OM DEN PLANA GEOMETRINS AXIOMSYSTEM

GUNNAR AF HALLSTROM

1. Inledning. David Hilberts klassiska »Grundlagen der Geometrie«
har utkommit i atta upplagor. Det axiomsystem for euklidisk geometri
som bildar framstéllningens kirna har hirvid undergatt 6verarbetning
och férandring. Vid sidan didrav har manga forfattare givit andra alter-
nativ f6r en axiomatik, uppfyllande de tva grundkraven att vara mot-
sigelsesfri och att karakterisera den ifragavarande geometriska rymden
pa ett entydigt sitt sd nir som pa isomorfa avbildningar. Ett tredje
grundkrav som abstrakt forskning stiller pa axiomatiken ar, att grund-
objekt och -relationer icke definieras, utom i och genom de axiom de
skall upptylla.

Vid sidan av dessa grundkrav bor emellertid ett gott axiomsystem
uppfylla vissa skénhetskrav. Frimsta strivan dérvidlag torde — med
ritta — vara inriktad pé att tillse, att axiomen &r oberoende av varandra.
Denna egenskap testas i allménhet sa, att man pavisar existensen av en
modell, uppfyllande alla axiom utom ett visst, a, som dé befinnes obe-
roende av de §vriga. Men fven om alla axiom i denna mening &r obe-
roende av de Ovriga, behover systemet inte vara minimalt, utan en
»overlapping« kan fortfarande vara f6r handen. Féljer man de Hilbertska
upplagorna, ser man ocksid hur siddana skonhetsflickar smaningom
putsas bort. I sin uppenbaraste form ser dessa ut s& hir: Axiom a lyder
»A och C giller¢, axiom b lyder »B och C giller«. Det dr tydligt att b ej
behover f6lja ur a (och 6vriga axiom), men att i stéllet for b kan véiljas
axiomet »B giiller«. I mindre uppenbara fall &r utsagan C icke uttalad
i a, men f6ljer ur de axiom som fas nidr b utelimnas. Jamfér nedan
axiom IT 3, som i tidigare Hilbertupplagor innehdll utsagan i teorem 4.

Nu ér det tydligt att en del férfattare gor avkall pa stravan efter obe-
roende och minimala system for att vinna andra foérdelar. En synpunkt
ar hirvid att fa fram enkla bevis f6r geometrins centrala lirosatser. En
annan dr av mera estetiskt-metodisk karaktar. Man vill 4 ut s manga
teorem som mojligt ur forknippningsaxiomen, innan man &vergar till
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146 GUNNAR AF HALLSTROM

anordningsaxiom, och direfter s& manga som mojligt utan inférande av
kongruensbegrepp. Om dé ett axiom ur en grupp kan bortfalla eller re-
duceras med hjilp av axiom ur en senare grupp, féredrar man att lata
det std kvar i den tidigare gruppen.

Utover de ovan anférda synpunkterna vill jag emellertid taga till tals
ett renhetskrav, som Hilbert inte beaktar. Lat oss, liksom Hilbert, som
grundobjekt betrakta punkter, rita linjer och plan, och som grundrela-
tioner f6rknippning, anordning och kongruens. Mitt krav gir d& ut p4,
att alla axiom uttalar sig blott om dessa objekt och relationer. Man borde
alltsd inte i axiomen fa tala om element, som kan definieras forst efter
det man utnyttjat en del av axiomen eller rent av bevisat teorem pa
basen av dem. Jag menar alltsd, att hela axiomsystemet skall kunna
framstéllas fére varje deduktion, och d& genast kunna fattas i sin helhet.
Ur denna synpunkt dr det oldmpligt att vinkelbegreppet figurerar bland
axiomen och att kongruens mellan vinklar framstéilles som ett a priori-
begrepp. Vill man vara string, kan man fordra att varje axiom skall vara
oavhingigt av de andra dven i den meningen, att det inte bygger pa
nagot sakférhallande som anges i ett annat axiom. Det skall alltsa ha ett
tydligt innehall allena for sig. Geiger [6] vill med ritta reservera ordet
»oberoende« for detta stringa krav, medan »obevisbar« lampligen skulle
skrivas for det jag ovan traditionsméssigt har kallat »oberoende¢. Av
det foljande torde framga, att man i stort sett ocksa kan upprétthalla
detta stringare krav.

Den synpunkt pa axiomatiken jag framhéivt har i sjilva verket f6ljts
av flera forfattare. Axiomsystem som, mahinda efter en obetydlig modi-
fikation, endast innehaller utsagor om grundobjekt och grundrelationer,
har t. ex. givits av B. Kerékjarto6 [8] och av K. Borsuk & W. Szmie-
lew [3]. Detsamma géller en inspirerande f6relédsningsserie av R. Nevan-
linna pa 1930-talet vid Helsingfors Universitet, vilken i méngastycken
varit vigledande dven for foreliggande uppsats. I alla dessa fall har
emellertid principen f6r mojligheten att relativt kort och elegant komma
fram till centrala och till synes elementéira teorem kommit till sin rétt
pa bekostnad av att systemet innehaller axiom och axiomelement som
kan hérledas ur andra. Framfor allt figurerar hir bland axiomen den
sats, som i litet friare formulering uttrycker, att om A ABC och A'B’'=
AB &r givna, s existerar exakt tva punkter ¢” och C”, s4 att AA'B'C’' =
AABC=AA'B'C". Satsen kan dock bevisas medelst de 6vriga som
axiom medtagna utsagorna. I sjilva verket har Nevanlinna senare ute-
limnat detta axiom i ett féredrag [10] som sedermera #ven inforts i en
larobok i geometri av E. J. Nystrom [12]. I detta sammanhang nimnes
dock ingenting om Aur man kan befria sig fran det utelimnade axiomet.
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Sédana anvisningar har jag endast funnit i ett arbete av H. Coxeter [4].
Dir hiinvisas till ett dldre arbete av H. Forder [5]. Den vig Coxeter
hir summariskt utpekar leder kanske inte precis till en labyrint, men vil
till en djungel. Det blir mera fraga om att satsen kan bevisas &n om hur
den borde bevisas. Jag har f6ljt det utpekade sparet och dérjimte gjort
forsok att rita ut vigen en del for att komma fram till en acceptabel
bevisgdng. Detta har varit ndrmaste anledning till denna uppsats, i all
synnerhet d& som sagt ingen lirobok i &mnet mig veterligen innehaller
en fullstdndig redogorelse for den behovliga bevisgdngen. — Lisare som
ar obekanta med axiomatik i Hilberts anda kunde draga nytta av att
stifta bekantskap med den vérdefulla orientering J. O. Stubban givit
i denna tidskrift [13].

I det foljande inskrinker jag mig till den plana geometrin. Till en bérjan
uppstilles grundobjekt och -relationer jimte beteckningssdtt i ord och
tecken. Sa foljer en forteckning 6ver de axiom som ligges till grund for
framstéllningen. Sist foljer en framstéllning av de viktigaste teoremen
och definitionerna ur den absoluta geometrin, d. v.s. den for euklidisk
och hyperbolisk geometri gemensamma delen. I denna lirobyggnad ut-
nyttjas alltsd icke parallellaxiomet. For att icke gora framstéllningen
alltfor lang, har lydelsen av en del uppenbara bevis och definitioner
uteldmnats, medan i andra fall hinvisning har gjorts till olika ldro-
bocker, som innehaller vederbdrande bevis i en form som passar in i
systemet. \

Det axiomsystem och i all synnerhet det bevissystem som nedan be-
skrives har sjdlvfallet inga ansprak pa att nirma sig idealet ens ur den
framhévda synvinkeln.

2. Axiomsystemet. GRUNDOBJEKT utgor punkier (pt, pter, betecknade
med stora bokstéver 4, B, ...) samt rita linjer (rl, betecknade med sma
bokstédver a, b, ...).

GRUNDRELATIONER: 1. Férknippning eller incidens mellan en pt och
en rl, kan uttryckas med att @ gar genom (gm) A eller att 4 ligger pa a
eller tillhér a, i tecken 4 € a eller a 3 4. Att 4 ej dr forknippad med a
kan uttryckas med att 4 ligger utanfor a eller med 4 ¢ a. Om det exis-
terar (1) en pt forknippad med tva rl b och ¢, séiges b och ¢ skdra varandra,
i motsatt fall vara parallella (bet. b|c). Observera att vi i motsats till de
flesta forfattare anvinder ordet parallell for att beteckna varje icke-
skirande i planet; alltsd innefattar ordet i Bolyai-Lobatscheffskys
geometri (och saledes i den absoluta) bade grinsparalleller och Gver-
paralleller.

2. Anordning kan existera mellan 3 skilda punkter A, B, C och ut-
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148 GUNNAR AF HALLSTROM

tryckas med att t.ex. B ligger mellan A och C eller mellan C' och 4,
i tecken ABC, vilket #r likabetydande med CBA.

3. Kongruens kan dga rum mellan tvd punktpar (utan avseende pd
ordningsféljden). Att AB &r kongruent med CD betecknas AB=CD
eller BA=CD eller CD=AB etc.

Grundobjekt och -relationer skall nu uppfylla f6ljande axiom:

1. Forknippningsaxiom.

I 1. Det existerar atminstone en rl, och pa varje rl ligger dtminstone
en pt.

I 2. Utanfor varje rl finns atminstone en pt.

I3. Gm tva pter gar inte mer &n en rl.

I 4 (parallellaxiomet) lyder i euklidisk geometri:

I 4a. Det existerar en rl a och en pt 4 utanfér a, si att icke mer &n
en rl gm A #r parallell med a.

I Bolyai-Lobatscheffskys geometri (hyperbolisk geometri) blir lydelsen:

I 4b. Det existerar en rl @ och en pt A utanfor den, s& att gm A gir
atminstone tva rl, som bada #r parallella med a.

(T absolut geometri bortfaller I 4a-b.)

II. Anordningsaxiom.

II 1. Om anordning dger rum mellan tre pter, s& ligger dessa pé en rl.

II 2. Mellan tva pter existerar alltid en tredje.

II 3. Av tre pter dr aldrig mer &n en mellan de &vriga.

II 4. (Pasch’s axiom): Om A4, B och C ej ligger pa samma rl, och
om rl 7 icke gar gm C men gir gm en pt mellan 4 och B, sa finns det
pa I en pt mellan B och C eller en pt mellan ¢' och 4.

II 5. (Kontinuitetsawiomet eller Dedekinds axiom): Om alla pter pé
en rl dr delade i tva klasser silunda, att ingen pt ur en klass ligger mellan
tva pter ur den andra klassen, s existerar det en pt, som ligger mellan
vilket som helst par av tva ovriga pter tagna ur var sin klass.

ITI. Kongruensaxiom.

IIT 1. Om A och B #r tva pter, och om C ligger pa rl ¢, s existerar
pi ¢ exakt tva pter D och E, s& att AB=CD och AB=CE. Harvid ar C
mellan D och E.

III 2. Om AB=CD och CD=EF, s&4 ar AB=EF.

II1 3. Ur ABC, A’B'C', AB=A'B’, BC=B'C" féljer AC=A4'C".

IIT 4. Ur ABC, A'B'C", AB=A'B’', BC=B'C', AD=A'D', BD=B'D’
foljer CD=C"'D’.
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3. Satser som kompletterar axiom. Det mé framh#vas, att vi i hela
den foljande framstéllningen helt ignorerar parallellaxiomet I 4, eftersom
vi blott 4r instillda pa den absoluta plangeometrin.

Axiomen I1, I3, IL 2, IT 3 och III 1 ges vanligen en nagot fylligare
formulering, varigenom man vinner, att de enskilda grupperna i hdgre
grad bildar helheter for sig. T. ex. satisfieras var axiomgrupp I av en
virld innehallande en enda rl med en pt pa och en utanfér. Med de fyl-
ligare axiomen brukar man bevisa existensen av bade tre pter och tre rl.

Enligt I 1 existerar en 1l och en pt, enligt I 2 ytterligare en pt, alltsé
et ptpar AB. Lat ¢ vara en godtycklig rl och C € ¢. Betrakta de i ITI 1
nimnda D och E pa c. Vi finner: Pd varje rl finns dtminstone tre pter
(vilket kompletterar I1). Ur AB=CD, CD=AB foljer enligt III 2
AB=AB, alltsa

TrOREM 11: Ett ptpar dr kongruent med sig sjdlvt.

3 F med AFB enligt IT 2, och enligt IT 1 ligger d& A, B och F p& en rl.
Alltsa kan i st. f. I 3 fylligare utstigas?

TEOREM 2: Gm tvd pter gar alltid exakt en rl.

