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INFORMATIONSTEORIENS FUNDAMENTALSATSER, I

NILS ASLUND

Inledning. Riksdagsmannautskottsuppleantbostadsstéaderskevikarie-
barnbarnsbyxor? ér ett mindre ofta anlitat ord. Om man liter detta
praktord ersitta ordet nej i svensk normalprosa sa blir den intellektu-
ella behéllningen av diskussioner och konversationer densamma som
forut, men replikféringen kommer som regel att ta lingre tid. A andra
sidan utgor ordet nej ofta ett sddant diskussionsinpass, dar debattoren
onskar fa sin tanke understédd av all den auktoritet, som en invecklad
artikulation férmér frammana, en omstindighet, som talar till prakt-
ordets fordel. De moderna sprakens utformning visar emellertid, att
dylika synpunkter sillan varit viigledande, d.v.s. ordens lingder &r
mindre beroende av ordens innebord #n av andra faktorer, framfor allt
av Onskan att i obegrinsad omfattning hinna ge uttryck for ihardigt
aterkommande tankestrak. En av de forsta som insig, att en matema-
tisk modell for informationsoverforing pa motsvarande sitt bor vara
frigjord fran ordens eller meddelandenas innebérd, var R. V. L. Hart-
ley (1928). Ur observationen framvixte smaningom informationsteo-
riens 1:a huvudsats, formulerad av C. Shannon (1948), vari utsiges
vilken yttersta effektivitetsgrins som kan ernas genom att ofta avgivna
meddelanden gores korta medan mera exotiska tankeyttringar tillates ta
langre tid i ansprak.

Dionysosbysten pa Radhusplatsen uppgavs i gardagens tidning vara
gjord av mormor. Den dr sjilvfallet gjord av farmor. — Bokstavs- och
ljudférvringningar av detta slag kan alltsd ha férodande konsekvenser
for innehallet och aterspeglar en svaghet hos det svenska spraket som
medium fér informationstransmission. Ett odndligt upprepande av ordet
marmor skulle visserligen, siframt dhoraren icke dr stendév, undanrdja
risken for missforstdnd, men ett dylikt upprepande ér icke ett nddvén-
digt villkor fér att risken fér missférstand skall bli godtyckligt liten. Det
ar i sjilva verket mojligt att trots nidrvaron av slumpmaéssiga forvix-

1 Seminarieféredrag hostterminen 1958 vid Kungl. Tekniska Hogskolan, Stockholm.
2 Falstaff, fakir: En var sin egen professor.

(5]



6 NILS ASLUND

lingar upprétthalla en godtyckligt hog transmissionssikerhet och sndock
komma den ovan nimnda yttersta effektivitetsgrinsen godtyckligt nira.
Detta forvanande resultat har formulerats abstrakt i form av informa-
tionsteoriens 2:a huvudsats.

I det fsljande kommer informationsteoriens bada huvudsatser att
hirledas. Bevisen genomféres ej under allminnast mdjliga forutsitt-
ningar, varigenom en forhallandevis enkel matematisk teknik blir till-
fyllest. — Férutom huvudsatserna kommer ett ytterligare informations-
teoretiskt resultat att demonstreras, bersrande fragan hur ett informa-
tionsverbringande system kommer att vara belastat i tiden, d. v. s. om
pauser eller tidsdverdrag kommer att bli vanliga. Tillsammans bildar de
ovannémnda resultaten en logisk enhet av stor betydelse vid analyserandet
och syntetiserandet av informationssverférande system av méangskif-
tande slag.

Som exempel pa omraden, dar informationsteorien redan fatt stor
praktisk betydelse, kan nimnas telekommunikationstekniken, matema-
tikmaskintekniken och rymdforskningstekniken. Inom det senare om-
radet utgér overforandet av mitdata fran satelliter till stationer ok}
jorden ett centralt problem och fordrar ett informationséverforande
system med mycket hég kapacitet och liten storningskénslighet. — Teo-
riens tillimpningsmajligheter 4r emellertid ingalunda begrinsade till
tekniska fackomraden utan innefattar dven exempelvis arftlighetsforsk-
ning och sprakanalys.

Informationsteorien 4r en abstrakt, matematisk modell och vid dess
uppbyggande forekommer ej nagra bevissteg, som helt eller delvis &r
avhingiga av experimentella iakttagelser. For att understryka denna
abstrakta karaktér hos informationsteorien férekommer ej nagra kon-
kreta exempel eller praktiska hanvisningar i den foreliggande framstéll-
ningen. En lisare, som onskar framstéllningen kompletterad i detta
avseende, hinvisas till f6ljande litteratur, sirskilt boken av J aglom och
Jaglom:

A.J. Chintschin — A. N. Kolmogoroff, m. fl.: Arbeiten zur Informa-
tionstheorie, I. Deutscher Verlag der Wissenschaften, Berlin 1957.

A. Feinstein: Foundations of information theory. McGraw—Hill, New
York 1958.

A. M. Jaglom — I. M. Jaglom: Wahrscheinlichkeit wnd Information.
Deutscher Verlag der Wissenschaften, Berlin 1960.

Forfattaren 6nskar slutligen framféra sitt tack till laborator Germund
Dahlquist, som bidragit med ett flertal virdefulla andringsforslag av
det ursprungliga manuskriptet.
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1. Definition av H(X). Vi betraktar ett fullstindigt system av hén-

delser:

Tyy Ly oo vy Ty o

Vid varje forsok intriffar en och endast en av dessa héndelser.
Vi forutsitter, att mot detta system svarar ett fullstindigt system

av sannolikheter:
. n

P1s P2s + « +5 P 0= 2 =1, Zlvpi =1.
Systemet karakteriseras av ett schema X:
(1.1) X = (x1 Ty voe a:n) ]
P1P2 -+ Pn

Hos olika dylika scheman kan man intuitivt tala om olika grad av
obestimdhet. Betrakta t. ex. foljande tre scheman med tvé héndelser:

(xl Ty Ty Xy Ty T

1 o/’ \o99 001/’ \o5 0,5/

Schemat till vinster ar fullt bestimt. Schemat till hoger ar starkt obe-
stamt medan det mellersta schemat kan karakteriseras som foga obe-

stdmt.
A andra sidan kan man jimfora fljande tva scheman med olika antal

alternativ:
Ty %y Ty Ty T3
(o5 05) (3 3%)
varvid obestamdheten forefaller vara storre i det storre schemat.
Vi 6nskar bestaimma ett matt H(X) for den egenskap som ovan 15sligt
kallats obestamdhet. Vi skall darfor sitta upp ett antal postulat, som

rimligen bér vara uppfyllda, och sedan visa att dessa entydigt bestim-
mer formen pa H(X).

PosturaT 1. H(X) ar en funktion endast av sannolikheterna p;, p,
..., P, och ar kontinuerlig i omradet

n
p; 20, Yp,=1.
i=1

Vi skall i det foljande anvinda beteckningarna H(X) och H(py, ps,
..., p,) 1 samma betydelse.

PosTULAT 2. Om man till schemat X fogar en eller flera hindelser,
som aldrig kan intréffa, forblir H oférandrad, d. v. s.

