a,, ay, a3, ..., a,, ...; b} velger vi (hvis
den ikke er tom) et element b, o.s. V., eventuelt en hel fglge til og
endnu en; ja, en folge af folger, en folge af folger af folger om muligt
0. 8. V. 0.8. V., og ved at fortsette saledes far man 4 brugt op.

Idet vi nu for to elementer p og q af A s®tter p< g, hvis p er blevet
udvalgt for ¢, har vi etableret en velordning af 4.

Mod dette reesonnement kan der rettes forskellige indvendinger; forst
og fremmest kan man have betenkeligheder ved de stadigt gentagne
valghandlinger, og desuden er det ikke ganske klart, at A virkelig
bliver brugt op, og at der fremkommer en velordning. Det lykkedes i
1904 E. Zermelo ved hjxlp af det bl. a. af ham selv opstillede udvalgs-
axiom at fore et strengt bevis for velordningssetningen. Vi vil skitsere
hans bevis i en formulering, der benytter udvalgsaxiomet i den skikkelse,
som vi tidligere (s. 40) har haft med at gore, og som skyldes Russel
(1907) og Zermelo (1908). Beviset er bygget over den ovenfor gennem-
forte losere betragtning.

Lad (4,);.x vere mengden af alle delmeengder af den givne meengde
4, og lad k, veere det element af indexmeengden K, for hvilket 4, =4.
Idet vi setter L=K\{ky}, er (4;)x; altsd meengden af alle @gte del-
meengder af A. Vi har da, at AN\A4,+0 for ethvert k € L, og udvalgs-
axiomet siger nu netop, at der findes en belegning af L med elementer
fra meengderne ANA4,, k € L, altsa en afbildning, der til ethvert element
k € L knytter et bestemt element a, € AN\ 4,. Sagt pa en anden made:
Til enhver segte delmzngde A4, af 4 har vi faet knyttet et element
ay € A, som tkke tilhgrer A,.

En mengde § af delmeengder af 4 kaldes en kede, hvis det gelder, at

(10.1) Ayel, keL = A4, u{y}es,
og (for en vilkarlig delmesengde M af K), at

(10.2) A, e for ethvert ke M = |J 4, € 8.
keM

(Det bemserkes, at (10.1) i overvejelserne ovenfor svarer til, at man gar
fra et element i en folge til det naeste, mens (10.2) svarer til, at man
tager fat pa en ny folge.) Mengden af alle keder er ikke tom, thi mengden
af alle delmaengder af A er en kede. Lad nu 7' vaere fellesmengden af
alle keeder; 7' er altsd meengden af netop de delmeengder af 4, som findes
i enhver keaede.

T er selv en kede (og altsd i en vis forstand den mindst omfattende),
thi af 4, €T, k € L folger det, at 4, € § for enhver kede S og dermed
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ifolge (10.1), at A,u{a,} € S for enhver kaede S, altsé 4,u{a,} eT; og
af 4, €T for ethvert k e M folger det, at 4, € 8 for ethvert k€ M for
enhver kaede S og dermed ifelge (10.2), at U, 3,4, € S for enhver kaede
S, altsd U, 4, €.

Foreningsmeengden B af alle mangderne i keden 7' er en delmangde
af A; vivil vise, at B=A4. Af (10.2) far vi, at Be T, og vi antager nu,
at B er en @gte delmaengde af 4. Af (10.1) far vi da, idet vi med b beteg-
ner det til B knyttede element af ANB, at Bu {b} € T'. Ifolge definitionen
pé B er mengden BU{b} som element af keden 7' en delmengde af B,
og derfor er b et element af B i strid med, at det som lige nzvnt er et
element af ANB. Antagelsen B<A forer altsd til en modstrid, og da
som nevnt BS A, har vi B=A4.

Ethvert element af 4 findes derfor i mindst én af meengderne i keeden
T, og for vilkarlige elementer p og ¢ af A s=tter vi nu p< g, hvis der
findes en meengde C € T, siledes at p € C og q ¢ C. Det er nu muligt at
bevise, at den herved definerede relation < er irreflexiv, antisymmetrisk,
transitiv og konnektiv, altsi at den er en ordningsrelation for 4, og
endvidere, at denne ordning er en velordning af 4. Beviserne volder
ingen principielle vanskeligheder, men er forholdsvis omstendelige, og
vi vil derfor lade os ngje med det allerede udviklede. Vi har altsa vist,
hvorledes man tilvejebringer velordningen af 4 med ét slag i stedet for
ved den ovenfor omtalte, noget tvivlsomme opbygning skridt for skridt;
men vi gennemforer ikke nogen pavisning af, at der virkelig er kommet
en velordning ud af det.

Det skal til sidst naevnes, at man ogsd kan g& den modsatte vej:
Man kan bevise, at hvis enhver meangde kan velordnes, sa gaelder ud-
valgsaxiomet. Disse to vigtige udsagn er altsa ensbetydende.

Det er maske ogsa pa sin plads at angive Zermelos oprindelige formu-
lering af udvalgsaxiomet: Til enhver mengde af ikke tomme, parvis
disjunkte meengder findes en mangde, der bestir af netop ét element
af hver af disse mengder. Dette kan vises at veere ensbetydende med
den formulering, vi her har brugt.

(Fortscettes © naeste hefte.)



OM EN SATS FRA KOMBINATORIKKEN

HELGE TVERBERG

Vi skal i det folgende gi et nytt bevis for en enkel, men morsom kom-
binatorisk sats som forst ble vist av Philip Hall [2]. La oss tenke oss
at det er gitt n endelige, ikke tomme mengder M,, M,, ..., M,, med
henholdsvis ky, k,, ..., k, elementer. Nar er det mulig d velge ut et ele-
ment fra hver mengde slik at de utvalgte elementer alle er forskjellige? —
De utvalgte elementer sies da & danne et representanisystem.

La f. eks. mengdene veere

M, = {a, b}, My =1{b,c}, My = {a,b}, M, = {a,b,c}, M5 = {a,b,c,d,e}.

Prover en seg frem her, vil en finne at et utvalg som nevnt ikke er mulig.
Grunnen til det er sveert enkel & innse. Danner en nemlig mengden!
M,uM,uM;uM,={a,b,c}, s inneholder den bare ire elementer. Vi
skjonner at vi far folgende betingelse i alminnelighet:

(B) Enhver union av k mengder blant de n gitte md inneholde minst Ik
elementer.

Satsens innhold er na at denne betingelsen, som altsa er nodvendig for
eksistensen av et representantsystem, ogsa er tilstrekkelig.

Ideen i det nye beviset er folgende: I stedet for a prave & velge re-
presentantene en for en, prover en & sjalte ut elementer ett for ett, slik
at til slutt blir bare representantsystemet staende igjen. Det eneste en da
har & passe pa nar en stryker et element, er at (B) fremdeles er oppfylt
for de mengdene en har etter strykningen. Nar en forst har valgt 4 bruke
denne ideen, folger beviset nesten automatisk.

Etter de forangaende bemerkninger er det opplagt at beviset méa fores
ved tnduksjon, ikke etter », men etter summen k;+k,+ ... +k,. Nar
denne er =1, er satsen opplagt riktig, og vi kan altsd anta at summen
er > 1.

La z veere et vilkarlig element som herer til . eks. ;. Hvis mengdene
M,—{x}, My, ..., M, hadde et representantsystem, ville det kunne

1 Lesere som ikke er fortrolige med symbolikken vil finne denne n#ermere beskrevet i
Heiede og Helms’ artikkel »Om mangdelere og transfinite kardinaltal« i denne argang av
NMT.

[52]
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brukes ogsid for mengdene M,, M,, ..., M,. Vi kan derfor anta at
M,—{x}, My, ..., M, ikke har noe representantsystem, og fir da av
induksjonshypotesen at (B) ikke er oppfylt for disse mengder. Det vil
si at (M;—{x})uM, UM,U... UM, bare har k elementer for et visst
valg av indekser iy, 7,, ..., ¢;. Da vare opprinnelige mengder oppfyller
(B), mé M uM,;uM;u...UuM, ha minst k+1 elementer. Det vil si
at  ikke kan hgre til noen av mengdene M;,M,, ..., M,, og at
M,~{zjeM, uMyu...0M,.

Hvis nd M, var den eneste mengden « herte til, ville et representant-
system for M,, My, ..., M,, som eksisterer ifglge induksjonshypotesen,
kunne kompletteres med = og gi det representantsystem vi soker. Altsi
kan vi anta at x ogsa er element i f. eks. M,. Som ovenfor finner vi da
mengder M; , M;,, ..., M; som ikke inneholder x og som er slik at
My—{x}ycM;; uM;,u...UM;. Vi kan anta at indeksene iy, %, ..., i,
JisJas - -»Jy er tallene 3,4, ..., m. Mengdene M,, M,, M,, ..., M, kan
da ikke ha noe representantsystem, for de k elementene som (M, — {z})u
M; uM,u. ..UM, inneholder matte i sa fall brukes til & representere
de k siste av disse mengder, og x matte brukes til & representere M,.
Likedan kan en slutte at x ogsd matte representere M,, og dette er jo
ikke mulig.

5

Siden My, M,, ..., M,, ikke har noe representantsystem, mens (B)
tydeligvis er oppfylt, ma m=mn (igjen bruker vi induksjonshypotesen).
Det vil si: Hvert element & méa forekomme i akkurat to av mengdene
M, M,, ... M,. Videre vil hver av mengdene ha minst to elementer,
for hvis f. eks. M, = {x}, ville M;uM,uM; UM;,U...UM; ha bare [+1
elementer, i strid med (B). Na har M, uM,u...uM, akkurat k ele-
menter. Hvert av disse horer til hgyst to av disse mengdene, og hver av
disse mengdene bestir av minst to elementer. Da mé& hver av mengdene
besta av akkurat to elementer, og hvert element mé tilhgre akkurat to
av mengdene.

Vi har vist at M, inneholder minst to elementer, altsd et y=+z. Da ma
y here til M, UM, u... UM, , men det ville si at y horte til minst tre
av mengdene My, M,, ..., M,, i strid med det vi har vist tidligere.
Dermed er beviset fullfert.

Det fins flere varianter av denne satsen; en ypperlig fremstilling av
disse, med eksempler, finner en i [1]. En variant ble bevist av den un-
garske matematiker Konig allerede i 1916 [3] og brukt av ham til &
bevise folgende resultat: Elementene i en kvadratisk »’te ordens matrise
oppfyller betingelsene

n n

y 7 , 5 m e \ _— . <

SMay=1,j=12,...,n; Ya;=11=12,...,n.
=1

i=1 J
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Videre er alle a;;=0. Da vil minst ett av utviklingsleddene i determi-
nanten |a;| veere = 0.

Til bevis definerer vi mengdene M, ¢=1, 2, ..., n, slik: M, bestar av
de tall j for hvilke elementet a;; > 0. Anta na at (eventuelt etter passende
sgyle-ombyttinger) M ;uM,U... UM, ={1,2,...,1}. Da vil

k n k l Ik I n
=1 j=1 1=17=1 J=li=1 J=1li=1

I stedet for de k forste rekker kunne en velge & vilkarlige. Det vil si at
mengdene My, M,, ..., M, oppfyller betingelsen i Halls sats, og vi har

et system av distinkte representanter j,, j, - . ., j, for mengdene M,, M,,
..., M,. Men det vil nettopp si at (j;, s, - - -» Jn) €r en permutasjon av
(1,2, ..., n), og at utviklingsleddet som svarer til denne permutasjonen

har alle sine faktorer 0.

Vi har ovenfor gitt bare den »endelige« versjonen av Halls sats. Vi
forutsatte at antallet mengder var endelig, lik n, men satsen gjelder ogsa
i tilfellet uendelig mange endelige mengder. Det er klart ut fra resonne-
mentene vi har fort ovenfor at dersom vi har en vilkarlig familie av
mengder, og (B) er oppfylt (merk i denne forbindelse at tallet & i (B)
fremdeles antas & veere endelig), sa vil vi alltid, dersom ikke alle mengdene
inneholder akkurat ett element, kunne fjerne et element fra en av meng-
dene slik at (B) fremdeles er oppfylt. Er en fortrolig med Zorns lemma
fra mengdelzren, faller det etter dette ikke noe vanskelig & fullfgre
beviset. Er en ikke fortrolig med Zorns lemma, bgr en preve & forestille
seg at en kan fjerne ett og ett element »uendelig mange ganger«, inntil
hver av de mengdene en startet med er redusert til ett element.

Tilfoyet av forfatteren under korrekturen:

Det pastatte nye beviset er dessverre ikke nytt likevel. Hovedideen
i det er brukt av C.J. Everett og G. Whaples: Representations of sequen-
ces of sets, Am. Jour. of Math. 71 (1949), pp. 287-293.
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OM MYNTVAXLING

GUNNAR BLOM och CARL-ERIK FROBERG

Inledning. En journalist vid en kvéllstidning ringde nyligen till univer-
sitetet i Lund och frigade pd hur ménga sitt man kan vixla en tia.
Forfattarna till denna artikel horde hiirom och loste problemet oberoende
av varandra, varvid den ene (med hjilp av papper och penna och diverse
approximationer) erhsll vardet ca. 260 miljoner, medan den andre (med
hjalp av SMIL) erholl resultatet 266016 628.

Problemet har férmodligen stéllts otaliga ganger forut och antagligen
dven losts manga ganger (ett exempel hirpa erbjuder Schuberts klassiska
Mathematische Mussestunden, del I, 1:a uppl. 1897, flera f6lj. upplagor,
dar flera resultat ges liknande dem som aterges i var Tabell 2). I upp-
satsen skall vi lamna en 6versikt 6ver vad som gér att dstadkomma med
enkla medel. I avd. 1 aterges kinda resultat, medan avd. 2 och 3 torde
innehalla en del nya ting.

Till professor Selmer, som omsorgsfullt granskat manuskriptet och
framfért en rad virdefulla synpunkter, riktar vi ett varmt tack.