Tag nuilll 1 C =B och ¢c=rl AB, samt betrakta de i axiomet ndimnda
pterna D och E. Man har AB=CD, AB=CE och enligt teor. 1 jaimvél
AB=CA, samt D, E och A e c. Enligt utsagan »exakt tvai III 1 &r da
A =D eller A=E och enligt sista utsagan i III 1 vidare ABE resp. ABD.
Som komplettering till I 2 ser vi nu att 3 F, G, H pa c, s att FAB,
AGB, ABH, och ur II 3 framgar att F, G, H alla dr olika pter. Si fas

TEOREM 3: Om A och B dr tvd givna pter, existerar tre andra pter F, G,
H (pd 1l AB), sd att FAB, AGB och ABH. FoLIDSATS: Pd varje 7l finns
manst fem pler.

»Sammanbindes« 5 pter av en rl med en pt utanfor den, ser man latt
att 3 21 pter (och 21 rl). Mer kan som ként ej bevisas ur I 1-3 och IT 1-3,
vilket framgar ur Veblens bekanta modell. For foljande satser kréves
II 4.

TrorEM 4 (komplettering av II 3): Om tre pter ligger pd en rl, sa dr en
och blott en av dem mellan de dvriga.

Bevis: [7, s. 6].

TrorEM 5: Ur ABC och BCD foljer ABD (och ACD).

TeorEM 6: Ur ABC och ACD féljer ABD och BCD.

TeoreM 7: Ur ACD och ABD foljer ACB eller ABC.

1 Tillage till IIT 1 i Hilberts #ldre upplagor.

2 Om I 3 ersittes med teor. 2, kan i sjalva verket axiom II 2 helt strykas. Liksom
i beviset till teor. 3 finner man némligen da, att till A och B existerar H med ABH,
varefter II 2 kan bevisas som i [7, s. 5-6].
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TroreMm 8: Ur ABC och ABD féljer antingen ADC och BDC eller ACD
och BCD.
For bevisen av teor. 5-8 se [5, s. 51-52] eller f6r teor. 5-6 [7, s. 7],
varefter 7-8 fas latt med hjilp av 5-6.3
Axiom IT 4 utsiger icke att det vore
A uteslutet att [ hade bade en pt mellan B
och C och en mellan C och A. Men det
kan bevisas, att »eller« kan utbytas mot
/ vantingen eller¢, s& att en rl inte kan skéra
D / alla tringelsidor i inre pter:

- F1 TroreM 9* (fig. 1): Antag att A, B och
B E C  Ce¢jir paenrl, samt att ADB, BEC,CFA.
Fig. 1 Dd kan ej D, E och F ligga pd en rl.

Bevis: Antag t. ex. DEF. Tillimpas
114 p4 A, D, F och rl BC, fas en motsigelse.

4. Satser ur den affina absoluta geometrin. Teoremen 2-9 innehaller
icke kongruensbegreppet och kan dérfor anses tillhora den affina geome-
trin. I bevisen har visserligen ITI 1-2 utnyttjats, men detta har blott
skett, for att vi har velat utgd fran ett reducerat axiomsystem. De
nimnda teoremen innehaller i sjidlva verket en viss utbyggnad av grup-
perna I och II, som kan anslutas till grunden for en affin (icke metrise-
rad) geometri. I denna paragraf ger vi ytterligare nagra affina satser,
som inte heller gér bruk av vare sig parallell- eller kontinuitetsaxiom.

Antag att alla rl ginge genom 4. Vilj Is 4, B(+4) el enligt £6ljd-
satsen i teor. 3 samt C ¢ [ enligt I 2. Enligt teor. 2 existerar m gm B och C.
Om A € m, dr enligt I 3 m=1, ehuru C € m och C ¢ [. Alltsa fas

TrorREM 10: Det finns en rl, som inte gar gm en given pt.

TrorEM 11: Det finns odndligt mdnga pter mellan tva givna pter A och
B samt odndligt mdnga pter X sd att ABX. ForspsaTs: Pd varje rl finns
odndligt mdnga pter.

Beviset erhalles genom upprepat bruk av teor. 3 med beaktande av
teor. 6.

TEOREM 12: Gm en given pt A gar det odndligt manga rl.

Bevis: Vilj m 3 4. Gm varje pt pad m garenrl gm 4.

Pa en rl I viljes en pt A och en hjilppt B. En godtycklig pt C (+A4)el
hénfores till klassen (X), om C=B, ACB eller ABC, annars (d. v.s. om

3 [8, s. 26—27] upptar teor. 5—6 som axiom och bevisar teor. 7. [8, s. 19—20] upptar
teor. 5 och 8 som axiom och bevisar teor. 6.
4 Ingdr i II 4 uti Hilberts &ldre upplagor.
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CAB) till klassen (Y). Om X, X, € (X)% Y4, Y, € (Y), framgér ur teor.
5, 6 och 8, att alltid Y,AX, och aldrig Y,4Y,. Ur Y,4X,, Y,AX, och
teor. 8 framgar da, att aldrig X,4X, Hirav fas

TrOREM 13: En godtycklig pt A pd en rl 1 delar linjens dvriga pter i tvd
klasser, sd att A aldrig ligger mellan tva pter wr samma klass men alltid
mellan tva pter ur olika klasser.

DEr. 1: Ptklasserna i teor. 13 kallas strdlar, A deras utgdngspt. Be-
teckning: (X)=1'=Al'=AB ..., (Y)=1l"=Al", varvid I' och 1" kallas
komplementira strdlar.

DEF. 2: Alla pter C med ACB bildar strickan AB med dndpterna A
och B. Pterna C kallas #ven striickans inre pter, alla pter D med DAB
eller ABD strickans yttre pter. Om 3 L €l med ALB (och A ¢1), séges
skdra AB.

TrorEM 14: En rl | delar alla pter som ej ligger pd 1 ¢ tvd klasser, sd
att mellan tva av dessa pter dd och blott dd

ligger en ptel, nir pterna tillhor olika B
klasser. X ,
Bevis (fig. 2): Vilj B¢l som hjilppt A
och hinfor C ¢1 till (X), om ingen pt Y, X,
mellan B och C ligger pa [, till (Y) i mot- > " p
2

satt fall. Ur IT 4 foljer att ! skir X,Y,
men ej X,X,, ur teor.9 att I ej skir Fig. 2

Y,Y,. Om de tva pterna ligger i rl med

B, méaste dock beviset féras med teor. 5-8.

DEF. 3: De i teor. 14 nimnda ptmingderna kallas av [ begrinsade
halvplan. Halvplan betecknas med smé grekiska bokstdver och apostro-
 fer, t.ex. (X)=1'=IB, (Y)=21".

Obs! Man bevisar litt att klassin-
delningen i teor. 13 resp. 14 &r obe-
roende av valet av hjilppt B.

Dxr. 4: Tva strilar ' och k' med

) samma utgdngspt 4 kallas en wvinkel
A - ”

m (4£), som #r rak om k'=Ph", annars

' konkav. Beteckning: LA=x=h'k =
WAk = L BAC = BAk', om Bekl',
Cel'. A kallas spets, b’ och k' ben.

DzF. 5: &'k och "k’ kallas vertikalvinklar, h'k’ och b'k"” nabovinklar.

TeorEM 15 (fig. 3): Om en strdle (I') fran spetsen (A) av en konkav
vinkel (W'k') skir strickan mellan tvd pter pd var sitt vinkelben (BC med

Fig. 3

5 Tncidenstecknet € kan vi utan missforstdnd allmént anvianda #éven for ett elements
tillhorighet till en klass.
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Belk', Cek’), si skir den varje sadan stricka (B;C; med B;eh’, Cek').

Bevis: Tillimpa IT 4 forst pa B, C, By, sedan pa B;, C, C;. Man ser d&
att r1 7 gm A4, som skir BC i D, maste skira B,C; i D,. Ur B,BA (eller
BB, A) foljer att B och B, ligger i samma av k bestimda halvplan x’.
Men ur CDB och C.D,B, féljer enligt teor. 14 att &ven D och D, € x'.
Alltsa &r icke DAD,, d.v.s. D och D, tillhor samma strdle fran A.

Dzr. 6: De i teor. 15 nimnda strilarna kallas inre stralar till vinkeln,
och deras pter bildar den konkava vinkelns snre och utgor inre pter till
vinkeln. Alla 6vriga pter, utom benens pter och spetsen, bildar vinkelns
yttre. Vinkelbenen anses tillika definiera en konvex vinkel, vars inre pter
ir den konkava vinkelns yttre och vice versa. En rak vinkels ben ligger
pd samma rl. Den definierar tva halvplan, som in casu kan definieras
som vinkelns inre och yttre. Obs! Varje inre pt P av en (konkav) vinkel
behover inte vara en skdrningspt av typen D i teor. 15. Det ér tillriackligt
att pa stralen fran 4 gm P finns saddana skédrningspter. I hyperbolisk
geometri finns i sjilva verket pa varje inre strale sidana pter, som inte
ligger mellan tva pter pa var sitt vinkelben.

TeoreM 16 (fig. 4): Det tnre av
kK en konkav vinkel h'k’ utgors av de
pter, som ligger ¢ halvplanet hC
och tillika i kB, dir Beh', Cek'.

Bevis: 1) Om P utgor inre pt
enligt def. 6, s existerar pa I'=
AP... en pt D med BDC, sé att
D e hC och kB, likasa P, efter-
som P=D eller PDA eller DPA
med 4 €k och k. Varje inre pt
ligger alltsa i de tva halvplanen.

2) Antag nu att P € hC och kB. Vilj E € b". Da EAB, ér E i motsatt
av k bestimt halvplan mot P, och 3 F ek med PFE. Ur PFE och
PehC fas t.o.m. F e k’. Enligt II 4, tillampat pa B, E, F, maste PA
skidra BF i en inre pt, v.s. b.

DEr. 7 infor bruten linje och speciellt polygon =sluten bruten linje,
triangel (A), hérnpt, sida.

Pasch’s axiom jémte teor. 9 kan nu omformuleras séi:

TeorEM 17: Varje rl, som triffar en triangelsida men inte gar gm ndgon
hornpt, skdr exakt tvd sidor i inre pter.

DErF. 8: En polygon &r konvex, om varje rl, som icke gar gm tva horn,
har hogst tva pter gemensamma med polygonen.

Ur teor. 17 fas da

TrorEM 18: Varje triangel dr konvex.

Fig. 4
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DEF. 9: Med en konvex polygons vinklar forstas de konkava (eller raka)
vinklar, som bildas av de fran ett hérn utgaende si-
dorna. Ndirliggande och mellanliggande sidor och vink-
lar definieras.

Dxr. 10 (fig. 5): En rl (I) som skér tva andra (A, ki
A, B) kallas transversal till dessa. Lat 2’ og k' beteckna
stralar i samma av [ bestimda halvplan. Da séges vin-
keln BAR' och dess vertikalvinkel vardera vara enslig-
gande till vinkeln A BE" och till dess vertikalvinkel men
oensliggande till dessas nabovinklar.

Pig. 5

5. Satser som bygger pa kongruensaxiomen men icke pa kontinuitets-
axiomet. Eftersom ett ptpar entydigt bestdmmer en stricka och vice
versa, kan man tala om strickors kongruens i st. f. ptpars. Efter inf-
~ rande av stralbegreppet kan vi ocksd ge en omformulering pa féljande
sitt av

Axiom IIT 1. Utgdende fran en pt ¢ kan man pa en strale fran C
entydigt »avsitta« en stricka CD kongruent med en given AB (vilket
endast skall betyda, att pa stralen existerar precis en pt D med CD=AB).

Grundléggande for entydigheten hos stréckors storleksordning &r

TeorEM 19: Om ABC, och om By och C, ligger pd en strdale utgdende
fran A, sd att A,B;=AB och A,0,=AC, sa gdiller A,B,C;.

Bevis: [3, s. 83], [5, s. 92], [14, s. 23].

4 w—C,B E  Tyormm 20 (komplettering till IIT 3): Ur
/" ABC, A,B,C,, AB = A,B,, AC = A,C, foljer
BC=B,0,.
Bevis: [3, s. 82], [5, s. 92], [8, s. 90-91], [14,
D 8. 23].
Fig. 6 TroREM 21 (komplettering till III 4, se fig.

6): Ur ACB, 4,C,B,, AD=A.D,, BD=B,D,,
AC=A,C, (eller AB=A,B,) och BC = B,0, foljer CD=C,D,.

Bevis ([5, s. 97-98]): Enligt ITI 3 och teor. 20 #r de alternativa for-
utséttningarna likvirda. Vilj E s& att ABE och E, si att 4,B,F, och
B,E,=BE, vilket &r mojligt enligt teor.3 och III 1. Enligt IIT 4 &r
DE=D,E,, enligt teor. 6 EBC och E,B,C,, samt enligt III 4 CD=
C.D,.

D4 vi inte har upptagit vinklars kongruens bland grundrelationerna,
maste begreppet definieras. Detta underlittas av foljande definition och
teorem.

