INFORMATIONSTEORIENS FUNDAMENTALSATSER, II*

NILS ASLUND

13. Den icke kontrollerbara killan. Vi har hittills icke gjort nagra
explicita forutsittningar om hur meddelandena m; genereras som funk-
tion av tiden och ej heller om coderns in- och utkapacitet i tiden. Vid
tolkningen av 1:a fundamentalsatsen (11.5) forutsitts dock stillatigande,
att en grupp om % meddelanden fran killan hinner kodas och ivigsdndas
av codern innan denna tas i ansprik foér nista grupp. Om codern &r
given (viss minneskapacitet och viss hastighet) fordras da, att killan &r
kontrollerbar, d. v.s. kan bringas att invinta codern, for att ej nagra
meddelanden skall g& forlorade.

Ett exempel pa en icke kontrollerbar killa &r en, som genererar ett
konstant antal meddelanden per tidsenhet, exempelvis ett per sekund.
Vi kan ténka oss en dylik kélla ansluten till en coder med ett minne for
minst k stycken meddelanden m,. Coderns minne fylls med % stycken
meddelanden och den binidrkodade motsvarigheten till dessa bestimmes
av codern genom identifiering i ett »lexikon«. Minnet kan nu tommas
och blir tillgiingligt for nista grupp om & meddelanden. Samtidigt som
dessa lagras ivigsindes den bindrkodade motsvarigheten till foregiende
grupp. Ett buffertutrymme kan tidnkas tillgdngligt i minnet om bestdm-
mandet av utcoden icke sker momentant. Enligt 1:a fundamentalsatsen
vet vi, att undre grinsen f6r medellingden av de mot meddelandena m,
svarande binira foljderna dr = H(M) binits. Genereras ett meddelande
per sekund av killan kommer alltsd ovanstiende system ej att fungera
tillfredsstéllande om coderns utkapacitet #r mindre &n H(M) binits per
sekund.

Vi skall underséka vad som intriffar, om coderns utkapacitet ar storre
#n men godtyckligt nidra H(M) binits per sekund, d. v.s.=H(M)(1 +p),
dar p>0.

Denna fraga fordrar tydligen en undersokning av spridningen hos
lingderna for de optimalkodade binirsviter, som svarar mot grupperna
om k stycken m,;-meddelanden. Det giller:

1 Forste del sto i NMT, denne argang, s. 5-25.
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N
H(M) = 3 pmo)I(me) = BIm)}

I(m) &ar enligt forutséttningarna en diskret, #ndlig stokastisk variabel
som kan anta ett #ndligt antal N olika virden, alltsa

D*I(m)} = 0® < oo.
Lt u; beteckna en grupp om k stycken meddelanden ur {m,}, d. v.s.

u,': = 7’)7/1:1’)77/,L-2 . e mik .

Antalet olika meddelanden u, &r éndligt och de definierar tillsammans
ett fullstindigt system av hiéndelser. Vi bildar

H(U) = 3 plu)I(u;).

Eftersom hindelserna m; genereras oberoende sa giller enligt (4.7):
k
I(uy) =l2 I(mil) .
=1

I(uw) &r alltsd en summa av oberoende stokastiska variabler, alla med
samma fordelning (H(M), o). Da giller

E{I(uw)} = HU) = kH(M)  (jmf. (11.4)),
D*{I(u)} = kD*{I(m)} = ko®.

(ANM.: Av centrala grinsvirdessatsen f6ljer, at I(u) dr approximativt
normalférdelad for stora k.)

Vi bildar sannolikheten for att I(u) avviker med mer #n p,- 100 procent
fran medelvirdet H(U) och tillimpar T'chebycheffs olikhet, d.v.s.
P{|X —m|>mno}<1/n? dir m=E{X}. Alltsa:

D*{I(u)} a?
< = .

[(pH(U)J? kpoz(H (M ))2

P{lI(u)-H(U)| > p,H(U)}

Hirav:
(13.1) P{I(u)~H(U)| > pH(U)} < ¢,
om

2
k>( 7 )-i‘——A'L,
H(M)]  epg® &Py’

didr A &r oberoende av ¢ och p,. For varje e>0 och p,> 0 finnes alltsa
ett tal k,, sadant att (13.1) &r uppfylld for k> k,.

Bortsett fran ett antal u-sviter med total sannolikhet < e ligger alltsa
u-sviternas sjélvinformationer mellan grinserna H(U)(1 £ p,).

Enligt (11.2) kan ett meddelande med sjdlvinformation I(u;) kodas
binédrt och avkodbart i en svit av lingd n; binits dér
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I(w;) £ my < I(u)+1.

Foljaktligen kan varje svit u; med sjilvinformation mellan griinserna,
H(U)(1 + p,) kodas bindrt i n; symboler, dér

HU)(1-p,) = n; < HU)(1+po)+1 = HU)1+p),

dar 1 1

p= po‘*'m = Po‘FW'

Enligt ovan kan p, goras godtyckligt litet om k viljes tillrackligt stort.
Detsamma giller uppenbarligen om p.

For varje e>0 och p>0 kan alltsd ett tal k, bestimmas, sa att det
for k> k, giller:

Alla sviter w; av k meddelanden ur {m,}, bortsett fran eit antal sviter, for
vilka totala sannolikheten dr < e, har vid optimal bindr kodning lingder n,,
som uppfyller olikheten

(13.2) H(U)1-p) < n; < HU)1+p).

Vi aterknyter nu till exemplet, dér ett meddelande m; genererades
per sekund. En grupp om % meddelanden genererades pa & sekunder och
om codern pa denna tid avger H(U)(1 + p) binits, d. v. s. om utkapaciteten
dr =H(M)(1+ p) binits per sekund sa giller for k >k, enligt (13.2):

1) Totala sannolikheten for genererandet av k-stilliga sviter av m;-
meddelanden, som icke hinnas med, dr <e. »

2) Totala sannolikheten for utsviter kortare dn (1 —p)H(U) binits &r
likasd <e. )

3) For 6vriga utsviter giller, att ingen har en lingd, som understiger

2
(14+p)H(U) med mer &n % 100 procent. — Den procentuella del av
p

utsdndningstiden, under vilken codern icke avger nagra utsymboler, kan
alltsa goras godtyckligt liten.

Vid optimal kodning fran en okontrollerbar killa av ovan angiven typ
kommer alltsd utsviten i limes att ha karaktéiren av en oavbruten foljd
av lika sannolika 1:or och 0:or.

14. Den stérda informationskanalen. 2:a fundamentalsatsen. Tidigare
har papekats, att codern utgoér en speciell typ av informationskanal.
En allménnare typ av diskreta informationskanaler utgéras av dem, dér
identiska insviter av symboler icke noédvindigt resulterar i identiska
utsviter. Dylika informationskanaler sammanfattas under benimningen
storda, kanaler. Man sérskiljer stérda kanaler med och utan minne. I det
féljande behandlas enbart den stordae kanalen utan minne.
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Beteckna insymbolerna till en stérd kanal utan minne med z; och ut-
symbolerna med y;. Antalen olika in- resp. utsymboler férutsittas vara
dndliga. Mottagandet av en insymbol resulterar i avgivandet av en ut-
symbol. Varje utfall fran kanalen &r oberoende av vilka insymboler och
utfall, som tidigare forevarit. Utfallets beroende av den forevarande
insymbolen beskrives av de for kanalen karakteristiska betingade sanno-
likheterna p(y;|x;). Dessa forutsittes vara tidsoberoende.

I enlighet med vad som visats i 34, ar uttrycket I(X; ¥) ett matt
pad den information, som utfallen y i medeltal ger betriffande hiindel-
serna x. Enligt (3.1) och (4.1) giller

(14.1) IX;Y)=I(Y; X) = HY)-H(Y|X).

Uttrycket H(Y |X)=2;p(x;)H(Y |x;) bestimmes av sannolikheterna
p(x;) och p(y;|x;), d. v.s. dels av f6r kallan, dels av for kanalen karak-
teristiska storheter. Detsamma giller for uttrycket H(Y), eftersom
p(y;) = 2 p(@y;) = 2 p(x,)p(y; | 2;). Den medelinformation kanalen &ver-
bringar per utfall betriffande hindelserna x beror alltsa dels av kanalens
karakteristika, dels av sannolikhetsfordelningen for hindelserna x.

Vi infér begreppet informationskapaciteten for en kanal:

C=max I(X;Y),
@)
dir maximum skall bestimmas 6ver alla férdelningar, som kan definieras
av schemat

_ ( x, Xy ... X, )
p(1) Pas) - .. p(,))”
varvid n=antalet mojliga olika insymboler. Informationskapaciteten dr
alltsa den maximala information, som en kanal i medeltal kan éverbringa
per utfall, ndr den anslutes till gynnsammast mojliga kdilla.
Vi skall speciellt behandla den bindra, symmetriska kanalen, vilken
karakteriseras av foljande betingade sannolikheter:
(Yo%) = P(Y117%1) = P, P(Yol®1) = P(y1|%g) = ¢ =1-p.
Vi kallar p sannolikheten for korrekt atergivning. Man erhéller:
11
H(Y|X) = - 2 2 p(x)ply;| ;) logp(y; | =)
i=0 j=0
= —p(xo)p logp—p(@1) p log p —p(w,)q logg — p(,)q logg
= —plogp—glogg.

P4 grund av kanalens symmetriegenskaper &dr alltsd hir H(Y|X) obe-
roende av sannolikheterna p(x,). Enligt (14.1) &r féljaktligen I(X; ¥)
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maximum fér denna kanal nidr H(Y) dr maximum. Vi vet enligt 5 att
H_ . for ett bindrt schema &r =1. Harvid dr p(y,) =p(y,) =0,5. Efter-
som kanalen dr symmetrisk &r dessa sannolikheter lika om och endast
om sannolikheterna p(x,) och p(x,) dven dr lika, d. v. s. om p(x,) = p(x,) =
0,5, forutsatt ¢=+0,5 (se nedan).

Vi har alltsd visat, att informationskapaciteten f6r den bindra symme-
triska kanalen &r

(14.2) C = 1+plogp+qlogq bits/utsymbol .

I fig. 2 visas, hur informationskapaciteten C fér en binir symmetrisk
kanal varierar med sannolikheten ¢, d. v.s. med sannolikheten for att
en insignal skall ge upphov till inkorrekt utsignal.

L C

- q

01 02 03 04 05
Fig. 2

I det foljande skall vi forutsitta, att 0<¢<0,5. Om ¢> 0,5 byter vi
indicering for y och skiftar beteckningarna p och ¢, varvid ¢ blir <0,5
med bibehallande av innebérden sannolikhet for inkorrekt utsignal.
Om ¢=0,5 #ér kanalkapaciteten =0 och kanalen &r ointressant utom for
generering av slumptal. Om slutligen ¢=0 s& #r kanalen ostérd och
faller utanfor avsnittets rubrik. — Foljaktligen giller i fortsittningen,
att 0<C<1.