1. Allménna resultat i exakt form.

1.1. Problemet. Lat oss beteckna myntenheterna med a,, a,, as, ...
och det givna beloppet med n. Problemet ar att bestdmma pa hur manga
olika sitt detta belopp kan viixlas med hjélp av de m ligsta myntsorterna.
Det sokta antalet betecknar vi med D(m, n). Tydligen ar detta lika med
antalet icke-negativa heltalslosningar till ekvationen

(1) U2y + QT+ oo o + ATy, = T .

Med talteoretisk terminologi kan man siga att D(m, n) ir antalet parti-
tioner av n i de givna delarna ay, a,, ..., a,,. Sylvester inforde termen
denumerant for ett dylikt antal. Vi skall emellertid helt enkelt kalla
D(m, n) f6r antalet vizlingar.

Vi definierar D(m, 0)=1 (m=0,1,2,...) och D(0,n)=0 (n=1,2,
3, ...). I D(m,n) inriknas det fall att ingen vixling &ger rum. Enligt

[55]
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denna konvention kan alltsa beloppet 1 ére viixlas i 1-oringar pa ett
sétt, beloppet 2 6re viixlas i 1- och 2-6ringar pa tva sitt, osv. Vi siger
att myntsorterna &r multiplikativa, om varje a,, ar en hel multipel av
@,,-1. Myntsorterna 1, 2, 10, 50, 100 &r alltsd multiplikativa, diaremot
inte 1, 2, 5, 10, 25. Ett specialfall av de multiplikativa myntsorterna
utgor de bindgra, dvs. 1, 2, 4, 8, 16, . ...

1.2. Genererande funktionen fér D(m, n). Lat ¢, (t) vara genererande
funktionen for sviten D(m, n) (n=0,1, 2, ...), dvs.

Pu(t) = X' D(m, n)tm .
Man inser latt att

(2) Put) = {1 —t")(1 =) ... (1—¢mm)}-1.

Problemet &r hirmed pa sitt och vis redan 16st; man har bara att be-
rikna koefficienten for ¢* i detta uttryck och far da D(m, n). Eller annor-
lunda uttryckt: det ar just detta problemet giller.

1.3. En rekursionsformel. Det forefaller naturligt att berikna D(m, n)
rekursivt genom att bérja med myntet @, och sedan ligga till en ny
myntsort i taget. Man kan dérvid anvinda den grundliggande rekur-
sionsformeln

5 D(m,n) = Dim—1,n)+D(m—1,n—a,)+Dm—1,n—2a,)

(®) +Dm—-1,n-3a,)+... (m=1,2,3 ...),

dar summationen fortsitter si linge n—ta,, ar positivt eller noll. Denna
formel foljer av uttrycket for g,(t) eller direkt pa féljande sitt. Om
beloppet n skall vixlas, kan myntet a,, tinkas ingd 0 ginger, 1 ging,
2 ganger, osv. Det aterstdende beloppet, dvs. resp. n, n—a,,, n—2a,,, ...
skall sedan vixlas i de 6vriga mynten a,, as, ..., a,_,, vilket kan ske
pa resp. D(m—1,n), Dim—1,n—a,), Dim—1,n—2a,), ... sitt. Den
angivna proceduren blir tidsédande, om den skall utféras fér hand, men
kan naturligtvis utan svérighet genomféras med hjilp av en snabb

siffermaskin. — Om speciellt n &r en multipel av hégsta myntsorten a,,,
kan (3) skrivas

3
(4) D(m, ka,) = 3 D(m-1, ia,,) .

Il
)

)

1.4. Explicita uttryck for antalet vixlingar. Att ange ett explicit
uttryck f6r D(m, n) i ay, a,, ..., a, och n ir tyvirr inte mojligt utom i
speciella fall (vi bortser dirvid fran uttryck innehallande den genererande
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funktionen). Det allminnaste resultat man kénner i den végen &ar f6l-
jande sats som bevisades 1943 av Bell [2] men som nog varit &tminstone
delvis bekant tidigare. Lat d,, vara den minsta gemensamma dividenden
till a4, ay, ..., a,. D& giller foljande:

Antalet vixlingar av beloppet
(5) n = kd,+ey, (0=e,< dm)

dr ett polynom i k av graden m— 1 vars koefficienter beror av ay, a,, .. ., &y,
och e, men ej av k.

Vi skriver detta polynom sé:
k k k
(6) D(m, kd,, +e,) = co+cl(1) +02(2> +.oFCpu (m_ 1) .

Om e, =0 har man alltid c¢,=1. Under férutsittning att a;=1 giller
vidare, som vi skall se i 2.3:

dm—l
7 Cpq = — T,
@ T gay. . ay,
Vi kallar (6) for Bells formel.
For att bestimma koefficienterna ¢, ¢;, .. ., ¢,,_; har man atminstone

tva mojligheter.

Mgerop 1. Polynomet hirledes direkt med ledning av rekursionsfor-
meln (3). Detta gar relativt litt for smé virden pa m, men metoden blir
ohanterlig for storre m.

ExemPEL. Antag att a,=1, a,=2, a;=>5 och e, =0. Vi skall da be-
rakna D(3, 10k).

Steg 1: Genom direkt rikning finner man genast D(2, 2k)=k+ 1 och
D2, 2k—1)=k.

Steg 2: For m =3 ger rekursionsformeln relationen

D(3, 10k) = D(2, 10k)+ D(2, 10k—5)+ ... +D(2, 0) .
Enligt steg 1 blir detta lika med

(Bk+1)+(8k—2)+ (bk—4)+ (Bk—T)+ ... = Bk?+4k+1 = 1+9(]f>+10(];).

MeTrop 2. Vinstra membrum i (6) berdknas numeriskt f6r k=0, 1, 2,

.., m—1, varefter koefficienterna c,, ¢;, . . ., ¢,,_; erhalles genom l6sning
av ett linedrt ekvationssystem. Med en elektronisk siffermaskin till sitt
forfogande finner man, att metod 2 i allménhet &r att foredraga.
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Mest som kuriositet anfores i Tabell 1 och 2 nigra exakta resultat i
vart vanliga myntsystem. I Tabell 1 ges antalet vixlingar av alla mynt
upp till 10 kronor, varvid bor observeras att den identiska vixlingen &r
inraknad.

Tabell 1.

Antal vixlingar i vanligt myntsystem.

Belopp 2 5 10 25 50 100 200 500 1000
Vixlingar 2 4 11 65 407 3954 61985 5167237 266016629

I Tabell 2 ges koefficienterna c¢; i Bells formel vid vixling av hela
multipler av myntsorterna. Aven hir bér observeras, att den identiska
vaxlingen i férekommande fall 4r medriknad.

Tabell 2.

Koefficienter i BELLs formel vid vixling i vanligt myntsystem.
(Med t. ex. beteckningen 1-10 avses myntsorterna 1, 2, 5, 10.)

Myntsorter  Belopp ¢, ¢ [ 5 Cy Cs Ce
1 k 1

1-2 2k 1 1

1-5 10k 1 9 10

1-10 10k 1 10 19 10

1-25 50k 1 405 2735 4825 2500

1-50 50k 1 406 3140 7560 7325 2500
1-100 100k 1 3953 54077 213505 360580 277200 80000

Om beloppen inte &r hela multipler av k, modifieras koefficienterna.
Den hogsta koefficienten foérblir dock oférindrad. Vi ger tva exempel
hérpa: Vid vixling av beloppen 50k+1 resp. 50k+2 i myntsorterna
1-25 finner man for ¢y, ¢y, ..., ¢q virdena 1, 426, 2805, 4875, 2500 resp.
2, 453, 2880, 4925, 2500.

2. Allminna resultat i approximativ form.

2.1. Allméint. Det har férut nimnts att man inte kinner nigra all-
ménna explicita uttryck fér D(m, n). Diremot existerar det flera olik-
heter som har generell giltighet. Vi skall hir ange endast nagra av de
enklaste resultaten av detta slag. Det dr alltsd ej tal om att astadkomma,
s& precisa olikheter som mojligt; da behvs andra hjilpmedel én dem som
hér begagnas. — I hela avdelningen antages att den ligsta myntsorten a,
ar 1, vilket inte &r nagon visentlig inskrinkning.

I 2.2 bevisas ett forberedande lemma. I 2.3 bevisas en enkel men
tamligen grov olikhet, som sedan férbéttras i 2.4.

e iR

S
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2.2. Ett lemma. Vi skall bevisa ett lemma, som #r besliktat med
Euler-Maclaurins summationsformel. Satt

Jul@) = éo' (@ —v)*

dar k ar ett positivt helt tal och dér summationen fortsittes s lange
x—r20.

LemMA. For varje x =0 gdaller

xk+1 xk pl+1 xk  fak-1

®) ril g 2@ =

kE+1 2 8

Bevis. Vi visar forst att olikheten dr sann for k=1. Sitt v —[x]=9,
dir alltsd 0<6< 1. Antalet termer i f;(x) 4r [x]+1=2+1—0, s& att

fi@) =2+ @—1)+...+6 = 3@+0)(@+1-0) = ja(@+1)+35(1-9).

Harav inses att
dw(@+1) < filz) £ Jx(z+1)+14,

vilket visar att (8) haller for k=1.
Vi antager nu att (8) &r sann for k—1 (k> 1) och skall visa att den i
s& fall 4r sann dven for k. Satt
xpk+tl gk
Ir(x) = fk(x)—‘]“c‘“ﬁ——i-
Om man deriverar i avseende péd x finner man latt

g;c(x) = kgj_1(®) .

Eftersom (8) antogs vara sann for k—1 &r ¢,_,(x) 2 0 for alla =0, och
foljaktligen gy(x) =0 for alla 2 0. Men g,(0)=0; alltsd ar g,(x) =0 for
alla >0, dvs. forsta hilften av olikheten haller for k. Analogt bevisas

att 2kl gk Lokl
h = — —fr(@) =2 0,
#(®) k+l+2+ 3 Ju(@) =
s& att a4ven andra hilften av (8) &r sann.
2.3. Olikhet A. Om m =1 gdiller

1 m—1 1 n+A m—1
(4) M Dy 5 A
(m—1)! aqay ... a, (m—1)! aqay ... ay,

dir A,=0, Ay=a, och A,=a,+¥as+ ... +a,) for m=3.
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BEvis. Av lemmat i 2.2 foljer att for varje >0 och k=1 giller

xk+1 (@ + })F+
< ok — 1)k -2+ ... = —F
k+1__x+(x Fr@=2t+ k+1

(9) < ,
ty hogra membrum i olikheten (8) innehéller precis de tre forsta ter-
merna av binomialutvecklingen for hogra membrum i (9).

Vi anviinder ett induktionsbevis. (A) haller fér m =1, ty grinserna blir
d& 1, och vi har ju D(1, n)=1. Olikheten haller dven for m =2, ty det
ar latt att se direkt — eller med hjilp av rekursionsformeln (3) — att

n n n+ay  n+d,

—=D2,n) £ —+1 =
@, I @y @y

vilket dr just vad olikheten utséiger.
Vi antager nu, att (A) dr sann for m =2 och skall bevisa att den da
héller dven for m + 1. Enligt (3) giller

(10) D(m+1,n) = D(m,n)+D(m, n—a,, )+Dm, n—2a,,)+....
Anvindes undre grinsen i (A) pa varje term i hégra membrum erhalles

3 (=it gyt
(1) Dim+1,n) 2

(m—-Dlaa,...a,

Tages x=n/a,,,, och k=m—1 i forsta hilften av olikheten (9), far man |

m—1 m—1 m m
Y (n—ia, )"t = ap 3 (——n;—z) > L"“( " ) -
e m+1 — Ym+l L = -
v 3 A1 m A+ Mma,, 11
varav genom insattning i (11):
n"
Dim+1,n) 2 B
m!laay ... @,

Undre gransen i (A) haller alltsd for m ersatt med m + 1, sisom skulle
visas.

P4 motsvarande sitt bevisas att, om man i den Gvre grinsen i (9) tager
x=(m+4,)[a,., och k=m—1,

a

: n+4 m=1
A ; — m—1 m .
...//‘ (71, Am @am+1)m = am+1 - ( Z)

i v m+1
m—1 m
< Gt (?if‘ﬂqf) _ ()™ ;
m Uin+1 2 Mgy 11 )

varav ses att dven Ovre griansen i (A) haller fér m ersatt med m+1.
Héarmed ar (A) bevisad. 1
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En viktig konsekvens av olikhet (A) &r att man for stora » har den

enkla asymptotiska formeln
m—1
(12) D(m, n) ~ .

m—1)aa, ...a,

Denna kan anvindas for berikning av antalet véixlingar s& snart n &r
tillriickligt stort i foérhallande till myntsorterna a,=1, a,, ..., a,. Hur
stort » bor vara kan latt bedémas genom berikning av storheten 4,, i
olikhet (A). Det framgar av olikheten att (12) kan begagnas, om 4,, ar
tillrackligt litet i forhallande till «.

ExEMPEL: Antag att n =100 kr. vixlas i mynt av valérerna 1, 2, 5,
10, 25, 50 och 100 ére. Man har m=7 och 4,,=2+}(5+10+ ... +100)=
97 vilket ar litet i férhallande till » = 10000 6ére. Enligt formel (12) blir
antalet vaxlingar ungefar

100008

_ = 1.11-10%.
6!2-5...100

Slutligen skall det papekas att vi nu latt kan bevisa det i (7) angivna
uttrycket for hogsta koefficienten i Bells formel (6). Av sistnimnda for-
mel fsljer nimligen att, om n (och didrmed ocksa k) ar stort i forhdl-
lande till myntsorterna, sa géller

fem-1 (n/dm)m—l

D(m, n) ~ Cm~1'(m—_'1? ~ Cp-1 (m— ‘),

Sittes det sista uttrycket lika med uttrycket i hogra membrum av (12),
kan man l6sa ut ¢,_; och far diarvid det i (7) givna uttrycket.