Der. 11 (fig. 7): Om for vinklarna BAC och B,4,C, giller AB=A4,B,
och AC = 4,04, kallas strickorna BC och B,C, motsvarande transversaler.
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TEOREM 22: Om for tvd vinklar et par motsvarande transversaler dr
kongruenta, sd dr varje par motsvarande transversaler kongruenio.

B

Fig. 7

Bevis (fig. 8): Antag AB=A4.B,, AC=A4,C,, BC=B,C,, AD=A4,D,,
AE =A.E,. Enligt teor. 19 dr de nimnda pternas anordning p4 motsv.
vinkelben lika. Ur teor. 20 och III 4 eller ur teor. 21 féljer forst CD=
C,D; och sedan DE=D,HE,, v.s.b.

Dxr. 12: Tva vinklar kallas kongruenta, nir motsvarande transver-
saler dr kongruenta. Obs! Man kan anse att dven for en rak vinkel def.
11 pd motsvarande transversaler giller, varvid III 3 visar att raka
vinklar dr kongruenta.

TroREM 23: Varje vinkel dr kongruent med sig sjdlv.

Bevis: Motsvarande transversaler sammanfaller och teor. 1 utnyttjas.
Men viktigt dr, att, om man viljer AB= AC, slutsatsen blir att £ BAC =
L CAB. D.v.s. dven om man later vinkelbenen byta plats, kvarstar
kongruensen.

Latt bevisas transitiviteten:

TEOREM 24: Twa vinklar kongruenta med en tredje dr sinsemellan kon-
gruenia.

Gm O dras tva rl och p4 de uppkomna fyra stralarna avsittes kon-
gruenta strickor 04=0B=0C=0D (fig. 9).

4 D milampas TIT 4 ps A0C—B och DOB—C, fas
0/] AB=DC och enligt def. 12 2 AOB= £ DOC,
varav
TrEorREM 25: Vertikalvinklar dr kongruenta.
B C P4 samma sitt erhalles
Fig. 9 TEOREM 26: Kongruenta vinklars (eller samma

vinkels) nabovinklar dr kongruenta.
DEr. 13: Om Zo« #r kongruent med nabovinkeln till 2pj, kallas «
och B supplementvinklar. (Ur teor. 26 foljer da att kongruenta vinklars
supplementvinklar #r kongruenta.)
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Dxr. 14: Tva konvexa polygoner kallas kongruenta, om sidorna i ord-
ning jimte mellanliggande vinklar dr parvis kongruenta.

Direkt ur def. 12 foljer da foljande tva kongruensteorem:

TrorEM 27 (Kongr.-teor. I): Twd trianglar med parvis kongruenta sidor
dr kongruenta.

TrorEM 28 (Kongr.-teor. I1): Twa trianglar dr kongruenta, om v dem
tva par sidor och deras mellanliggande vinklar dr kongruenta.

Dxr. 15 infor likbent triangel, ben, bas, spets, spetsvinkel, basvinklar.

Ur def. 12 foljer

TrEOREM 29: En likbent triangels basvinklar dr kongruenta.

DEF. 16: Om O4B, siges OA vara mindre dn OB (OB storre dn OA4);
beteckning: 04 < OB (OB > 0A). Likasa definieras 04 < 0'B’ (0'B’ > 0A4),
om 04 =0,4,, 0'B'=0,B, och 0,4,B,. Kongruenta strickor séiges dven
vara lika (OA=0,4,).

Att avgorandet utfaller entydigt genom att de strickor som skall
jamforas avsittes pad samma strale, garanteras av teor. 19. Att icke
samtidigt 04 <OB och OA=0B garanteras av IIL 1 och teor. 1.

TroREM 30: Om AB<CD och CD< EF, dr AB< EF. (Gdller dven om
den ena givna olikheten utbytes mot likhet.)

Bevis enligt teor. 6; tilligget trivialt.

Vi kunde nu utan vidare definiera en strickas mittpt och en vinkels
bisektris (och en normal). Men for att pavisa deras existens behdver vi
kontinuitetsaxiomet och limnar dérfor hela fragan till nista avsnitt.
Existensen av mittpten hade varit mycket enkel att pavisa, om vi —
sdsom ofta gores — hade uppstillt ett tilliggsaxiom IIT 5 med den i1
nimnda inneboérden.

6. Satser som uttnyttjar kontinuitetsaxiomet. Det kan vara bekvimt
med ett alternativ till IT 5, i vilket klassindelningen inskréinkes till pterna
av en stricka eller strile och 16sningens entydighet framhaves:

TEOREM 31: Om alla pter av en stricka AB (strale Al') delas © tvd
Elasser, (X) och (Y), sd att ingen pt ur en klass ligger mellan tva pter ur
den andra, sd finns © ndgondera klassen exakt en pt Q som ligger mellan
varje par, X, Y, av andra pter ur var sin klass.

Bevis (i fallet AB): Giller for paret X, Y t. ex. ordningsfoljden AX Y B,
s kompletteras (X) med A och alla pter P med PAB, (Y) med B och alla
Pmed ABP. De utvidgade klasserna uppfyller I15, och grinspten ¢ méste
liggai AB,ddur XQY, AXB, AYB foljer AQB. Funnes en grinspt @' + @,
borde pterna mellan @ och @' hora till olika klasser, vilket &r omdjligt.

Man ser att @ delar strickan 4B i tva delstrickor AQ och @B, vars
alla pter € (X) resp. (Y). Omvint inses litt foljande
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TEOREM 32: Varje pt Q pd en rl (stricka) delar den ¢ tvd strdlar
(strickor) med @ som utgangspt (ena dndpt), sd att dessas pter utgor ptklasser
av den i IL 5 (teor. 31) nimnda arten, sedan den ena kompletterats med Q.

For stralar giller en analog sats.

Antag A, Bel och PAB. Da ér PA <PB. Varje pt M €l med AM =
BM maste alltsa tillhora strickan 4B.

DEF. 17: Om AMB och AM =BM, s3 kallas M mittpten av strickan
AB och siges halvera den.

TrorREM 33: Varje stricka har precis en mittpt.

Bevis (fig. 10): Antag att AB saknar

A (X) @ 8 (Y) B inittpt. Om APB, fores P till Klassen
P MR N T (X) om AP < BP, till (Y) om BP < AP.
Fig. 10 (Ingendera klassen &ér tom, ty om t. ex.

AP < BP, existerar enligt III 1 och
teor. 19 7 med AP =BT och BTP, och da #r enligt III 3 A7'=BP och
AT >BT.) Om 3 X,, X,, Y med X,YX,, skulle man t.ex. ha 4X,X,
och saledes ordningsfoljden AX,YX,B. Beaktas klassdefinitionen, fas
AX,<BX,<BY <AY < AX,istrid med teor. 30. Klasserna uppfyller d&
teor. 31 och 3 Q € t. ex. (X) med XQY for varje X +@. Vilj enligt IIT 1
NeBA... med BN=AQ. Ur AQ < AB foljer BN <BA och ANB. Ur
BN = AQ < BQ foljer ordningen AQNB, d.v.s. N € (Y). Om nu @N hade
en mittpt, vore den enligt ITI 3 dven mittpt till AB. Saknar QN mittpt,
s& existerar enligt IT 2 och IIT 1 R och S € QN med QR=NS och ord-
ningsfoljden QRSN, varvid Re (Y). Trots det dr enligt III 3 BR=
AS > AR. Ur motsigelsen foljer existensen av en mittpt M. For varje S
med MSB 4r SB<MB=AM < AS, alltsd enligt teor. 30 SB<AS och §
icke mittpt. 3 saledes blott en mittpt.

Dzr. 18: En inre strale I’ till en vinkel « kallas vinkelns bisektris och
siges halvera vinkeln, om den med benen bildar kongruenta vinklar.
Komplementérstralen I’ till en konkav vinkels bisektris kallas bisektris
till motsvarande konvexa vinkel. Hela rl [ kallas bisektrislinje. Bisektris-
linjen till en rak vinkel A'A’’" séiges bilda rdta vinklar med benen, utgora
normal till rl A och std vinkelritt mot den (I L h).

DEr. 19 infér begreppen medelnormal och median.

Pa benen av en godtycklig konkav 2 C avsittes CA=CB och i den
likbenta A ACB drages medianen C M. Enligt teor. 27 &r deltrianglarna
kongruenta och vi far foljande tva teorem:

TEoREM 34: Varje konkav (och konvex) vinkel har en bisektris.

TrEoREM 35: Medianen fran spetsen av en likbent triangel dr bisektris till
spetsvinkeln och medelnormal tll basen. FOLIDSATS: Det existerar rita
vinklar.
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Tillsvidare har inte bevisats att varje rak vinkelskulle ha en bisektris,
ej heller att en vinkel har hogst en bisektris.

TeorEM 36: Om Ae€l, Bel, C¢l, och om AC=AC', BC=BC', sa
dr C och C' i olika av 1 bestimda halvplan. Det existerar alltsd icke en tredje
pt C"" med AC=AC" och BC=BC". FoLipsats: En konkav vinkel kan
icke vara kongruent med en rak.

Bevis: [5, s. 98 no. 16-17 samt s. 132 no. 13].

TrOREM 37: Om tvad stralar bildar kongruenta vinklar med en tredje
strale I, sa maste de ligga © olika av 1 bestimda halvplan.

Bevis: Kallas vinklarna BAC och BAC' med motsvarande transver-
saler BC = B(', visar teor. 36 att C och €’ icke kan ligga i samma halv-
plan.

TrorEM 38 (fig. 11): 7%l en given LI'm' existerar en strale n’ © det av 1
bestimda halvplan som icke innehdller m', sd att LIU'm'=2L1Un'.

Bevis: 21I'm’ mé vara AOB ,
med AO =B0O, Ael, Bew/, . B
samt C mittpt av 4B. Enligt
teor. 35 dr OC bisektris b’ till I'm’.
Bestim Deb’ med OD = OB,
Eel' med OE=0C. Da ér
AODE = AOBC (teor. 28), si att
LODE=,0BC, DE=BC. Vilj
D;med DED, och D, E=DE.En-
ligt teor. 28 r A ABO= A D, DO,
84 att OD;=0A=0D och I’ bi-
sektristill ZDOD,.ViljC,pa 0D,
med OC,=0C och C,B,=4C,
med AC,B,. Enligt teor. 28 ar Fig. 11 n
AOCA=A0CA och L0OAC,=
£LOAC och AC=AC,, saledes enligt IIT3 AB=AB,. Enligt teor. 28
r dd A ABO=A AB,0 och saledes £ B,0A=/,.B0OA. Med n'=05B,. ..
ar da satsen uppfylld.

Enligt teor. 37 dr »’ entydigt bestimd. Som féljdsats erhéalles med
beaktande av teor. 28 och 36:

TrorEM 39: Om C ligger © ett av AB bestdmt halvplan, sd finns ¢ det
andra halvplanet en och blott en pt Cy, for vilken AC,=AC, BC,=BC.

Dzr. 20: I teor. 38 siges n' vara spegelbilden av m' i avseende & I,
i teor. 39 C; spegelbilden av C och A ABC, spegelbilden av AABC i
avs. & rl AB, och vice versa. Spegelbilderna fas ur varandra genom
spegling.

Kongruensteoremet med ett par sidor och tva par vinklar nédgas vi
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spjalka upp i tvd teorem alltefter sidans placering i férhallande till
vinklarna. I det forra fallet har vi behov av féljande skirpta formule-
C ring, i vilken existensen av den ena triangelns

tredje hornpt inte behover forutsittas.
TrorEM 40 (fig. 12): Antag en A ABC sami
pterna A, och B, pa l, sd att A,B;=AB,
vidare strdalarna b’ och k' utgdende fram A,
A B resp. By ¢ samma av | begrinsade halvplan «’,
G sd att LhWAB,=,A, LkBA,=.B. Dd
W AN ¥ skdr B’ och k' varandra i en pt C,, sd att

o AAB,Ci=AABC.

\ ) Bevis: Pa &' avsiittes 4,C,=AC. Enligt

A B teor.28 dr A 4,B,C,= A ABC,sa att £ C, B, 4,

Fig. 12 =/B=/k'B,A,. Enligt teor. 24 och 37 gir
da k&' gm C; och satsen #r bevisad. Foljdsats:

TrorEM 41 (Kongr.-teor. ITTa): Twd trianglar dr kongruenta, om i dem
tvd par vinklar och mellanliggande sidor dr motsvarigt kongruenta.

TEOREM 42 (fig. 13): Om m och n skirs av 1 sd att ett par ensliggande
vinklar dr kongruenta (eller ett par oensliggande
vinklar supplementvinklar) sa dr m||n.

Bevis: Ur def. 10 och teor. 25-26 foljer de
alternativa forutsittningarnas ekvivalens. An-
tites: m och n rakas i C € A’ begrinsat av [.
Enligt teor. 40 skir m och n da dven varandra
i A", vilket strider mot I 3. Fig. 13

TrorEM 43 (Kongr.-teor. ITIb): Om AB=
A,B,, L0AB=£C1A,Byoch LACB= £ A,0,By, sa ir AABC = A A,B,C,.