Ett nédvandigt villkor for att den bindra symmetriska kanalen skall
utnyttjas maximalt dr enligt ovan p(x,) = p(z;) = 0,5. Hiarvid kan kanalen
i medeltal Gverbringa C bits per utsymbol. Om kanalen direkt anslutes
till en killa med entropien H(0,5, 0,5)=1 bit per insymbol, kommer i
genomsnitt 1—C bits att forloras per 6verférd symbol. Informations-
forlusten svarar mot att insviter av symboler deformeras av kanalen.
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Vi riktar nu intresset mot f6ljande

ProsrEM: Hur stor medelinformation kan optimalt éverforas per ut-
fall fran en stord kanal, om det fordras, att osikerheten vid 6verforandet
av givna meddelanden skall vara godtyckligt liten ?

Det &r uppenbart, att overforingssikerheten fér en kanal kan 6kas
genom att varje insymbol repeteras ett antal ganger. Hirvid kommer &
andra sidan medelinformationen per utsymbol att avta, d. v.s. den er-
forderliga tiden for att transmittera ett givet meddelande kommer att
méangdubblas. Man leds hérav intuitivt till uppfattningen, att sverforings-
sikerhet och medelinformation per utfall &r komplementira storheter,
d.v.s. den ena kan forbittras endast pi bekostnad av den andra.
Informationsteoriens kardinalresultat &r, att denna uppfattning ar fel-
aktig. Det existerar en kodning siddan, att en stérd informationskanal
overbringar en medelinformation godtyckligt nira C bits/symbol, varvid
sannolikheten for att transmitterade symbolsviter skall deformeras dir-
hén, att de misstolkas vid kanalutgangen, dr godtyckligt liten.

Detta &r inneborden av 2:a fundamentalsatsen, som hir skall hirledas
for den bindra, symmetriska kanalen.

15. Transformation till redundant representation. Varje informa-
tionskilla av den typ, som vi definierat i 7, kan genom en coder trans-
formeras till en ekvivalent killa, vars entropi &r godtyckligt nira
H(0,5,0,5)=1. Vi utgar fran en dylik binir killa, och forutsitter for
enkelhets skull, att dess entropi ér exakt =1 bit/utfall. Betrakta speciellt
sviter av lingden k, genererade av denna killa. Dessa sviter kan betraktas
som meddelanden avgivna av en kélla M med entropien H(M). Eftersom
de bindra utfallen ér statistiskt oberoende giller enligt (1.3) och (1.4):

(15.1) HM) = kH,, = k.

max

Sjéilvinformationen for varje meddelande fran denna killa &r enhgt
(4.7) ocksd =k bits.

L&t nu en coder omskriva varje sidant meddelande till en annan
binér representation dir varje meddelande har lingden n binits (n > k).
Utsymbolerna ur denna coder &r statistiskt beroende, ty av 2" mojliga
olika n-stilliga utsviter &r endast 2% stycken tillitna och féljaktligen
kan det exempelvis ej ernés, att vid varje enskilt utfall sannolikheten for
en 1:a dr lika stor som f6r en 0:a. Diremot kan de totala sannolikheterna,
for .0 resp. 1 mycket vil goras lika.

Utgangen fran denna coder anslutes till kanalen. Talen n och k dr q}
fizerade, och ej heller metoden fér kodningen.
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Pa grund av det statistiska beroendet mellan de binéira utsymbolerna
representerar coderutgidngen en annan typ av schema respektive in-
formationskilla &n dem vi hittills behandlat. De n-stilliga utsviterna
fastligger entydigt utfallen fran en kélla med entropien H(M) och 6verfér
déirmed var och en informationsméngden k bits. Med bibehédllande av
entropibegreppets innebord av medelinformation per utfall definierar vi
entropien fér den bindra coderutgdngen:

H(M)
Hy = .
n
Hérav enligt (15.1):
k k
(15.2) Hp=—-Hy, =-.
n n

Genom denna coder 6vergar vi alltsé fran en irredundant representation
till en redundant (jmf. 12).

2:a fundamentalsatsen kan nu formuleras sasom foljer:

Qivet en kanal med kapacitet C. Dd existerar en killa sidan, att den
har en entropi H3 godtyckligt mindre dn C och sddan, att den vid direkt
anslutning till kanalen tilldter en godtyckligt hog overforingssdkerhet genom
kanalen.

16. Bevis for 2:a fundamentalsatsen!. Betrakta en symmetrisk kanal
genom vilken vi siinder sviter av lingden n binéra symboler (n < co). Det
finnes 2" stycken olika dylika sviter. Enligt vara tidigare forutséttningar
om kanalen resulterar en n-stillig ingdngssvit u;, i en n-stillig utgngs-
svit v,,. Lt respektive sviter representeras av punkter i en punktmingd
E om 2 element. Transmission av en svit innebér att en punkt i méng-
den antingen avbildas p4 en annan punkt i méngden eller eventuellt pa
sig sjalv. ,

P& grund av kanalens symmetriegenskaper géller, att sannolikheten
for att punkten (sviten) u skall avbildas pa punkten v &r lika stor som’
sannolikheten att » skall avbildas pa «, d. v.s.

(16.1) P(uim vut) = P(vim uut) .

I motsvarande positioner bytes i ena fallet 1:or mot 0:or och i andra
fallet 0:or mot 1:or, och sannolikheterna for dessa byten &r enligt forut-
sittningarna lika stora.

Vi definierar: Awstdndet | mellan tva punkter (sviter) =antalet fall,
dir sviterna i motsvarande positioner har olika bindra symboler.

1 Den f6ljande bevismetoden ér foreslagen av D. Slepian.
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Antalet punkter, som ligger exakt pa avstandet ! fran en given punkt
ar da lika med antalet olika mdéjligheter att utvélja ! element bland =,

d.v.s.=(7lb).

Sannolikheten att en enskild symbol skall #ndras vid transmissionen
ir =gq. Da éndringarna ir statistiskt oberoende géller, att sannolikheten
for att en given punkt skall avbildas pa en annan given punkt, som ligger
pa avstandet ! fran den forstndmnda, dr=¢%1—q)*-!. Sannolikheten for
att en given punkt skall avbildas pa ndgon punkt pa avstandet I &r da

= (?)q’(l -
Infér den stokastiska variabeln W =antalet symbolindringar vid en
transmission = avstandet mellan insvit och erhallen utsvit. Da giller

l
PO <1y = 3 (})ga-ar.
=0 \k
Variabeln W ir alltsd binomialférdelad och foljaktligen giller
E{W} = ng, DX{W} = nq(1-q) = o®.

Vi onskar nu bestdmma radien i en sfir S(u) kring punkten u, dir
u € B, sidan, att sannolikheten att u skall avbildas utanfér denna sfir
ir <ie, dir ¢ dr ett godtyckligt, fixt tal.

Enligt Tchebycheffs sats giller

1
P{W —nq > ko} £ P{{W —nq| > ke} < s
Lat sfidrens radie vara ng+b. Da giller

P{W > ng+b} < i

om -
(16.2) b=rko = Vg-l/nq(l—q) = B)/n.
&

Vi onskar vidare bestimma en majorant till antalet punkter ur E,
som ryms inom och p& denna sfar. Kalla antalet punkter féor Ng och
lat r=[ng +b] vara det storsta heltalet <ng+b. Da giller

(16.3) Ng= (’IZ)

E=0
n
k
g < %. Da finnes ett tal n,> 0 sadant, att for n =n, giller

Vidare giller ( > > ( kﬁ 1) om k=in. — Enligt forutsdttningarna &r
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ng+b = nq+B]/;z, < in-1.

Om 7 =n, #r alltsd r < in—1 och da &r ingen term i (16.3) storre dn (t)
Hirav:

(16.4) Ng < (r+1) (’:) < g(’:)
Det giller:
(16.5) (?) < r%n?ﬁﬁn—f

Bevis: Det finnes n* olika tal med hogst n siffror, alla ur ett siffer-
system med basen n. Bland dessa tal finnes ett antal tal 4 <n® for vilka
giller, att r stycken av siffrorna &r <r och (n—r) stycken ar >r. Vi
skall visa att

A = (n) r"(n—r)*".
r
De r siffrornas positioner kan utvéljas pa (2) olika sitt, och till varje
sddan kombination av positioner finnes r” olika mojliga tal. I de (n—r)
ovriga positionerna kan (n—r)"—" olika tal bildas av de (n—r) stycken
siffrorna r+1,7r+2, ..., n, varmed (16.5) dr bevisad.
Ur (16.4) och (16.5) erhalles
nn

n
PR — (m = ng) .

N
o rr(n—r)*" B

IIA

For fixt n antar (16.5) maximum nir r=4n, vilket ldtt inses genom
derivering. Av r <ng+b < }n erhalles da

n 1
(16.6) Ng < ~. e _". ,
92 (nq+b)nq+b(np_b)np—b 9 b ng+b b np-b
(“;) (P‘;)

Vi skall nu utvilja en delméingd {U,} ur E. Elementen i {U,} kallar
vi kodpunkter. Vid transmittering genom kanalen anvindes uteslutande
kodpunkter som insviter.

Varje kodpunkt U, tillordnas ett identifieringsomrdade 1(U,) som utgor
en delmingd av E. Om en utsvit tillhor I(Uy) identifierar vi insviten som
U,.

Vi viljer U, godtyckligt. Lat I(U,) =8(U,). Sannolikheten att U, skall
avbildas utanfor I(U,) dr da& <ije<e.

Lat I(U,) vara den delmingd av S(U,), som #r disjunkt fran I(U,).
Vi viljer U, s att sannolikheten att U, skall avbildas i skidrningen



106 NILS ASLUND

mellan I(U;) och S(U,) &r <}e. Sannolikheten att U, skall avbildas
utanfor I(U,) &r da <e.

Vi fortsitter analogt, och later I(U,) vara den delmangd av S(U,),
som #r disjunkt fran I(U,), I(Uy), ..., I(U,_,). Vi viljer U, s att
sannolikheten att U, skall avbildas i skirningen mellan S(U,) och nigon
av dessa mingder #r < 3}e. Sannolikheten att U, skall avbildas utanfor
I(U;) ér da <e.

Vi fortsitter pa detta sitt tills ingen ytterligare kodpunkt kan defi-
nieras. Antag vi med givet ¢ och f6r visst n finner K stycken kodpunkter.
Vi vet att K21 ty I(U,) existerar alltid.

Infér beteckningen R f6r mingden av alla punkter ur E, som tillhor
nagot identifieringsomride. Om en kodpunkt avbildas i en punkt, som
icke tillhér R, dr utsviten 6ver huvud icke identifierbar.

Antag R innehaller N5 stycken punkter. Eftersom inget identifierings-
omrade kan innehalla fler punkter #n Ng stycken si giller

- N R
(16.7) K = Ny

Vi har redan bestimt en majorant till Ng, och dnskar nu bestdmma
en minorant till N,. Detta &r ett kombinatoriskt problem, som med
fordel loses genom inférandet av fiktiva sannolikheter. Observera att
detta #r ett tillfilligt konstgrepp, som inte innebédr nagon specialisering
vad betriffar de verkliga meddelandenas sannolikhetsférdelning.