2.4. Olikhet B. Vi skall nu forbattra den i foregaende sektion bevisade
olikheten genom att hoja den undre gréinsen. Det pris man maste betala

hirfor 4r att den nya olikheten blir mer komplicerad.
Satt Sy, ,, =1 och

Sim =2 (3a,) (3a,,) ... (3a,) (1 =49 =m—2),
ddr summan utstrickes 6ver 3<», <v,< ... <, <m. Storheten 8§, ,, ar
alltsd helt enkelt summan av alla produkter av talen 3as, iay, ..., 3a,,

tagna 4 stycken i sénder. Vi noterar for senare bruk att man har rekur-
sionsformlerna

. — J .

(13) SO,m+1 = So,m = 1; Sm—l,m+1 = %am+-lbnr2,mr
— 1 . by

Si,m+1 - 7a’m+1Si~1,m+Si,m (1 = é m—2) .

Storheterna A, har samma betydelse som i foregaende sektion.
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Om m = 2 giller

1 m—2 m—t—1 1 A ym-1
Wyy o .. Oy im0 (M—1—1)! aay ... a, (m—1)!

Bevis. Eftersom den 6vre grénsen dr densamma som i (A), behdver vi
endast syssla med den undre.

Vi ser litt att undre grinsen héller for m = 2. Vi antager nu, att denna,
gréns haller for m och skall visa att den d& haller d&ven fér m+1. Av
rekursionsformeln (10) foljer

1 m—2

Dm+1,n) 2 bm N (n—ja m—i-1
( ) ayay . .. a,, & (m—’b—-l)!f ( J m+1)

Tag nu x=n/a,,,; och k=m—1—1 i férsta hilften av olikheten (8), s&

erhalles . " m—i—1
I (gt = a3 ()
J

J A1

m—i m—i—1 -
> qm—i-1 1 " +1 o = ﬂﬁ. + _{7zm—i~1
= 'm+1 . . .
M=% \Gp41 2 \Gyp1q (Mm—1)py 2

Insittes detta i den dubbla summan ovan erhalles

1 m—2 pm—i
D(m " 1, n) = . T, m
A1y - -« Qpyyyi=0 (m——z)!
1 m—2  pm—i-1
+ ; ta, .S, ).
U@y - - am+1ié: (m—t—1)! (311 i,m)

Ersétter man i andra termen ¢ med ¢ — 1, slar ihop summorna och darvid
anviander formlerna (13), s& far man

m—1 m—1i
1

Dim+1,n) 2

Ay oo g i (m—1) ! 2™
Hiarmed ar det bevisat att undre grinsen i (B) haller for m + 1, varmed
hela olikheten &r bevisad.

For att ge en uppfattning om med vilken noggrannhet man med olik-
het (B) kan berikna antalet vixlingar aterger vi i Tabell 3 nigra berik-
ningar, som avser beloppet #n = 1000 6re. Man ser, att noggrannheten avta-
ger med vixande antal myntsorter, men att den &r ganska god, méjligen
med undantag av sista raden i tabellen. Vid givna myntsorter avtager
givetvis felet, nidr »n vixer, och olikheten (B) kan dirfér anvindas for
ganska noggranna uppskattningar om » &r nigorlunda stort i forhal-
lande till myntsorterna.
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Tabell 3.
Antalet véxlingar av 1000 6re beréknat med olikhet (B).
Myntsorter Undre Exakt Ovre Faktor
gréns grins
1-5 5.025 5.040 5.045 10¢
1-10 1.704 - 1.712 1.715 108
1-25 1.802 1.814 1.818 107
1-50 8.248 8.347 8.388 107
1-100 1.844 1.905 1.936 108
1-200 2.344 2.608 2.794 108

3. Bindrt myntsystem.

3.1. Allmiint. Vi skall 4gna hela denna avdelning &4t det bindra mynt-
systemet. Vart problem dr att exakt bestamma antalet vixlingar av ett
givet belopp i de bindra myntsorterna a;=1, a,=2, ..., a,=2""1
Detta kan ske pa atminstone tvéa sitt, nimligen genom rekursiv berdkning
och med Bells formel.

Vad det rekursiva berikningssittet betriffar kan vi som vanligt an-
vanda den grundliggande rekursionsformeln (3). En ny mojlighet finns
emellertid nu, sdsom framgar av féljande sats.

Sars. For varje helt tal p>1 gdller rekursionsformeln
(14) D(m+1, 2p)—D(m+1, 2p—2) = D(m, p) .

Vi har hiir som synes forutsatt att de belopp som férekommer i vénstra
membrum &r jimna. Detta &r emellertid ingen inskrénkning, ty man
inser omedelbart, att ett udda belopp kan vixlas pa lika manga sitt
som nirmast ligre jimna belopp, dvs. man har D(m, 2p + 1) =D(m, 2p).
(Ett undantag frin denna regel finns dock; man har ju némligen
D(0, 1)=0 men D(0, 0)=1.)

Brvis. Satsen kan litt bevisas induktivt eller ocksd med hjilp av
genererande funktioner pa foljande satt: Av (2) féljer att

Pult) = {(L=)(1=12) ... A=2"")15 @pn(t) = {(1-6)(1—23) ... (1—")}".
Harav inses att 1
t) = — 2) .
(pm+1() l_t(pm( )
Jamfores koefficienterna for 27 i bada membra, erhalles

(15) D(m+1, 2p) = D(m, 0)+D(m, 1)+ ... +D(m, p) .
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Bildas differenserna mellan denna relation och den relation som erhalles
om p ersittes med p—1, far man den sokta rekursionsformeln (14). —
Det bor tilliggas att formel (15) givetvis ocksa har sitt intresse som
rekursionsformel pa grund av sin enkla uppbyggnad.

Som illustration anges i Tabell 4 antalet véxlingar D(m, n) av beloppet
n f6r nagra liga virden pa m och .

Tabell 4.

Antal vixlingar D(m, n) av beloppet 7 i de binira myntsorterna 1, 2, ..., 2m-1,

n 0 1 2,3 45 6,7 89 10,11 12,13 14,15 16,17 18,19 20,21
A\
0 1.0 o 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 11 2 3 4 5 6 7 8 9 10 11
3 11 2 4 6 9 12 16 20 25 30 36
4 11 2 4 6 10 14 20 26 35 44 56
5 11 2 4 6 10 14 20 26 36 46 60

Aterstoden av denna avdelning skall vi huvudsakligen égna at Bells
formel (6), som &r av sirskilt intresse i det binira fallet, darfor att
koefficienterna kan beriknas explicit. I §verensstimmelse med (5) skri-
ver vi det belopp som skall vixlas:

n=k2"te,  (0<e, < 2m1y,

m

I 3.2 behandlas fallet €n=0 och i 3.3 fallet e,, = 0. Avdelningen avslutas
med ett bevis for en identitet som anvindes i 3.2

3.2. Vixling av multipel av tvapotens. Antalet viixlingar av beloppet
k-2m=1 i binira mynt kan enligt var allminna beteckning skrivas
D(m, k-2m-1), Det ir bekvimt att nu inféra den speciella beteckningen

U, = D(m, k-2m-1)

Rekursionsformeln (4) antager da formen

k
(16) Ui, 1 22 U1, i -
1=0

Denna formel kan litt anvindas for direkt berikning av antalet vix-
lingar, dtminstone f6r sma virden pé m. I Tabell 5 ges nigra virden
P& u,, ;. Ur tabellen avlises Ug, 3 =8148, vilket innebir att beloppet
3:26-1=96 ore kan vixlas i myntsorterna 1, 2, 4, 8, 16 och 32 &re pa
8148 olika sitt.
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Tabell 5.
Antal vixlingar um, » av beloppet k-2m~1 i de binéra myntsorterna 1,2,...,2m1,
\k 0 1 2 3 4
m
1 1 1 1 1 1
2 1 2 3 4 5
3 1 4 9 16 25
4 1 10 35 84 165
5 1 36 201 656 1625
6 1 202 1827 8148 25509
Tabell 6.
Koefficienter ¢, ; i BELLs formel (17).
\i 0 1 2 3 4 5 6
m
1 1
2 1 1
3 1 3 2
4 1 9 16 8
5 1 35 130 160 64
6 1 201 1424 3272 3072 1024
7 1 1827 23682 91040 151104 114688 32768

Vi anvinder nu Bells formel (6) och skriver
m—1 k
(17) U, 1 ZZCm,i<i)'
=0
Koefficienterna c,, ; aterges i Tabell 6 for laga véarden pa m.

Vi skall nu visa hur man kan berikna en godtycklig rad i Tabell 6
ur nirmast féregaende. Lat AI’<2T’L) vara p:te differensen av talen(zjn> )

(271,;2)’ <2nj+ 4), ..., dir n ar ett godtyckligt helt tal. Om 2n<j,
definierar vi (2;'> =0. Vi infér dven beteckningen
’ J /=1

dir indexbeteckningen avser att n skall sittas lika med 1 efter differens-
bildningen. (Vi skall senare diskutera hur storheterna a; ; kan beriknas
numeriskt.) Man har da foljande sats:

Sats. For m=1 giller rekursionsformeln

22
(19) it = 2 @i,jCm,j -
i
NMT, Hefte 1, 1962. — 5
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Bevis. Insitter man Bells formel (17) i bada membra av (16) och er-
sétter m med m + 1 far man

m k kE m—1 2% m—1 k 2%
& () = Fona(§) - Fens 55
= = = i= =
Vi far alltsi relationen

k

k
cm+1,0+cm+1,1 (1) +... +cm+1,m(m)

k(20 ko2
= (k+1)cy o+Cp 1 1)t tomma S m_1)
=0 7=0 i
Om speciellt &=0 erhalles
Cm+1,0 = Cm,o -

Vi fortsiitter och sitter k=1,2, ..., m samt bildar differensen mellan
varje ekvation och nirmast féregdende. Detta ger foljande ekvations-
system i de obekanta storheterna Cmt1, 15+ + +5 Oy, m

2 2
Cm+1,1 = Cpp o+ 1)6m1t 9 ) Cm,2

.............................................................

2m 2m
= mot () Jomat et (5 ) omom -

Man 16ser detta system enklast genom att upprepade ginger bilda
differensen mellan varje ekvation och niarmast foregiende och dirvid

utnyttja relationen
G- =02
v v ) \v=1/)"

Koefficienten Cm+1,1 T4r man som synes direkt ur forsta ekvationen ovan;
efter den forsta differensbildningen far man Cm+1,2 ©fter den andra
Cm+1,3 OSV. Hérav inser man, att allméint

- [2 (2 /92
Cm+1,5 = cm,o'Al—l( n) +cm,1'A1—1( n) +...+cm,2i-m—1( n) .
0 n=1 1 n=1 2 n=1
. (2 L. i .
Eftersom Al_l( jn) =0 sd snart j<i—2, inses att i hogra membrum

termerna med c, ,, ..., Cm,i-2 faller bort. Dirmed &r satsen bevisad.
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Det aterstar nu att diskutera hur talen a, ;, definierade av formel
(18), skall berdknas numeriskt. Det finns flera mojligheter:

1) Formel (18) anvéindes direkt.

2) Talen beriknas rekursivt med ledning av rekursionsformeln

(20) @ppa, 41 = 20 ;+ 0554 (020,520, a,,=1).

Denna formel bevisas latt av

il 2n _ o qial(2n+2\ [ 2n
“”1”'+1_A(j+1)n=1_4 {<j+1) (j+1)}n=1
] 2n4+1 2n+1 2n B 2n+1 2n
=l ()+ (T -Gl a0 )+ ()
{ J J+1 I+ J J /=

, 2n 2n
— -1 } — }
B A {2(.7 ) (.9 ]')}n:l— 2“1’,3’ ai’j_l )

3) Foljande explicita formel begagnas:

— i 21'_" 1—1 2i—j—2
(21) a“_(j—i)z ]+(j—?3+1>2 -2,

Denna formel kan man latt bevisa med hjidlp av (20). Den kan ockséa
erhallas sdsom ett specialfall av en identitet, som har ett visst sjilv-
sténdigt intresse och som darfoér skall diskuteras separat i 3.4.

Vi dterger slutligen i Tabell 7 talen a, ; for nigra liga véirden pi &
och j. Man kan latt vid behov utvidga tabellen med hjalp av (20) eller
(21) och har sedan mojlighet att via (17) och (19) berikna antalet vix-
lingar w,, ; for varje givet viarde pd m och k.

Tabell 7.
Koefficienter a;,5 i rekursionsformeln (19).
J 0 1 2 3 4 5 6 7 8 9 10
N
1 1 2 1 0 0 0 0 0 0 0 0
2 0 2 5 4 1 0 0 0 0 0 0
3 0 0 4 12 13 6 1 0 0 0 0
4 0 0 0 8 28 38 25 8 1 0 0
5 0 0 0 0 16 64 104 88 41 10 1

3.3. Vixling av belopp som ej dr multipel av tvipotens. Vi skall
nu utvidga diskussionen av Bells formel i féregiende avsnitt till det

fallet, att det belopp som skall vixlas icke &r en multipel av en tvapotens.
Formeln lyder da
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(22) D(m, k-2m-11e¢,) =g Cm, ¢ (k) ,

dir 0<e,, <2m-1, Vi papekar att ett udda virde P& e, ger samma antal
vixlingar som nirmast lagre jimna virde, varfor vi kan antaga, att e,
dr jimnt. Betriaffande koefficienterna Cm, ¢ géller foljande:

For m =2 har vi beloppet 2k, vilket representeras genom ¢, =c, ;=1.
For m =3 far vi tva fall: 4k resp. 4k + 2, vilka &r bestamda genom c; (=1,
C3,1=3, C3=2 TeSP. €3 ,=2, ¢5,=4, C3,2=2. Allmént betraktar vi
k-2m-14e  f6r tvd konsekutiva virden P& m och stéller upp schemata
for koefficienterna c,, ; radvis for successiva en-vérden, vilka enligt vad
som forut sagts sammanférts parvis. Bildar vi nu differenserna mellan
konsekutiva rader i ett sidant schema, aterfar vi nirmast foregaende
schema, varvid forsta raden kommer i enkel och alla de andra raderns i
dubbel upplaga. Nu éir ju forsta raden i ett godtyckligt schema kind
enligt féregende utredning (Tabell 6), och dirmed kan vi successivh
bilda samtliga sidana schemata. Vi illustrerar detta i Tabell 8, i vilken
vi for fullstindighets skull dven medtagit udda e,,-virden samt fallet
€n=0.