Bevis: P4 AC ... avsittes AD=A4,C,, varvid AABD=A A,B,C, en-
ligt teor. 28 och saledes £ ADB=/C,;= 2 ACB. Vore D%+, skulle man
ha BD|BC enligt teor. 42, vilket &r orimligt.

Grundlidggande for vinkelmitning dr f6ljande tva satser.

TEOREM 44: Innanfir tvd kongruenta vinklar dras strdlar, som bildar
kongruenta vinklar med det ena paret ben. De bildar dd dven kongruenta
vinklar med det andra paret ben.

Bevis: Ar forstnimnda vinklar raka, foljer satsen ur teor. 26. Vi kan
déarfor betrakta konkava vinklar (fig. 14). Vi har 2 BAC = £ B,A,C, och
LBAD=/ByA;D, med AD..., A\D,... som inre strilar samt férut-
sitter att BC=B,0; dr motsvarande transversaler. Dessa skir enligt
def. 6 och teor. 15 AD ... och A,D,...,t.ex.iDresp. D,. Teor. 27 eller
28 ger AABC=AA,B,C,, varav LABC=/A4,B,C,. Teor. 41 ger
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AABD=AA,B,D,, varav AD=A4,D,, BD=B,D, och enligt teor. 20
OCD=CD,, s& att enligt def. 12 2L DAC =2 D,A,C,.
TrorEM 45 (fig. 14): Om AD ... och A\D, ... dr strilar inom vinklarna
BAC och B,A,Cy, och om L BAD=/ B,A,D, och
LOAD=£0,4,D,, si dr £ BAC= £ B,A,C,. B
Bevis: Om vinklarna BAC och B;A4,0, #r
raka, giller péastdendet. Antag dirfér £ BAC A4

konkav. Man drar BC, som m4 skidra AD... i D
D, samt BD:s motsvarande transversal B,D;.
Man far AABD=AA,B,D,, dirav LADB= c

£ A,D,B, och enligt teor. 26 dessas nabovinklar Fig. 14
kongruenta, varfor enligt teor. 40 B,D, ... skir

A,Cy ... i ndgon pt, t.ex. Oy, sd att AA,0,D,=AACD. Hirav fas
AC=A4,C; och CD=C,D, och enligt III 3 BC = B,(,. Ur motsvarande
transversalers likhet foljer d& att £ BAC =/ B,A4,C,.

Vi skall kort séiga att vi kan awsditta eller forflytta en stricka eller en
vinkel pd ett visst sitt, om det existerar en med den givna kongruent
stricka resp. vinkel, som uppfyller ifrdgavarande krav. Att strickan
eller vinkeln avsittes, betraktas alltsi icke som en konstruktion utan
som en overgang till den nya strickan eller vinkeln. Vi skall nu visa
mojligheten av tva vinkelavsdttningar.

En £ ABC=p (fig. 15) kan »ridas, s att den avsittes med en given
fran B utgaende strile n’ som ben. Utgér »’ ett ben, har redan £ ABC

Fig. 15

det riitta liget. Annars bildar atminstone ena benet, t. ex. BC, en konkav
vinkel med »’. Vi drar bisektrislinjen b till £ CBn’' och speglar BA i den,
varvid f4s BA,; (jmf. teor. 38 och def. 20). Den sokta vinkeln &r nu
A.Bn’, som dr =/, ABC enligt teor. 45 eller 44 beroende pa om bi-
sektrisen #r inre strale till 8 eller ej. Teor. 38 garanterar att vridningen
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kan preciseras si, att vinkeln kommer att tillhora ett givet av n be-
stamt halvplan.

En £ ABC =4 (fig. 16) kan genom »paralleliforskjutning« avsittas i en
pt P pa sitt ena ben BC. Lat M vara mittpten av BP. Man avsitter
DM =AM med AMD. Enligt teor. 25 och 28 &r AABM =ADPM och
man har LZEPF=/DPM=§.

Med hjilp av dessa tva forflyttningsmojligheter kan vi nu bevisa f6l-
jande existenssats.

TEOREM 46: Med en given strdle I som ena ben existerar em och blott
en vinkel kongruent med en given vinkel B, sd att det andra benet gdr @ ett
givet av | bestdmt halvplan.

Bevis: Lat B vara f:s spets och P utgangspten for I’. Man vrider f,
s& att BP blir ett ben, parallellforskjuter den erhillna vinkeln till P
och vrider den s& att I’ blir ett ben och s& att det andra benet loper i
det uppgivna halvplanet. Entydigheten framgéar av teor. 37.

Som foljdsats fas omedelbart med beaktande av teor. 28 och 39:

TrorEM 47 (PAxiom III 5¢): Om A,B,=AB i AABC, sd existerar ©
vartdera av A.B; bestimda halvplanet exakt en pt Cy med AC=A,Cy,
BC=B,0,.

Den for vinklar gillande motsvarigheten till teor. 19 lyder:

TrorEM 48 (fig. 17): Antag L ABC= . A,B,C,0och LABD=/4,B.D,.
Om strdlen BD ... ligger innanfor L ABC, kan icke B,C; ligga innanfor
£ A\B.D,.

Bevis: I fig. ar antitesen framstiilld. Lat AC skira BD i D och 4,D,

A
B
C
4,
B,
G 21 Fig. 18
D,

Fig. 17

vara motsvarande transversal till AD, saledes AD=A,D,. Da dr Z BAD
=/ B,A,D, och enligt teor. 41 A ABC = A A,B,C,, dir C, 4r skirnings-
pt mellan A,D; och B,C,. Hirur fis 4,0,=AC>AD=A,D,>A4,0,,
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vilket #r oméjligh. — Hér har antagits att vinklarna &r konkava. Om
£ ABC och siledes £ A,B,C, dr rak, ér satsen uppenbar.

Som foljdsats fas (jamfor antitesfiguren 18):

TEOREM 49: En vinkel har blott en bisekiris.

Att en bisektris verkligen existerar, har 4dagalagts for konkava vinklar
(teor. 34) och skall nu visas dven for raka:

TEOREM 50: Genom en given pt (A) gdr alltid en normal mot en given
rl (1).

Bevis: a) Antag (fig. 19) 4 €. Vilj B¢l och lat AC ... vara spegel-
bilden av AB... i avseende & I, samt tag D med CAD. Lat AE vara

E| D
B A
! l
F )4 G B c\ D E
C 4,
Fig. 20
Fig. 19

bisektris till 2~ BAD. Tag FAG p4 | med AF innanfér £ BAC. D& ar
LBAF=/FAC, LFAC= /L DAG (teor. 25), LFAE=/.GAL (tedr. 45)
sd att EA 1L l. (Om AB...=A4D..., framgar pastdendet ur teor. 25
allena.)

b) Antag (fig. 20) 4 ¢1. Vilj B, C €l samt den av teor. 39 garante-
rade spegelpten A,, varvid A4, skidr [ i D. Man far forst A ABC=
A A;BC och sedan AADB=AA,DB, s att LADB=/.A,DB=/.ADE,
AD 11

TreorEM 51: Alla rita vinklar dr kongruenta.

Bevis (fig. 19): Antag FAG och EA | FG, sa att LFAE=/EAG.
Avsitt en annan riit vinkel i 4 invid AG sdsom £ DAG. Om icke AD ...
sammanfaller med AE ..., 4r t.ex. AD... inre strile i £ HAG. Da en
rit vinkel 4r kongruent med sin nabovinkel och vinklar med kongruenta
nabovinklar #r kongruenta, fas £ FAD=/GAD. Teor. 48 ger en mot-
sigelse.

Ur teor. 42 og 49 f6ljer nu de foljande tre satserna:

TEOREM 52: Genom en pt gar endast en normal till en given rl.

TroOREM 53: Alla normaler till en given rl dr parallella.

NMT. Hefte 4, 1961. — 11
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TEOREM 54: I en triangel dr hégst en vinkel rdt.

TroreM 55 (Kongr.-teor. IV): Om AB=A,B,, BC=B,C,0ch L BAC =
£ ByA,0,, sd dr antingen A ABC=AA,B,C, eller LACB och £ A4,0.B,
sneda (=1icke rita) supplementvinklar.

Bevis: Om A0 = 4,0, ar trianglarna kongruenta. Om icke AC=A4,C,,
tag Oy pad A4,0,... med 4,C,=AC, varvid AC,B,C, ir likbent och
enligt teor. 29 £ B,C,Cy= £ B,C,C, = rit vinkel enligt teor. 54. Men till-
lika dr £ ACB= £ A,CyB,=supplementvinkel till £ A4,0,B,.

DEF. 21: Om m’ &r i det inre av I'n’, siiges ZIl'm’ vara mindre &n
LUn" (I'm’ <U'n',I'n’>1'm’). Om tvé vinklar ej har gemensamt ben och
ligger i samma halvplan i avseende & det, avsittes de i siédant lige, och
den vinkel &r mindre, vars ben efter férflyttningen rakar i den andras
inre. — Av teor. 48 foljer att def. 21 ger entydigt besked om vinklars
likhet (=kongruens) eller olikhet.

DEr. 22 infor spetsig och trubbig vinkel, spetsvinklig, trubbvinklig och
ratvinklig triangel, dennas katet och hypotenusa, samt hijdlinjen i en
triangel.

DEr. 23 infor mdtning av strickor och vinklar. Axiom III 3 och teor.
19-20 garanterar méattets additivitet for strickor, medan additiviteten
hos vinklar grundar sig pa teor. 44-45 och 48. Sedan en enhetsstricka
och en enhetsvinkel valts godtyckligt (eller den raka vinkeln tilldelats
méttet 7 eller 180°), erhalles upprepad halvering av den genom att be-
stdmma strickans mittpt (def. 17) resp. vinkelns bisektris (teor. 34 och
50). Vi kan pa det sittet »konstruera« strickor av lingden eller métetalet
k-2-7, dér k och n &r godtyckliga positiva hela tal, och detsamma giller
(konkava och raka) vinklar, om den raka vinkeln #r enhet och k-2-7<1.
Direfter kan varje stricka (vinkel) till sin storlek jimféras med de ovan-
nimnda strickorna (vinklarna) enligt def. 16 (21). Men den moéjligheten
kvarstar, att en given striicka #r stérre dn den k-faldiga enhetsstriickan
for varje helt k eller mindre &n 2-" f6ér varje n. Genom féljande sats
bortfaller dock denna mojlighet.

TrorEM 56 (Arkhimedes’ axiom): Om strickan a<b, finns det ett
naturligt tal k, sd att ka >b.

Bevis: [3, s. 154-155], [8, s. 307-308], [11, s. 36-37], [14, s. 62-64].

Hérefter dr varje stricka antingen kongruent med k:2-" ginger en-
heten och erhaller detta mitetal, eller kan f6r varje n inneslutas i stor-
leksfoljd mellan tva strickor med mitetalsdifferensen 2-" och erhaller
ddrigenom ett métetal i form av ett oavslutat bindrt brak. En mot-
svarande utsaga kan bevisas for konkava vinklar, och konvexa vinklar
kan f& métetalet av tva raka minus tillhérande konkava vinkel.
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Det bereder nu ingen svarighet att pad basen av hittillsvarande satser
bevisa teoremen 57-67.

TEOREM 57: Nabovinkeln &l £ A4 ¢ AABC dr > LB och > £C.

TrorREM 58: Summan av tvd vinklar i en triangel dr < en rak.

TEOREM 59: En likbent triangels basvinklar dr spetsiga.

TreOREM 60: I en triangel stdr mot en storre sida en storre vinkel och
vice versa, samt mot lika vinklar lika sidor. I en rditvinklig triangel dr
vardera kateten < hypotenusan.

TrOREM 61: I en triangel dr summan av (skillnaden mellan) tva sidor
> (<) den tredje. Fir en bruten linje gdende fran A till B dr AB < sum-
man av sidorna.

TrEOREM 62: Om AB=A,B,, B(=B,C, men AC>A,C,, sa dr LB>
LB, och omwvint.

TroREM 63: Nabovinklars bisektriser stdr vinkelrdtt mot varandra.

DEF. 24 infor geometrisk ort.

TEOREM 64 om bisektrislinjen som geometrisk ort.

TEOREM 65 om medelnormalen som geometrisk ort.

TEOREM 66: Héjdlinjen frdan spetsen av en trubbig wvinkel och wvarje
hojdlinje © en spetsvinklig triangel skdr motstdende sida © en inre pt.

TrEOREM 67: I en triangel skir alla tre bisekiriser varandra i en pt;
detsamma gdiller sidornas medelnormaler, ifall tvd av dem over huvud skar
varandra.

Den sistndmnda restriktionen &r visentlig i hyperbolisk geometri.

TrEoREM 68: Vinkelsumman @ en triangel dr < en rak vinkel.