Antag alla mojliga olika insviter dr lika sannolika sa att var och en
har sannolikheten P(u;,)=2-". D& giller enligt (16.1):

—1\113 = P{uin ER} = 2 P(uin) = 2 Zp(uin’ vut)

2n uin€R UipneR vyt

= 2 ZP(uut’ Vin) = 2 P(uut) = P{uut € R} .

Uy, €R vinel upyeR

Men

P{uut GR} = %P(Uin)'P(uut EIelvin) .
Vi skall visa att "
(16.8) Puy € Rlvy) 2 3¢,

dir ¢ har samma innebord som tidigare i detta bevis. (Observera att
dylika betingade sannolikheter &r helt oavhingiga av férutsittningen om
insviternas sannolikheter.)

Om v;, 4r en kodpunkt &r pastdendet (16.8) sikert sant. (Det forut-
sitts e<1.) Antag v, icke &r en kodpunkt och att P(u, e R|v;,) < 3e.
Da giller d4ven, att sannolikheten att u, ligger i skidrningen mellan S(v;,)
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och R ir < }e. Foljaktligen uppfyller punkten v;, villkoren for en kod-
punkt. Varje sidan punkt utnyttjas emellertid redan som kodpunkt,
varfor resultatet motsiger antagandet. Alltsa giller (16.8), och darfor

2 Pluy) =2 ) Plvy) de = de,
Uy eR vinel

alltsa Ny = 2mge.

Enligt (16.7) och (16.6) erhalles da slutligen

N b\ na-+b b\ np—b
(169 Kz-rz 2”2(q+%) (’p—;) (n
S

v

Ng) -

Med en felsannolikhet <& kan minst K stycken olika n-stilliga sviter
transmitteras genom kanalen. Den coder, som levererar dessa K olika
sviter mottar pa sin ingdng K stycken bindrsviter frin en icke redundant
killa. Enligt vart tidigare antagande har dessa alla lingden k, d.v.s.
har sjilvinformationen % bits. Det finnes 2* stycken olika dylika sviter.
Ovannimnda overforingssikerhet kan alltsd uppréitthallas om k uppfyller
2t< K.

Vi villjer k sa att 28 < K < 2k+1, varvid k >log K — 1. Logaritmering av
(16.9) och insdttning av (16.2) ger
E logK-1

S en

" = 1+qlogg+plogp—O(n-?).

Enligt (15.2) och (14.2) erhalles da
H} > C-0(n), V.8.V.

Observera, att 2:a fundamentalsatsen ir ett ewistens-teorem. Nagon
metod for att explicit bestimma den kod, som for given killa, kanal
och overforingssikerhet ger maximal medelinformation per utfall finnes
innu ej utarbetad. A andra sidan finnes icke-optimala metoder, som
garanterar onskad overforingssikerhet, exempelvis parity-check meto-
den.

17. Sammanfattning. Enligt 2:a fundamentalsatsen kan vi ern& god-
tyckligt liten felsannolikhet vid transmissionen genom en stord kanal
utan att sviterna fran den icke-redundanta killan behdver forlingas
mer #&n med en faktor n/k, dir nfk overstiger 1/C godtyckligt litet.
Sammanstiller vi detta resultat med vad som visats betriffande kod-
ningen fér den icke kontrollerbara killan s erhalles foljande:

Antag vi har en diskret killa med entropien H(M) och som genererar
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N stycken meddelanden per sekund. Med uppritthallande av godtyck-
ligt liten felsannolikhet vid transmissionen dr det d& mojligt att

1) transformera denna kélla till en icke-redundant bindr killa, vars
utkapacitet godtyckligt litet 6verstiger H(M):N binits per sekund (1:a
huvudsatsen);

2) transformera denna senare kéilla till en redundant binir kélla, som
direkt kan anslutas till en bindr symmetrisk kanal med kapaciteten C
bits/symbol. Harvid maéste codern ha en utkapacitet och kanalen en

k
transmissionskapacitet pa H(M)-N % binits/sek, dir — dr mindre dn
n

men godtyckligt nira C (2:a huvudsatsen).




POINTSGIVNING I SPIL MED BINOMIALFORDELING

FREDERIK GLAVEN

1. I forskellige konkurrencer og spil er det almindeligt at benytte en
eller anden form for pointsgivning, ved hjelp af hvilken man finder frem
til den af konkurrencedeltagerne, der skal erkleres for vinder. Det kan
dreje sig om en rzkke konkurrencer mellem to deltagere eller om en
sammensat konkurrence mellem flere deltagere, der konkurrerer to og to
i en rakke delkonkurrencer. Som eksempler kan nevnes kampraekker i
handbold og fodbold.

Man kan stille sig den opgave at finde den mest hensigtsmeessige
pointsgivning, hvorved man forstar den, med hvilken der er storst sand-
synlighed for, at den sterkeste deltager vinder konkurrencersekken,
d. v.s. far sterst pointssum. Som arbejdseksempel velges her fodbold-
turneringer.

Ved serieturneringer i fodbold har man hidtil givet 2, 1 og 0 points for
henholdsvis vundet, uafgjort og tabt kamp. Det vindende hold har faet
2 points, ganske uanset malstillingen. Da tilfeeldigheder spiller en stor
rolle i fodboldkampe, kunne det synes uhensigtsmeessigt at give 2 points
bade for en sejr pa 4-3 og en pa 7-0, idet den farste sejr let kan bero pa
en tilfeeldighed, hvorimod ikke den anden. Det synes mere rimeligt at
lade sejrherren i 4-3-kampen ngjes med f. eks. 1} points og give taberen
% point.

Med udgangspunkt i denne betragtning skal fglgende teoretiske fod-
boldarrangement undersgges. To fodboldhold A og B spiller f.eks. 4
kampe mod hinanden, siledes at hver kamp stoppes, nir antallet af de
scorede mal er 5. Desuden gir man ud fra, at hold A har sandsynlig-
heden 609, for at vinde hvert mal og B altsd 409%,. Der benyttes to for-
skellige pointsgivninger I og II, siledes at kampresultaterne 5-0, 4-1,
3-2, 2-3, 1-4 og 0-5 efter I (det hidtil benyttede system) tildeles hen-
holdsvis 2, 2, 2, 0, 0 og 0 points, men efter IT henholdsvis 8, 7, 5, 3, 1
og 0 points.

Efter pointsgivning I far A’s pointsgennemsnit middelveerdien 1,3651
og spredningen 0,4655 (der regnes med 4 dec.). For at B skal kunne

[109]
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vinde den lille turnering pa 4 kampe, skal A’s pointsgennemsnit afvige
fra middelvzrdien med mindst 0,3651 i nedadgaende retning, altsi med
0,3651:0,4655 =0,7844 gange spredningen. Med normalt fordelt points-
gennemsnit svarer dette til, at A vinder turneringen i 78,39, af tilfzeldene
og B i 21,79, af disse.

Efter pointsberegning II far A’s pointsgennemsnit middelveerdien
4,9325 og spredningen 1,0172. B vinder, nir A’s pointsgennemsnit af-
viger med mindst 0,9325:1,0172=0,9167 gange spredningen i nedad-
gdende retning. Dette svarer til, at A vinder i 82,09, af tilfzeldene og B
i 18,09, af disse.

Igvrigt viser en direkte udregning, at A efter pointsgivning I vinder
i 62,19, opnar uafgjort i 28,29, og taber i 9,79, af tilfzeldene, medens
tallene efter pointsgivning II er henholdsvis 76,1% ,10,6% og 13,3%.
Afggres de uafgjorte tilfzelde ved lodtraekning, vinder A efter I i 76,29,
og efter IT i 81,49, af tilfeeldene.

Det er hermed godtgjort, at pointsberegning II er mere hensigtsmzessig
end I i det her beskrevne teoretiske fodboldspil, idet den i de fleste til-
feelde giver den »rigtige« sejrherre.

2. Idet der stadig skal betragtes teoretiske fodboldspil i lighed med
det, der er beskrevet ovenfor, er opgaven i det folgende at finde den
bedste pointsgivning, d. v.s. den, ved hvilken det hold, der har storst
sandsynlighed for at score et mal, ogsd har sterst sandsynlighed for at
vinde turneringen.

Der regnes med » mal i hver kamp, og A’s sandsynlighed for at score
et méal kaldes #, hvor ¢ er konstant og > }. Scorer hold A i af de n mal

— sandsynligheden herfor er p,= (7:) ty(1—t)y»-t —, far det x; points,

og B far —x; points, hvor ;< 0 for 1 < n —¢. Middelverdien af A’s points
i en kamp er da u=2'p,x;>0. Settes det andet moment Xp,x2=g,
bliver variansen o?=g—pu2. Ved de anferte summationer skal ¢ gennem-
lgbe verdierne 0, 1, ..., n.

Af de i 1 foretagne betragtninger ses, at det geelder om at finde storste-
veerdi for ufo eller mindstevardi for o?/u?=g/u?—1 eller for g/u®. En
sddan mindsteveerdi méa sikkert eksistere.

Da 2, ;= -z, er pu=2(p;—p,i)v; 0g g=2(@;+p,_y)e? for

. n
1=0,1, ..., [—]
2

Ved partiel differentiation af g/u? med hensyn til z; (z =0,1,..., [g])
ses, at den sggte mindsteveerdi indtreffer for




POINTSGIVNING I SPIL MED BINOMIALFORDELING 111

/ B2 2(Ps+ Py = 920 (P;— Pr—i) »

d. v. s. for
g Pi— Pn—i
x’l: = —_—e ——
“ P + Pr—i

e]ler g t213—n — (1 _t)zi——n

X = — - -~ .
v u 2i-n (l_t)zz—n

Da pointsgivningen i realiteten bliver den samme, nar alle z; multi-
pliceres med samme vilkarlige positive konstant, far man, idet man
setter eksponenten 2¢—mn=gq, der angiver det antal mal, som A har
scoret mere end B i en kamp,

72— (1—1t)2

wi - C‘ _-1
124 (1— 1)

Sxttes konstanten ¢ lig med 1, far man automatisk g=pu.

Points afhenger foruden af ¢ kun af det overskydende antal q af
scorede mal. I stedet for med z; betegnes nu de nsevnte points (c=1)
med P,(t), hvor P,(1—t)= —P,(t). Tabel 1 viser nogle veerdier af P(t)
med 3 decimaler.

ta—(1-t)2

Py(t) = Wt 1=ty

\ 0,55 0,60 0,65 0,70 0,80 0,90 0,95
q

0 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 0,100 0,200 0,300 0,400 0,600 0,800 0,900
2 0,198 0,385 0,651 0,690 0,882 0,976 0,994
3 0,292 0,543 0,730 0,854 0,969 0,997 1,000
4 0,381 0,670 0,845 0,935 0,992 1,000 1,000
5 0,463 0,767 0,913 0,971 0,998 1,000 1,000
6 0,538 0,839 0,952 0,988 1,000 1,000 1,000
Tabel 1.