H(pb P2 -+ Pns O) = H(pl’ D2s - -« pn) .
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Posturar 3. Obestimdheten i ett schema av » lika sannolika. héndelser,

11 1

d.v.s. H (—, — e, ~), ar en vixande funktion av n.
nmn n

Féljande scheman visar hur postulaten anknyter till de inledande
betraktelserna:

() (9 (%) (3

H oft')réi,ndra_é.

Kontinuerlig variation innebirande
dkning av H fran H(1) till H(3, }).

Betrakta nu tva hindelsescheman :

X med hindelserna z; (1 < ¢
Y med héndelserna y; (1 < j
Héndelserna a; beror eventuellt av hindelserna y;- Det fullstindiga
schemat av de m:'n sammansatta hindelserna z;y; betecknas XY, och
dess obestimdhet betecknas H(XY). Vi skall nu resonera oss fram till
ett fjirde postulat, som just ror sammansittning av hindelsescheman.

Forst skall tva specialfall betraktas.

A IA

SPECIALFALL I: Antag att X bestar av 1000 héndelser, vardera med
sannolikheten 1y, och att ¥ bestar av 100 héndelser vardera med sanno-
likheten ;. Vi antar att hindelserna i X &r oberoende av hindelserna
i Y. Tre decimala siffror 4,4,4,, bildande négot tal fran 000 till 999,
ir alltsd okanda fore ett X-forsok men fixeras genom detta. Analogt
ar tva decimala siffror B,B,, som bildar nagot tal fran 00 till 99, okénda
fore ett Y-forsok men fixeras genom detta. En hindelse i X ¥-schemat
karakteriseras darfér av fem decimala siffror A,4,4,B,B,, och de 10°
mdjliga kombinationerna har — pa grund av antagandet om oberoende
— vardera sannolikheten 10-5,

Det forefaller rimligt, att i detta specialfall lata antalet obekanta och
statistiskt sett likvirda siffror utgora matt pa motsvarande schemas
obestdmdhet. Exemplet kan varieras genom val av annan bas in 10,
och andra virden p4 m och n. Eftersom antalet siffror adderas, nir
scheman sammansitts, s& ar det rimligt att gora foljande ansats gene-

ellt: gX¥) - BHEX)+HY)  (om X och ¥ oberoende) .

SPECIALFALL II: Den féregdende ansatsen ir emellertid orimlig om X
och Y ar beroende. Betrakta den extrema situationen att utfallet av ett
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X-forsok entydigt bestimmer utfallet av ett Y -forsok. I detta fallet
synes det rimligt att ansitta

H(XY) = H(X) (om z entydigt bestimmer y) .

For att komma tillrdtta med de situationer, som ligger mellan de
betraktade ytterlighetsfallen, skall vi inféra begreppet betingad obe-
stdmdhet: Med H(Y |z,;) menas obestimdheten i schemat

3 % Ys v Ym
(Ylz:) = (p(yllwi) p(alzy) ... p(ymlwi)> ’

dar p(y;|x;) dr den av z; betingade sannolikheten for y;.

Vi skall &ven infora beteckningen H(Y |X) for ett matt pa den obe-
stdmdhet i Y som 1 medeltal kommer att finnas kvar, sedan utfallet i
schemat X blivit kint. Vi definiera darfor

(1.2) H(Y|X) = §p<x¢>H<Y|xi>.

Betrakta ater de tva specialfallen. Om X och Y &r oberoende, s&
galler p(y;|x;)=p(y;), alltsd H(Y |z,)=H(Y), varav foljer
(1.3) H(Y|X) = H(Y) (om X och Y oberoende) .

Om daremot x; entydigt bestimmer utfallet av Y-forsoket, sa finns det
ingen obestamdhet efter X-forstket. Det &r d& rimligt att sitta
H(Y |z;)=0 varav foljer

HY|X)=0 (om x entydigt bestammer y) .
Bigge specialfallen blir tillgodosedda, om vi infér féljande postulat:
PosturaT 4.

(1.4) H(XY) = HX)+H(Y|X).

Sars: Postulaten 1—4 definierar funktionen H entydigt (bortsett fran en
multiplikativ konstant). Det giller

H(py, pos -+, Pa) = —4 ' plogp;; 22 0.
=1
Om p; ar noll for nagot 4, skall p, logp, sittas lika med noll.

BEevis: Infér funktionen

Lin) =HG“1@ 1)
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Enligt postulat 3 skall L(n) vara en vixande funktion av n. Vi skall

forst visa att L(n) = Alogn; 1> 0.

Lat m och r vara naturliga tal. Betrakta m oavhingiga scheman

81, S, .., 8, som vart och ett innefattar r lika sannolika hiéndelser,
d.v.s.
11 1
H(S,) = H(—,~, _> _Lr); l<k<m.
ror r

Enligt postulat 4 och p. g. a. oavhingigheten ar
H(S8, ... 8,) =k‘? H(S;) = mL(r) .
=1
Schemat 8,8, ... §,, innefattar ™ oberoende hindelser med samma
sannolikheter r—™. Alltsé &r
H(S8y ... 8,) = L(r™), d. v.s. L(r™) = mL(r) .

Analogt giller L(s®)=nL(s) fér varje talpar av naturliga tal n och s.
Vilj nu godtyckliga positiva heltal 7, s och n som uppfyller villkoret
s"2r>1 och bestam m (positivt heltal) s& att »™ < s® <rm+1, Hirav foljer

a] 1
m-%ogr £ n-%ogs < (m+1)-%logr, d.v.s. o %8s ™

IIA

n ~ dogr mn m

Relationen giller f6r varje logaritmbas a > 1. Eftersom L(n) ir en vix-
ande funktion av n giller L(r™) < L(s®) < L(r™+1), d. v. s.

(s

é—

mL(r) <nL(s) < (m+1)L(r) eller
L(r

in
|8

-4~

S8
™~
3_[»—-

~

L(s) . dogs . s . . 1 —
—— och —— ligger bada i samma intervall av lingden - och alltsa géller
L(r) ogr n

1
s -.
n

L(r) 9ogr

l L(s) “logs

Eftersom s och r &r godtyckliga och n kan véljas godtyekligt stort sa

giller Lis)  Lir)
dogs alogr

= konst. =1 (r,s > 1).

Alltsa ar L(n) = J-9logn .

Relationen géller dven for n=1, ty kL(1)=L(1%), d.v.s. L(1)=0.
Alltsa géller relationen for alla naturliga tal n. Eftersom L(n) ér icke
avtagande &r 1=0.

R
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Av blogx ="loga-logz=1-*logz foljer, att vi kan sitta A=1 och lata
den multiplikativa konstanten uttryckas av logaritmbasen, som vi senare
kommer att fixera. Vi skriver till vidare »log« och inforstar darmed, att
basen ej ar fixerad.