Bevis enligt Legendre [1, s. 55-56], [2, s. 49-51], [9, s. 21-22], [14,
8. 64-65]. For alternativ bevisforing se [7, sats 33-35 s. 39-42].

TrorEM 69 (fig. 21): Om A ¢ a och B ¢ b, kan icke genom A ga blott en
parallell till a samtidigt som genom B gdar dtminstone tva paralleller till b.
— Satsen innebér siledes, att om det euklidiska parallellaxiomet I 4a
giller, gm varje pt utanfér en godtycklig rl blott en parallell till denna
existerar, samt att I 4b ater leder till att gm varje pt utanfor en godtycklig
rl gar minst tva paralleller till den.

Bevis. (Jmf. dven [3, s. 162-165], [11, s. 58-59], dir bevisen bygger pa
tidigare undersékningar Gver paral-
lellvinklar och grinsparallellers Ve
transitivitet.) Drag 44,1 a och Ty T
BB, L boch antag CA 1 AA,, DB E
BB,, varvid enligt teor. 53 AC|a,
BDI|b. Enligt antitesen existerar A B

dessutom EB|b med ZEBBy< A a B, b
90°, medan endast AC|ja gm 4. Fig. 21

11*



164 GUNNAR AF HALLSTROM

1:0) Antag AA,=BB,. Avsitt LFAA,= £ EBB,. Da maste AF skira

a, och enligt teor. 40 skiir &ven BE b, vilket strider mot forutsittningen.

P4 basen av 1:0 kan vi i fortsittningen forutsitta, att b=a, By=4,
samt A och B p& samma strale 1 a fran 4,.

2:0) Antag (fig. 22) B4,<A4A4,

A DA ¢ och 18t AF ha samma betydelse som

T e 7 i 1:0. Enligh teor. 42 ar AF|BE.

D4 saven a| BE och ABA,, ligger AF

Bl p och a i olika av BE bestdmda halv-

= g Dblan och kan ej rakas. Gm 4 gar

AN dé tva paralleller till @, vilket strider
a mot forutsittningen.

Fig. 22 3:0) Antag (fig. 23) Bd,>AA,.

Av fall 1:0-2:0 framgar: Om anti-
tesen #r riktig, si maste det finnas en stricka d, sidan att for 4A4,<d
blott en, men fér AA4,>d minst tva paralleller gar till @ gm A. Vilj d&
AA,=3d, BA,=%d. BE, som #r |la, skir d& AC t.ex. i E, eftersom
BA=1d<d. Vilj @ med BEG och drag rl AG. Den skir rl AC och BE,

B 2 D
A B E c
A nm
G ~ !
AN
v a
Fig. 23

bada ||la, i 4 och G, samt innehaller stralarna I’ och I"” fran A resp. G
utan gemensamma pter med strickan AG. Nu ar 4, E, G i samma av o
begriinsade halvplan aB, som d& innehéller alla pter av strickan AG.
Betecknas de halvplan med grinserna AE och BG som innehéller ¢ med
o' resp. p,safasl’ e o', 1" € B'. Diirfor kan ingen pt av rl AG tillhora a,
d.v.s. AQ|a, vilket strider mot att AC skulle vara enda parallell till
agmA4.

7. Avslutning. De delar av plangeometrin som i det féregiende be-
handlats har for det forsta valts sa, att de ar relevanta bade i euklidisk
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och hyperbolisk geometri. En annan synpunkt har varit den, att icke
sadana nya objekt dragits in i blickpunkten, vilka, sisom t. ex. cirkel-
linjen, definieras sdsom en oéndlig punktméngd. Aven inom en saddan
ram hade naturligtvis stoffurval och framstillningssétt kunnat varieras
i manga avseenden. Min avsikt har varit att ge en i ndgon méin avrundad
framstéllning av begynnelseskedet i arbetet pa den geometriska liro-
byggnaden, varefter fortsittningen vil sedan l6per efter i stort sett
invanda, traditionella ehuru skiftande monster.

Det ar klart att fasthallandet vid absolut geometri &r dgnat att nagot
tynga och forlinga framstéllningen. Man kunde fran borjan sikta direkt
pé endast euklidisk geometri och redan i ett tidigare stadium begagna
parallellaxiomet. Om detta ges i den knappa formuleringen I4a — och
med uppritthillande av principen att undvika »overlapping« méste vi
halla pa den — s blir det #ndd noédvindigt att bevisa vart teorem 69.
Torst direfter kan vi nimligen stoda oss pa den traditionella formule-
ringen »Till varje rl gar hogst en parallell gm en godtycklig pt utanfor
den¢. Och med den hir givna bevisanordningen kan denna sats tidigast
inforas efter teorem 53. Visentlig forenkling fas da blott for teorem 68
om en triangels vinkelsumma. Det &r sannolikt att parallellteoremet med
forandrat bevis och nagot modifierad ordningsfsljd for andra satser skulle
kunna inféras #nnu nagot tidigare och dérfér kunde utnyttjas till for-
enkling av det efterfoljande. Men foérf. har pa kiinn, att denna f6renkling
skulle kompenseras av att parallellteoremets bevis bleve avsevirt tyngre.

Framstillningen har sjilvfallet icke avsett att tjina som grund for
undervisning i ett liroverk. Déir méste frejdig axiomoverlapping och re-
ferens till dskadning formedla en inlevelse i den geometriska vérlden,
som #r ohimmad av for eleven oférstieliga spetsfundigheter. Men for
studentens skolning i matematisk deduktion av en struktur ur minimala
férutsittningar tror jag att en framstéllning i likhet med denna kan vara
till nytta. Den har ocksi smaningom vuxit fram under och efter tre fore-
lisningskurser som forf. hallit 6ver d&mnet.

LITTERATUR

[1] R. Bovora: Non-euclidean geometry. Reprint; Dover 1955.

[2] R. Bonora—H. LieBMANN: Die nichteuklidische Geometrie. Teubner 1919.

[3] K.Borsuk-W. SzMIiELEW : Foundations of geometry. North-Holland publ. Comp. 1960.

[4] H. CoxeTER: Non-euclidean geometry. The Univ. of Toronto Press 1957.

[6] H. ForpER: The foundations of Euclidean geometry. Reprint; Dover 1958.

[6] M. GEIGER: Systematische Awmiomatik der Euklidischen Geometrie. Dr. Benno Filser
Verlag, Augsburg, 1924.

[7] D. HiLBERT: Grundlagen der Geometrie. 8. Aufl. Teubner 1956.



166 GUNNAR AF HALLSTROM

[8] B. KERERIARTO : Les fondements de la géométrie, I. Akadémiai Kiads, Budapest, 1955.
[9]1 H. MescarowsK1: Nichteuklidische Geometrie. Vieweg & Sohn 1954.
[10] R. NEVANLINNA: Huomautuksia geometrian jirjestelmisti. Matem. Aineiden Aika-
kauskirja, 1939, s. 157-187.
[11] A. NorDEN: Elementare Einfikrung in die Lobatschewskische Geometrie. VEB Deut-
scher Verlag d. Wissenschaften, Berlin, 1958.
[12] E. NystrOM: Korkeamman geometrian alkeet sovellutuksineen. Otava, Helsinki, 1948.
[13] J. O. StuBBAN: Aksiomatisk grunnlag Jor den euklidiske geometri. NMT 4 (1956),
s. 76-84.
[14] G. VErRIEST: Introduction & la géométrie non euclidienne par la méthode élémentaire.
Gauthier—Villars 1951.




POINTSGIVNING I SPIL MED POISSONFORDELING

FREDERIK GLAVEN

5. Som supplement til betragtningerne i forrige hefte side 109-116 og
som uddybning af den afsluttende bemeerkning skal her kort behandles
spil, hvori de to konkurrerende hold A og B hver for sig har konstant
sandsynlighed for at score et mél i hvert lille tidsrum d¢. Malantallene

for de to hold bliver saledes poissonfordelt.

Betegnes middelveerdierne af de antal mél, som de to hold scorer, med
henholdsvis @ og b, bliver sandsynligheden for kampresultatet ¢, n—1

Pi,n =

atpn—i

et il (n—1i)!"

For den ret typiske situation med a=3 og b=1} bliver fordellngen af
100 spil som vist i tabel 5.

S OB WO

7

Tabel 5. Fordelingen af 100 spil for a=3 og b=1{.

= DD ™ OU OV WO

U - = N N

1

= N W W DN

ol d et pd

For kampresultatet ¢, n —¢ tildeles hold A z; , points og hold B z,_; ,

points, hvor z,,_; , =

-
Med de side 110 benyttede betegnelser fas

i, e

[167]



168 FREDERIK GLAVEN

—o=[5]

Nn=00 i=n n
m = Pi,n%in = 2 (pi,n_pn—i,n)xi,n s
n=0 =0 n=0 ¢=0
. g]
n=co i=n n=ooi_[2
— P 2 __ . 2
g = pz’,nxi n (pi,n+pn—i,n)xi,n .
n=0 =0 n=0 =0

Mindstevardien af g/u? bestemmes ved partiel differentiation m.h.t.
z; , for alle forekommende ¢,7. Den m4 indtreffe for

/"’2 : 2(pi,n + pn—i,n)xi,n =g 2”(pi,n '-pn-—i,n) P
d.v.s. for

g pi,n—pn—-z‘,n g athr-t—gn—ipt

B B PintPpipn Y athn—t 4 gn-ipt

i,n

(I_bq
Settes nu g/u=1 og 2i—n=gq, fas xi,n=aq+bq, der kun afhenger af
a
a
a:b og q og er identisk med P,(¢) side 111, dersom man setter ﬁ=t.
a

6. En sammenligning mellem skala G og skala N (se side 115) er fore-
taget i hosstadende tabel 6.

a p a Iz a M
— a b - — a b - — a b -
a-+b o a-+b o a-+b c
G 0,692 G 1,07 G 0,330

1 i ’ s
080 1% Nomos | %70 3 1 yae |57 43 N0
G 0,384 G 0,673 G 2,55

1 ’ ’ ’
067 1} Nous| O 3 W |08 5 1 F5%
G 0,285 G 0,399 G 1,24
060 13 1 g0 s o2z LT om 5 o2 Ve
G 1,04 G 1,71 G 3,71
080 2} gie |80 ¢ 1 roloss 6 1 T
G 0,542 G 0,792 G 5,36
067 2 1 g 067 4 2 goctloss 11 5%

Tabel 6. Verdier af u/o for forskellige veardier af o og b.

Af tabel 6 ses ligesom af den tidligere tabel 4, at skala N er i stand
til at udpege det steerkeste hold — og igvrigt rangere de konkurrerende
hold retferdigt — med veesentlig storre sikkerhed end skala G.




SOME BINOMIAL SUMS

BIRGER JANSSON

Working with a problem concerning waiting lines, the following bi-
nomial sum was found:
n
21 (Z) vv-—l(n__v)n—v = nr s
v=1
in which we by definition assume that (n—v)"~*=1 when v=mn. The

sum was proved to be a member of a more general family of sums ac-
cording to

Sum 1. For all  and y (except +0, y=0) we have

vé:: (:) (y+o)He—v)*" = @ —:/y)n.

When z=%=0 the sum equals 0.

This formula may be proved in many ways, for instance by induction.
Let us assume the sum to be valid for n=N. Integration with respect
to x gives

N v— —n\N-v+
= N—-v+l1 T (N+1ly N

where K, is a constant of integration depending on N. In order to
determine this constant, we put =N +1 in (1) and get

NN (N +14y)N+ (N+14+y)N
K., = v-1(N 11— N—v _ = —
N ,é;(v) (y+o)" N +1-0) (N+1)y N+1

by Sum 1, which is assumed to be valid for n=N. Inserting this value
of K, into (1), we get after some simplification

> (N+ 1) (y+op-ta—opy-on = T
v=0 v y

[169]
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If Sum 1 is valid for n=1N, it is therefore also valid for n=N +1. It is
valid for n=1 and is thus proved to be valid for all values of n.