3. Problemet skal nu generaliseres, idet man lader de to hold A og B

spille
| k, kampe med ialt 1 mal,

k, kampe med ialt 2 mal,

k, kampe med ialt r mal,
altsa ialt k,+k,+ ... +k,=K kampe.

1 Beviset er i denne form for n vilkarlig meddelt forf. af docent Gunnar Blom.
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For hver af de k, kampe med ialt » mal fastsettes folgende: A far
for ¢ scorede mal af de = tildelt x; , points og B —u, , points. Disse
points betragtes forelobig som givne konstante tal. Middelverdien af
A’s points betegnes med u, og spredningen med o,, der begge er kon-
stante for hver verdi af ¢. Desuden betegnes det andet moment med g,
ogsé konstant forelgbig.

Problemet bestar i at finde den pointsgivning, ved hvilken hold A,
hvis konstante malsandsynlighed ¢ antages stgrre end %, har sterst sand-
synlighed for at vinde turneringen, d. v.s. fi sterst pointssum i de K
kampe.

Til det formal indfgres de variable veegtfaktorer y, saledes, at A i
stedet for de ovenanferte z, ,, points far y,x, , points for scoring af ¢
mal, samtidig med at B far —y,x, , points for scoring af n—4 mal;
n=1,2,...,r.

A’s pointssum i turneringen fir da middelverdien p= 2k, u,y, og

variansen o?=2'k,0,2y,2; n=1,2, ...,r.
Vagtfaktorerne y, skal da bestemmes saledes, at u2/o® har sterste-
verdi. Ved partiel differentiation af u?/o? m.h.t. y, (n=1,2,...,7)

ses, at storsteveerdien indtraeffer for o2-2u-k,u, =u?- 2k, 0,%y,, d.v.s.
o2
for ynz—/%‘. Stersteveerdien bliver da u2/o2, hvor
10y,
=k .?2_”7_»=_2k M
= M ue = o,k
og

saledes at

Den rallerstorste« veerdi for u2/o? indtreffer saledes, nar alle u,%/o,?
er storst, d. v.s. ifelge 2 for x; ,=P,(f), hvor ¢=2¢ —n. Man skal altsa

i en kamp med malantal » (n=1,2,...,r) give A ynxi’n='u—"2Pq(t)
Gn
points (for scoring af ¢ af de » mal), idet faktoren ¢%/u erstattes med 1.

Nu er o,2=9,—p,? hvor ifelge 2 g,=p,, altsd o0,2=p,(1—pu,),
hvorved y,=1/(1—u,). A skal siledes i en kamp med ialt #» mal have

1 P(t) points. — Man bemerker, at y, afhenger af n, men ikke af
k,. Tabel 2 viser nogle fa veaerdier af 1/(1— pu,). Veerdierne vokser omtrent

i takt med n, dog lidt steerkere, og stiger med ¢.
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t 0,60 0,70

1,0417 1,1905
1,0833 1,3810
1,1253 1,5890
1,1676
1,2105
1,4353

S OB WD

Tabel 2.

Tabel 3a~b viser de optimale points for scoring af ¢ mal mod mod-
standerens n—4 mal svarende til {=0,60 for » op til 10 og enkelte
veerdier svarende til ¢=0,70.

n—1
\ 0 1 2 3 4 5 6 7 8 9 10
?

0,21
0,42
0,61
0,78
0,93
1,05
1,15
1,24
1,31
1,39

S © WO WO

—

0,00 —0,21 —0,42 —0,61 —0,78 —0,93 —1,05 —1,15 —1,24 —1,31 —1,39

0,00 —0,23 —0,45 —0,66 —0,84 —0,99 —1,12 —1,23 —1,33

0,23
0,45
0,66
0,84
0,99
1,12
1,23
1,33

0,00
0,24
0,48
0,70
0,90
1,07
1,20

-0,24 —0,48 —0,70 —0,90 —1,07 —1,20
0,00 —0,26 —0,52 —0,756 —0,96
0,26 0,00 —0,28 —0,55

0,52 0,28 0,00
0,75 0,55
0,96

Tabel 3 a. Optimale points for scoring, svarende til ¢=0,60 og forskellige verdier af ¢

og n—1.

\z—i 0 1 2 3
?

[CUN SR )

0,00 —0,48 —-0,95 -1,36
0,48 0,00 —-0,64

0,95 0,64

1,36

Tabel 3 b. Optimale points for scoring, svarende til ¢=0,70 og forskellige veerdier af ¢

NMT, Hefte 3, 1961. — 8

og n—it.

[113]
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Man ser, at en sejr pa f. eks. 3-2 tildeles flere points end en sejr pa
1-0, selv om maldifferensen er den samme. Det er i overensstemmelse
med, at et vaesentligt svagere hold godt kan vinde 1-0, men sjeeldnere
3-2.

4. Ved praktiske anvendelser ses der i det folgende bort fra folgende
komplikationer:

1° at der er 3 eller flere hold, der spiller indbyrdes to og to,

2° at t ikke er konstant under en kamp og

3° at holdenes indbyrdes styrke sendres fra kamp til kamp.

Reakkevidden af de folgende overvejelser synes dog ikke i veesentlig
grad at blive bergrt af disse forudsatninger.

Der skal nu tages standpunkt til, hvilken pointsskala der ma anses
for at veere den mest hensigtsmeessige at benytte i fodbold, idet der
specielt tages sigte p4 kampene i Danmarks 1., 2. og 3. division.

Resultaterne fra 1959 laegges til grund. Malantallets gennemsnit (n)
i de 396 kampe var 3,88 og spredningen 2,00. Gennemsnittet af det over-
skydende antal mal (g) i en kamp var 1,79 og spredningen 1,32. Efter
resultatfordelingen vil det vare rimeligt at ansette middelveerdien af
mélsandsynligheden (¢) til omkring 0,63.

Da alle kampe er pad 2 gange 45 minutter, er det rimeligt at tillegge
dem samme vegt, i den forstand, at kun det overskydende malantal (9)
er bestemmende for points, eller med andre ord ikke at tage faktoren
1/(1 - u,) med. Pointstabellen vil igvrigt derved blive mere overskuelig.
Det afggrende for denne beslutning er, i forbindelse med den begraen-
sede spilletid, at det er rimeligt at regne en sejr pa 1-0 skvivalent med
en pa 3-2, idet halvlegsresultaterne kan have varet henholdsvis 0-0,
1-0 og 2-2, 1-0. Det bemrkes, at der i de teoretiske fodboldkampe
ikke var tale om nogen tidsbegransning.

Den egentlige vanskelighed ved at anvende den opstillede teori er,
at de optimale points P () varierer med ¢, som er ubekendt. Det er jo
til en vis grad holdenes styrkeforhold, der skal bestemmes.

Benytter man — i alle kampe — pointsskalaen P (s) med s=0,63, vil
denne pointsgivning veere bedre, d.v.s. give storre veerdi for ulo, end
den for tiden benyttede pointsgivning, ved kampe, hvor ¢ (for det steer-
keste hold) er mindre end ca. 0,75, men darligere for storre {-veerdier.
Man star sig ved at bruge points P,(s) med en s-veerdi, der er noget
storre end den ansldede middelvzerdi for ¢, idet man derved far en points-
givning, der er bedre end den for tiden benyttede, ogsa for t-verdier,
der er storre end 0,75, f. eks. op til omkring 0,80. Da ¢-veerdier pa omkring
0,80 og derover er ret sjeeldne og veerdien af o for disse er relativt lille,
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vil den rskades, der sker ved disse ret f kampe, veere uden videre betyd-
ning for pointsgivningens resultat.

T overensstemmelse med det lige anforte veelges i narverende tilfeelde
en skala P, (s) svarende til en s-veerdi omkring 0,68-0,69, idet man
tager i betragtning, at en skala alene bestemmes af sine differenskvo-
tienter. Denne skalas talveerdier afrundes, idet man bl. a. serger for, at
skalaens storste talveerdi svarer til en verdi af ¢, som kun overgds i
omkring 5% af kampene. Man kommer saledes til skalaen:

q —4 o.sv.| =3 ] -2 | -1 0 1 2 3 4 o.s.V.

Points 0,0. o103 |06 | 10| 1,4 | L7 1,9 2,0

hvor kommaet eventuelt kan slettes.

Det, at skalaen har fa trin, eller rettere for ¢ sterre end et lille tal
(her 3) har konstante talvardier, bevirker, at komplikation 3° ikke
griber for sterkt ind.

Denne skalas virkemade i forhold til den hidtil benyttede fremgar af
tabel 4. Skalaen betegnes med N (nye) og den hidtil benyttede med G

(gamle).
\t 0,60 0,70 0,80 0,90
n

1 g} 0,204 0,436 0,750 1,33
9 1(\}7} 0,289 0,617 1,06 1,89
G 0,310 0,690 1,42 2,86
3 N 0,352 0,767 1,36 2,55
G 0,393 0,884 1,69 3,85
4 N 0.407 0,901 1,66 3,35
G 0,392 0,912 1,89 5,33
5 N 0,453 1,03 2,00 4,60
G 0,475 1,12 2,39 7,06
6 N 0,498 1,15 2,35 6,03
G 0,463 1,13 2,60 9,53
7 N 0,644 1,28 3,47 8,13

Tabel 4. Verdier af u/o for forskellige verdier af ¢ og n.
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Det bemrkes, at afrundingen af skala N synes at have veret heldig,
idet de til den svarende veerdier af u/o for 0,50 <¢<0,70 ligger neer det
maksimale (s=t), der for ¢{=0,60 og n=3, 4 og 5 er henholdsvis 0,354,
0,409 og 0,459, samt for ¢=0,70 og n=3 er 0,767.

Det fremgar af tabellen, at skala N er bedre end G for 0,50<t<
ca. 0,75. For n=3 og 4 og t=0,80 ses u/o at vere noget storre med G
end med N; men ¢-verdier > 0,75 forekommer ikke ofte, og pfo har
her en stor verdi i forbindelse med, at o er lille og kun far ringe ind-
flydelse p& pointssummens o.

Ved at velge s storre end 0,70 kunne man opna, at N var bedre end G
for flere ¢-vaerdier, maske op til 0,90. Men s ville fordelen ved at bruge
N i stedet for G ikke blive udnyttet for ¢-vzerdier mellem 0,50 og 0,70.

Imidlertid m& man ikke glemme, at resultatet af en turnering ikke
alene er, at det bestemmer nr. 1, men ogsd, hvilket hold der bliver nr. 2,
sidst og neestsidst, ja fastlegger hele rangfolgen. Af ovenstiende folger
nu, at chancen for forkerte inversioner i rangfolgen er vaesentlig mindre
ved benyttelse af N i stedet for G.