Satsen dr dirmed bevisad i specialfallet p;=1/n. Lat nu p;, 1=1, 2,
..., n, vara godtyckliga positiva rationella tal, g; positiva heltal, och 1at

p(x;) = Py =&§ 29 =9-
g =1
Vi infor ett schema Z, som #r avhingigt av X enligt foljande: Z
innefattar g stycken héndelser 2y, 2,, . . ., 2,. Vi indelar dessa i n stycken
grupper Gy, Gy, ..., G,. Gruppen G innefattar g, sinsemellan lika sanno-
lika hindelser. Vi antar, att hiandelsen z; implicerar, att en av handel-
serna i G, intriffar. Daremot intréffar ej nagon héndelse i ndgon av de
andra grupperna. Alltsé: ‘

| 0, om z¢Gy
Pl @) = il/gk, om z;€G,.
Da galler 11 1
H(Z|2,) = H(—,—, —) ~ L(gy) = logg, ,
g Ix 9r 9 F F

och harav enligt (1.2):
n n n
H(Z\X) = 3 pH(Z|x;) = 3 p;logg; = p;logp;+logg .
=1 =1 =1

Lat oss underséka H(XZ). Hindelsen w;2; ar mdjlig endast om z;
ingar i gruppen G;. I denna grupp ingar g, stycken héndelser. Totala
antalet mojliga héndelser x;z; ar da

2 0%=9-
k=1
1 1
Sannolikheten fér hiindelsen w;z; ir p,-—=— d. v. s. densamma for alla
9 9

g hindelserna. Da giller H(XZ)= L(g) =logg, och enligt postulat 4 galler
H(XZ)=H(X)+ H(Z|X), alltsa

(1.5) H(X) = — 2 p;logp; -
i=1
Ovanstaende ar giltigt for alla positiva rationella tal pq, p,, - . ., Pp,

for vilka X7 p;=1. D4 H(X) enligt postulat 1 &r kontinuerlig i p,, p,,
.+, Pn, S& giller uttrycket #ven for irrationella p;> 0.
Postulat 2 (eller postulat 1) fordrar slutligen att vi definierar

(1.6) 0-log0 = 0.
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Det aterstar att visa att postulaten 1-4 verkligen #r satisfierade av
funktionen, som definieras av (1.5) och (1.6). Harledningen hittills visar,
att (1.5) tillsammans med (1.6) ger den enda aterstiende mdjligheten,
men det kan ju ténkas, att postulatens krav ar si harda, att de over-
huvud icke kan uppfyllas.

De tre forsta postulaten foljer tamligen direkt. Fér att verifiera postu-
lat 4 betraktar vi, med beaktande av relationen p(x;)p(y;|x;)=p(zy;)
och definitionen (1.2), den betingade obestdimdheten H(Y | X):

H(Y|X) = = X p(x;) 3 ply;|2;) logp(y; ;)
¢ J
= — X' p(xy;) (log p(xy;) —log p(x;))
i

= HXY)+ 3 3 plxy;) logp(z;) .
Men Xp(xy;)=p(x;), alltsd ’
H(Y|X) = HXY)+ Y p(x,) logp(x;) = H(XY)-H(X).

Harav foljer att postulat 4 #r satisfierat. Hela satsen ar hirmed bevisad.

2. Egenskaper hos H(X).
1) HX)=0.

2) H(0,0,...,0,1,0,...,0)=0. Obestimdheten i ett forutbestimt
system ar noll.

3) —H(p,, pg, ..., p,) ir en strikt konvex funktion av var och en av
variablerna p, for 0<p, < 1.

En funktion @(x) kallas strikt konvex i ett intervall, om det for alla
tal 2, och z, i intervallet och fér alla tal x mellan 0 och 1 giller

D(py + (1= p)ay) < pD(ay) + (1 — p)D() .

Om tecknet < i denna definition ersittes med <, kallas funktionen
D(x) konvex (utan tilligget strikt). Geometriskt innebar strikt konvexitet,
att kurvan y=®(z) mellan x, och z, ligger under kordan. (Nir endast
konvexitet forutsitts, kan kurvan vara styckevis ritlinjig.) Om @"(x)
existerar overallt i ett intervall, s& ar @''(z) > 0 ett tillrackligt villkor for
strikt konvexitet.

Betrakta funktionen @(x)=xlogz. Da dr @”(x)=1/x>0 for x> 0.
Av (1.6) foljer att konvexitetsomradet kan utstrickas till z>0. Alltsa
dr — H(X) en strikt konvex funktion av var och en av variablerna p, for
p;2 0.
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Antag att man placerar icke-negativa massor u;, U, . . ., t, i 7 punk-
ter 2, 2y, . - ., 2, P& en strikt konvex kurvbage. Det ar di uppenbart,
att tyngdpunkten fér denna massfordelning ligger ovanfor kurvbégen,
sivida ej alla masspunkterna sammanfaller, i vilket fall tyngdpunkten
ligger pa sjilva kurvbagen. Denna betraktelse leder till en mycket an-
vindbar olikhet:

GENERELL OLIKHET FOR STRIKT KONVEXA FUNKTIONER. L&t u;20,
2;p;=1, D(2) strikt konvex i ett intervall, som innehéller alla punkterna
z;. Da géller:

(2.1) (2/», ) = St

J
Likhetstecknet géller om och endast om alla z; ar lika. (Ett strangt bevis
finns i Hardy-Littlewood—Polya: I nequahtzes p. 70.)

4) Denna generella olikhet skall nu anviindas for bevis av den viktiga
olikheten
(2.2) H(X)z HXY).

Likhet giller om och endast om X och Y &r oberoende.
Brvis: Satt i den generella olikheten for konvexa funktioner (2.1):
u = PY;), 2z = p(x;|y;), P(z) = zlogz.
Enligt (1.2) galler

—-HX\|Y) = 2'10y,H(X|yJ 22/‘:¢(Z ;.é:’ (s’yjz,-).

j=114= =
Men m m
Kz =_21: vy y;) = pl*y) ,
Jj=1 J=
alltsa

n

~H(X|Y) 2 3 0{pla) = 3 pla) logate) = ~H(X),

=1

varav (2.2) direkt foljer.
5) Av (2.2) och (1.4) foljer
(2.3) HXY) = HX)+H(Y).
Likhet géller om och endast om X och Y &r oberoende.

6) Slutligen skall en annan viktig egenskap visas:

11 1
(2.4) H(py, Doy « -5 Pn) S H(—,—, ...,—) = logn .
nn n

Likhet giller om och endast om p,=1/n for alla <.



14 NILS ASLUND
Bevis: Satt i (2.1)
1
R D(z) = zlogz.

Man far 1 1 " 1
—log(-|=®(-) =Y -D(p,) ==~ logp; .
n 8 (n) <’n) =< 2 njg P 108 P;
Harav f6ljer (2.4) direkt.
Av alla schema med samma antal alternativ ar obestimdheten storst
néir alla sannolikheter ér lika, jmf. betraktelserna pa sid. 7-8.

3. Informationsbegreppet. Betrakta tva scheman X och Y. Hindel-
serna x och y férutsittes kunna bero av varandra. Obestimdheten i
X-schemat innan y har fixerats ar H(X).

Ett schema X har fér en iakttagare en viss obestimdhet H (X). Han
kan ej iaktta vilken hindelse x;, som utfallit vid ett visst forsok; déar-
emot kdnner han till sannolikheterna fér de olika mojliga hindelserna.

Takttagaren kan notera utfallet av en héiindelse y; 1 ett schema Y. Om
det finnes ett statistiskt beroende mellan X och ¥ bor noterandet av Y;
ge en viss information om vilken hindelse x;, som férevarit. H (X1Y)
ar ett méatt pad den obestimdhet, som i medeltal kommer att finnas
kvar sedan utfallet i schemat Y blivit ként.