For att bevisa de pastienden som hir gjorts rorande koefficienterna
Cm,; har man endast att tillimpa den sats som bevisades i 3.1. De angivna
relationerna mellan koefficientraderna i Tabell 8 éir som man litt ser en
omedelbar f5ljd av den i satsen angivna rekursionsformeln (14).

Tabell 8.
Koefficienter ¢, ; i BELLs formel (22).
m Belopp em Cm,0 Cm,1 Cm, 2 Cm,3 Cm, 4
2 2k+e, 0,1 1 1
3 4k+e, 0,1 1 3 2
2,3 2 4 2
4 8k+e, 0,1 1 9 16 8
2,3 2 12 18 8
4,5 4 16 20 8
6, 7 6 20 22 8
5 16k +e; 0,1 1 35 130 160 64
2,3 2 44 146 168 64
4,5 4 56 164 176 64
6,7 6 68 182 184 64
8,9 10 84 202 192 64
10, 11 14 100 222 200 64
12,13 20 120 244 208 64

14, 15 26 140 266 216 64
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3.4. En identitet. Vi skall bevisa féljande

SaTs.
(23) Ar(zn) _ 2":( r4+n—v )(n) 92(r+n—n -

8 = \S—r—m+v/ \v

Brvis. Vi sitter r+n—v=k och antar satsen riktig t. 0. m. r—1. Sa-

ledes &r Ar-1<2n+2> _ n+1( A ) (n+1> -
S ~\s—k v
Hérav foljer
AT(Qn) _ AH{A(Q")} _ Ar_l{(2n+2> B (2n>}
8 s s s

__n+l k A1\ jop s Nk n e _ w1 ® N\ Hor—s
BT = 2 (L) 0

vilket &r ekvation (23).
Dirmed aterstar endast att visa, att (23) géller f6r r=0, dvs. att

(24) (28”) ) <81L;:—v) (?) 92(n—3) -5 |

Satt

P(z) = (1+2a)"+ (’;) (14 2x)n1a% + (Z) (14 2z)n 2t 4 . . . + a2 .

[\13

I

Koefficienten for 27— i denna utveckling r tydligen lika med

() () () () ()

vilket &r lika med hogra membrum av (24). A andra sidan dr P(x)=
{(1+22) + 2% = (1 +z)**, och koefficienten for z27—¢ i denna utveckling

ar lika med (2:> ,varmed (24) och foljaktligen &ven (23) ér bevisad.

Man erhaller formel (21) i 3.2 genom att i (23) sitta r=i—1, s=}j
samt n=1.
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OM STRYKPROSENTER, FAREY-REKKER
0G KJEDEBR@K

ERNST 8. SELMER

1. I to av de matematiske »emner« ved Universitetet i Bergen ble
strykprosentene ifjor host! 26 og 32. Reaksjonen pa disse tall kan veere
sveert varierende. De fleste vil kanskje synes at mannefallet var vold-
somt, men blant lererne var reaksjonen faktisk den motsatte: N& er
heldigvis strykprosentene kommet ned pa et forholdsvis rimelig niva!

Den originale indiske matematiker Ramanu jan, som bl. a. var kjent
for & oppdage tallteoretiske egenskaper ved bilnumre o. 1.2, ville sannsyn-
ligvis ha reagert pa en annen mite: Det mé ha veert minst 19 studenter
oppe til eksamen i hvert av emnene!

I forbindelse med de forst nevnte reaksjoner kan det sies og skrives
meget — hvilket ogsa har vert gjort®. Her skal vi isteden studere Ra-
manujans reaksjon, og bruke den som utgangspunkt for en upretensigs
lek med tall.

Forst noen ord om betegnelsene. For enkelhets skyld vil vi skrive
f. eks.

1 ! 269

(1) o7 = 26%

(altsd strykprosenten i emnet M 14), idet vi alltid avrunder til nermeste
hele prosent. T de fa tilfeller hvor det ikke finnes noen »nzermeste« hele
prosent, f. eks $=0,375, vil vi fremheve dette ved & skrive

3
(2) 3= 3%

Slike brgker vil alltid bli seerskilt kommentert.

1 Stryk = kuggning (svensk).

I det lille emne M 14, »Algebra og tallteoric, strek 7 av 27. I det store emne M 12,
»Matematisk analyse I«, var det 15 som strok av 47. I de evrige emner i ren matematikk
var strykprosentene meget lavere.

% Se f. eks. C. Stormer: Indieren Ramanujan — et merkelig matematisk geni, Norsk Magt.
Tidsskr. 16 (1934), s. 1-13.

3 E. 8. Selmer: Studieordning og eksamensresultater, StudVest (Organ for studentene i
Bergen), nr. 2, 1961,

[70]
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Vi innskrenker oss til & betrakte strykprosenter =50. Dette skyldes
ikke menneskevennlighet, men det enkle faktum at prosentene mellom
50 og 100 bare representerer sspeilbilledet« av prosentene mellom 0 og
50. Nar J representeres ved 26%, med en viss tilnsermelse, vil 1 —F=%
representeres ved 100—26="74% med ngyaktig samme tilnzermelse.

Av (1) folger selvsagt at ogsd fi=3=...= 269. Vi vil imidlertid bare
betrakte irreduktible (uforkortelige) broker. — Av to forskjellige irre-
duktible brgkrepresentasjoner for samme prosenttall sier vi at breken
med minst nevner er enklest eller kommer forst. Ogsé ved sammenligning

av vilkarlige broker refererer ordet »enkel« seg til nevnerens storrelse.

2. Ved studiet av prosenttallenes brgkrepresentasjon kan man selv-
sagt gé rent »eksperimentelt« frem, ved & lage en tabell med nevnere og

3 45 67 8 9 10 11 12 13 14 15 16 17 18 19 20 2 22 23 24 25 26

25% @ 25%
5 6 0
26% = o J— 7 N
19 23
27 % 3 4 / Lo \27%
s %
28% — 28%
2 5 7 0
29% £ ER— p——— UL ]
7 17 24
o/ \ // 7 309,
-30% 23 ¢
31% \1‘/‘3 1%\ 3%
32% 2 2—72———> 32%
1 339%
o,| L
33% 3 o

Fig. 1. Rasjonale tilnwrmelser for prosentene 25 9%-33 %. Innringet: Eksakt.
Begynnelsen av kjedebreksutviklingene for de eksakte prosenter 26 %—32 %.

prosenter som henholdsvis abscisse og ordinat. Et utsnitt av en slik
tabell er vist i fig. 1 (se forelppig bort fra forbindelseslinjene). Ved kon-
struksjonen tar man sitt utgangspunkt i nevnerne, idet man beregner
multipla av stambrgkene 1/n. Broker av typen (2) kan eventuelt plaseres
mellom linjene, men slike brgker forekommer ikke i fig. 1.

Vi legger merke til at de enkleste broker, som } og } i fig. 1, er alene
om & representere sine prosenttall. Nar man ikke godtar reduktible
broker som 2, £ osv., vil de neste breker for 33% og 25%, veere

14 13
J— o — o
i 339, 51_25/(,.
(Den forste kan erstattes med 3= 3219, hvis man forhgyer.) Enda mer
markert er forholdet for den meget enkle brok §=>50%, hvor den neste
representasjon er 1.
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I denne sammenheng ma vi imidlertid regne 9=09%, som den aller
enkleste brok. Dette innser man kanskje lettest ved & betrakte det for
nevnte »speilbillede« om 509, altsa her 1= 100%. Den forste represen-
tasjon av 0% ved en brok +0 kommer s& langt ut som 5; (eller 54;= 19,
hvis man ikke forhgyer).

Vi ser altsé at for de enkleste breker er avstanden mellom forste og
annen representasjon meget stor, og sterre jo enklere broken erl. Det er
ogsd lett & forsta at det ma forholde seg slik. Hvis vi f. eks. vil represen-

tere 509, ved en brek <1, mi vi opplagt forseke formen " Skal

2n+1"
denne veere > 0,495 (for & avrundes til 50%), ma n > 50, altsa som enkle-
ste mulighet den ovenfor nevnte brgk .

n
Setter vi p4 samme mate I > 0,485 eller 0,475, finner vi de Jorste
representasjoner nt

3 g, 10 489
(3) 35 = 9% 51 = 8%-

I skalaens andre ende m4 vi enda lenger ut for & finne de forste broker:

1 1 1 1

(4) a7 = 1% “1=2%,j25=3%, 55 = 4%
(Den andre kan erstattes med #=2%4% hvis man ikke forhayer.) Det
kreves altsd store nevnere for ¢ representere prosenttal © neerheten av de enkle-
ste broker. Dette er ogsa tydelig i fig. 1, hvor forste nevner blir mindre
etterhvert som vi fjerner oss fra 25%, eller fra 339%,. Spesielt har de
nermeste naboer 26%, og 329, begge den minste nevner 19, hvilket for-
klarer Ramanujans reaksjon: Det ma veere minst 19 eksamenskandidater
for at man skal fa disse strykprosenter.

Derved er vi tilbake ved vart utgangspunkt, og na er det vel pa tide
& lage litt matematikk ut av vare mer eller mindre empiriske resultater.

3. Vi setter en gvre grense, n, for nevnerne i de breker vi opererer
med, og skriver opp alle irreduktible brgker hik (med k=<n) mellom 9
og 1, disse grenser inkludert. Hvis de fremkomne broker ordnes etter
storrelsen, har vi fatt frem den sakalte Farey-rekken av orden n.

Som tidligere nevnt er det av symmetri-grunner tilstrekkelig 4 be-
trakte brgkene < 1. Med f. eks. n=10 far vi da feorste halvpart av Farey-
rekken:

1 Nér =33 % tilsynelatende bryter den siste regel, skyldes det at % (i motsetning til
% % og }) ikke er et eksakt prosenttall.
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(5) %’ %7 %’ %7 %’ %7 %7 %’ i" %_7 %7 %? %9 %’ %’ %, % .

I Hardy og Wright’s kjente bok: An introduction to the theory of
numbers (4. utgave, Oxford 1960) finnes et kapitel om Farey-rekker,
hvor hovedvekten er lagt pa folgende grunnleggende egenskaper:

Huis hlk og k' [k er to suksessive ledd i en Farey-rekke, sa gjelder

(6) kh' —hk' = 1.
Huis hlk, b"' [k’ og W' [k’ er tre suksessive ledd i en Farey-rekke, sa gjelder
hll h+hl
(7) e
k k+k

Det er lett & verifisere disse setninger for rekken (5). Nar det gjelder
bevisene (som er relativt enkle) ma vi henvise til Hardy og Wright.
Av fig. 1 kan vi & frem folgende utsnitt av Farey-rekken for n=26:

=3

-4
s 159

o
~
<

.3

-4 5
» 100

.6 T
» 13> 16>

9> 22
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=
=
=
o
i)

Broker svarende til samme prosenttall er gruppert mellom semikolon ;
rekkefglgen innen hver slik gruppe kan ikke avgjeres ut fra fig. 1. —
Ogsa her er det lett & ettervise at (6) og (7) gjelder.

Hvis vi erstatter brgkene i (5) med de tilsvarende prosenttall, far vi
rekken

0,10, 11, 124, 14, 17, 20, 22, 25, 29, 30, 33, 37}, 40, 43, 44, 50 .

Enda bedre inntrykk av fordelingen far vi ved & avsette brokene langs
en akse som vist i fig. 2. Vi ser bl. a. tydelig at de enkleste broker ¢, 4, %
osv. ligger isolert, og med storre avstand til naboene jo enklere brgken er.
Grunnen til dette fremgar ganske enkelt av (6): For to suksessive ledd
blir avstanden

B b kR —REK 1

Kok kR kK

Hvis en av brokene har liten nevner, vil derfor avstanden bli forholdsvis
stor.

Denne isolasjon gir na en umiddelbar forklaring pé det tidligere nevnte
forhold, at det kreves store nevnere for & representere prosenttall i
narheten av de enkleste broker. I Farey-rekker av for lav orden (sm&

1

1
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nevnere) vil disse enkle broker ligge s8 isolert at de nsermeste prosenttall
ikke er representert.

Vi har altsd etablert en ner sammenheng mellom p4 den ene side
prosenttallenes fordeling blant alle broker med nevner <un, og pa den
annen side Farey-rekken av orden n. Var opprinnelige problemstilling
har derved fatt et mer matematisk tilsnitt.

4. La oss igjen vende tilbake til Ramanujans reaksjon: Hvis ni et
alminnelig menneske fikk opplyst at strykprosenten var 26, og ble spurt
om det minimale antall eksamenskandidater, hvordan skulle han eller
hun enklest angripe problemet ?

Muligens ville den eksperimentelle metode fore raskest frem (altsa
eksperimenter med tall, ikke med virkelige eksamenskull). Prosenttallenes
fordeling er tross alt regnemessig sipass enkel at en tabell som fig. 1 er
forholdsvis fort konstruert. Arbeidet ville imidlertid bli av en helt annen
storrelsesorden hvis vi isteden opererte med stryk-promiller. Selve pro-
blemstillingen, approksimasjon av et gitt tall ved enkle broker, er ogsa sa
almen at det kan vere nyttig 4 oppholde seg litt ved den. Lgsningen er

gitt i teorien for kjedebrok, som her ikke vil forutsettes kjent. En god

fremstilling av kjedebrgker finnes i den for nevnte bok av Hardy og

Wright. Atskillig lenger gir Perron’s kjente bok: Die Lehre von den

Kettenbrichen (2. utgave, Leipzig 1929; opptrykk New York 1950).
For & utvikle 25=12 i kjedebrek, bruker vi Euklids beromte divisjons-

algoritme: 50:13 = 3
39
13:11 =1
11
11: 2=5
10
2: 1=2

Nevner og rest ved en divisjon géir over til henholdsvis teller og nevner
ved den etterfglgende, og prosessen fortsettes til siste divisjon gir opp.
Hvis den gitte brek er irreduktibel, blir alltid siste nevner =1.