Zndres pointsskalaen fra G til N, vil kampenes forlgb antagelig sam-
tidig zendres lidt i retning af, at mélantallet bliver stegrre. Bliver denne
eventuelle forggelse ikke betydelig, er der dog ingen grund til at gore
skalaen mere differentieret end N.

Til slut skal lige bemsrkes, at nir man i spil gar over til en mere
hensigtsmeessig pointsgivning, er der mulighed for, at selve spillet derved
udvikles i gunstig retning.

Dersom man gnsker at indfere tidsmomentet i betragtningerne, vil
det vare mere rationelt i 2 at regne med poissonfordelt malantal for
hold A og hold B. Ger man det, bliver resultatet nwsten identisk med
det i 2, ligesom konklusionerne mé blive de samme som ovenfor i 4.




SOME ARITHMETIC PROPERTIES
OF THE COEFFICIENTS IN A CERTAIN EXPANSION

L. CARLITZ

1. In a recent paper [3] Kolberg put

[oe]

(1) e = [ (1+a,2")

n=1

and showed that a,=1/n if and only if » is a prime.
It follows from (1) that a;= —1 and

—1)
(2) 2’( )a§=0 (n>1).
rs=n r
If we put
cn
(3) a, = —
n!

it is clear that (2) becomes

(4) 2 (=1

ré=mn

n!
r(s!)

=0 (n>1).

Tt is familiar that the quotient [1, p. 57]

(rs)!
rli(sh)”

(5) Qr, s =

is integral for all 7, s> 1. Thus the coefficient of ¢/ in (4) is integral;
moreover the coefficient of ¢, is equal to —1. It follows that the c, are
rational integers.

We shall prove the following arithmetic properties of c,:

TarorEM 1. Let p be a prime divisor of n. Then

(6) Cpn = O (mod p);
i particulor
(7) Cpr = —1 (modp) (r=12,...).

[117]

s
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THEOREM 2. Let p be a prime such that p<mn, p + n. Then
(8) ¢, =0 (modp).

2. Proor or THEOREM 1. If > p, it is clear from (5) that the quotient

(9)

is divisible by p. Thus (4) becomes

!
(10) > (_1)rr(’:‘)rcg =0 (modp).
r<p '

Let n=pm. If p® denotes the highest power of p dividing k! then

k k
Then the quotient
(12) (pm)!
p(m!)?

is prime to p if and only if m +pu(m) = 1+p-u(m), that is

(13) (p—1) u(m) =m-1.
However if
m = ayp'+...+a, (0 £ a; < p; a>0),
then by (11)
(p—1) u(m) = m—(ag+...+a).

Thus (13) becomes ay+ ... +a,=1. It follows that (12) is prime to p if
and only if n=’. In this case we have (cf. Lemma 1 below)

—pt!—~ = —1 (modp)
p(ptl)P ’
so that (10) yields
Cpt = Cp—1 (mod p) t=1).

This evidently proves (7).
Now let »=pm=+p. Then (10) reduces to

!
(14) %’ (— l)r;z((pp_zb))_!)—rcgs =0 (modp).
r<p
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()= (2) oo

(pm)! _ m!
((p)t) (s
so that (14) becomes
2 (=1)r m! ¢ =0 (modp).

ro=m (s
r<p

Since

it follows that

Since we have also

2(— )"—(—)-c =0 (modp)

r<p

and c,=¢; (modp), it follows immediately that c,,=¢, (modp). This
proves (6) when n =+ p’. Hence (6) holds for all n.

3. Proor or THEOREM 2. Let p{n so that (10) becomes

15 —1y
() = (*)r
r<p

¢t =0 (modp).

Assume (8) false and let n be the smallest integer such that p 1 n,
n>p and ¢, =0 (modp). If s>p, then since p + s we have ¢,=0 (mod p)
so that (15) reduces to

(186) ¢l =0 (modp).

rs=n
r<p,8<p

However if r < p, s<p while n>p, we have
n
r(s!)”

Hence (16) implies ¢, =0 (modp). This evidently completes the proof
of Theorem 2.

=0 (modp).

4. As an analog of (1) we may consider

(17) =2 (e —1)
n=1
Expanding the right member, we find that (17) is equivalent to
1
(18) Z‘F(xf?:o (n>1), o =1.

r8=mn
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If we put
(19) Ky = ﬁ:
n!

(18) becomes

n!
(20) rs:nﬁ‘(*‘;w’}/; =0 (’n > ].), V1 = 1.
It follows that the y, are rational integers. In particular
(21) Yp = — 1,

where p is an arbitrary prime.
We shall prove

TaeoREM 3. Let p be a prime divisor of n, p<n. Then if n is odd or if
p=2, we have
(22) Yn =0 (modp).

For the proof we require the following lemmas:

LeEMmA 1. If r=9pt, s=pi, then

@.,s=1 (modp),
where Q, . is given by (5).

Proor. The result is an immediate consequence of the identity
(rs)! r (ks—l
23 —_ = .
= o= (05
LemMA 2. Let p|r. Then Q, , is prime to p if and only if s=pi.
Proor. Put 7=pt. Then @, , is prime to p if and only if

ts+u(ts) = t+p(t) +pt-u(s) ,
that is,

(24) Ho—1) = (p— 1)t pls) + plt) + - p(s) — plls)
As we have seen in 2, (p—1)-u(s) < s—1, with strict inequality except
when ¢=p7. Thus (23) becomes (when s =+ p)

Ho—1) < ts— 1)+ u(t) + 1 pls) — plts) ,

which is impossible. On the other hand, when s=p/ it is easily verified
that . ,

p(tp’) = t-u(p’) +pu(t)
so that (24) is satisfied.
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LemMmA 3. For arbitrary r, t21,

(25) Qr,pt = Qr,t (mOd p) .
Proor. By (23)

(26) Q=11 (7))

Jasi pt—1
It follows from

(1+2)P-1 = (14+22)t-1(1+x)P~ (mod p)
Jpt—1Y _ (jt—l)
( pt—l) ={%_1) (modp).
Thus (26) becomes

Q=T (7)) = Qs (modp).

j=1

that

5. ProoF oF THEOREM 3. Let n=p'. Then, by Lemma 1 and Fermat’s
theorem, (20) becomes

Zyp,-z 0 (modp) (tz1).

Clearly this implies
(27) ypr =0 (modp) (¢ > 1),

in agreement with (22).

Now let p | n, p<n and assume that either » is odd or, when 7 is
even, p=2. If in the left member of (20), r is divisible by p, then by
Lemma 2 we need only consider those terms in which s is a power of p;
hence by (27) we may take s=1 or p. For r not divisible by p it follows
that s is divisible by p. Thus in any case, aside from s=1, we may sup-
pose that s is divisible by p. Applying Lemma 3, (20) becomes

(28) 1+ 2 Qr,syzs =0 (modop).

r$=mn|p

Let p be a fixed prime and assume (22) false. Let n be the smallest
integer such that p |7, p<n and y,==0 (modp). Then (28) reduces to

1+yp?+y, =0 (modp),
which implies y,=0 (modp). This completes the proof of the theorem.

6. The congruence (27) can be improved. It is proved in [2, p. 310]
that if p | r and p>3 then
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—@)l— =1 (modp?.

rl (p?)

Thus, when n =9, (20) reduces to

t .
1+ 3957 =0 (modpd) (p> 3).
j=1
This evidently implies
(29) ypr=0 (modp!) (p>3,¢>1).

For p=3 we have
yg =0 (mod32) (> 1).

For p=2, we note that y,= —4 but
ys =2 (mod4).
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EN GENERALISATION AF RZKKERNE FOR In2 OG%E

CHRISTIAN ANDERSEN

I en artikel i NMT [1] har David Fog vist, at de to raekker

In2 =1-%+%—...
og .
i I—3+%—...

er specialtilfzelde af en og samme formel

1 11 1
1 S teP-lydy = ————F+——— ... ositiv hel) ,
(1) Og > s ot (pp )

svarende til henholdsvis p=2 og p=1.

Der skal her gores opmeerksom pd en anden integralfremstilling, for
hvilken det ogsi geelder, at de to reekker er specialtilfeelde. Af den for
|t| <1 gyldige reekkeudvikling

1

= 1—tP+t2— ... ositiv hel
+p + (p positiv hel)
fas
1 dt 1 1
@) S e,
oL+17 p+1 2p+1

hvor lovligheden af at benytte ovre integrationsgranse 1 folger af Abels
seetning. .
Rexkkerne for In2 og " fas heraf for p=1 og p=2. Ogsa storre veerdier

af p har her interesse. Saledes giver p=3 efter udregning af integralet

31n2+7r]/§

5 =1-f+i—....

Formlen (2) sivel som dens anvendelse pa smé p-veerdier (p=4)
findes hos Knopp [2].
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RuEL V. CEURCHILL: Complex variables and applications. 2nd edition.
McGraw-Hill Book Co., New York, Toronto, London, 1960. 9+ 297 Pp.
sh. 52/6.

(Innholdsfortegnelse i NMT 8 (1960), s. 96-97.)

Denne bok er en utvidet utgave av Churchill’s bok fra 1948, Forst og
fremst er framstillingen mer utforlig — og strengere gjennomfert. Der-
nest er antallet av gvingsoppgaver betraktelig gket, og endelig er det
tatt med et kapitel om integralframstillinger av Poisson-type.

De forste 8 kapitler er innforing i de deler av den klassiske funksjons-
teori som har storst betydning for anvendelsene. P4 bakgrunn av den
engstelse man ofte (kanskje uberettiget) foler nar ordet rapplicationg
inngér i en boktittel, er det gledelig at forfatteren har ofret tilstrekkelig
plass til en stringent oppbygging. I avsnittene om brudne linesrtrans-
formasjoner kunne med fordel speilingsprinsippet ha vert tatt med.

Kapitlene 9 og 10 omhandler konform avbildning, med illustrerende
eksempler pa anvendelse i termodynamikk, hydrodynamikk og elektrisi-
tetslere.

I kapitel 11 kommer en lw®rerik sammenstilling av integralformler av
Poisson-type for endel omrader (sirkel, halvsirkel, halvplan, halvstripe
o.L) til lesning av Dirichlets problem, Neumanns problem og liknende
randverdioppgaver ved den 2-dimensjonale Laplace-likning. Det ville
kanskje ha veert naturlig & avslutte kapitlet med en kort omtale av Greens
funksjon (uten & ga inn pa vanskelige eksistensspersmal), samt dennes
anvendelse til losning av randverdioppgaver. Utledning av de forskjel-
lige Poisson-formler fra Greens formel ville ha vert lererike gvingsopp-
gaver for leseren.

Boken slutter med et kapitel om analytisk fortsettelse og Riemannske
flater.

I to tillegg gir forfatteren en fortegnelse over litteratur som knytter
seg til det stoff han behandler, samt en grei oversikt (med figurer) over
viktige konforme avbildninger.