By giving special values to z and y, we get a sequence of sums. If
we subtract 2"/y from both members in Sum 1 (in order to make the
remaining formula valid also for y=0) and then put y=0, we get

n

P (Z)vv"l(x—v)n‘” = nan1,

v=1

which further with =0, 1, —1, n, —n respectively gives

(:) W (l—v)n? = g

(=1)n= (7;) v (140)"? = (—1)n-1p

S
]

s

It
—

v

3

(Z’)vv—l(n_v)n—v = pn

<
I
-

7=

(_ l)n—v (:>v”—1(n+v)”—” —_ (___ l)n—lnn .
v=1
Let us now start with the sum
" In
2 (M) oo,
v=0

and write it as a sum of two sums:

yg (Z) (y +o)Yx—v)" + nZ ( )(y+1+v)v(x_1_v)n—1—v_

But according to Sum 1:

y2( 2 @ or-e =0y = @iy,

and besides the sum

n—1

2 (”;1) (y+ 1+ 0) (@ — 1 —p)-i-v

v=0

may be written as two sums, the first of which can be treated by Sum 1.
Repetitive use gives




SOME BINOMIAL SUMS 171

Sum 2. For all  and y we have

n

v=0 +
nml

+nn—1)...3-2@+y)+nn-1)...3:2:1 = 27—;(x+y)’.

r=0
For z=y=0 we get the well known formula

3T (=1 (’;)vn =nl.

v=1

In an analogous way, we may from Sum 1 derive many different
binomial sums. Here will finally be given one further, namely

n

P (Z) 2-1(g —p)n-r-1 =

v=1

nx"Ax—n+1)

r—mn



A DEDUCTION OF THE FRENET FORMULAS
IN GENERAL COORDINATES

KARE ERIKSEN

Consider a cartesian coordinate system (e, e,, ..., e,) with the metric
tensor d;; (Kroenecker deltas). The radius vector of a point z in space is
x = a'le;,
where the summation convention applies. A curvilinear system is given

by the n systems of curves obtained from
x't = 2", 22, ..., 2,
when 21, 22, ..., 2™ in turn are allowed to vary. The jacobian determinant

is presumed not to be identically zero. Then the inverse transformation

ot = xi(z', 2’2, ... 2"

is uniquely defined. The vectors
ox  ox't
Y= T ol

are vectors on the tangents of the curves and define a variable oblique

ox
system (@, @,, ..., ,). Multiplying by 0—9616, we get
x

oxd
(1) €, = ij .

The covariant components of the metric tensor of the curvilinear

system are

Qie = X;°

%) ’I,m

g
and the contravariant components are given by
{} = {ay},  dflag, = of.
A vector v =v"le, is expressible by the system (2, ®,, . . ., x,) according
to (1):
[172]
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. . . 0%l
(2) v = vie; = vix;, v =" pRoE
The covariant components in (®;, ®,, . .., ®,) are
v; = a0 = (g )0f = (Vwy) -, = vy,
and for the contravariant components we have
(3) vk = atky; .
Let 2, be the covariant components of the second derivatives
0%x

XL = - - .
Y Qxtoxd

Evidently the quantities 4;;, are symmetric in the two indices preceding
the vertical dot, and we have from (1):

A = xea, = o(a; ) . _ Oagy
ijle = Ly T = — i Ly = o Hli

By suitable permutation of the indices, the following three equations
result:
dajy, 0ty 0015
Tgp = =R R = et A = e A
Adding the first two and subtracting the third, we have after dividing
by two: .

1/0a;, Oa; 00y
T "(—JfJF“.z{c‘ y
2\ ox oxd  ox

) = ..

which are the Christoffel symbols of the first kind [1, p. 98], and the
Christoffel symbols of the second kind by (3) are the contravariant com-
ponents of the same vectors. Thus

(4) x; = {h} x;, .

Finally, the convenience of using (4) in deriving some results in-
cluding derivatives of higher order in differential geometry shall be
demonstrated through an example. Suppose n=3 and a curve being
given by o= @is), @ = ais) .
The positively oriented triple of unit vectors, ¢, p, and b on the tangent,
principle normal and binormal respectively are

— e, — Al _ PRlhie. — Bi e, —
t = «&'e; = x'x,, p = (e, = flay, b =yle =y, .
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Differentiating with respect to s and using the Frenet formulas in
cartesian coordinates, we have [1, p. 25]:

e do’ . dat
Hﬂ ek = %mz+0¢ w,,:]- '_—‘ds
g da
—_— 'k 'k = — . ’I«w oy —
(”‘x + Ty )elc ds Z; + 16 (%] ds
dyt . dad
'k = — X .., — .
-"'ﬂ ek ds Ly + Y 1j ds

Inferring on the left hand side from (1) and on the right hand side from

(4) and commuting the indices ¢ and % in the last term, we obtain this
result after use of (2):

dot (1 da’

7 . o= —_— h___ .

s (ds *lmil ds)w’

, ) gt 3 dat
tatrme = (P ).,

ds |k ds

) dyt (1 da?
i, = (-1 P2 e,
b (ds+ hj v ds)gcz

When the corresponding coordinates on the left and right hand side
are equivalized, these are the Frenet formulas as presented by Eisen-
hart [1, p. 106].
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OM MATEMATIK OG DEMOKRATI

DAVID FOG

Nedenstaende er nogle overvejelser i anledning af en matematisk op-
gave, der er hentet direkte fra det praktiske liv. Problemet er felgende:

Tre rygere A, B og C sidder ved et bord og benytter samme aske-
beger P. Hvor pa bordet bgr P placeres?

Som ved alle opgaver, der stammer fra praksis, bestar det forste skridt
i at omskrive problemet, s det far en preecis matematisk formulering;
det er dette, man i mere hojtideligt matematisk sprog kalder at velge
en matematisk model. Ved fysiske eller forsggs-matematiske problemer
finder man i reglen frem til modellen ved visse idealiseringer, gaende ud
Pa, at man ser bort fra mindre bivirkninger eller antager absolut gyldig-
hed af love, som i praksis kun geelder med tilnsermelse. I det foreliggende
tilfeelde fremskaffes modellen blot ved, at man giver en exakt matematisk
fortolkning af det etiske krav, som ligger i det lille ord »bgar«. .

Her moder vi nu forbindelsen mellem matematisk og demokratisk
tankegang. For en renlivet demokrat vil den forste tanke sikkert vere,
at askebsegeret bor std i samme afstand fra de tre personer, siledes at
de ved brugen skal rekke lige langt. Selv om dette kan lyde nok sa
korrekt, realiserer det imidlertid kun demokrati i karikatur, jvi. fig. 1,
hvor de tre personer sidder tet ved
siden af hinanden ved et stort cirkel-
rundt bord og alle mé reekke helt ind
til midten. Det rette demokrati kende-
tegnes ikke ved en ensidig gennem-
forelse af lighedsprincippet; dette
sidste mé pa passende made suppleres
med praktisk sans og sund fornuft.

Den neeste mulighed, som naturligt
melder sig, er da maske, at summen
af afstandene 4P, BP og CP skal
vere mindst mulig, altsd at de tre Fig. 1

[175]
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personer tilsammen skal anstrenge sig s8 lidt som muligt for at komme
af med asken. Denne formulering, der vel nok mé betegnes som et frem-
skridt i forhold til den ferste, udtrykker faktisk den moderne velferds-
stats ledende princip overfor begrebet arbejde; men den er dog, som vi
skal se, ikke den ideelle. Lad os et gjeblik antage, at alle vinkler i trekant
ABC er mindre end 120°. Det er da velkendt, at det punkt P, for hvil-
ket summen AP+ BP+CP er mindst
mulig, ligger séledes, at synsvinklerne
fra P til alle tre sider i trekanten er
120°. Betragter vi derfor en situation
som pa fig. 2, hvor 4 og B sidder ved
AnP siden af hinanden ved det fernzvnte
By runde bord, medens C sidder lige over-
for, kommer P til at ligge i umiddelbar
nerhed af A og B, men meget langt
fra C. Dette ville virke som en temme-
lig uelskveardig behandling af C' og er
Fig. 2 heller ikke udtryk for segte demokrati,
idet et sidant ikke bgr praktiseres pd

den made, at de mange regerer uden at tage rimeligt hensyn til de fa.

I det ideelle demokrati ma det naturlige veere, at nok treeffer flertallet
afgorelserne, men under mest mulig hensyntagen til mindretallet. Ud fra
denne tankegang fores vi til den rette udlegning af ordet »ber« i vor
opgave: Askebzegeret skal placeres saledes, at den lengste »raekning« bli-
ver s& kort som muligt. Opgavens exakte matematiske formulering bli-
ver derfor:

I en plan er givet punkterne 4, B og C. Bestem det punkt P i planen,
for hvilket den storste af afstandene AP, BP og CP er sa lille som muligt.

Saledes er opgaven stillet som prisopgave for danske gymnasieelever
(NMT 8 (1960), side 197, opg. 5).

Losningen er ganske elementeer, men ikke triviel. Det ville veere en
skam at give den her og dermed fratage eventuelle lesere forngjelsen
af at finde den selv.




BOKMELDINGER

Erix M. ALrsEN — Errning R. HansiN: Fo 4. Forkurs i matematikk
ved Universitetet i Oslo. Universitetsforlaget, Oslo, Bergen, 1960. 3 +
123 s. N. kr. 14.00. (Stensilert.)

(Innholdsfortegnelse i NMT, dette hefte, s. 181.)

For noen ar siden gikk Det matematisk-naturvitenskapelige fakultet
ved Universitetet i Oslo over til en helt ny studieordning, som bl. a.
medferte en oppdeling av det tidligere bifagsstoff i emner av vekslende
omfang. I en serstilling blant disse emner star de tre forkursene i mate-
matikk, som skal leses forste hast, parallelt med den forberedende prove
i filosofi. »Skal« er en bevisst formulering, p. g. a. forkursenes delvis obli-
gatoriske karakter. Alle studenter ma gjennom det »praktisk« betonte
analysekurset Fo 1-2. For en rekke emner i andre fag er videre Fo 4
obligatorisk, mens alle de som skal gé videre i matematikk, ogsd mé ta
det mer teoretisk pregede analysekurs Fo 3.

Undervisningen i forkursene, serlig i Fo 1-2, drives temmelig skole-
messig, og den voldsomme tilstromning av studenter har gjort det til
en kjempeoppgave & bringe ordningen vel i havn. Et viktig bidrag til
gjennomfgringen var utarbeidelsen av nytt undervisningsmateriell, slik
som det hefte i lineer algebra som her skal anmeldes. Det har under-
titelen »Oppgave- og repetisjonshefte«, men fremstillingen er selvforsynt
nar det gjelder vektoralgebra og komplekse tall. I avsnittene om deter-
minanter og linexre ligningssystemer henvises det derimot endel til
Tambs Lyches lerebok i matematisk analyse, som ellers brukes ved
undervisningen i Oslo.

Selve stoffet er »klassisk« i den grad at meget av det allerede er eller
antakelig vil bli gymnasiepensum i flere nordiske land. Forfatterne gjor
heller ikke mange forsgk pa & forlate den slagne landevei, hvilket ikke er
noen innvending mot heftet. Hovedsaken er at fremstillingen er klar,
konsis og stringent, med en rekke instruktive eksempler og oppgaver.
Etter min mening er ogsi stoffvalget meget fornuftig; det var igrunnen
bare en vesentlig ting jeg savnet: Linewr avhengighet og uavhengighet
mellom tallsett (som ikke kalles vektorer i mer enn tre dimensjoner)
innfgres forst i forbindelse med determinanter, og gis ikke »tilbakevir-
kende kraft« til den vanlige vektorregning. Den geometriske betydning
i to og tre dimensjoner, spesielt at vektor- og volumproduktet forsvinner

— 12
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hvis og bare hvis de inngaende faktorer er linesert avhengige, kommer
derfor ikke tydelig frem.

Rent typografisk legger man jo ikke s strenge mal pa et stensilert
hefte som pa en trykt bok. Stort sett er imidlertid typografien bra, og
trykkfeilene fa. Den mest graverende stdr i grunnen pad omslaget:
»Repitisjonshefte«. Manglende parenteser i uttrykk som [abc; +¢,] kan
virke litt forvirrende. Figurene er ikke nummerert til tross for at det
forekommer opptil tre av dem pr. side. Den eneste direkte feil jeg har
funnet, forekommer s. K;: Imaginerdelen til z=x+y: defineres som
koeffisienten y. Likevel gis imaginsrdelen pa neste side som %(z—2).

Men innvendingene er fa, og forfatterne har som for sagt gjort et
meget godt arbeid. Og en ting kan de i hvert fall ikke lastes for: Allerede
fra starten av den nye studieordning ble omfanget av forkurset Fo 4
fastsatt for heoyt i forhold til poengverdien av emnet, som bare er gitt
vekttall 1. (Normeringen av emnene forutsetter at studentene gjennom-
snittlig skal ta eksamen i 20 poeng pr. ar.)

La meg til slutt benytte anledningen til noen prinsipielle betraktninger
om den linesere algebras stilling i den grunnleggende universitetsunder-
visning. I de aller fleste »emnegrupper« (20 poeng) i matematikk i Oslo
er Fo 4 alene om & representere den linesre algebra. Personlig mener jeg
at ett (riktignok stritt) poeng er for lite, og at serlig savnet av matrise-
regningen er fglbart. Ved Universitetet i Bergen har vi tatt konsekven-
sen av dette; idag er 3 poeng lineser algebra obligatorisk i enhver emne-
gruppe i matematikk hos oss, og dette vil i ner fremtid bli utvidet til
4 poeng. Det obligatoriske pensum i algebra vil da omfatte hele bind I
av Andersen—-Bohr-Petersens lerebok i matematisk analyse, med et til-
legg om vektoralgebra svarende til de fgrste 2 av Fo 4.