Av divisjonsalgoritmen ovenfor slutter vi suksessivt at

13 1 1 1

50311 3+1 1
T Ty
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Herved er 1 utviklet i kjedebrgk. Deltellerne er alle 1, mens delnevnerne
er kvotientene i divisjonsalgoritmen.

Ved & bryte av kjedebroken etter de suksessive delnevnere, far vi en
serie av tilnermelser til den gitte brgk 3=0,26:

1 1 1 1 6
(8) - = 0,333, —_— = = = 0,25, - =_"= 0,261 )
3 1 4 23

3 4= 34—
+1 +

og til slutt den gitte brek selv. Vi kaller leddene i rekken

11 6 13
(9) Ty T oed =
34 23 50

for kjedebrokskonvergentene til g.
Beregningen av konvergentene ved suksessivt & fjerne sménevnere
er noksd besverlig, og kan systematiseres slik:

3 1 5 2

1 0 1 1 6 13

0 1 3 4 | 23 | 50

T forste linje stir delnevnerne. De to forste kolonner i de siste linjer
inneholder hjelpestorrelser, de gvrige kolonner gir som man ser konver-
gentene. Utfyllingen av disse kolonner skjer suksessivt etter skjemaet

O,

Pn—2|Pn-1| Pn = ApPp—1+ Pp—2

Il

Qus| qn-1| 9 = CTn-11 In—2

F. eks. fremkommer de to siste konvergenter som

6 5-1+1 13 2:6+1

(10) —_—=—, =
23 5-4+3 50 2-23+4
Det er ikke si vanskelig 4 innse at denne prosess nettopp svarer til &
fjerne sménevnerne i den gitte kjedebrok.

I forste brok i (10) skal 1 adderes 5 ganger i teller, og 4 skal adderes 5
ganger i nevner. Disse addisjoner kan vi ogsd foreta skritivis, og far da
de sakalte innskutte tilnermelsesbroker:
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1-1+41 2 2141

3141 4 4-1+1 5
13 4-4+3 19’

1443 7 2413

3
1 3443 15
og til slutt breken & selv. P4 samme mate kan vi skyte inn én bregk mel-
lom de to siste breker (9):

1-6+1 7

1-23+4 27
Samlingen av alle tilnermelsesbroker til 8 blir da

1123 4 5 6 7 13
an -2 2 2 L 23

Vi reserverer navnet »konvergenterq for tilnsrmelsesbrokene (9).

Den samme serie av tilnzrmelsesbroker fremkommer direlte hvis vi
erstatter divisjonsalgoritmen med en subtraksjons-algoritme. Betydningen
av dette er spesielt fremhevet av Viggo Brun.

Bortsett fra de to siste forekommer alle brokene (11) i fig. 1. Ved en
Jorbindelseslinje mellom brokene har vi der markert sammenhengen med
kjedebrgksutviklingen for 269, ; pilespissen til hoyre angir at rekken fort-
setter. P4 samme mate er kjedebrgksutviklingene for 27%,-329/ angitt
ved forbindelseslinjer (& kontrollere disse vil vare en god gvelse i kjede-
brek for uerfarne lesere). I tre tilfeller blir utviklingene fullfert innenfor
fig. 1 (pilespiss mot innringet brek).

Det finnes et ubegrenset antall brgker som vil representere et vilkar-
lig prosenttall uten & forekomme i kjedebroksutviklingen. T fig. 1 ser vi
én slik brek, % =30%, som kommer etter siste konvergent 3. I de fleste
tilfeller vil man ogsa ha slike representasjoner for kjedebreken er fullfert,
f. eks. broken & (samt en rekke andre) for 269%,.

Fra teorien for kjedebrgk siterer vi na en del setninger uten bevis:

Konvergentene og de innskutte tilnsermelsesbroker er alle irreduk-
tible. Av (8) ser vi at konvergentene er avvekslende storre og mindre enn
det tall vi utviklet i kjedebrok, og denne egenskap gjelder alment. Til-
narmelsen blir stadig bedre, og feilen ved en konvergent p/q er alltid
<1/g% Ingen annen brok med mevner =q gir en si god approksimasjon
som konvergenten plq.

Den siste egenskap er tydeligvis den viktigste for vart formal, og
spersmélet er om den gjelder ogsa for de innskutte tilnzermelsesbraker.
Svaret er et betinget ja, idet man har setningen: Muligens bortsett fra
den wmiddelbart foregdende konvergent gir ingen anmen brok med nevner

1 Se f.eks. V. Brun: Musikk og euklidske algoritmer, NMT 9 (1961), s. 29-36, hvor det
pé s. 31-32 er gjennomfoert en subtraksjonsalgoritme.
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<s en si god approksimasjon som den innskutte tilncermelsesbrok r[s.
(Perron, § 16, Satz 19.)

At vi ma unnta den foregaende konvergent ser vi et tydelig eksempel
pa i fig. 1, hvor den innskutte tilnermelsesbrgk & gir en darligere ap-
proksimasjon enn konvergenten # i kjedebrgken for 29%,. For vart formél
spiller imidlertid denne unntagelsen ingen rolle, da vi likevel har beregnet
konvergentene.

Hvis vi regner ut tilnermelsesbrgkene (11), finner vi at 269%, forst
dukker opp ved #. Spesielt far vi ikke 269% ved den foregdende brogk
L, og derfor heller ikke ved moen anmnen brok med mevner <15 (da den
umiddelbart foregiende konvergent }=25%,). Det var mulig at en brek
med nevner mellom 15 og 19 kunne gi 269%, men et blikk pa strukturen
av fig. 1 (skralinjene av brgker med samme teller) utelukker denne
mulighet. Dermed har vi vist at {; er den enkleste brgkrepresentasjon
for prosenttallet 26.

5. Til slutt skal vi vende tilbake til de eksperimentelle resultater, og
besvare et spersmal som enkelte lesere kanskje allerede har stillet seg:
Tinnes det noe prosenttall hvor forste brokrepresentasjon har en nevner
storre enn 19?

At svaret er bekreftende, fremgar umiddelbart av (3) og (4). Men
disse tilfeller, i hver ende av prosentskalaen, ma nwermest sies & veere
trivielle, ogsé hva bestemmelsen av de opptredende brgker angar. La
oss derfor supplere spersmalet ovenfor slik: »... noe prosenttall utenom
endene av skalaen ... %

Svaret er fortsatt bekreftende. Det finnes ett slikt tall, nemlig 34%,
hvor ferste representasjon er gitt ved

10
PR — o
30 = 349, .

Grunnen til den overraskende store nevner er at 349, ligger sveaert
ner den enkle brek 3. Avstanden er bare %%, mot en hel prosent for
naboene til brgker som ¢, % og 1.

For & slutte som vi begynte, med eksamensresultater, kan vi altsi si
at om vi hadde stroket en student til i emnet M 12, ville Ramanujans
konklusjon om det minimale antall kandidater i dette emne ha vert
enda mer frapperende.



REMARKS ON A PAPER BY 0. KOLBERG

FRITZ HERZOG
In a recent paper [1], Kolberg has shown that e-* admits a unique
expansion of the form

(1) e =

n

(I+a,z"),

N8

valid for |z| <1. He showed, among other things, that a,= —1 and that
2

(2) 0<a,<-, n=234,....
n

The purpose of this note is to prove an asymptotic formula for the coeffi-
cients a,, which in a sense is the best possible result in this direction.

THEOREM. For n — oo,

1 1
(3) a, = —+O<~-é> )

n n
bui

1 1
(4) a, =}=—+o<--72>.

n n

To prove (3) we use the relation

Ay, —

1
’;b = 21 (— 1)dd—la'Z/ol ’
where 2 is taken over those divisors d of n for which 1 <d<n. (See
[1, Equation (2.2)].) We conclude that la, —1/n] gzld—laz/d. In case n
is even we treat the terms corresponding to d =2 and d=n/2 separately.
These terms are, by (2),

1 1/4\2 1 2 2 /1\ ™2 1
—a, < - (~> = O(«) and —af? == (—) = 0(;)
2 M2 T 9 \y n? n 2 n\2 n2)’

respectively. Thus for all » (even and odd),

| 1 L 1
ézzd an/d+0(7§>,

T

[78]
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where X, is taken over those divisors ¢ for which 3<d=n/3. We con-
clude from (2) that |a, —1/n| < Xyd~Y(2d[n)?+O(1/n?) or

1 2 2d\ +1 1
<Z - o(—=).
—n22<n) + <n2>

@, ——
n
It remains to show that X, in (5) is O(1/n), and this will be shown sepa-
rately for X5 and 2, where these two sums are taken over the divisors
d in the ranges 3 <d <n? and n* <d <n/3, respectively.
With 7(n) denoting the number of divisors of n and by use of the
fact that 7(n)=0(nt), we obtain

(5)

5,2 2 0 (2) = 0f2) ana () < @ o2).

This completes the proof of (3).
To prove (4) we let n — co through the values 2p, where p is an odd
prime. We obtain (see the last equation in [1])

1 1 1 P
=5, = 0 (17 2r)
which is asymptotically equal to 1/2p?=2[n?. This shows that a,—1/n+
o(1/n?).

We also note that (1) leads directly to another recursion formula for
the a,, namely,

- _ _
Dy Oy e Oy = , n=1273 ...,

where X is taken over all partitions n=mny+ny+ ... +n, with 0<n;<
Ny < ...<mny. This formula, however, does not seem to lend itself as
easily to an investigation of the a, as does Kolberg’s formula, which is
the one used above at the beginning of the proof.

BIBLIOGRAPHY

[1] O.KoreErG: A property of the coefficients in a certain product expansion of the expo-
nential function. NMT 8 (1960), pp. 33-34.
See also
L. CarriTz: Some arithmetic properties of the coefficients in a certain expansion. NMT
9 (1961), pp. 117-122.




BOKMELDINGER

C.C. ANDERSEN — S. A. Bo — GunNNAR NIELSEN — J. DAMGAARD
SORENSEN: Realskolens regning og matematik. Geometri, 1. og 2. real-
klasse. J. H. Schultz’ forlag, Kebenhavn 1961. 131 s. D. kr. 13.85.

(Innholdsfortegnelse i NMT 9 (1961), s. 181-182.)

Pour. MoGENSEN: Geometri for realafdelingen. Gyldendal, Kebenhavn
1961. 127 s. D. kr. 8.40.

(Innholdsfortegnelse i NMT, dette hefte, s. 92.)

Pour NEErRUP — FrANS HANDEST: Hlementer plangeometri. Munks-
gaard, Kgbenhavn 1961. 243 s. D. kr. 24.75.

(Innholdsfortegnelse i NMT 9 (1961), s. 132.)

Danmark har n& fatt en ny skoleordning, for gvrig den samme som
Norge har hatt siden 1930-arene. P4 en 7-arig grunnskole (folkeskole) byg-
ger en realskole, og etter 2. klasse her fglger et 3-arig gymnasium. De elever
som skal inn i realskolen ma i 7. skolear ha lest noe matematikk. I geome-
trien dreier det seg om enkle tegne- og regnegvinger, og elevene skal bli
kjent med visse grunnbegrep. Det er ikke deduktiv, men intuitiv geometri.

Den bevisende geometri begynner si i det 8. skolear i 1. realklasse,
og her er det altsd kommet 3 nye boker som ser s forskjellige ut at en
ved forste gyekast kan ha vanskelig for & forstd at de er skrevet for det
samme publikum.

La oss kalle bgkene for henholdsvis A, M og N. Mens A har 131 sider
og M 127, har N 243 sider. M har storst format og N minst, men forskjel-
lene er ikke store. Det er sannsynlig at mange vil velge A eller M fordi
de er sa mye kortere enn N.

I selve fremstillingen i bokene er det et moment som jeg tror fortjener
& droftes. En deduktiv geometri ma jo bygges opp med grunnbegrep og
definisjoner, med aksiomer og teoremer, med postulater og problemer
(konstruksjoner). Teoremene skal bevises og hvert bevis har en forut-
setning og en pastand.

Folgende problem oppstar da s snart en vil lage en lerebok for unge
mennesker: I hvilken grad skal boka aksentuere de nevnte punkter?
Skal en som Euklid gjere det klart og tydelig, melde at vi har en defini-
sjon, eller et aksiom eller et postulat; skal en som vi gjor i norske beker
markere i lereboka forutsetning og pastand? Eller skal vi overlate til
elevene & finne ut av dette, slik at de selv mé finne alle definisjoner og

[80]
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slik at de under eksaminasjon i et bevis (pa tavla) selv ma kunne sette
opp det som er gitt og det som skal bevises?

For svake elever vil det nok vere en fordel at mest mulig er poengtert
i leereboka, mens det for dyktigere elever jo er bade nyttig og morsomt
selv & finne greie pa dette.

Vi finner her en litt varierende praksis i de tre bgkene. N har noen
ganger uttrykkelig satt ordet »Definition« foran en slik forklaring for &
markere hva det er. Udefinerte begrep med »anskuelige« definisjoner er
markert med * likesom ogsa »selvfglgelige forutsetninger« er markert pa
denne méaten. I en rekke setninger er brukt skjemaet:

Givet: ... Bevis: ... Beviset .

Et slikt skjema finner en ikke hos M. Her er imidlertid »grunnlags-
setningene« sterkt fremhevet. De er nummerert fra I til XII og (tildels)
trykt med fete typer, og slik at XII er den sikalte parallellgrunnsetning.