Boken kan anbefales som grunnlag for forelesninger i funksjonsteori
ved en teknisk hegskole. Haakon Waadeland

[124]
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LotHAR HEFFTER: Begrindung der Funktionentheorie auf alten und
neuen Wegen. Zweite, verbesserte Auflage. Springer-Verlag, Berlin, G&t-
tingen, Heidelberg, 1960. 8+ 64 S., 13 Fig. DM 19.80.

(Innholdsfortegnelse i NMT 8 (1960), s. 179.)

Det er en fornuftig vane & lese forordet til en bok for man kaster seg
over innholdet. En slik liten hors-d’ceuvre kan vere nyttig som appetitt-
vekker foran hovedretten — eller som advarsel mot den.

Hermed veere forordet i Heffters bok anbefalt pa det varmeste. Som
appetittvekker ? Ja. Som advarsel? Ogsa ja. Eller kanskje forvarsel er
et bedre ord — forvarsel om at hovedretten ogsd er tilpasset andre og
enklere ganer enn dem som menyen p& permen i forste rekke virker til-
trekkende pé.

Her er vi ved bokens paradoks. Mens tittelen appellerer til folk med
interesse for funksjonsteori, hevdes det i forordet at boken er lesbar for
studenter fra 2. semester av. Dette bekreftes av de 56 pedagogisk vel-
skrevne sider, hvorav de 30 forste, avsnitt A, inneholder »Vorkenntnisse,
som utelukkende bygger pa kjennskapet til de komplekse tall og deres
representasjon i det gaussiske plan. Man sper seg imidlertid, d. v. s. jeg
spurte meg, om studentene i 2. semester er swrlig interesserte i & vite noe
om forskjellige mater & begrunne funksjonsteorien pa. Behovet for en slik
viten mé antas & oppsté efter at man, ad en eller annen vei, har trengt et
lite stykke inn i teorien for komplekse funksjoner.

Avsnitt A bringer, enkelt og oversiktlig satt opp, det ngdterftige stoff
for forstaelsen av avsnitt B, som er bokens hovedavsnitt. Bortsett fra et
par bemerkninger, skulle det ikke veere nedvendig 4 gd inn péd dette
avsnitt i detalj. Framstillingen er sveert elementer. F. eks. er det Rie-
mannske integral definert ved ekvidistant intervalloppdeling, og kurve-
integraler er bare definert over akseparallelle polygontrekk og over
kurver sammensatt av konsentriske sirkelbuer og radier. Pointet med
dette er kanskje ikke s& meget & gjore boken lett lesbar som & presisere
de enkle forutsetninger den bygger pa.

Det forfatteren kaller »zusammenhéingendes offenes Gebiet« ville i
samsvar med den mest vanlige definisjon hete »offenes Gebiet« (eller
bare »Gebiet«). Videre er det uheldig at han ved definisjonen av sammen-
hengstall bruker lukkede omrader. Hans pastand om at et n ganger sam-
menhengende lukket omrade ved n— 1 disjunkte snittlinjer kan omgjores
til et enkeltsammenhengende lukket omrade, holder jo ikke stikk —
for bare & nevne en uheldig konsekvens.

I avsnitt B bringes 6 forskjellige innferinger i funksjonsteorien. Dette
er gjort pa den maten at han velger ut en definisjon. De 6 métene frem-
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trer da som satser som under forskjellige forutsetninger utsier at en
funksjon er analytisk i et visst omrade.

I definisjonen av en analytisk funksjon folger han neermest Weier-
strass, men den har fatt en noe uheldig formulering, idet han definerer en
analytisk funksjon i det lukkede omrade @, som en i G entydig og kon-
tinuerlig funksjon som i en omegn av hvert indre punkt ¢ av @ kan
framstilles som potensrekke P(z—a). — Etter denne definisjon skulle jo

f. eks. funksjonen f (z):]/l_;—z, f(0)=1 vezre analytisk i z=1. Dessuten
er det uheldig pedagogisk, da karakteren av omegnsegenskap ikke kom-
mer tydelig nok fram.

I alle 6 innforinger er entydighet og kontinuitet en fast forutsetning.
De tre forste veier er Cauchys med kontinuitet av f'(z), Goursats med
eksistensen av f’(z) og Looman-Menchoffs sats. Sistnevnte er, som rime-
lig kan veere, bare nevnt. I stedet er vist en sats som forfatteren kaller en
spesialisert L-M’s sats, hvor forutsetningene er uniform partiell deriver-
barhet av u og v samt gyldighet av de Cauchy-Riemannske likninger.
Berettigelsen av navnet kan kanskje diskuteres, da det ved L-M’s sats
er den svekkelse av forutsetningene som unntaksmengdene representerer,
som er det essensielle. Dessuten folger (som Heffter ogsé bemerker) av
den uniforme partielle deriverbarhet kontinuiteten av de partiellderi-
verte.

De tre siste metoder bygger pa forutsetningen om entydig integrer-
barhet. Forst omtales Morera~Osgoods vei, hvor dessuten partiell deri-
verbarhet er forutsatt (implisitt, idet man gar veien om Cauchy, eventu-
elt Goursat). Til slutt omtales to enkle veier av forfatteren selv, den
ene med akseparallell entydig integrerbarhet som forutsetning, hvor han
bygger pi setningen

[§f(z)dz = 0, #'(z) kontinuerlig i R} = Sﬁf(z)-k(z)dz =0,
R R

B et rektangel, og den andre med tilsvarende forutsetninger i polar-
koordinater. Det er litt uheldig & bruke Jap() om middelverdien av f(z)
i[a,d].

Avsnitt B avsluttes med en fin skjematisk oversikt over de 6 forskjel-
lige veier. Forutsetningene er »dekomponert, slik at sammenlikningen
skal veere enkel.

Avsnitt C er en omfattende litteraturfortegnelse, der ved hvert omtalte
arbeide er tatt med en kort angivelse av innholdet.

Heftters lille skrift, som representerer en sammenstilling av eldre
veier og en del av forfatterens egne resultater gjennom de siste 50 ar,
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er et arbeide som er all zre verd. Trass i de innvendinger som er nevnt
ovenfor, og som star for anmelderens egen regning, kan boken anbefales,
spesielt til den som foreleser funksjonsteori og vil ta seg tid til & dvele
litt ved innferingens historikk. Haakon Waadeland

SopuUs Lie: Gesammelte Abhandlungen. Band 7. Herausgegeben von
Friedrich Engel. B. G. Teubner Verlagsgesellschaft, Leipzig; H. Asche-
houg & Co., Oslo, 1960. 10+476 S. DM 40.50.

(Innholdsfortegnelse i NMT, denne argang, s. 83.)

Et nyt bind af Sophus Lie’s varker er en begivenhed i matematikens
verden. Det nu foreliggende bind indeholder 31 afhandlinger og udger et
udvalg af de vigtigste manuskripter, som Lie har efterladt sig. De fleste
af disse afhandlinger behandler transformationsgruppernes teori og de
partielle differentialligninger. Adskillige af de resultater, hvormed Lie
har beriget videnskaben, bliver her yderligere uddybet eller formuleret
i en lidt generaliseret form. Det er med stort udbytte, man leser de pa-
geldende afhandlinger, hvoraf mange dog kun er fragmenter. De er
preegede af Lie’s enthusiasme og sjeldne penetrationsevne.

Han beskeftigede sig indgdende med differentialligningernes teori og
betragtede denne som den vigtigste gren af matematiken. Side 175-219
far man en interessant redeggrelse for den historiske udvikling af teorien
for de partielle differentialligninger af forste orden, navnlig forholdet
mellem A. Mayer’s og Lie’s egne arbejder, der pabegyndtes omtrent
samtidig. Angdende adskillige forfattere fremswtter Lie meget kritiske
udtalelser, men undertiden er hans kritik overdreven.

Bogen slutter med en gengivelse af den tiltreedelsesforelesning, som
Lie holdt i 1886 i aulaen pa universitetet i Leipzig, hvor han var blevet
udnaevnt til Felix Klein’s efterfalger, efter at denne havde modtaget en
kaldelse til Gottingen. Lie giver heri en meget bemerkelsesverdig over-
sigt over matematikens historiske udvikling, og han opholder sig navnlig
ved vekselvirkningen mellem geometrien og analysen. Endvidere skildrer
han den rolle, vigtige begreber som gruppe og invariant spiller i mate-
matiken.

Manuskriptet til det omhandlede bind blev allerede for krigen af Fr.
Engel gjort feerdig til trykning. N E. Norlund

Ko6sarU YosipA: Lectures on differential and integral equations.
(Interscience tracts in pure and applied mathematics 10.) Interscience
Publ., New York, London, 1960. 9+ 220 pp. § 7.00.
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(Innholdsfortegnelse i NMT, denne &rgang, s. 84.)

Detta &r den engelska upplagan av en bok, som ursprungligen publice-
rats pd japanska.

Bokens forsta kapitel behandlar utforligt existens- och regularitets-
fragor fér 16sningar till begynnelseviirdesproblem fér ordiniira differen-
tialekvationer, studerar sedan speciellt olika l6sningsmetoder for line-
dra ekvationer av n-te ordningen och slutar med ett avsnitt om andra
ordningens differentialekvationer av Fuchs’ typ.

I nésta kapitel visas hur randvérdesproblemen av Sturm-Liouville-typ
kan &verforas till integralekvationer med symmetrisk kdrna genom an-
vindning av Greens funktion. Detta leder sedan till en sats om utveckling
efter egenfunktioner, varvid de vanliga typerna av ortogonala polynom
far tjina som exempel. Slutligen dgnas ndgra sidor at hirledning av
asymptotiska uttryck fér egenviirden och egenfunktioner med Liouvilles
metod.

Tredje kapitlet behandlar Fredholms integralekvationer och bevisar
alternativsatsen utan anvindning av Fredholms determinanter. For att
visa nédvindigheten hos férutsittningarna foljer sedan nigra exempel
pa singuldra integraloperatorer, for vilka resultaten inte giller. At
integralekvationer av Volterra-typ dgnas ocksa ett kapitel, och vissa
utvidgningar av de tidigare resultaten till icke-lineira integralekvationer
férekommer i bokens sjitte och sista kapitel.

Néra en fjirdedel av bokens omféng upptages av det femte kapitlet,
som redogdr for Weyls teori fér det singulira randvirdesproblemet for
en ordindr andragradens differentialekvation. Hir ges ocksd ett bevis
for Weyl-Stones allménna utvecklingssats fér det aktuella problemet,
kompletterad med Titchmarsh-Kodairas formel for téthetsmatrisen.
Som avslutning féljer inte mindre &n sex stycken i detalj genomforda
exempel pa tillimpningen av Weyl-Stone-Titchmarsh—-Kodairas resultat.