Kunskapen om y éndrar alltsd i medeltal obestimdheten i X-schemat
frén H(X) till H(X|Y). Enligt (2.2) ar H(X)= H(X|Y).

Den icke-negativa kvantiteten H(X)—H(X|Y) ar den dndring i obe-
stimdhet i X-systemet, som kunskapen om y i medeltal ger. Vi kallar
denna kvantitet for den information forsoket Y i medeltal ger om x och
betecknar den I(X; ¥). Vi har

(3.1) I(X;Y)=HX)-HEX|Y) = - ¥ plx,) logp(z,)

+2 P(y;) 2 p(x;|y;)log p(x;]y;)
J i

=22 play;) log p(x;)+ 3 3 p(xy;) logp(x;|y,)
i g v

v )

p(z;)

p(z; l?/_j)
. p(z;)
Med hénsyn till ovanstéende &r det rimligt att uppfatta detta uttryck
som den information intriffandet av hindelsen Y; ger om x,. Vi skall kalla
detta uttryck fér den émsesidiga informationen mellan z; och y;, vilket
motiveras av att

Detta &r en medelvirdesbildning av uttrycket I (%5 y;) =log
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p(x;|Y;) p(xy;) P(yj | ;)

3.9) I(z;;y;) = log—— > =log———"—=1lo = I(
(3:2) Lo 99) = 198= ) = E plaapi) ~ ° o)
Den information intraffandet av ; ger betriffande y; ir densamma, som
intraffandet av y; ger betriffande z;.

Yj5 ;) -

4. Egenskaper hos I.

1) Enligt (3.2) ar I(z;; y;)=1(y;; x;). Harav foljer f6r medelvirdena:
(4.1) I(X;Y)=I1(Y; X).

2) I(x;;y;)=0 om z; och y; oberoende, d. v.s. om
(4.2) p(y;) = Pl)py;) -

3) For fixt p(x;) ar I(z;; y;) max nir p(z;|y;)=1. Utfallet y; innebér
da, att x; ar en siker hindelse.
(4.3) {I(x;; Y;)jmex = —logp(x;) = I(x;) 2 0.

I(x;) ar alltsd den maximala information, som nagon héndelse y; kan
ge betriffande hindelsen ;, och kallas sjdlvinformationen hos hiéndelsen
z;. Det ar den informationsmingd, som nagon annan hindelse méaste
overbringa betriffande z,, for att x; skall vara fullstdndigt specificerad.

4) Definitionsmissigt géller

Ty gy = log L) log iy 2 +1(y;) = logplailyy) + 1),
<0 <0
d.v.s.
) =
(4.4) ﬁgz; > }I(wi; y;) = I(y;; ) .

I(x;) dr alltsd dels den maximala information som Gver huvud kan erhdllas
betriffande x; genom ndgon amnan hindelse (information nodvindig for
att specificera x;, jmf. (4.3)), dels den maximala information som hindelsen
x; kan éverbringa betriffande ndgon annan hindelse (jmf. I(x;) = I(y;; ;).

Observera att det alltid giller I(z;)=0 och I(y;) 20, medan det kan
gilla I(x;;y;) <0, nimligen nir p(xzy;) < p(@,)p(y;)- Déremot giller en-
ligt foregaende fér medelvirdet av I(xz;; y;) att I (X; Y)=0.

5) For medelvirdet I(X) av sjialvinformationerna I(x;) géller

(4.5) I(X) = Y p)l(x) = — 3 p@;) logp(z;) = H(X) .

H(X) dr alltsd medelvirdet av de informationsmdngder, som erfordras for
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att specificera varje enskild hindelse x;, eller (jmf. (4.4)) den mazimala
information, som hindelserna x; med givna sannolikheter © medeltal kan
overbringa per hindelse.

H(X) och I(X) ar alltsa beteckningar f6r en och samma sak, men den
ena eller andra beteckningen &r att foredra beroende pa om vi talar om
obestimdhet eller om information, vilka begrepp vi nu relaterat fast till
varandra.

6) I overensstdmmelse med definitionen av I(x;) bildar vi sjilvinfor
mationen hos den sammansatta héindelsen zy;:

I(@y;) = —logp(ay;) .
For medelvirdet I(XY) giller da
IXY) = 3 pley)lxy;) = - 3 pxy;) logpley;) = HXY).
iJ ig
D4 giller enligt (2.3):
(4.6) I(XY) = I(X)+1(Y).

Likhet giller om « och y &r oberoende.

Statistiskt beroende mellan delhindelserna kan ej 6ka medelinformationen
per sammansatt hindelse utéver vad som kan ernds ndr delhindelserna dr
statistiskt oberoende. '

Att likhet giller i (4.6) om x och y &r oberoende inses &ven ur (4.2),
som ger = —logp(z;y;) = —logp(x;) —logp(y;), alltsa

(4.7) I(y;) = I(xg)+1(y;) -

5. Det binidra schemat. Logaritmbasen. Betrakta nu det enklaste av
alla majliga icke férutbestimda scheman:

X = ( , xz).
Enligt (2.4) ar Py Dy
1
Hows = H (>, 2) = H(3, 1) = — i log + Hlogd) = —log}.
Detta ar alltsa (jmf. (4.5)) den maximala medelinformation, som detta
schema dver huvud kan Gverbringa per hindelse. Sjilvinformationen hos
héindelserna z, och #, ér hirvid lika stor och ocksd = —log}.

Det synes rimligt att gora denna informationsmingd till enket, d. v. s.
fastlagga logaritmbasen ur relationen —log}=1. Detta ger basen 2.
I det foljande forstar vi med beteckningen »log« att logaritmbasen dr 2.
Enheten for informationen kallas bit.

Ett bindrt schema (tvaliges-schema) kan enligt ovan i genomsnitt
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maximalt overbringa informationen 1 bit per hindelse. Hdarvid dr sjilv-
informationen for vardera hindelsen =1 bit. Observera, att sjalvinforma-
tionen fér ena hindelsen i ett bindrt schema kan vara stérre én 1 bit;
den kan i verkligheten vara hur stor som helst, ndmligen nar sannolik-
heten fér hiandelsen &r hur liten som helst. Medelinformationen per han-
delse kan & andra sidan aldrig vara stérre &n 1 bit men vél mindre.
Héarav inses att det exempelvis dr olampligt att, sdsom i en del litteratur,
lata bit vara synonym for binir siffra. En binir siffra 6verbringar infor-
mationen 1 bit nir den intréffar med a priori-sannolikheten %, d. v.s.
har sjilvinformationen 1 bit, men kan i andra fall Gverbringa savil
storre som mindre sjalvinformation én 1 bit. — En invandningsfri syno-
nym f6r bindr siffra r daremot binit (binary digit).

Vi belyser ovanstiende med fig. 1, dir hiindelsen z; har sannolikheten
p och z, sannolikheten 1—p, d. v. s.