Hos A er grunnsetningene markert pé en annen méate, nemlig ved en
grenn strek i margen. Det er ikke godt & si om dette pedagogisk sett er
heldigere enn den maten M har valt. A bruker ikke noe fast skjema for
sine bevis, men det kan sta »Givet« eller »Vi skal (eller vil) bevise« i en
setning.

Stort sett er det det samme stoff de tre boker presenterer, og det er i
alle tilfelle deduktiv geometri. Mens N gér rett pa stoffet med noen be-
traktninger om den orienterte linje, har bade A og M fgrst noen betrakt-
ninger over grunnbegrepene. Poenget blir & klargjore overgangen fra
virkelighetsgeometri til abstrakt geometri. Som lerer foler jeg meg
seerlig tiltalt av den grundige innledning med historiske perspektiver
hos M, men det er mulig at elevene foretrekker & gi mer bent pa saken
slik som hos A eller N.

Tiltalende er det at N tidlig innforer mengdebegrepet. I alle tre bokene
spiller speiling, symmetri og avbildninger en viktig rolle, og de skiller seg
tydelig fra de klassiske elementaergeometrier. N og serlig A bruker rgde
og grenne farger i sine figurer (hva med de rgd-grenn-blinde ?), og det
vil nok veere en god hjelp for elevene. Men en figur som den pé side 85
hos A krever et ngye studium for & bli helt ut forstatt.

A gi en mer detaljert oppgave over det faglige innhold i de tre bgker
ville kreve langt mer plass enn jeg her kan legge beslag pé. Jeg ngyer meg
med et par punkter, forst behandlingen av parallellitet.

Som kjent er det her forskjellige muligheter alt i definisjonen. M bruker
den klassiske, — mindre heldige fordi den er negativ —, definisjon »som
ikke skjwrer hverandre«. A og N bruker den positive »som har en felles
normal«. Med den sentrale plass symmetribegrepet har fatt i bekene,

NMT, Hefte 1, 1962. — 6
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kunne en ha ventet at en tredje definisjon var brukt: to rette linjer som
er symmetriske om et punkt. Men det er mulig at definisjonen »med
felles normal« er den som barn lettest far tak i, og pa det trinn det her
gjelder mé unektelig de pedagogiske hensyn telle mye.

Et annet punkt jeg vil nevne er begrepet sgeometrisk sted«, som ogsa,
har en sentral plass pa det alderstrinn det her gjelder.

Selve navnet vil vel for barn synes noe merkverdig, og jeg kan derfor
godt sympatisere med M nar han taler om visse punktmengder med opp-
gitte egenskaper, eller med N som taler om bestemmelse av punktmengder.
Disse to bgkene gjor derved bruk av mengdebegrepet, noe vi ma hilse
med glede. P4 den andre siden er det praktisk & ha et enkelt navn pa
begrepet. Jeg foreslo engang (Norsk Mat. T. 1952, s. 100) navnet tope,
og jeg vil holde fast ved at jeg tror dette ville veere en fordel. A har alt
pé side 15 en grei definisjon pa begrepet geometrisk sted — navnet
brukes altsd her — og har s& pa side 71 en liste over 5 slike geometriske
steder.

Ellers forekommer det meg at N gar lengst i 4 utnytte det mengdeteo-
retiske grunnlag, idet han taler om at en ved konstruksjoner skal soke
Jfellesmengden for to mengder, dvs. to geometriske steder.

Det er ikke lett & vurdere bokene bare etter lesning. En oppdager
snart at N ligger pa et hgyt niva, men jeg tror det vil bli ngdvendig i
ganske stor utstrekning & folge forfatterens rad og gjore et utvalg blant
gvelsene, kanhende ogsa hoppe lett over betraktningene om ordning i
starten. De to andre bgker virker mer overkommelige, og vil formodentlig
ikke minst bli brukt i klasser med et svakere elevmateriale.

Sikkert er det at vi her har fatt tre interessante nye bgker, som mate-
matikklerere over hele Norden vil ha stort utbytte og glede av & studere.

Kay Piene

THOR A. BAK — JoNas LicHTENBERG : Videregdende matematik for ikke
matematikere. 362 stencilerede sider. D. kr. 40.00 — Opgaver til Videre-
giende matematik for ikke matematikere. 44 stencilerede sider. D. kr.
10.00. — Jul. Gjellerups forlag, Kgbenhavn 1960-61.

Den foreliggende bog er resultat af et kursus i matematik afholds pa
Danmarks farmaceutiske hgjskole for farmaceutiske kandidater, leeger,
biokemikere m. fl., altsa for folk med en vis modenhed, men med nseppe
presente matematiske kundskaber, selv om matematisk studentereksa-
men har veret forudsat pa kursus.

Bogens forjeettende titel ma forstés pa denne baggrund. T bogen findes
en repetition af skolekundskaberne i differential- og integralregning,
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hvorved selve begreberne uddybes og flere s@tninger, som f. eks. Taylors
formel, medtages, medens vanskeligere beviser, der vesentlig bygger pa
de reelle tals kontinuitet, forbigas. Herunder foretages ogsa en gennem-
gang af elementeere funktioner, hvorved logaritmisk skala, Arcus-funk-
tioner og hyperbolske funktioner medtages. Men man skal méiske vzre
lidt forsigtig med at anbefale bogen til selvstudium for virkelige »ikke
matematikere, der neppe uden vejledning i alle tilfeelde vil bemszerke
fundamentale egenskaber, der kun anfgres en passant.

Igvrigt vil en fremstilling som den her foreliggende utvivlsomt imede-
komme et stort behov hos folk, der har beskeeftiget sig noget med mate-
matik og har brug for at beskeftige sig med meget mere med henblik
pd anvendelserne.

Pa hovedbogens ca. 350 sider nar man meget langt: Linezr algebra i
det n-dimensionale rum, funktioner af flere variable med vektoranalyse,
uendelige rakker med Laplace- og Fourier-transformationer, differential-
ligninger med operatorsprog, egenveerdiproblemer, variationsregning og
eksempler pa 2. ordens partielle differentialligninger samt numerisk ana-
lyse med Euler-MacLaurins formel udledt ved symbolsk regning med
differenser.

At dette kan néas, skyldes naturligvis, at leengere beviser (f. eks. ved-
rgrende konvergensforhold) ikke er medtaget. Herved vinder man, at
man virkelig kommer frem til resultater og far indblik i omrader, som
bruges i anvendelserne, uden at hovedtrekkene forstyrres af besveerlige
detailundersggelser. Udover beviste og ikke beviste setninger optreder
ogsa setninger med skitserede beviser. Formélet hermed er naturligvis
at gore vedkommende swtninger plausible uden tyngende stringente
beviser, og hvis leseren blot er klar over dette og far resultatet i pracis
form, vil sddanne skitserede beviser nappe gore skade.

Et vasentligt traek ved bogen er netop, at leseren far begrebsdannel-
gerne motiveret ved primitive betragtninger og ikke bliver stillet over for
en feerdig og afpudset teori om et begreb, som han af ukendte arsager
skal beskeeftige sig med.

Pa de grundleggende omrader er bogen i det vesentlige en nedfotogra-
fering af eksisterende lerebgger ved vore andre hgjere lereanstalter, og
forfatterne henviser selv til disse angédende uddybning af sidanne emner.
Til gengeld er der i den anden ende vewesentlige tilfgjelser.

I et tilleeg har forfatterne udgivet en samling af opgaver (til dels med
besvarelser), en lille formelsamling og en litteraturfortegnelse. Blandt
bogens eksempler og opgaverne findes en del, der er hentet fra anven-
delser i fysik og kemi, men naturligvis ogsd mange gvelsesopgaver. I
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eventuelle senere udgaver end denne forelgbige ville litteraturhenvis-
ninger efter de enkelte afsnit veere kerkomne.

Bogen er et interessant vidnesbyrd om, hvad en kemiker og en fysiker
skonner, et grundkursus for kemikere og biokemikere bgr omfatte (pa
neer sandsynlighedsregning, der har vaeret medtaget pd kursus, men ikke
er medtaget i bogen), og den m4 hilses velkommen som en kortfattet og
vidtspendende fremstilling af matematik for anvendere skrevet af folk,
der anvender matematik.

Poul Neerup

Viceo BrUN: Regnekunsten ¢ det gamle Norge. Universitetsforlaget,
Oslo, Bergen 1962. 125 s. N. kr. 9.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 89.)

Ovennavnte lille bog behandler tiden »fra arild til Abel«. Dette tids-
interval er skarpt afgrenset opadtil, idet Abels fremkomst virkede som
en fuldstendig diskontinuitet eller, med et i bogen benyttet citat, som
en eksplosion.

Bogen indleder med nogle eksempler pa geometrisk ornamentik i old-
tidsfund og giver derefter glimt af regnekunstens historie, saledes som
den fremtraeder i de gamle norske retsregler (Gulatingsloven, Frostatings-
loven) samt i Kongespeilet. Fra Gulatingsloven navnes saledes yderst
detaillerede regler for storrelsen af den bod, som ved drab skulle erlegges
til den drabtes nere og fjernere slegtninge (sen, broder, farbroder,
farbrodersgnner, ..., farbroderdatters senner, ..., derimod tilsyne-
ladende ikke til den eventuelle enke eller andre af det svage ken!).
Udferdigelsen af disse bestemmelser stillede store krav til samtidens
regnekunst, hvad angar brgksregning og division (der er ogsa indlgbet
adskillige mindre regnefejl!).

Derefter omtales regning som fag i de norske skoler i middelalderen og
de derpa felgende adrhundreder og i militeerskolerne i tiden 1750-1800
samt oprettelsen af det forste norske universitet. Hermed er vi naet sa
langt frem i tiden, at ordet »regnekunst« ikke leengere dekker, men ma
erstattes med ordet »matematike, og bogen slutter med omtale af 4 for-
Abel’ske matematikere, der er »eksponenter for den felleskulturen vi
[d. v. s. Norge og Danmark] den gang hadde«. Med serlig interesse leser
man om den sidste af de fire, Caspar Wessel, og hans bergmte arbejde
»Om Directionens analytiske Betegning« (1797), hvor han giver en geo-
metrisk indfgrelse af de komplekse tal som punkter (vektorer) i en plan.
Néar vi i dag taler om den »Gauss’iske talplan, ville det veaere korrektere
at sige den »Wessel’ske talplan«. Man smiler ved leesningen om, hvorledes
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Caspar W. ligesom sin poetisk begavede broder Johan Herman havde
sveert ved at 3 pengene til at sla til; men smilet dekker kun over venlig
medfolelse.

For at hindre ungdigt hovedbrud hos leseren skal her lige neevnes,
at der i ligningen midt pa s. 91 har indsneget sig et par fejle eksponen-
ter. Ligningen skal hedde:

y = Aw+Brt+Co 2+ Drd+ ... .

Selv om bogen hovedsagelig behandler specifilt norske forhold og
derfor i forste reekke henvender sig til norske lwesere, vil den kunne
loeses med interesse inden for hele den fzlleskultur, som vi i dag knytter
til begrebet Norden.

David Fog

Jonx N. Fustt: An introduction to the elements of mathematics. John
Wiley & Sons, New York, London 1961. 11+ 312 pp. sh. 47/-.

(Innholdsfortegnelse i NMT, dette hefte, s. 90.)

Denne boken er skrevet for amerikanske forstears collegestudenter,
og er i hovedsaken en elementer, intuitiv innfering i de grunnleggende
begreper innen matematisk logikk og mengdelere, samtidig som den
ogsd antyder hvordan de mer tradisjonelle matematiske disipliner kan
utvikles naturlig pa dette grunnlaget. Hva stoffutvalget angar, svarer
boken i store trekk til kurset »Matematisk systematikk« ved Universite-
tet i Oslo; dette er et kursus som ma tas av alle som vil undervise i
matematikk i den hgyere skole.

1 de forste kapitler av boken introduseres de elementere logiske be-
greper og symboler, som si benyttes ved en meget instruktiv analyse av
logiske resonnementer, der bl. a. de vanligste typer av indirekte bevis
omtales. I et eget kapitel behandles den aksiomatiske metode, illustrert
ved et primitivt, og likevel instruktivt, eksempel. Et noe vektigere eks-
empel i tillegg til dette, med detaljerte bevis for en del satser, kunne
imidlertid veert pé& sin plass.

I det folgende presenteres si de grunnleggende elementer av mengde-
leeren. Sannhetsmengden for et utsagn defineres, og korrespondansen
mellom logikkens og mengdelerens operasjoner poengteres meget klart.

Etter dette folger et mindre vellykket kapitel (8) som hovedsakelig
inneholder en noksd kjedelig oppramsing av forskjellige egenskaper bi-
naere operasjoner kan ha (kommutativitet, assosiativitet etc.), samt av
aksiomsystemene for de vanligste algebraiske strukturer. Eksemplet som
skal lede til definisjonen av begrepet binzr operasjon i en mengde, mé
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sies & vere hverken nerliggende eller egnet, all den stund leseren ma
gjennom en helt spesiell notasjon, samt en identifisering av to forskjellige
mengder, for den binzre operasjonen er etablert. At binaere operasjoner
defineres for funksjoner i sin alminnelighet — og pa en helt annen mate
— er ogsa uheldig.

I neste kapitel gis en omtale av de naturlige, hele, rasjonale og reelle
tall og noen av egenskapene ved disse tallsystemene. Behandlingen er
temmelig overfladisk, si dette kapitlet blir noksa mange ord om noksa
lite. Irriterende er det ogsé at det innferes en rekke begreper som hverken
er naturlig motivert eller blir brukt i det felgende.