Av det ovanstidende referatet 4r det uppenbart att den hir behandlade
boken innehéller atskilligt mer éin vad man kunde vinta sig av det rela-
tivt ringa antalet boksidor. Detta har foérfattaren kunnat astadkomma,
genom att gé rakt pa sak utan sidoblickar och genom att inte inféra fler
nya begrepp dn vad som ir absolut nddvéndigt. Som en f5ljd hirav ir
t. ex. sambandet med den allmiinna funktionalanalysen mycket svagt
betonat och Lebesgue-integraler forekommer overhuvudtaget inte. Moj-
ligen blir framstéllningens enkelhet lidande pé detta men i gengild
vinner man att alla resonemang och bevis ir, &tminstone i princip, ele-
mentéra. Boken borde dérfér i sin helhet kunna vara en god inledning

till och exempelsamling for vidare studier i &mnet.
Joran Friberg
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OPPGAVER TIL LOSNING

I fremtiden vil lgsninger av oppgavene i NMT bli publisert to hefter frem, altsé
f. eks. i Bind 10, hefte 1 for lgsninger av oppgavene nedenfor. P4 denne méte
kan losningsfristen settes senere, samtidig som det er lettere & f& de enkelte hefter
redigert og sendt ut med passende mellomrom.

Inntil videre har NMT ny oppgaveredakior: Lektor Ragnar J. Solvang, Plog-
veien 34 B, Manglerud, Oslo. Lesninger av oppgavene 211-215 sendes til ham.
Slike lgsninger vil bli trykt i den utstrekning plassen tillater, dog vanligvis bare
den beste lgsning av hver oppgave. Lesninger av oppgaver i dette hefte maé,
for & komme med i Bind 10, hefte 1, veere sendt innen 15. januar 1962.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes
til oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

211. Finn fglgende summer:
n—1 n—1
S () o S-mrm-rr ()
k=0 k k=0 k

hvor r er et naturlig tall. o
D. 8. Mitrinovié (Beograd)

(Teksten er oversatt til norsk av red.)

212. Vis at -
142 3 e
n=1 - {/—2' .

1+2 3 (— 1)ne-n'n
n=1

Age Rambery

213. Man har fem klot K ,, K, K¢, Kj och Kg. Varje klot tangerar
de fyra andra utantill, och Kklotkonfigurationerna K KgpKqKp och
KzKoKpKy dr likformiga. K, har radien R =1 cm. Hur stora &r ra-
dierna i de 6vriga kloten? .

Harry Bjork

214. Anvend identiteten

)=
[135]
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n
til at vise, at 3'»? kan skrives som et polynomium af (p+ 1)-te grad

y=1 ;
i n (jfr. Chr. Gram: »Om potenssummer«, NMT 8 (1960), s. 79-80, og i
Ove J. Munch: »Om potensproduktsummer«, NMT 7 (1959), s. 5-19). \

Poul Einar Hansen

215. Vis, at hvis to talfelger {a,} og {b,} for alle n tilfredsstiller
Uiy = i@y +bib, 08 b,y = arb,+bia,,
s& geelder for k=2, 3, ...

Ayt = akan+bkbn og bn+k = a’kbn+bka’n .

Ove J. Munch
LYSNINGER
206. Antag att ekvationen
-2t a2t — . ta, g2+ (=1)"a =0,

dér n>1 och 0 <x <1, har alla sina rétter inom eller pa enhetscirkeln.
Bestdm for varje koefficient a,, det stérsta mojliga absolutviirdet. (Pro-
blemet stdlls i en uppsats om system av differentialekvationer med
periodiska koefficienter, V. M. Starzhinskii: On the stability of a trivial
solution of a linear system with periodic coefficients, Appl. Math. and
Mech. 1958, p. 913, dér i. 6. specialfallet k=1 behandlas inkorrekt.)

Magnus Tideman

Losning: Koeffisienten

a; = . > Ry e 2y
1Sh<ig<...<tp=n

er en sum av ( Z) produkt av k og k rotter. Da rgttenes produkt er reelt
og lik « mé 25 € [, 1],4=1, 2, ..., n. Settes |z;| =r,, faes altsa [Tr;=«.
Herav sluttes: 1) Enten er f.eks. ry=o«, ry=r;=...=r,=1, eller 2)

minst to retter har modul i intervallet {x, 1); de andre, hvis slike finnes,
har modul 1.

Skal en plasere rottene slik at |a,| blir storst mulig, gjor en det slik
at produktene i a; fir samme argument. Settes f. eks. z;=r;, faes |a,|=
21y liy o Ty

Anta sa at |, blir sterst nar
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iy oy o v es T €40, 1), 22AEN; Tyyy = Tog = ... =Ty = 1.

La r <ty ...,74; O 13271, g, . . ., T, Lar en nd ry og r, variere innen-
for tillatte grenser, mens de andre 7, holdes konstant, kan |a,| opp-

. konst. .
fattes som funksjon av ry, da r,= , 0g |a,| kan skrives: |a;|=
r

17Ky + (11 +75) Ky + K. 1

En ser da ved derivasjon m.h.p. r; at enhver tenkt konstellasjon av
rottene ikke gir maksimum for |a;|. Varierer r; mot venstre pé tallinjen,
vil 7, variere mot hgyre og |a,| vil vokse.

Herav sluttes at konstellasjonen r, =«, ry=...=r,=1 gjor |a,;| storst.

En far da at
n—1 n—1 1/n
el e = (k—l)‘w( k ) - 7@(10) [l =11
Norvald Midttun

207. Den normala fordelningsfunktionen @(x) #r definierad genom

e ¥dt

éQ/‘&

1
—n
Om a=0 och b=0, visa att

D(—a—b) < 20(—a)D(—b) .

Carl-Gustav Esseen
o0
Losning: Sitt y(x)= e\ e-1%dt, varav
g Yy
x

(1) y =xy—1.
Vi skall visa
7w y(a+be—®

(2) - <1,a20,020,
2 ya)y®)
dir likhet giller fér b=0. Deriveras v.1. i (2) logaritmiskt m. a. pa b

erhalles
1 1

y(b) yla+b) ~

da y avtar enligt (1).

Magnus Tideman

Oppgaven er ogsé lest av Per Roar Andenwzs, Harry Bjork, D. Djokovié,
S. Eriksson, Rolf Hovstad, Martti Luoma, Bengt Markman og Torsten Strom.
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208. Hvilke vilkdr ma de komplekse tall p og ¢ oppfylle dersom

funksjonen .
f(2) = sinpz—cosgz,

foruten nullpunkter av forste orden, ogsa skal ha nullpunkter av annen
orden? Bestem i tilfelle disse nullpunktene av annen orden.

D. S. Mitrinovié (Beograd) '

Losning: Om nagon rot skall finnas maste f(z)=0, d. v.s.
(1) sinpz = cosqz

for nagot z. For att rotter med ordningstal =2 skall existera fordras
dessutom att f'(z)=0, d. v.s.

(2) pcospz+gsingz = 0.
Av (1) foljer 1—sin?pz=1—cos?qz eller cospz= +singz. (2) ger da:
(£p+9q)singz = 0.

singz=0 ger qz=masu. Men cos(pz— im)=cosqz ur (1), d. v.s. pz—n=
+qz+ 2nm, alltsa
tlomm,qg=+0,

p l+4n
q— 2m

7
pz=§+2mz omqg=0.

Alternativen p= +¢ ger bada systemet
sinpz = cospz, cospz = —sinpz,

som ej kan uppfyllas. Bengt Markman

Oppgaven er ogsd lest av Norvald Midttun og Torsten Strém.

209. La a, b, ¢ veere tre innbyrdes ulike reelle tall. Sett a+b+c=op,
a?+b2+c2=q, ab+bc+ca=r, og bevis riktigheten av ulikhetene

3 min(a, b, ¢) < p-—]/q—r < p+)q—r < 3max(a,b,c).

D. 8. Mitrinovié

Losning: Det betyr ingen innskrenkning om vi setter a <b<c. Da
blir m=c—b og n=b—a positive tall. Vi innser at
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V(m+n)2+m2+n? < V2(m+n)

V -]/(c—a)2+(c—b)2+(b—a)2 < 2+b—p,

p+l/q——r < 2+b < 3c.

Oppgavens venstre ulikhet faes pa analog méate, idet vi ogsa har at
m+n=p—2a—>b.
Johs. Lohne

Oppgaven er ogsé lest av Bernhard Andersen, Istvan Beck, Gunnbjorg Gis-
marvik, Rolf Hovstad, P. W. Karlsson, Bengt Markman, Stieg Mellin-Olsen, Nor-
vald Midttun, Arne Sandrum, Torsten Strom og Bjérn Textorius.

210. T et rettvinklet koordinatsystem fyller et glasslegeme den kva-
drant hvor bade z og y er positive. En lysstrile med retningskosiner
&g> Bo» Vo AT inn i glasset gjennom planet y=0. Hyvis stralen forlater
glasset gjennom planet x=0, blir z-aksen brytende kant. Hvilke ret-
ningskosiner «, §, y har strdlen etter utgangen, uttrykt ved o, fos Vo

og brytningstallet n? Johs. Lok
ons. Lonne

Losning: Der indfgres retnings-cosini (x;, fy, y) for strilen, nar den
er i det brydende stof. Man har nu felgende ligninger:
xo Bty = ol +fity = By =1,

samt fysikkens brydningslov, der kan udtrykkes saledes:

Vi = a)1-p% Vi-o? = n)f/1—o2,

samt
010 1 00
0=|agfove|= % P11 >
1 P11 x By
eller

XoY1 = *1Y0» By = y1B -

Ved hjelp af ligningerne ovenfor finder man let resultatet

(o B, y} = {—V1—nP+od V02— 146 7o} »

hvor fortegnets bestemmelse er triviel.

Per W. Karlsson

Oppgaven er ogsé lest av Einar Brurberg og Torsten Strém.
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Nedenfor felger matematikkoppgavene til studenteksamen varen 1961 P& de
matematiske gymnasielinjer i de nordiske land.

DANMARK

Matematik 1.

1. To tal har summen 1, og summen af deres kvadrater er —1. Find tallene.
Find summen af de to tals n’te potenser for 1) n =33 og 2) n=".

2. I et trapez ABCD er vinkel 4 =vinkel D =60°, og dets omkreds er 56.

Bestem siderne i trapezet, saledes at dets areal bliver s& stort som muligt.

Bestem dernest siderne i trapezet, siledes at rumfanget af det legeme, der
fremkommer ved en drejning af trapezet 360° om siden AD, bliver s& stort som
muligt.

3. p, g og R er givne liniestykker og v en given spids vinkel.

Konstruer en firkant ABCD, hvori diagonalen BD halverer vinkel B, vinkel
BAC=v, AB:BC=p:q, og siledes at firkanten kan indskrives i en cirkel med
radius R. Diskussion kraeves.

Beregn firkantens vinkler og sider, nar p =4, q=5, R=3 og v="70°78.

Matematik II.

1. ABCD er et rektangel, hvori siden AB=a og siden BC =2a. P er et punkt
pé siden AB. Linien gennem P parallel med diagonalen BD skaerer siden 4D i
punktet Q. Cirklen med 4 som centrum og AP som radius skeerer cirklen over AB
som diameter i punkterne H og K. S er skwringspunktet mellem linien HK og
linien gennem @ parallel med AB.