H(X) = —plogp—(1—p)log(l-p)
I(x,) = —logp, I(x,) = —log(l—p).
I I(z)) I{z,)

H

1)0 i 1,0 i

0,5% 0,51

0 0.5 10 » 0 0.5 1,0 P

Fig. 1

6. Anmiirkning betriffande inneborden av H(X). Vi arbetade i borjan
med tickbendmningen »obestimdhet« for H(X); pa ett senare stadium
fann vi skal for att tillskriva H(X) bendmningen »medelinformation per
hindelse«. Helt oavsett om dessa namn har nagon fysikalisk relevans
eller ej kan vi nu fastsla f6ljande betriffande H(X):

1° Varje fullstindigt system av héndelser med motsvarande sanno-
likheter, d. v. s. varje schema X, definierar entydigt ett uttryck H(X).

2° Uttrycket H(X) lyder vissa enkla relationer (jmf. 2), som har
direkta anknytningar till de statistiska egenskaperna hos ett schema av
den typ, som vi utgatt ifran.

NMT, Hefte 1-2, 1961. — 2
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Dessa omsténdigheter ar skil nog for att uttrycket H(X) ar av in-
tresse ur rent statistisk synpunkt. For vissa fysikaliska system, som kan
underordnas ett schema X, visar sig uttrycket H(X) vara av fundamental
betydelse vid beskrivandet av systemet och dess egenskaper. Ett dylikt
system ar den termodynamiska fasrymden. Ur denna tillimpning hér-
leder sig beteckningen entrop: fér H(X). I det f6ljande kommer denna
bendmning att anvindas f6r H(X), 4ven nir andra system beskrives.

Ehuru vi motiverat en del operationer vi féretagit med entropi-
uttrycket H(X) genom att anspela pa informationsbegreppet (exempelvis
vid bildandet av I(X; Y)=H(X)— H(X|Y)), har vi hittills icke erhallit
nagon bekriftelse pa, att H(X) har nagon konkret fysikalisk innebdrd
av intresse vid beskrivandet av ett system for informationséverforing.
En dylik bekriftelse kommer vi nu att erhalla i form av den s. k. forsta
Sundamentalsatsen.

7. Begreppet informationskilla. Kalla hindelserna i ett schema en-
ligt (1.1) for meddelanden m; (1<¢<N). Ett forsok utgéres av att ett
meddelande slumpmaissigt utviljes ur méngden {m,}. Vid upprepade
fors6k ar resultatet vid varje forsok oberoende av resultaten vid ovriga
fors6k. Sannolikheten for att m, utviljes ar p(m,;). Forsoken ske i tids-
foljd och p(m,) forutsittes vara tidsoberoende. En f6ljd av f6rs6k resul-
terar i genererandet av en foljd statistiskt oberoende meddelanden.

Ovanstaende definierar en speciell typ av informationskilla, nimligen
en diskret, stationér killa genererande statistiskt oberoende meddelan-
den. Vi skall forutsitta, att killan genererar ligre enheter &n med-
delanden, men att dessa ligre enheter kan sammanfattas till meddelan-
den, s& att vi fortfarande kan definiera killan enligt ovan. I det all-
ménna fallet kan man forutsitta, att denna sénderdelning (segmentering)
av meddelandena kan ske pé olika nivder, varvid man erhaller exempelvis
meningar, ord, bokstiver, tecken etc. Meddelande-nivdn ar den ligsta,
som uppdelar symbolf6ljden ur kéllan i statistiskt oberoende enheter. I den
foljande framstéllningen skall vi forutsitta, att meddelandena kan seg-
menteras pa den ligre nivan symboler. Den andliga méingden férekom-
mande olika symboler skall vi kalla alfabetet.

En allménnare typ av diskreta informationskillor utgéres av dem,
dir en segmentering av den utgidende symbolf6ljden i statistiskt obero-
ende dndliga enheter dr omojlig. En forsta generalisering utgér de kallor,
som genererar Markov-kedjor (behandlade av Shannon m. fl.). McMil-
lan har definierat (1953) en typ av diskreta kéllor, s. k. ergodiska killor,
som mojliggér en matematisk uppbyggnad av informationsteorien under
synnerligen allménna forutsittningar om symbolféljdens statistiska
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natur. Denna framstéllning fordrar emellertid avancerade metoder, och
kommer ej att berdras hér.

8. Begreppet coder. Med en coder skall vi forsta en anordning, som pa
ingangssidan tar emot symboler eller grupper av symboler, tillhérande
ett visst alfabet, och som pa utgangssidan avger symboler tillhérande
ett annat alfabet. En coder ér deterministisk, d. v. s. identiska ingdngs-
sviter av symboler resulterar i identiska utgangssviter. Codern utgér ett
specialfall av en informationskanal, ndmligen en ostord kanal med minne.

Meddelanden, som codern mottar pa ingngssidan, resulterar i att med-
delanden avges pa utgangssidan. Vi gkall tills vidare forutsitta, att
codern behandlar varje ingdngsmeddelande for sig, d.v.s. lagrar de
separata insymbolerna i meddelandet och direfter kodar hela meddelan-
det som en enhet. Beroende pa efter vilken metod kodningen sker och pa hur
maénga symboler, som ingér i alfabetet pa utgingssidan, kommer ett visst
givet ingangsmeddelande att resultera i utgingsmeddelanden av olika
langd (olika antal symboler) vid olika coders. Vi kan d4 stélla problemet:

Givet en killa definierad enligt ovan, genererande meddelanden ur
en dndlig mingd {m,}. Vidare givet en coder, som omskriver de av
kallan genererade meddelandena i symboler ur ett givet alfabet om D
symboler. Metoden f6r kodningen #r ej fixerad.

ProBLEM: Finnes det nagon optimalkodning i bemirkelsen, att stati-
stiska medelvirdet av lingderna av de ur codern erhillna meddelandena
ar minimum med bibehallande av ett entydighetsvillkor innebéirande,
att varje svit av meddelanden pa ingingssidan entydigt kan identifieras
ur symbolsviten pa utgangssidan ?

Svaret pd denna problemstéllning kommer vi att erhilla genom ut-
nyttjandet av tva olikhetsrelationer.

9. Kraft-Szilard’s olikhet. Antag vi har ett alfabet {a,} med D stycken
olika symboler a,, a,, ..., ap. Lt de N stycken meddelandena m,; kodas
i andliga, ordnade foljder av symboler a,. Infor beteckningen s; fér den
a-kodade motsvarigheten till m;. Meddelandet s; har lingden n,;, om det
uppbyggs av n; stycken element ur {a,}. Dessa element behover icke
alla vara olika. En foljd av meddelanden (dragna med aterliggning) ur
{s;} kallar vi en s-foljd.

DEriNiTION: Méngden {s;} séiges vara avkodbar (decodable) om icke-
identiska m-féljder svarar mot icke-identiska a-foljder.

Sars: Nodvindigt och tillrdckligt villkor for att det skall finnas en avkod-
bar mdngd {s;} vars element har lingderna ny,n,, ..., ny dr att

2%
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~ |
(9.1) D,

=1
Bevis: Antag {s;} ir avkodbar, och infor

M = max{n;, ny, ..., ny} = lingden av lingsta meddelandet i {s;};
w; = antalet meddelanden i {s;}, som har lingden j;

N(k) = antalet s-foljder, som har lingden k stycken a-element.