Etter et par sma kapitler, som ikke inneholder s& sveert meget, behand-
les sa i kapitlene 12 og 13 begrepene relasjon og funksjon, som belyses
ved en del eksempler. Ekvivalensrelasjoner nevnes sa vidt, derimot ikke
ordningsrelasjoner. Definisjonen av den deriverte funksjon er svzrt klos-
set formet, og er da ogsa blitt gal, idet begrepene funksjon og funksjons-
verdi er blandet sammen. En uheldig notasjon forekommer ogsa: at f(z)
(som vanlig) betegner en funksjonverdi mens g(f) og f(g) betegner funk-
sjoner (sammensetningene av funksjonene f og g) kan bare virke forvir-
rende.

Endelig gis i bokens to siste kapitler en liten smakebit av kombinato-
rikk og sannsynlighetsregning. Fremstillingen er nok ogsi her temmelig
overfladisk, men gir pa4 den annen side en god intuitiv forstaelse av de
fundamentale begrepene.

Alle emnene som behandles i denne boken er jo na sveert aktuelle i
forbindelse med den modernisering av matematikkundervisningen i gym-
naset som nd forestdr, og tildels foregér. Det vil derfor for mange vaere av
interesse & skaffe seg noe kjennskap til dette stoffet. Som en forste
introduksjon kan denne boken — trass i de innvendinger som er nevnt —
absolutt anbefales. Fremstillingen er klar og gir god intuitiv forstielse,
og den er skrevet i en levende stil som gjor den lettlest. Sa kan man heller
i neste omgang ga los pa en grundigere og mer systematisk oppbygget
leerebok.

Erling R. Hansén

GorrrrIED KOTHE: Topologische lineare Riume, I. (Die Grundlehren
der mathematischen Wissenschaften 107.) Springer-Verlag, Berlin, Got-
tingen, Heidelberg 1960. 12 + 456 S. Ganzleinen DM 78.00.

(Innholdsfortegnelse i NMT 9 (1961), s. 82.)

Forfatteren har satt seg som mal & gi en systematisk fremstilling av de
viktigste begreper, metoder og resultater i teorien for topologiske linesere
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rom. Resultatet er blitt den mest omfattende bok som né fins innen dette
felt. Fremstillingen er relativt utferlig, og forfatteren har nedlagt et
betydelig arbeid ved & finne de mest mulig instruktive bevis. Ja, enkelte
viktige satser blir bevist pa opptil tre forskjellige mater. Gjennom hele
boken blir det gitt utferlige kildehenvisninger. Forfatteren har valgt ikke
&4 gjore bruk av oppgaver som en del av fremstillingen. P4 en méte er
dette bekvemt, men det medforer ogsé at oversikten blir minsket.

Kap. 1 gir en kortfattet fremstilling av de ngdvendige begreper og
satser fra generell topologi. Kap. 2 er av algebraisk natur, bortsett fra
en fremstilling av de av Lefschetz innforte linecere topologier, d. v.s.
topologier hvor nullelementet har en omegnsbasis som bestar av linezre
underrom. Lefschetz’ dualitets-teorem, som er helt analogt til Pontrja-
gins, blir bevist pa en overmaéte enkel mate. Kap. 3 og 4 gir det generelle
grunnlaget for topologiske linezre rom. Litt overraskende skal et slikt
rom pr. definisjon veere Hausdorff. Dette forer til vanskeligheter bl. a.
ved definisjon av induktive grenser, og forekommer meg & veare en for
hard innskrenkning. Mackeys teorem om at lokalkonvekse topologier
med samme topologisk duale har de samme begrensete mengdene blir
forst bevist ved et kategori-resonnement og dernest ved en metode som
skriver seg fra Lebesgue og Toeplitz. Kap. 5 inneholder en rekke »mat-
nyttige« satser. Her finner vi bl. a. satsen at en lukket mengde er svakt
kompakt hvis hver delfolge har et svakt adherenspunkt (Eberlein), og
satsen at den lukkete konvekse envelopen til en kompakt ogsé er kom-
pakt (Krein). For den siste satsen gis det bade et integrasjonsteoretisk
og et kombinatorisk bevis. Kap. 6 behandler visse spesielle rom, og her
finner en ogsd en rekke viktige moteksempler. Jeg savnet en symbol-
indeks.

Dessverre er ikke boken fri for feilslutninger. Beviset for Grothendiecks
kompletteringsteorem er ikke holdbart, siden det er mulig & finne et
moteksempel til ulikheten (3) 8. 272. Det kan ogsa angis et moteksempel
til § 21, 8 (1), og § 19, 5 (1) er gal i sin naverende form. Feilen her er at
om A snitter enhver F i et filter &, s4 behgver selvsagt ikke AnF &
danne en basis for Z.

Det skulle vaere ungdvendig & tilfoye at dette er en bok som enhver
med interesse i topologiske vektorrom ber anskaffe seg.

Otte Hustad

YxGVE RoLLoF: Operationsanalys. Almqvist & Wiksell /| Gebers for-
lag, Stockholm 1961. 256 s. Sv. kr. 35.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 92-93.)
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I forste kapitel definerer forfatteren operasjonsanalyse som »anvind-
ning av vetenskapliga metoder vid analys av aktiviteter utanfor de
konventionella vetenskapliga omradenac«. Med vitenskapelig metode
menes i denne sammenheng at den foreliggende situasjon beskrives ved
en matematisk eller spesielt sannsynlighetsteoretisk modell, hvoretter
matematiske eller statistiske metoder anvendes.

N& har en £. eks. i fysikk og mekanikk allerede lenge anvendt matema-
tiske modeller, som siden arhundreskiftet ofte har fatt sannsynlighets-
teoretisk formulering. I den statistiske metodelzre formuleres Pé samme
méte den sakalte a priori viten i en sannsynlighetsteoretisk modell,
hvoretter en (eventuelt pa grunnlag av et observasjonsmateriale) sgker
& ta en avgjorelse som er optimal i en eller annen henseende. Det er sile-
des ingen ny ide som innferes i og med operasjonsanalysen. Operasjons-
analyse er lansert som et slagord for gket praktisk forskningsaktivitet pa
omréder der vitenskapelige metoder ikke tidligere ble anvendt.

I de senere &r er det publisert en rekke lerebgker i operasjonsanalyse.
Rollofs bok atskiller seg imidlertid fra de fleste ved at den ikke er tenkt
som noen lerebok, men som »ett ansprakslost forsok att stimulera fore-
tagsledare och andra administratorer att anviinda operationsanalys«.
Boken ber imidlertid f& en langt storre lesekrets. Den gir en populeer og
meget underholdende fremstilling av hvorledes en i dag har tatt i bruk
matematiske modeller, sannsynlighetsteoretiske overveielser og statisti-
ske metoder pa neer sagt alle omrader fra ubatkrig til trafikkundersokel-
ser, fra jordbruk til sport, og er derfor godt lesestoff for alle som har litt
interesse for matematikken og dens anvendelser.

Boken innledes med 4 kapitler som orienterer om operasjonsanalysen.
Etter et avsnitt om »matematiska modeller« og et om »Kvantitativ ana-
lys i operationsanalysq, folger s& 8 kapitler (smlgn. innholdsfortegnelsen)
der hvert enkelt er en oversikt over et omrade fra matematikk eller
statistikk som i seerlig grad kommer til anvendelse i operasjonsanalyse.
Til slutt behandler forfatteren lagerproblemet og operasjonsanalyse an-
vendt pa jordbruk og sport.

Skulle det reises noen innvending mot boken, matte det veere at den i
alle fall for et par kapitlers vedkommende — serlig kapitlet om informa-
sjonsteori — er noe knapt formulert, slik at leseren vanskelig far tak pa
hva det dreier seg om. For enkelte lesere vil dette imidlertid kunne
virke som en ytterligere »aptitretare« til & lese mer, og da er vel hensikten
med boken oppnadd.

Arnljot Hoyland
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OPPGAVER TIL LOSNING

Lesninger av oppgavene 221-223 sendes til oppgaveredakteren, lektor Ragnar J.
Solvang, Plogveien 34 B, Manglerud, Oslo. Slike lgsninger vil bli trykt i et folgende
hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lgsning av
hver oppgave. Losninger av oppgaver i dette hefte mé, for & komme med i hefte 4,
veere sendt innen 1. oktober 1962. Innen samme frist kan man sende inn lgsninger av
oppgavene 219 og 220, som det ved en feiltagelse ikke ble innkalt lgsninger av i
forrige hefte.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes
til oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

221. I samme plan har man fire cirkler C4, Cp, C¢ og Cp. Enhver af
cirklerne bergrer de andre udvendig, og systemerne € ,CCq og C50cChp
er ligedannede. €, har radien a=1. Hvor store er de andre radier?

B. Thoroddsen

(Smlgn. oppg. 213, som det hittil ikke er innkommet noen lgsning av.)

222. En fﬁnktion f(x) satistierar foljande villkor:

1) z<0; f(x)=0.
2) f(+0)=eY, O0<y<oo.
3) >0; f'(x)=eY[1—f(x—y)]

Visa, att f(z) - 1 monotont, d& & — oc.
Bengt Joel Andersson

223. En folge {a,} av reelle tall er definert ved
an+1tan+1lr = (an—k)la’n_klr+k >

der k og r er positive tall, og a, er gitt.

a) Vis at {a,} divergerer for alle a, dersom k> 2.

b) Er 0<k <2, fins et entydig tall « (avhengig av k og r) slik at {a,}
divergerer dersom a, <« og konvergerer dersom a@y>x. Vis for siste til-
felle at folgen konvergerer mot k —«.

¢) Sett ay> o, og bestem lim lim lim a,.

r—>0 k—>0 n—>o00

H. Killingbergtro
[95]
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224. La z veere et positivt tall +1, og » et naturlig tall. Bevis ulikheten

x—1

r+— > 2n
xn

ae=1 Istvdn Beck
225. Vis at g o
In2 = - -
22 =3 2 D e Gty
9)/3 = 2n+1
e
n=0 (3n-+1)(3n+2) Christian Berg
LOSNINGER
212. Vis at

1+2 M en'n
oo'n=1 - 4‘/5 .
142 3 (—1)re-nn
n=1 Age Ramberg

Losning: Bregken er et spesialtilfelle av

142 S
6,(0) 2

n=1

3

= o0
14+2 3 (= 1)mg™
n=1
der ¢=¢"*1* og w'=1w, altsd e;= —e; og €,=0, samt g=e" Na er

7.[2
= — 4 — 64 =
g = 35 (H4(0)-0%(0) = 0,
som sammen med
640)+ H,4(0) = 6,40)

& 6,(0)

6(0)

2040) = 0,4(0), V2, q.e.d

Otto Borgersen
Oppgaven er ogsé lost av L. Carlitz og P. W. Karlsson.

214. Anvend identiteten

£07)-(7)

v=0 n
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n
til at vise, at }'+? kan skrives som et polynomium af (p+ 1)-te grad

v=1
i n (jfr. Chr. Gram: »Om potenssummer«, NMT 8 (1960), s. 79-80, og
Ove J. Munch: »Om potensproduktsummer«, NMT 7 (1959), s. 5-19).

Poul Einar Hansen

Losning: Lat

Py(v) = 0+ 1)(»+2) ... (v+p) = W4+ A4, P+ +4,,.

Da ar .
p+V>
_—p
( v p! »(*)
och
n n
p+v p+n+1 1
= ' —
2,0 p.g( ) ) P! ( " ) ST DD tp+)
1
10+ 1 ——Pp(n) = ?(np+1+Ap+1,1np+ vt Ay pa) -

Man inser litt att koefficienterna K, i uttrycket
P,»)+ Ky Py )+ ...+ K, Pi(»)+ K,
kan viljas s, att detta uttryck blir lika med »?. Man far da, att

ZV”—ZV”—Z »(0)+ Ky ZP_l

1 K,
= }5;—1 (P A, 0P+ .. .)+?(np+Ap,1n1'—1+ )t

n
varav framgar, att 3’ +? dr ett polynom av (p+ 1):sta graden i n.
v=1
L. Lindskog
Oppgaven er ogsé lost av Steffen Strebzk.

215. Av plasshensyn utstar lgsningen til neste hefte.

NMT, Hefte 1, 1962, — 7
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MOTEREFERATER FOR 1961 FRA DE
UTGIVENDE FORENINGER

DANSK MATEMATISK FORENING.

13.2 W. W. Rogosinski, Arhus: Linear functionals on bounded polynomials.
27.2  Chr. U. Jensen: Nogle bemeerkninger om den ikke-Pell’ske ligning.
2, 23.3 W. Fenchel: Om geometriens opbygning.
13.3 D. Kendall, Oxford: Some stochastic problems associated with comets.
27.3  O. Lehto, Helsingfors: Recent developmenis in the theory of quasiconformal
mappings.
24.4 A.Zygmund, Chicago: Differentiability of smooth functions.
12.5  G. Birkhoff, Harvard University: What every mathematician should know
about lattices.
17.5  P. Erdos, Hungarian Academy of Sciences: Problems and results in number
theory.
26.5 K. Sellin: En sammenligning av klassiske og intuitionistiske utsagnslogikker.
9.10 P.F.Schmidt, Arhus: Om Toeplitz-matricers egenveerdier.
16.10 Anton Jensen: Lidt om kombinatorisk topologs.
30.10 G. Baxter, Minnesota, (Arhus): Polynomials defined by a difference system.
20.11 Fr. Fabricius-Bjerre: Om polygoner ¢ det projektive rum.
4.12 A. E. Taylor, Los Angeles: The minimum modulus of an operator and its
use tn spectral theory.

FORENINGEN AF MATEMATIKLZERERE VED GYMNASIESKOLER
0G SEMINARIER I DANMARK.

Tre foredrag i fordrssemestret (holdt b&ade i Kebenhavn og i Arhus):
H. Tornehave: Om kontinuitet og greenseveerds.

17.10 B. Christiansen: De irrationale tals stilling ¢ realskolens matematikundervis-

ning.
18.10 Chr. Gram: Lidt om regnemaskiner.
18.10 Forevisning af Regnecentralen.

FiNnLANDS MATEMATISKA FORENING.