Bestem det geometriske sted for S, nar P gennemloher siden 4B.

Angiv art og beliggenhed af det fundne geometriske sted.

2. Underspg og tegn kurven
y =sin2x4+2cosz (0 <z < 2q).

Beregn arealet af den lukkede figur, der begrenses af kurven og x-aksen.
Beregn desuden rumfanget af det omdrejningslegeme, der fremkommer, nar den
omtalte figur drejes 360° om x-aksen.

3. I terningen ABCD —A,B,C,D,, hvor kanterne AA,, BB, CC, og DD, er
parallelle, er kantleengden 2. Midtpunkterne af kanterne C,D,, BB, og OD kaldes
henholdsvis M, N og P.

Beregn siderne i trekant AMN samt trekantens areal.

Beregn toplansvinklen mellem planerne AMN og ABCD.

Beregn rumfanget af pyramiden 4 — BNMP.

[140]
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FINLAND

Léingre kursen.

1. Vid en viss tidpunkt funnos i ett land a % flera kvinnor &n mén; vid en senare
tidpunkt var motsvarande procenttal b (>a). Med huru ménga procent hade
ménnens antal 6kats under tiden, om hela befolkningens tillvixt utgjorde p % ?
Huru stort méste p &tminstone vara (vid givna virden pa a och b) fér att antalet
min icke skall ha minskats ?

2. Huru ménga termer av den geometriska serien 1+2z+a%+ ... bora atmin-
stone medtagas, for att deras summa skall avvika fran hela seriens summa med
mindre &n 0,1 fér alla virden pa x inom intervallen 0 <z <%?

3. Skillnaden mellan tva positiva tal dr 1, skillnaden mellan deras logaritmer
ar 2, och skillnaden mellan deras kuber 4r 3. Bestédm basen for det ifrdgavarande
logaritmsystemet (exakt véirde samt nérmevirde med 3 decimaler).

4. I vilken punkt pa parabeln y =22 bor man dra normalen till densamma, f6r
att den av kurvan begrinsade strickan pé normalen skall ha en sa kort projektion
pé z-axeln som mojligt ? Rita figur.

5. Bevisa, att den i en cirkel inskrivna reguljéra tiohdérningens sida &r = den
stérre delen av radien, d4 denna delas i kontinuerlig proportion. Rita en reguljar
tioh6rning.

6. Fran mittpunkten P av en cirkelbége AB dragas tvd réta linjer, vilka skéra
kordan AB i punkterna C och D, samt cirkelperiferin (férutom i P) i punkterna &
och F. Bevisa, att en cirkel kan omskrivas kring fyrhérningen CEFD.

7. Tre sidor i ett trapets éro =a. Huru l&ng bor den fjirde sidan vara, for att
figurens area skall vara s stor som mojligt ?

8. Kring en sfir dr omskriven en stympad kon, vars sidolinjer bilda vinkeln
60° med basen. Berikna férhallandet mellan volymerna av de tva delar av den
stympade konen, vilka falla ytterom sféren.

9. Bevisa, att 344 cosx+cos2x =0 foér alla virden p& . Néar giller likhets-
tecknet ?

10. I en likbent triangel ABC dras héjdlinjen fran spetsen C. Dess mittpunkt
ms vara D. I vilket forhallande delas sidan BC av den rita linjen AD?

ISLAND

I.
1. Tetraedret ABCD har kanterne AB=DB=BC=AC=1; AB=DC =x.

2
1) Vis at tedraedrets volumen er V = f—2 l/4 — 2%,

2) Find grenserne for x.

3) Bestem x séledes, at V antager sin stersteveerdi.

4) Beregn vinklerne mellem sammenstedende sideflader, nar tetraedrets volu-
men er si stort som muligt.
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2. Rodderne i en anden grads ligning er sidanne tal, at deres differens, sum og
produkt danner tre ps hinanden folgende led i en differensraekke, medens diffe-
rensen, produktet og summen er tre pd hinanden folgende led i en kvotientrakke.
Bestem ligningen.

3. Til parablen y®=9x trakkes normalen i punktet P(4, 6). Derpé tegnes en
cirkel med centrum i normalens skeringspunkt med X-aksen, siledes at cirklen
rgrer parablen i P. Endvidere tegnes en cirkel, som rerer parablen udvendigt i P
og rorer Y-aksen. Opskriv ligningerne for disse cirkler og bestem deres ydre lig-
hedspunkt.

II.
1. Underseg kurven (x—1)(x—4)
y=——7":
x

tegn den og bestem arealet af det omrade, der begrenses af X-aksen og kurven.
Payvis, at midtpunkterne af de med X-aksen parallelle korder til kurven ligger pé
en ret linie, samt at kurvens tangenter i skeringspunkterne med X-aksen skeerer
hinanden pé& denne linie.

2. A. Beregn integralerne:
-
a) S dx; b) Scosx l/sinm+2dx; c) sz In3zdx .

H Ve +3

B. Find den fuldstendige lesning til ligningen
2,736 cosx +1,736 sinx = 3,175 .

3. a) a®=4()/3—4). Find z.

b) a® +kx?+3x+1=0. Bestem % saledes, at ligningen har en rational rod, og
lgs derefter ligningen.

c) Bestem k séledes, at 422 +8xy +ky? =9 fremstiller to rette linier.

NORGE

Reallinjen.
1. Finn « av likningen
(@ +p)(@®+4px+1) = 0,

der p er et kjent tall. Hva for verdier av p gir reelle ratter ? Nar er antallet reelle
rotter 4, 3, 2 eller 1?
Vi har gitt likningen |

8in?2v — 6 sinv cos 20+ 5 cosv —3 sinv —2 = 0.

Fer inn sinv som eneste ukjent, og vis at likningen da kan f& samme form som
den forste likningen i oppgaven. Bruk dette til & finne de verdier for » mellom 0°
og 360° som passer i likningen.

2. T en trekantet pyramide A BOD stér sidekanten BD vinkelrett pé grunnflaten
ABC. AB=a, BC =2a, /ABC =120° og LADC=90°. Finn AC uttrykt ved a.
Vis s& ved utregning at BD =a, og finn beyningsvinkelen mellom flatene ACD
og ABC.
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Legg et plan gjennom B vinkelrett pd AD. Planet skjerer AD i B og AC i F.
Vis at BF er parallell med CD. Finn sidene i trekanten BEF uttrykt ved a.
Finn til slutt forholdet mellom volumene til pyramidene ABFE og ABCD.

3. Skriv opp likningen for en sirkel som tangerer y-aksen, har sentrum pé den
positive delen av z-aksen og har radius R.

Finn polen (xy, 4,) til den rette linjen x+y +2=0 med hensyn til sirkelen. Vis
at polen, ndr R varierer, folger en kurve som har likningen y=x%/(x —2).

Finn den deriverte til y, droft fortegnet til den deriverte og finn de maksimal-
og minimalpunkter kurven har.

Tegn kurven pé& millimeterpapiret med enhet 1 ¢cm. Polen kan ligge bare pé en
del av kurven. Dra opp denne delen med hel strek, og prikk resten av kurven.

SVERIGE

Matematiska grenen.
1. En ellips, som har medelpunkten i origo och storaxeln utefter z-axeln i ett rit-

vinkligt koordinatsystem, har excentriciteten %VE och tangerar linjen 2x —y +3 =0.
Bestdam ellipsens ekvation.

2. De bada plattorna i en kondensator med kapacitansen C farad &r forenade
med ett motstdnd med resistansen R ohm. Om spénningen mellan kondensator-
plattorna i ett visst dgonblick &r U, volt och ¢ sekunder senare U, volt, géiller sam-
bandet U,=U, e EC. Vid experiment med en kondensator, for vilken C'= 10-5,
har man funnit U,=20 och U,=1. Berdkna E.

3. I en konvergent osndlig geometrisk serie ér den andra termen 2. Bestdm
seriens summa som funktion av den forsta termen, och ange funktionens defini-
tionsomréde. Representera slutligen funktionen grafiskt med angivande av even-
tuella maximi- och minimipunkter samt asymptoter. -

4. Punkterna A (6;0) och B (0;4) &r punkter i ett ratvinkligt koordinatsystem.
En rit linje, parallell med linjen x +y =0, skiir z-axeln i punkten C och y-axeln i
punkten D. Bestsim och upprita orten fér skérningspunkten mellan de réta lin-
jerna AD och BC.

5. I en triangel 4r en vinkel 30° och den motst&ende sidan medelproportional
till de 6vriga sidorna. Berikna triangelns 6vriga vinklar.

6. I en triangel #r en hojd 10 cm. Den halveras av en av de andra hdjderna.
Ange triangelns yta som funktion av den spetsiga vinkeln mellan dessa hojder, och
bestdm denna ytas minsta vérde.

7. Undersék kurvan y =x + 2 cos?x med avseende p& maximi- och minimipunk-
ter samt inflexionspunkter. Visa, att kurvan ett obegrinsat antal ganger tangerar
var och en av de rita linjerna y =« och y = + 2. Upprita kurvan i dess huvuddrag.
Punkterna 4 och B &r tvé p& varandra foljande kontaktpunkter med linjen y =z.
Berikna ytan av det #ndliga omréde i koordinatplanet, som begrénsas av kurvan
och striackan 4B.

8. En klotsektors volym &r 4n cm3. Ange sektorns totala yta som funktion av
sfiarens radie, och bestdm denna funktions eventuella maxima och minima.




SUMMARY IN ENGLISH

Nits Asuunp: The fundamental theorems of information theory, II.
(Swedish.)

In part II of the article, the second fundamental theorem of information
theory is proved for the binary, symmetrical channel.

FREDERIK GLAVEN : Points in games with binomial distribution. (Danish.)

In many competitions and games, the winner is the one who gets the greatest
score of points. Using the theory of probability, the author examines different
ways of giving such points, in order to obtain the most appropriate way, that
is, the point scale by which the best participant has the largest probability of
winning the competition. Football matches are used as an example, and an al-
ternative giving of points is suggested instead of the commonly used 2-1-0 scale.

L. Carritz: Some arithmetic properties of the coefficients in a certain
expansion. (English.)

In the expansions

o0 C o0 72 n
e =] (1+—7-:x"), z = 2(6"’1 —1) ,
n=1 n: n=1

the following properties are proved for the (integer) coefficients ¢, and y,: Let
p be a prime; then
If p|n, then cpn=cy (mod p); cpr= —1 (mod p).
If p<n, ptn, then ¢, =0 (mod p).
If p<n, p|n, p=2 if 2|n, then y,=0 (mod p),
also yt=0 (mod p*), p>3, ¢>1.

JT
CHRISTIAN ANDERSEN: A generalization of the series for In 2 and e
(Danish.)

It is pointed out that the two series of the title are particular cases of formula
(2) p. 123.
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