Vi sitter N(k)=0 for k < 0. D4 giller enligt definitionen pa avkodbarhet:
M
N(k) = oy N(k—1)+ 0, N(k—2)+ ... + oy N(k— M) = 3 w;N(k—j) .
J=1

Antalet olika a-féljder av lingden k &r D¥, varfor det sikert giller att
N (k) < D*. Definiera N(0)=1 varvid olikheten &ven giller for k=0. Ar z
en komplex variabel si giller som bekant att potensserien X° (Dz)k=

o D¥2% har konvergensradien D-1. Potensserien 25> ) N(k)z* har folj-
aktligen en konvergensradie = D-!. Enligt en kind sats ur funktions-
teorien representerar varje potensserie en analytisk funktion innanfér
sin konvergenscirkel. Alltsé &r F(z)= 2} N(k)z* en analytisk funktion
for |z| < D-1. Det géller:

oo

F(z)—-1 =§ N(k)k =] z’czﬂ{ ;N (k—j)
=1 s

k=1
M 00 M oo
=Y wz D N(k—j)ek-i =] wizd 3" N(k)2* .
i=1 k=1 j=1 E=0
(Observera att N(k—j)=0 for k<j.) Mede(z)——-Zjﬂilezf géller darfor
F(z)—1=0Q(2): F(z), alltsa
Fiz) = —.

Lat x vara reell och >0. Eftersom F(z) &r analytisk foér |z|<D-,
s kan 1—-Q(x) ej ha nagot nollstille f6r x <D-1. D4 1—Q(0)=1 foljer
1-Q(x)>0,d.v.s.

M
Q) = ol < 1 for « < D1,

j=1
For x = D! giller da, eftersom Q(x) &r kontinuerlig, att

M M N
(9.2) SoDi=3w,D"M=3D"<],
J=1 ni=1 i=1

Detta ar ett nodvindigt villkor for att {s;} dr avkodbar.
Vi skall s3 visa, att om relationen (9.2) géller, s& gr det att konstruera
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w, stycken distinkta s;-meddelanden av lingden 1, w, stycken av ling-
den 2 a-element etc., vilka alla ar avkodbara.
Vi undersoker nagra olika M-virden:

M=1: o D11 < w, =D.
M=2: w,Dl1+w,D2 =<1 <> wy £ (D—w)D .
M=3: oD +w,D2+w;D? <1 <> wy £ [(D—wy)D— w,)D ,
ete. ‘ '
Eftersom o, aldrig ir negativ finner man, att varje sidan olikhet im-
plicerar alla de ovanfor stdende. — Sedan langderna fixerats pd sidant
siitt, att olikheterna &r uppfyllda, ér det exempelvis mdjligt att succes-
sivt bygga upp {s;} enligt regeln, att intet meddelande skall kunna bildas
ur nagot av de 6vriga genom tilligg av en andelse av a-element. Denna
regel innebar uppenbart ett hardare krav &n avkodbarhet, varfor (9.2)
ar ett tillrackligt villkor for att det skall finnas en avkodbar méngd {s;}

med foreskrivna langder nq,n,, . . ., y-

ExeEMPEL: Antag D=2; 0,=0, a,=1.

o £ 2; valj o, = 1.
Wy £ (2—my)2 = 2; vilj w, = 1.
wg £ [(2—w)2—w,y]2 = 2; Vilj wz = 2.
w, = 0 for k = 4, ty oD+ wD 2wz D3 = 1.

Man har exempelvis

8, = 0, 8 = 11, 85 = 100, g, = 101",

10. En hjilpsats.
Sars: Om ¢;20; X ,q;=1, och om vidare p;20; XL p;=1, sd giller

n

(10.1) — Y pilogp; = — X' pilogy; -

i=1 i=1
Likhet giller om och endast om ¢;=p; féri=1,2, ..., n.

Brvis: Satt i den generella olikheten (2.1) for strikt konvexa funk-

tioner:
w = Pjp 2 = P PR) = —logz.

@(z) ar konvex ty @''(z)=2"2loge>0. Man finner att
2 pi(—logg;+logp;) = (1) = 0.
J

11. Forsta fundamentalsatsen. Lat enligt 7 en kalla generera med-
delanden ur en mingd {m,}, dir 1<i <N, definierande ett schema M
med sannolikheter p(m;). Lat vidare som férut n; beteckna lingden av
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det mot m, svarande s;-meddelandet fran en till killan ansluten coder
med ett utgingsalfabet om D stycken symboler. Det sokta medelvirdet
(jmf. problemstéllningen i 8) ar

N
(1L.1) L =é'p(mi)n,- .

Infér vi 9;= W’ varvid q:> O, 2@,'1;]1% = 1, 88 gétller

N N N N
— 2 p(m;) logq; = 3 p(m;)n;log D +log > D™= LlogD+log 3 D™
i=1 t=1 )

=1 i=1
Enligt olikheten (9.1) ir vid avkodbara s;-meddelanden den sista loga-
ritmen <0, alltsa

N N
LlogD = — 3 p(m,) logg; 2 —_21’ p(m;) logp(m;) = H(M),
=1 1=

dar sista olikheten féljer av (10.1). Alltsa ar

N H(M)
L = myn, = —— .
£p( i)n‘t = IOgD

Villkor fér likhet ar
D—”i=p(mi); t=12...,N,
ty harvid ér Z¥, D™ =1 och q;=p(m,), d. v. s. villkoren fér likhet ir
uppfyllda i bada olikheterna. Villkoret for likhet ar alltss uppfyllt om
log p(m;) _ I(my)
logD  logD
tive n; lika med dessa heltal.

kvoterna —

ar heltal for alla index ¢, och vi viljer respek-

m;)

D icke heltal foér alla index 7. Emellertid

I det allménna fallet ar I
log

kan vi vélja heltalen n; si att for alla index 7 géller
I(my) <, < I(my)
logD logD
Vi visar forst, att det da finns avkodbara s,-meddelanden med langder
ng, d.v.s. att (9.1) &r satisfierad. Av (11.2) foljer m,logD>1I(m,) =
—logp(m,) eller log D™ <logp(m;), alltsé

N N
2D X p(my) = 1.
i=1 i=1
For medellingden L* vid denna kodning giller
HM) H(M)

<> Jn, = L*
logD _,;él plme)n; < logD

(11.2)

+1.

+1
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Vi har allts visat, att de mot m, svarande avkodbara meddelandena s;
kan ges lingder n;, si att statistiska medellingden L* for dessa med-
delanden lyder olikheten

HQ _ o, H)
logD — logD

(11.3) +1.

En dylik kodning existerar, diremot existerar ingen kodning sadan att
HM

L< 1 ( D)’ ty detta skulle fordra ett upphévande av det nédvindiga vill-

og

koret for avkodbarhet.

Vi utnyttjar nu det forhallandet, att meddelandena m; &r statistiskt
oberoende. En grupp om k stycken meddelanden m; kan da ténkas
genererad genom den sammansatta handelsen, att k stycken oberoende
men identiska killor, alla med entropien H(J), avger var sitt med-
delande. D4 &r enligt (2.3):

(11.4) HM,M, ... M) = kH(M) .
Codern mottar nu 6vermeddelanden av lingden k stycken m;-meddelan-
den och kodar dessa grupp efter grupp. Da giller
kH(M kH(M
an _ . kHOD
log D logD

+1,

dir LY ar statistiska medellingden av utgingssviterna svarande mot
grupperna om k meddelanden. I genomsnitt svarar da Lj [k = L* utgangs-
symboler mot varje ingdngsmeddelande, alltsé

HQO _ ., HOD 1

115 < .
(11.5) logD = logD ' %

Detta ar forsta fundamentalsatsen.