Den vekt vi i Bergen legger pa lineer algebra, skyldes ikke bare rent
»matnyttige« hensyn. Fra et pedagogisk synspunkt har nemlig den linezre
algebra den store fordel at den forholdsvis lett kan gis en helt stringent
oppbygning, uten at stringensen gar over hodet pa studentene. I matema-
tisk analyse er dette vanskeligere, noe som flere 4rs undervisnings- og
eksamenserfaring til fulle har bekreftet. Seerlig tydelig kommer forholdet
frem under muntlig eksamen, som er avskaffet i matematikk i Oslo,
men som vi i Bergen enna har maktet & opprettholde takket vaere vare
mindre studentkull. Ernst S. Selmer

Archive for history of exact sciences. Editor C. Truesdell. Vol. 1, no. 1,
1961. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960. 106 S. DM
19.60.

(Innholdsfortegnelse i NMT, denne &rgang, s. 129.)
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Det forste nummer av dette nye tidsskriftet inneholder to meget inter-
essante artikler. Den forste er av tidsskriftets redakter C.Truesdell:
A program toward rediscovering the rational mechanics of the age of
reason. Truesdell begynner med & sitere Popes gravskrift over Newton:

Nature and nature’s laws lay hid in night

God said, let Newton be, and all was light.
Sa siterer han en uttalelse fra attenhundre-tallet av Mach: »Siden New-
tons tid har man ikke funnet noe vesentlig nytt prinsipp. Alt som har
veert utrettet i mekanikk etter hans tid har veert en deduktiv, formell,
og matematisk utvikling av mekanikken pé grunnlag av Newtons lover.«

Det er dette syn Truesdell polemiserer imot. »Principia is a work of
science, not a bible. It should be studied and weighed—admired, indeed,
but not sworn upon.« Han fremhever og analyserer den viktige innsats
som ble gjort av menn som Bernoulliene, d’Alembert, Euler og fremfor
alt av Lagrange. Denne sistes »Méchanique Analitique« som Hamilton
betegnet som »a kind of scientific poem« er, sier Truesdell, »little less
celebrated« enn Newtons Principia, som enhver taler om men ingen
leser og som ofte er gjenstand for en »honey-sauced eulogy«. Meget mor-
somme er Truesdells sitater fra Swift: Gullivers reiser. »While hating
mathematics and music, Swift expressed grudging admiration for the
achievements of the inhabitants of Laputa. ... Laputa in real life was
the mathematical sections of the academies and learned societies of
Europe« sier Truesdell.

I den andre artikkelen, »Anfinge des euklidischen Axiomensystems,
tar Arpad Szab6 fra Budapest opp forskjellige viktige spersmal, fremfor
alt dette: Hvordan oppsto den systematiske deduktive greske matema-
tikk ? Man vet jo nd at grekerne hadde lert meget mer av babylonere
og egyptere enn man for hadde forutsatt. Men ikke noe sted finner man
tegn til at babylonere eller egyptere har gjort noe forsgk pd & avlede
alle matematiske setninger strengt logisk fra noen forste prinsipper.

Man har gitt forskjellige svar pa dette spersmalet. Forfatteren nevner
spesielt A. N. Kolmogorovs fremstilling i den store russiske ensyklope-
dien. Jeg gjengir her i oversettelse et par linjer av artikkelen »Matema-
tikke, B. 26, 1954, s. 467: »Det reiste seg krav om eksakte matematiske
beviser. ... Denne forandring i den matematiske vitenskaps karakter
skyldtes et mer utviklet sosialpolitisk og kulturelt liv i de greske statene,
hvilket forte til at dialektikken, diskusjonskunsten, ble hgyt utviklet og
man ble vant til 4 forsvare sine pastander i kamp med motstanderen.«
Andre forklaringer har ogsa vert hevdet. Forfatteren selv fremsetter den
teori at den eldste greske deduktive matematikk har sin opprinnelse i
den eleatiske filosofi fra det femte &rhundre f. Kr. Det indirekte bevis
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(reductio in absurdum) som var alminnelig allerede i det 5. &rhundre,
mener han stammer fra eleaternes tankeverden. Hans standpunkt i
denne artikkelen er hentet fra terminologiens historie. Hans konklusjon
blir at den tidlige greske matematikk kan regnes som et spesialomride

av dialektikken.
Viggo Brun

F. und R. NEVANLINNA: Absolute Analysis. (Grundlehren der mathe-
matischen Wissenschaften 102.) Springer-Verlag, Berlin, Gottingen,
Heidelberg, 1959. 8+ 259 S., 4 Fig. DM 36.00, Ganzl. DM 39.00.

(Innholdsfortegnelse i NMT 8 (1960), s. 44-45.)

Denne boken har til hensikt & framstille den reelle analysen i flerdimen-
sjonale rom pa en mest mulig elegant og klar mate. Ordet »absolute«
sikter til det & unngéd bruk av koordinater.

Det forste kapitel behandler linezr algebra, men pé en noksé knapp
mate; det forutsettes visse forkunnskaper i dette emne. Multilinesre
funksjoner er omtalt, og disse brukes i det annet kapitel om differen-
siasjon, hvor den p* deriverte av en avbildning er definert som en p-linezr
funksjon. Dette kapitel inneholder Taylors sats og satsen om implisitte
funksjoner. Her og senere unngér forfatterne topologiske begreper nar
de innforer en vilkarlig metrikk.

I det tredje kapitel er integralet definert ved hjelp av simplisiale de-
komposisjoner. Stokes’ sats er bevist i en sterk form som ikke forutsetter
deriverbarhet av integranden.

Det fjerde kapitel om differensiallikninger er serlig skarpsindig gjort.
Istedenfor den vanlige Lipschitzbetingelsen bruker forfatterne den ned-
vendige og tilstrekkelige betingelse til Osgood for vanlige likninger, og
utleder integrerbarhetsbetingelsene for partielle differensiallikninger fra
kravet om at de utledede vanlige likninger over kurven fgrer til mot-
sigelsesfrie lgsninger.

Det siste kapitel er mindre fullstendig enn de gvrige. Det behandler
endel differensialgeometriske anvendelser pa kurver og flater ((n—1)-
dimensjonale mangfoldigheter) i det n-dimensjonale rom:.

Innforingen av begrepene er i alminnelighet godt og neyaktig motivert
og boken er elegant skrevet. Den kan anbefales for dem som har litt
forkunnskaper i disse emner, og skulle utvilsomt danne en utmerket

innfering til mer videregdende moderne teorier. . .
Isidore Fleischer
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Erik M. Alfsen — Erling R. Hansén: Fo 4. Forkurs i matematikk ved
Universitetet i Oslo. Universitetsforlaget, Oslo, Bergen, 1960. 3 +123 s.
N. kr. 14.00. (Stensilert.)

(Anmeldt i NMT, dette hefte, s. 177-178.)

Vektorbegrepet 11 s. * Koordinatsystem 9 s. * Skalarprodukt, volumprodukt,
vektorprodukt, sammensatte produkter 32 s. * Liknings- og parameterfremstil-
linger for kurver og flater, spesielt rette linjer og plan 26 s. * Komplekse tall 16 s.
* Determinanter, Cramers regel 29 s.

C. C. Andersen — 8. A. Bo — Gunnar Nielsen — J. Damgaard Sgren-
sen: Hovedskolens regnebog, 6. J. H. Schultz’ forlag, Kebenhavn, 1959.
160 s. D. kr. 13.85.

De naturlige tal 5-13 * Addition, multiplikation, subtraktion, division 13-46 *

Brok 47-109 * Procentregning 110-119 * Handelsregning 120-127 * Leaengdemal
og flademal 128-137 * Rumfang og veegt 138-147 * Blandede opgaver 148-160.

C. C. Andersen — S. A. Bo — Gunnar Nielsen — J. Damgaard Seren-
sen: Hovedskolens regnebog, 7. Regning og aritmetik. J. H. Schultz’ forlag,
Kegbenhavn, 1960. 164 s. D. kr. 13.85.
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bogstaver i regning 62-68 * Ligninger 68-70 * Delingsregning 71-81 * Afrunding
82-90 * Fremmed ment 91-96 * Procentregning 97-107 * Rentesregning 108-116 *

Omkreds og areal 117-133 * Overflade, rumfang og vegt 134-142 x Opgaver i
talbehandling 143-149 * Samfundsregning IT 150-164.

C. C. Andersen — S. A. Bo — Gunnar Nielsen — J. Damgaard Sgren-
sen: Hovedskolens geometri for 7.skolear. J. H. Schultz’ forlag, Keben-
havn, 1960. 60 s. D. kr. 8.85.

Grundleggende plane figurer 7-29 * Ligedannede figurer, mélestoksforhold

30-35 * Rumlige figurer 36-40 * Retvinklet projektion 41-44 * Areal af plane
figurer 45-55 * Overflader 56 * Rumfang 57-60.

C. C. Andersen — S. A. Bo — Gunnar Nielsen — J. Damgaard Sgren-
sen: Realskolens regming og matematik. Geometri, 1. og 2. realklasse.
J. H. Schultz’ forlag, Kgbenhavn, 1961. 131 s. D. kr. 13.85.
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Grundleggende begreber 5-8 * Spejling i en ret linje 9-13 * Afstand (cirkel,
midtnormal, halveringslinje) 14-25 * M&ling af vinkler 26-27 * Drejning om et
punkt 28-32 * Parallelle linjer 33—-35 * Parallelforskydning 36-37 * Akvidistante
linjer og punkter 38-40 * Flytninger 41 * Trekanter 42-50 * Vinkler ved cirklen
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F.N. David — E. 8. Pearson: Elementary statistical exercises. Cam-
bridge University Press, London, 1961. 84108 pp. sh. 13/6; $ 2.75.

Practical statistical exercises 1-82 * Examination questions in practical statis-
tics 83-91 * Answers to the exercises in part I 92-108.

Yngvar Domar: Matematik for 1 betyg. Algebra och geometri I-II.
(NKI-skolans akademiska kurser.) NKI-skolan, Stockholm, 1961. Bind
1170 s. Bind IT 213 s.

I: Elementérmatematik 40 s. * Kombinatorik. Komplexa tal. Delbarhetsegen-
skaper hos naturliga tal och polynom 42 s. * Plan och riita linjer i rymden 41 s. *
Fortsatt diskussion av plan och réta linjer. Delningsférhallandet. Affina avbild-
ningar 46 s. :

II: Koordinattransformationer. Plan geometri. Vektorer 51 s. * Euklidiska
rymder 43 s. * Euklidiska plan 39 s. * Andragradskurvor 44 s. * Nagra komplette-
rande avsnitt av ettbetygskursen 36 s.

Franklin A. Graybill: An introduction to linear statistical models, I.
(McGraw-Hill series in probability and statistics.) McGraw—Hill Book Co.,
New York, Toronto, London, 1961. 13+463 pp. sh. 97/—.

Mathematical concepts 1-26 * Statistical concepts 27-47 * The multivariate
normal distribution 48-73 * Distribution of quadratic forms 74-92 * Linear models
93-105 * Model 1: The general linear hypothesis of full rank 106-148 * Computing
techniques 149-164 * Polynomial or curvilinear models 165-185 * Model 2: Func-
tional relationships 186-194 * Model 3: Regression models 195-222 * Model 4:
Experimental design models 223-253 % The cross-classification or factorial model
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Incomplete block models 306-317 * Some additional topics about model 4 318-
336 * Model 5: Variance components; point estimation 337-367 * Model 5: Variance
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383-420 * Tables 421-460 * Index 461-463.

Donald Greenspan: Introduction to partial differential equations. (In-
ternational series in pure and applied mathematics.) McGraw-Hill Book
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Basic concepts 1-31 * Fourier series 32-65 * Second-order partial differential
equations 66-88 * The wave equation 89-108 * The potential equation 109-144 *
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The heat equation 145-152 * Approximate solution of partial differential equations
153-179 * Survey of other topics 180-185 * Selected bibliography 187-189 * Index
191-195.

'W. Grossmann: Grundziige der Ausgleichungsrechnung. Zweite, erwei-
terte Auflage. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1961.
124345 S. DM 31.50. ’
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214 s.

I: Plan trigonometri 29 s. * Trigonometriska ekvationer. Exponential- och
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algebraischer Gleichungen durch Wurzelzeichen 153-181 * Namen- und Sachver-
zeichnis 182-183.



184 LITTERATUR

Arno Jaeger: Introduction to analytic geometry and linear algebra. Holt,
Rinehart and Winston, New York, 1961. 124305 pp.

Foundations 3-87 x Linear geometry and algebra 91-182 * Multilinear geometry
and algebra 185-236 * Quadratic geometry and algebra 239-286 * Appendix:
Comments on the axiomatic treatment of analytic geometry 287-290 * Guide to
further reading 291-292 * Index of examples 293 * Index of symbols 295-297 *
Index of terms 299-305.