23.1 V. Brun, Oslo: Om trrasjonalitetsproblemer.

15.3 J.Manninen: Ensi kertaluvun osittaisdifferentiaaliyhtiloiden karakteristika-
teoriasta [Om karakteristikteorin av partiella differentialekvationer av for-
sta ordningen].

29.3 P.J.Myrberg: Hyperpallon automorfismeista [Om automorfismer av hyper-

sfar].
[98]
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17.4  O. Frostman, Stockholm: Konvera mdingder av potentialer och extremala
element.

12.5 H. Haahti: Tlavuusmetritkasta affiinilla monistolla [Om volymmetrik ¢ en
affin mdngfaldighet].

17.5  E. Reich, Minnesota: Conformal maps of infinitely-connected regions.

20.9 P.J.Myrberg: Toisen asteen polynomin iteraatioista [Om diteration av poly-
nom av andra graden].

11.10 J. Viisdld: n-ulotteisista kvastkonformikuvauksista [Om n-dimensionala kva-
stkonforma avbildningar].

29.11 O. Jussila: Topologisen avaruuden peitteistc, [Om odvertickningar av topolo-
giska rymden].

FINLANDS MATEMATIK-, FYsik- ocHE KEMILARARFORBUND.

26—  Arsmote. Matematikens stéllning i studentexamen, inledare Urpo Kuusko-
27.2  ski; diskussion. De matematiska dmnenas representation i Skol(éver)-
styrelsen, inledare Jarmo Nystrém; diskussion. Offentligt uttalande om

ovanstéende.
19- Kurs i ekonomisk fostran. Foredrag av matematiskt innehall, bl. a. om
21.6  sannolikhetskalkyl och statistik. Férevisning av databehandlingsmaski-
ner.
27-  Sommardagar i Rovaniemi. P& programmet bl. a. de matematisk-natur-

29.6  vetenskapliga &mnenas stéllning i gymnasiet.

IsLENZKA STZERDFREPAFELAGID.

1.3 Steingrimur Baldursson: Om molekylers indre beveegelse og simple kemiske
processers mekanismer. Forevisning af film,
22.3 Magnus Magnusson: Matematikundervisningen i de hajere skoler og lcere-
anstalter. Diskussion.
23.6 P. Naur, Kebenhavn: A4lgol.
18.10 Generalforsamling.
1.11 Helgi Sigvaldason: Om elektroniske regnemaskiner. Derefter diskussion om
Universitetets patenkte nye Institut for de exakte videnskaber.
6.12 Gunnar Bedvarsson: Populationsteoretiske betragininger om optimering af
fiskeri.
Norsk MATEMATISK FORENING.

31.1  @. Ore, Yale University: Problemer ¢ graf-teori.
9.3 K. Krickeberg, Heidelberg: Surface area.

26.4 M. D. Donsker, Minnesota: Integration in function spaces.

24.5 Th. Skolem: Litt om beviser for resiprositetssatser.

21.8  A. Selberg, Princeton: Nyere undersokelser over diskontinuerlige grupper.
1.9 H. Cartan, Paris: Sur la théorie des fonctions de plusieurs variables complexes.

17.10 1. Fleischer: Tellbarhetsspokelset ¢ integrasjonsteorien.

21.10 P. Holm: Kompakte grupper og nestenperiodiske funksjoner.

Norsk LEKTORLAGS MATEMATIKKSEKSJON.

22.4 I.Johansson: Nye begrepsdannelser i matematikken. (Hamar.)
22.4 E. Bohn: Pedagogiske og faglige problemer ¢ den nye gymnasordningen.
(Trondheim.)
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20.9
23.9
30.9—
1.10
7.10
21.10

11.11
6.12

25.3

3.6

18.11

16.4

15.10
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Sommerkurs pé Risgya. Foredragsholdere: I. Johansson, H. Trefall, P. Holm
og E. Hansén.

K. Piene: Nordisk komite for revisjon av matematikkundervisningen. (Oslo.)

I. Johansson: Om den mengdeteoretiske terminologi. (Sandefjord.)

K. Piene: Modernisering av matematikkpensumet © skolen. (Virmland di-
strikt av L. R. og Hamar krets, Karlstad.)

R. Solvang: Matematikken og etterutdanningen. (Oslo.)

S. Selberg: Endringer som idag bor kunne gjores 1 matematikkpensumet pd
reallinjen. (Trondheim.)

R. Solvang: Nye planer 1 matematikken. (Kristiansand S.)

A. Jacobsen og K. Alfsen: Gymnaskomiteens problemopplegg. (Oslo.)

SVENSKA MATEMATIKERSAMFUNDET.

Mote i Stockholm:

T. Ganelius: En taubersats for distributioner.

B. Ajne: En uppskatining av tidsmedelvirdet av en stokastisk process.
M. Essén: Hxistens av losningar till faltningsolikheter.

Y. Domar: Speciella funktioner pd kommutativa halvgrupper.

J. Friberg: Partiella hypoelliptiska operatorer av dndlig typ.

Mote i Uppsala:

F. Odquist: Ett icke-linedrt egenvdrdeproblem inom krypteorin.

H. Gask: Om asymptotiken vid vissa slumpvandringar.

A. Schinzel, Warschawa: On some problems of the arithmetical theory of
continued fractions.

S. O. Carlsson: Ortogonalitet © normerade rum.

L. Carleson: Existens av randvirden till positiva harmoniska funktioner ¢
flera variabler.

Moéte i Stockholm:

Orientering angdende internationella matematikerkongressen i Stockholm
1962.

O. Schmidt, Kebenhavn: Treek af matematikkens forantikke historie.

F. Eriksson: Krokningsplan © Riemannska rum.

L. Ingelstam: Om enhetssfdirer © Banachalgebror. :

B. Brodda: En entydighetssats for losningar #ll partiella differentialekva-
tioner.

FORENINGEN I LUND FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.

Varmote. Féredrag av matematiskt intresse:

F. Lannér: Elementdr mdngdidra.

I ovrigt dgnades motet &t undervisningsfilm samt féredrag och demon-
strationer i kemi.

Hostmote, som dgnades helt &t fysiken, speciellt undervisnings- och ut-
bildningsproblem.
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FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

3-4.1 Arsmote. Se referat i NMT, Bind 9, s. 92.

VASTVENSKA FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.

2.3  T. Herlestam: Bindr aritmetik.
7.3 T. Herlestam: Maskiners utformning och funktionssditt.
9.3 T. Herlestam: Allmint om kodning.
14.3  I. Dahlstrand: Algol, ett internationellt kodsprdk for datamaskiner.
10.4 E. Strand: Synpunkter och erfarenheter frdn eftergranskning av examens-
skrivningar ¢ matematik.
29.10 Arsmote i Goteborg.
M. Matell: Vdtare vatten, ytkemi i hem och industri.

FORENINGSNYTT

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

héll rsmote den 3—4 januari 1962. Till ordférande resp. vice ordférande omvaldes
lektor Ernst Knave och rektor Walter Ekman samt till sekreterare resp. kassa-
forvaltare adjunkterna Jan O. Unenge och Jacob Isander.

Under arsmétet holls foljande foredrag och demonstrationer:

B. Liljeqvist: Undervisningen ¢ radioaktivitet i skolkurserna. Foredrag med
experiment.

A. Nilsson: Vdgfrontoptik for enkel problemlosning.

M. Hultin: Naturvetenskapen och det nya gymnasiet.

B. Nordfors: Fysikundervisning pd nytt sdtt. Diskussion.

L. Sandgren: Om Nordiska kommittén for modernisering av matematikunder-
visningen.

J. Orring: Matematiken, fysiken och kemin i Grundskolan. Diskussion.

S. Lindholm: Nya fysikforsék pd Grundskolans kursmoment. Demonstratio-
ner.

Q. Frick: Aggvitemolekyler.

Under drsmdétet foretogs visning av Wenner-Gren Center, av bl. a. Universitets-
bokhandeln samt en forskarbostad.

FORENINGENES FORMENN

Nedenfor angis navn og adresse til formennene i de utgivende foreninger:

Dansk matematisk forening : Professor Hans Tornehave, Tornebakken 45, Virum.

Foreningen af matematiklerere ved gymnasieskoler og seminarier i Danmark:
Lektor Henrik Meyer, Bakkedraget 15, Birkergd.

Finlands matematiska foérening: Kansler P. J. Myrberg, Helsingfors Universitet.

Finlands matematik-, fysik- och kemildrarférbund: Dr. Urpo Kuuskoski,
Linnankoskenkatu 12 A, Helsinki.
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fslenzka sterdfredafélagid: Professor Steingrimur Baldursson, Gladheimar 18,
Reykjavik.

Norsk matematisk forenmg Professor Karl Egil Aubert, Matematisk Institutt,
Blindern, Oslo.

Norsk lektorlags matematlkkseks;pon, Oslo krets: Lektor Torjus I. Engelskjon,
Nadderud h. skole, Bekkestua.

Svenska matematikersamfundet: Professor Ake Pleijel, Matematiska institu-
tionen, Sélvegatan 14, Lund.

Foreningen i Lund fér matematisk-naturvetenskaplig undervisning: Rektor
Johan Hemmingsson, Johannes Samrealskola och Giymnasium, Rédmansgatan 24,
Malmso S.

Féreningen f6r matematisk-naturvetenskaplig undervisning i Stockholm: Lektor
Ernst Knave, Néckrosvidgen 14, Solna.

Vistsvenska foreningen f6r matematisk-naturvetenskaplig undervisning: Rektor
Arne Pleijel, Hjortmossegatan 160, Trollhéttan.

UTNEVNELSER

Til professor i matematik ved Danmarks tekniske Hojskole: Lektor, afdelings-
leder V. Jorgensen.

Till professor i matematik vid Helsingfors Universitet: Bitridande prof., Fil. dr.
O. Lehto, som efterfoljer prof. P. J. Myrberg.

Till professor i tilliampad matematik vid Helsingfors Universitet: Prof., Fil. dr.
P. Laasonen.

Till professor i matematik vid Turun Yliopisto: Bitrddande prof., Dr. O. Hellman.

Til professorer i matematikk ved Universitetet i Oslo: Prof., dr. H. Selberg og
dosent, dr. K. E. Aubert.

Til professor i statistikk ved Universitetet i Oslo: Prof., dr. O. Reiersel.

Till bitrddande professor i matematik vid Turun Yliopisto: Docent, Fil. dr.
Y. Kilpi.

Till bitrédande professor i matematik vid Tekniska hogskolan i Helsingfors:
Docent, Fil. dr. O. Tammi.

EN INTERNATIONELL MATEMATIKERKONGRESS

hélles i Stockholm den 15-22 augusti 1962. Nirmare upplysningar kan erhallas

frén kongressens sekretariat, adress Internationella Matematikerkongressen 1962,
Djursholm 1.

THE WORLD DIRECTORY OF MATHEMATICIANS

2nd ed., 1961, is now ready and is available from Tata Institute of Fundamental
Research, Colaba, Bombay 5, India. The cost is $1.50 or sh. 10/6 per copy, post
free. Cheques, which may be in any currency, should be made payable to the
Tata Institute of Fundamental Research, Bombay. Orders may be placed for
single copies or in bulk. In the case of bulk orders, copies will be mailed direct
to the individuals concerned.




SUMMARY IN ENGLISH

C. L. Gopske: Oddvar Bjorgum in memoriam. (Norwegian.)
An orbituary on professor Oddvar Bjergum, February 7, 1916 — December 22,
1961.

A. ScHINZEL: On the composite integers of the form c(ak+Db)!+1.
(English.)

The author raises the problem whether there exist infinitely many composite
integers of the form c(ak +b)! +1. An affirmative answer in many cases when c¢=1
follows immediately from Wilson’s theorem; other cases are answered in the Theo-
rem p. 8.

TorkiL HerepE and HaNs JorRGEN HELMS: Set theory and transfinite
cardinal numbers, I. (Danish.)

In part I of this expository article, elementary (naive) set theory is introduced
and treated up to and including the theorem of well-ordering.

HEereeE TVERBERG: On a combinatorial problem. (Norwegian.)

The following result was first proved by Philip Hall: We want to select n dif-
ferent representatives, one from each of n non-empty sets. This is possible if and
only if every union of k of the n sets contains at least k elements.

In the present paper, a simple proof is given of Hall’s theorem. Instead of the
systematic selection of representatives used in most proofs, elements are now re-
moved from the sets until a system of representatives is left.

GUuNNAR Brom and CARL-ERIK FROBERG: On money changing. (Swed-
ish.)

Let D(m, n) be the number of ways in which a given amount of money n can
be changed by means of m given species of coins a,, @y, ..., am. The paper con-
tains a survey of various methods by which D(m, n) can be calculated.

In Part 1, an account is given of general and exact results concerning D(m, n),
including Bell’s formula (6) p. 57. In Part 2, proofs are given of two inequalities
(A) and (B) pp. 59 and 62, which are possibly new. Part 3 is devoted to a de-
tailed examination of the binary coin system a,=1, a;=2, ..., ap=2m"1 It is
proved in 3.2 and 3.3 that, in this special case, the coefficients of Bell’s formula
can be calculated explicitly by means of simple recurrence relations.
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ErNstT S. SELMER: On sflunk« percentages, Farey series and continued
fractions. (Norwegian.)

In an actual case, 26% and 329, (rounded off to the nearest integer) of the
students failed to pass two certain examinations. One can conclude that there
were at least 19 candidates at each of the examinations. In the case of 349, the
corresponding minimal number of candidates is as high as 29.

These facts are, of course, closely related to the theory of Farey series and con-
tinued fractions, and are used as the starting point for a short, elementary treat-
ment of these two topics.

Fritz HERZOG: Remarks on a paper by O. Kolberg. (English.)

The product expansion

N

e? =

(1 +anzn), 2l <1,

Il
-

n

was first studied by Kolberg. It is shown that, for n — oo,

1 1 1 1
an =—-+0 wik but an £ —+o0 i
n n n n