12. Tolkning av forsta fundamentalsatsen. Vélj speciellt D=2, d. v. s.
lat coderns utalfabet vara bindrt. D géller enligt (11.5):

H(M) < L* < H(M)+%.

Entropien H(M) for en informationskilla &r alltsd undre grinsen for
medelantalet bindra siffror, som vid optimal kodning erfordras per med-
delande m,.

Denna grans kan uppnas godtyckligt néra genom att m;-meddelan-
dena kodas i tillrackligt stora grupper, vilket frutsitter ett tillrackligh
stort minne hos codern.
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Deita resultat verifierar slutgiltigt det berdttigade 3 beteckningen medel-
information per hindelse for H(M) och bekriftar entropibegreppets funda-
mentala betydelse vid beskrivandet av informationssystem.

Vi 6nskar undersoka innebdrden av likheten

H(M) = L*

nir k=1, d. v. s. nir varje meddelande m, kodas separat (jmf. (11.3)).
Likhet giller, sisom vi tidigare konstaterat, om och endast om ut-
trycken —logp(m,)=1I(m;) &r heltal for i=1,2, ..., N , och koderna for
respektive m; ges lingder lika med dessa heltal, d. v. s. om

n,,;=I(m,;), i=1,2,...,.N.

For alla meddelanden m, giller da, att sjilvinformationen s bits dr lika med
antalet bindra siffror, som ingdr i den bindrkodade motsvarigheten till
meddelandet.

Under forutsittning att de binira utfallen ar statistiskt oberoende har
d4 enligt (4.7) dessa enskilda utfall i medeltal sjalvinformationen 1 bit.
Vore de statistiskt beroende skulle enligt (4.6) storre medelsjilvinfor-
mation &n 1 bit per utfall erfordras for att specificera meddelandena
entydigt. Enligt 5 kan & andra sidan ett binért schema i medeltal maai-
malt Gverbringa sjilvinformationen 1 bit per utfall, varvid fordras, att
respektive hindelser har a priori-sannolikheten }. Eftersom vi vet (genom
avkodbarhetsvillkoret), att meddelandena ér entydigt specificerade av
bindrkoderna har vi da bevisat, dels att de bindira utfallen dr statistiskt
oberoende, dels ait a priori-sannolikheterna Jor respektive utfall dr }.
Utgingen fran codern representerar filjaktligen en wnformationskdilla av
den typ vi definierat i 7 och har entropien H(3, =1

De egenskaper vi ovan hérlett for utféljden géller i fallet H(M)=L*.
Man kan generalisera till det allminna fallet, dar lim L*=H(M), och

k—>o0
konstaterar, att d&ven har utfsljden i limes antar de ovan nimnda egen-
skaperna vid optimal kodning.
Om medellingden f6r meddelandena fran en coder &r L si utgér den
positiva kvantiteten
L—-L* L*

=1-—= 0

1
L L’

r =

r

IA
IA

ett matt pa kodningens ineffektivitet. Denna kvantitet kallas redus-
dansen.

Innebérden av 1:a fundamentalsatsen kan uttryckas sé, att en redun-
dant killa (redundansen =+ 0) genom kodning kan transformeras till en
ekvivalent killa, vars redundans ar godtyckligt néra noll.
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ExemMPEL pd optimal kodning: Vi kodar bindrt foljande 8 med-
delanden, vilkas sannolikheter alla 4r av formen 2-%, si att motsvarande
sjalvinformationer &r heltal (jmf. (11.2)).

i p(m;) I(m;) = —logp(m,) 83
1 025 2 00

2 0,25 2 01

3 0,125 3 100
4 0,125 3 101
5 0,0625 4 ‘1100
6 0,0625 4 1101
7 0,0625 4 1110
8 0,0625 4 1111

Man finner, att H(M)=2,75 bits/meddelande, och alltsd ar det moj-
ligt att ernd L*=2,75 binits/meddelande. — Observera, att i forslaget
till kod-ord s; dr i varje kolumn sannolikheten foér en 0:a lika stor som
for en 1:a.

Systematiska metoder for bestéimmandet av bindrkoder foér givna
scheman har utarbetats av bl. a. Huffman och Fano.

(Fortsdittning ¢ ndasta hdfte.)



KONVEKSE FIGURERS JORDAN-INDHOLD

POUL EINAR HANSEN

Vi betragter konvekse punktmeengder i det n-dimensionale euklidiske
rum E». Idet E™ opfattes som et linesrt rum, betegner man som bekendt
en delmengde M af E™ som konveks, dersom det gelder, at nar to
punkter med stedvektorer x og y tilherer M, vil ogsa hele liniestykket,
der forbinder dem, tilhgre M, altss

(1-0)x+0yeM for xzeM,yeM,0=<0=<1.

I det folgende vil vi overalt forudsette om de konvekse figurer, vi
betragter, at de er begrensede; endvidere er det naturligt at tenke sig
dem som virkelig n-dimensionale, d. v.s. M tilhgrer ikke nogen linesr
mangfoldighed af lavere dimension end =.

Formélet med denne artikel er at give et bevis for s@tningen:

En begreenset konveks meengde M i+ E™ har et indhold.

Allerede i H. Minkowski’s klassiske undersggelser af de konvekse
figurer [4] gores der opmerksom pa det forhold, at en rumlig figur
alene ud fra den forudsetning, at den er konveks, har et rumfang, altsa
hvad vi i dag ville kalde et Jordan-indhold, og der fgres bevis herfor.
Ogsd W. Blaschke behandler sporgsmélet i en af sine beger [2], og
J. Hjelmslev gav i 1903 det forste publicerede bevis [5] for setningen
— Minkowski’s er et efterladt arbejde. I de nevnte behandlinger ville
en overfering til rum af vilkarlig dimension vere kompliceret.

11935 gav F. Behrend [1] et elegant bidrag til emnet. Han beviste
to setninger, der i hans behandling viste sig at veere ret nert sammen-
knyttede, nemlig:

(i) Lad M vere en vilkarlig begreenset mengde i E™ og ¢>0. M, skal
betegne meengden af punkter med afstande <e til M, d.v.s.

M, ={®|dyeM, [t—y| < ¢}.

Der gelder da, at M, har et indhold.
(ii) En begrenset maengde i £*, som er forening af konvekse maengder,
der hver indeholder en kugle med radius ¢ >0, har et indhold.

[26]
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Da man let viser, at en n-dimensional konveks meengde indeholder et
indre punkt og folgelig en kugle, giver (ii) som specialtilfzelde Minkowski’s
gamle resultat, nu i n dimensioner. Vi giver nu et andet bevis for dette
specialtilfzlde. Herved vil kun den grundleggende egenskab ved kon-
vekse meengder blive benyttet.

En dekkes med et net af terninger med kantlengde a. Hvis der er K
terninger mere i den mindste ydre end i den sterste indre terningfigur
for M, og hvis I(M) og I(M) betegner M’s ydre og indre Jordan-indhold,

gelder altsa -
0 IM)-I(M) £ Ka™.