Jacob T. Schwartz: Introduction to matrices and vectors. McGraw-Hill
Book Co., New York, Toronto, London, 1961. 10+ 163 pp. sh. 43/-.

Definition, equality, and addition of matrices 1-24 * Multiplication of matrices
25-55 * Division of matrices 56-80 * Vectors and linear equations 81-117 * Special
matrices of particular interest 118-125 * More algebra of matrices and vectors
126-146 * Eigenvalues and Eigenvectors 147-151 * Infinite series of matrices
152-160 * Index 160-163.

Richard A. Silverman: Academician V. I. Smirnov’s linear algebra and
group theory. McGraw-Hill Book Co., New York, Toronto, London, 1961.
10 + 464 pp. sh. 97/-.

Determinants and their properties 3-41 * Solution of systems of linear equations
42-91 * Linear transformations 95-148 * Quadratic forms 149-200 * Infinite-
dimensional spaces 201-233 * Reduction of matrices to canonical form 234-264 *
Elements of the general theory of groups 267-314 * Representations of groups
315-380 * Continuous groups 381-418 * Appendix 419-428 * Bibliography 429-
430 * Hints and answers 431-457 * Index 459-464.

Eduard Stiefel: Einfihrung in die numerische Mathematik. B. G. Teub-
ner Verlagsgesellschaft, Stuttgart, 1961. 234 S., 36 Fig. Leinen DM 24.80.

Lineare Algebra 11-28 * Lineare Programmierung 28-52 * Ausgleichung nach
kleinsten Quadraten und definite Probleme 52-69 * Nichtlineare Algebra 69—100 *
Eigenwertprobleme 101-123 * Differentialgleichungen 123-186 * Approximationen
186-214 * Rechenbeispiele 215-221 * Tabellen 222-229 x Literatur 230-231 *
Sachverzeichnis 232-234.

George B. Thomas, Jr.: Calculus. Second edition. Addison-Wesley
Publ. Co., Reading (Mass.), London, 1961. 13+ 850 pp. § 8.75.

The rate of change of a function 1-44 * Derivatives of algebraic functions 45-94
* Applications 95-160 * Integration 161-224 * Applications of the definite integral
225-290 * Polar coordinates 291-301 * Transcendental functions 302—349 * Methods
of integration 350-409 * Hyperbolic functions 410-435 * Vectors and parametric
equations 436-477 * Solid geometry and vectors 478-531 * Partial differentiation
532-604 * Multiple integrals 605-639 * Infinite series 640-715 * Differential equa-
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OPPGAVER TIL LUSNING

Lesninger av oppgavene 216-218 sendes til oppgaveredakteren, lektor Ragnar J.
Solvang, Plogveien 34 B, Manglerud, Oslo. Slike lgsninger vil bli trykt i et felgende
hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lgsning av
hver oppgave. Losninger av oppgaver i dette hefte méa, for 4 komme med i Bind 10,
hefte 2, veere sendt innen 1. april 1962.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

216. Sok villkoren for att talféljden “
Aa,+B ‘

Qpyq = ——r
n+1 5
a,+C

A+0,B+£0,

dar A, B, O ar komplexa tal, konvergerar. Vilka villkor géller for a,?

Henrik Almstrom

217. Givet ett ej urartat kégelsnitt. Visa att orten for punkter, for
vilka tangenterna till kiigelsnittet och tangentkordan bildar en triangel
med given yta, ir ett kégelsnitt som kan erhallas ur det givna antingen
genom en likstéllighetstransformation eller genom translation.

Bernt Lindstrom

218. I mange elementare lerebgger i talteori stilles den opgave at

bevise, at
(2a)!(2b)!

alb!(a+0b)!

er et helt tal. Bevis, at det endog er et lige tal.
Anders Bager

219. Vis at N

g " dt In2
L N

!1+4ﬂ et 11 14

hvor y er Eulers konstant. R. Solvang

220. Konstruer en sirkel som tangerer en gitt sirkel og to gitte rette

linjer. (Det blir maksimalt 8 lgsninger.) H. Killingbergtro
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PRISOPGAVE FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier udskriver
herved nedenstédende prisopgave for danske gymnasieelever og kursuselever til
studentereksamen. Opgaven onskes besvaret si fuldstendigt som muligt, og der
legges veegt pa en omhyggelig og overskuelig fremstilling. For den bedste blandt
de tilfredsstillende besvarelser udsattes en preemie pa 150 kr., og der kan eventuelt
uddeles ekstrapramier.

Besvarelserne indsendes senest 31. marts 1962 til lektor Henrik Meyer, Bakke-
draget 15, Birkered. P& besvarelsen skal anfgres indsenderens navn, adresse, skole
og klassetrin. Besvarelsen skal ledsages af en erklering om, at opgavelgsningen er
selvsteendigt arbejde. (Benyttelse af litteratur er dog tilladt.)

En mengde .# kaldes et metrisk rum, hvis der for ethvert par, 4 og B,
af elementer i .# er defineret et reelt tal

d(4B),
som kaldes afstanden mellem A og B, og som opfylder folgende betingelser:

(
(2) d(44) =0 for alle 4 i #;
(3) d(4B) > 0 for alle A og Bi #, hvor A+ B;
(

Elementerne i # vil vi kalde punkter. Hvis 4 og B er givne punkter i
M, vil vi definere liniestykket AB som meengden af punkter P i .4,
for hvilke det gelder, at

d(AP)+d(PB) = d(4B).

A og B vil vi kalde liniestykkets endepunkter.
Et vigtigt og velkendt eksempel pa et metrisk rum er folgende:

M, er maengden af reelle talpar, hvor afstanden mellem to punkter
4 = (1, 1) og B = (3 ys)

er defineret ved
d(AB) = )/ (@, —ay)+ (y, — ys)? -

[186]
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Vi betragter nu folgende to tilfeelde:

My er moengden af reelle talpar, hvor afstanden mellem to punkter
4 = (2,y) og B = (239)
er defineret ved
d(AB) = v, =% +y1 =¥l

og
M4 er mengden af reelle talpar (x, y), hvor ¥y =0, og hvor afstanden

mellem to punkter
P A= (@) og B = (259

er defineret ved . -
d(AB) = V(@ — )"+ (i —43)*

Vis, at #, og .# er metriske rum.

Idet punkterne i #, afbildes som punkter i et ssedvanligt retvinklet
koordinatsystem, skal man gere rede for udseendet af liniestykker i det
metriske rum #,.

Idet punkterne i .#, afbildes som punkter i et seedvanligt retvinklet
koordinatsystems forste og anden kvadrant, skal man gere rede for ud-
seendet af liniestykker i det metriske rum .#.

I den s@dvanlige plangeometri (det metriske rum .#,) geelder folgende
setninger:

Scetning 1: Hvis et punkt C er indeholdt i liniestykket A B, vil ethvert
punkt, der er indeholdt i liniestykket AC, ogsa veere indeholdt i linie-
stykket AB.

Secetning 2: Hvis et punkt C er indeholdt i liniestykket 4B, vil ethvert
punkt, der er indeholdt i liniestykket 4B, vaere indeholdt i mindst et af
liniestykkerne AC og CB.

Vis, at seetning 1 er gyldig i ethvert metrisk rum.
Vis, at setning 2 er gyldig i det metriske rum .#;, men ikke i det me-
triske rum #,.




PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1962, arrangert av Norsk Matematisk Forening.

Det innkom ingen besvarelser av oppgavene for 1961, og disse oppgaver gis derfor
omigjen for 1962. Oppgaveteksten star i NMT 8, hefte 4, 1960, s. 195-196, og er
dessuten trykt opp i Den Hogre Skolen, nr. 19, 1. des. 1961, s. 674. De nzrmere
bestemmelser om konkurransen finnes begge disse steder. Den nye frist for innsen-
ding av lgsninger er 1. 6. 1962.

Vi henstiller til matematikklererne péa reallinjen om & gjore flinke elever opp-
merksom pé konkurransen.

PROBLEMTAVLING FOR SVENSKA GYMNASISTER

Under en {6ljd av ar har problemtévlingar f6r svenska gymnasister anordnats i
NMT :s regi. Fr. o. m. 1961 har emellertid Svenska Matematikersamfundet i sam-
arbete med Svenska Dagbladet arrangerat en stort upplagd tévling med en forséks-
omgang vid de olika ldroverken foljd av final i Stockholm. Med vederboérlig till-
latelse publicerar vi hidrmed uppgifterna i finalomgéngen 1961.

1. For att losa ekvationssystemet
Yt =y +a?) = @, alet -yt +at) = 1

kan man byta ut den andra ekvationen mot den ekvation, som erhalles som skill-
naden mellan den férsta ekvationen, multiplicerad med z, och den andra ekvationen,
multiplicerad med y. Detta ger det nya systemet

Yyt -y +a?) ==z, y =a*.

Visa att de bada systemen ej har samma lésningar och forklara utférligt orsaken
hértill.

2. L&t z;, x,, ..., ¥y vara n godtyckliga positiva tal. Bevisa olikheten
z, x @
e R T
Ty Ppy Ty 431

3. En person har en ljusstake fér n ljus. Han har for avsikt att tillverka =
likadana ljus, som skall sédttas i staken och sedan briannas pé féljande sétt under
n sondagar: Forsta sondagen tédnder han ett ljus och sldcker det efter en timme,
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andra sondagen tédnder han tva lampligt valda ljus och slidcker dem efter en timme
o.s.v. fram till den sista séndagen da han ténder alla ljusen och later dem brinna
i en timme. Problemet d&r nu: For vilka n kan denna ljustillverkning och ljus-
brénning ske pd ett sddant sitt att alla ljusen &r nedbrunna efter den n-te sén-
dagen ? Ange i dessa fall nadgon regel for vilka ljus som skall tdndas de olika sén-
dagarna.

4. ABCD é&r en kvadrat med sidan 1 lingdenhet. I kvadraten finns 288 punkter
utplacerade. Man vill i kvadraten ldgga in
ett vignit av foljande typ: Dels skall det A B
finnas huvudvigar som gar frén BC till
AD och som &r parallella med 4B, och
dels skall det vinkelrdtt frén dessa huvud- l [ l

végar utgd en bivig till var och en av
punkterna (se figuren). Visa att man kan
vilja végnitet pd sddant sétt att dess
totala ldngd &r mindre én 24 ldngdenheter. I
(Vagarnas bredd skall hérvid férsummas.)
Kan man erhalla ett &nnu skarpare resultat ?
Det anses som en fortjanst att ha an-
véint en metod som kan utnyttjas dven nir
det giller att vilja korta végnit vid god-
tyckligt punktantal.

D C
5. Lat n beteckna ett positivt heltal. Visa att funktionen
26

— +a?—nx
6

har exakt ett minimivirde a,. Bevisa att man kan finna ett tal k, sddant att

existerar dndligt och skilt fran 0. Ange k& och grinsvirdet.

Forsta pris tilldelades Anders Vretblad, Linkopings ldroverk. Andra och tredje
pris delades mellan Per Enflo, Slottsstadens ldroverk, Malmé och Mats Friberg,
Trollhdttans laroverk.
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SUMMARY IN ENGLISH

GUNNAR AF HALLSTROM: The axioms of plane geometry. (Swedish.)

The article contains an axiomatic development of plane absolute geometry,
up to and including the theorem of parallels, but not introducing the circle. In
addition to the completeness and consistency of the system of axioms, the
following conditions are satisfied:

1° The axioms are formulated on the basis of the first concepts and notions
only; later definitions like “angle” do not appear explicitly. Congruency of angles
is based on the following axiom: If B is between 4 and O, B’ between A’ and
C’, and if AB=A'B’, BC=B'C’, AD=A4’D’, BD=B’'D’, then CD=0"D".

2° It is tried to avoid ‘“overlapping” and so to make the axioms completely
independent. It is a well known — and often used — fact, that a certain redun-
dancy in the system of axioms greatly facilitates the later development. In the
article, much of the complication is contributed to the lack of an “auxiliary”
axiom of the type: If A’B’=AB, there are exactly two triangles 4’B’C’ and
A’B’C”, congruent to the given triangle ABC.

FREDERIK GLAVEN: Points in games with Poisson distributton. (Danish.)

A supplement to the author’s article in the preceding issue of NMT (this vol.,
pp. 109-116).

BirGER JaNssoN: Some binomial sums. (English.)

The following formulas are proved:

2 (n) (y + o)tz —ov)n? = @t+yn
v y

v=0

(except when z = 0, y = 0);

"
2 (1) wrore—i = S @t
v 7

v=0 r=0 7"

KARE ERIKSEN: A deduction of the Frenet formulas in general coordi-
nates. (English.)

The author gives a geometrical interpretation of the Christoffel symbols with
application to the Frenet formulas.

Davip Foe: Mathematics and democracy. (Danish.)

A causerie on the most “democratic’” position of an ash-tray used by three
smokers seated at a table.
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