Nu betragtes en mellemliggende terning 7', d. v.s. en terning, som
har punkter felles med M uden helt at tilhgre M ; af praktiske grunde
indfgres et nyt koordinatsystem Z, ... Z,, si T her bliver enhedsterning
i forste kvadrant. 7”s kanter tredeles, hvorved 7' deles i 3" terninger,
hver med indholdet a”/3" (i forhold til metrikken i E™). Vi pastar, at
mindst én af disse terninger (ved den tilsvarende inddeling af hele E")
enten gar til den indre eller ud af den ydre terningfigur for M. Enten er
nemlig en af »hjgrneterningerne« (dem, hvor der for intet z, gwlder
}<z,<4%) fri for punkter fra M og gar altsd ud af den ydre figur, eller
de indeholder alle et M-punkt, i hvilket tilfeelde vi nu godtger, at midter-
terningen 7'*, hvor for alle z, geelder } <z, <}, er indeholdt i M og dermed
gér ind i den indre figur. Dette er trivielt for n=1 og antages i dimension
n—1. Vi skerer med hyperplanen z, =%k, hvor $ <k < ; den betegnes P,
og det viser sig nu, at vi her far 7*n P i samme situation i forhold til
T AP som fer T* i forhold til 7'. Svarende til en hjerneterning i 7'nP,
hvor altsé 2z, =k og 0<z,<} for visse », medens §<2,<1 for de gvrige,
findes jo 2 =(2,, ...,7,) og #'=(,...,2,) i M med 0=z =%,
$<2/ <1 og de pvrige koordinater i samme intervaller som ved punk-
terne i den betragtede (n — 1)-dimensionale hjerneterning. Bestemmes nu
0, s& 0=0=<1 og (1—0)2;+062 =k (dette kan abenbart geres), da vil
punktet (1—0)z’+ 62" tilhore bade M og hjerneterningen. Dette gores
for alle hjgrneterninger i 7'nP. Idet M n P er konveks (hvilket er meget
let at vise), vil efter induktionsantagelsen hele midterterningen 7*nP
tilhgre M, og da dette gwlder for alle k i det betragtede midterinterval,
har vi vist det pastdede T*< M. Endelig giver induktion gyldigheden
forn=2,3, ....

Efter 37-deling af alle mellemterninger vil der altsd hgjst veere
K(3"—1) af de nye terninger i mellemfiguren, med andre ord

0

IIA

I(M)-I(M) £ ——— Ka".
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Ved p gentagelser af hele processen fas

3r—1
37L

b

- p
0 < I(M)—I(M) < ( ) Ka" >0 for po oo

d.v.s. I(M)—I(M)=0, hvorved s@tningen er vist.

2, P
[\\ ‘\\“\\.
A\
. T-*
L//'X — /r—'/.
» 2
k 1
T T

n=2

Pa figuren er vist sagens simple karakter i tilfeeldet =2, hvor ogsé
ideen i det givne bevis er antydet.

Lesere, som métte vere interesserede i en moderne indferelse i de
konvekse figurers teori, kan f. eks. henvises til Eggleston’s bog om
emnet [3].
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MUSIKK OG EUKLIDSKE ALGORITMER
VIGGO BRUN
T musikkteorien har folgende fire problemer veert behandlet:
ProsrLEM 1. Finn to naturlige tall z og y slik at

log2 log}
x ~ y T .

(1)

Her betyr ~ stilneermet lik«. Tilnwrmelsen ber veere si god som
mulig, uten at = og y blir for store. Det er likegyldig hvilket logaritme-
system vi bruker, da det bare er forholdet mellom de to tellere som har
noe & si. Problemet er behandlet av L. Euler i avhandlingen »Tentamen
novae theoriae musicae« [8]. Euler benytter seg av kjedebrgken

log2 1
1gg= 1+
o
8 43,1
2 4=
3+ .
og regner ut tilnermelsesbrgkene
2 3 5 7 12 17
1°2°3° ¢ 77100777

Euler har da tatt med ogsi de sikalte »innskutte tilnsermelsesbrokers,
altssd de man far nar man skriver kjedebrgken som

14—

[29]
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og etterhvert avbryter den foran ett av plusstegnene. Som lgsning av (1)
finner han da for eksempel =17, y=10.

ProBLEM 2. Finn tre naturlige tall z, y og z slik at

log2 log logs
z ~o y ~ z .

(2)

I. M. Barbour har behandlet dette problem i en artikkel »Music and
continued fractions« [1] fra 1948. Han benyttet Jacobis generalisering
av kjedebrgken; dette er en raskt konvergerende divisjonsalgoritme, som
er serlig inngdende studert av O. Perron [10]. Barbour fikk bruk for
to modifikasjoner av metoden for & oppna brukbare lgsninger. I en ar-
tikkel [3] med samme tittel som Barbours viste jeg i 1950 at den gene-
ralisering av kjedebrgken [2] som jeg hadde innfort i 1919 forte frem ved
langt enklere midler.

ProsrEM 3. Finn fire naturlige tall z, y, z og u slik at

log2 log? log¢ Ilog 5
x ~o y ~o z ~o u -

(3)

A.D. Fokker har i 1947 behandlet denne relasjonen [9]. Han nevner

(s. 27) lgsningene
x =31, y=25 2=18, =10,
og tilfeyer:

»Nous retrouvons le tempérament de Huygens avec trente-et-un
cinquiémes de tons dans l’octave. Cette méthode est empirique. Les
mathématiques peuvent fournir une méthode directe pour trouver des
approximations en nombres entiers du rapport de deux nombres irration-
nels. Le probléme de trois, ou méme de quatre nombres irrationnels &
la fois dépasse de loin les forces des mathématiciens d’aujourd’hui.

ProBLEM 4. I en brevveksling med meg fra desember 1960 har Fokker
ogsé stillet problemet: Finn fem naturlige tall z, v, z, u og v slik at
log2 logi log2 logl logl

x Y 2 U v

(4)

Jeg skal her behandle disse fire problemer under samme synsvinkel,
idet jeg benytter den generalisering av den Euklidske subtraksjons-
algoritme som jeg foreslo i 1919 og har fort videre i 1957 [4] og i 1959 [5].
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Utvidelsen av Euklids algoritme til & gjelde tre tall er forholdsvis
fullstendig behandlet av meg og ogsa av N. Pipping [11]. Sammenlign
ogsd M. Davids arbeide [6]. Utvidelsen til & gjelde fire tall er mindre
fullstendig behandlet av meg [4] mens utvidelsen til & gjelde flere enn
fire tall er helt utilfredsstillende behandlet [2]. Her star meget tilbake &
gjore. Serlig ville det vare viktig & studere graden av approksimasjon,
gom bare er helt ut kjent ved Euklids algoritme for to tall.

Jeg begynner med & studere problem 1. Den lgsning jeg her skal gi faller
helt sammen med den Euler ga. Jeg gir bare Euklids algoritme — som
jo er ensbetydende med kjedebrgksutviklingen — en ny form, idet jeg
gir algoritmen som en rekke subtraksjoner og ikke som en rekke divi-
sjoner. Dette har to fordeler. For det forste opptrer da de »innskutte til-
nermelsesbroker« som likeverdige med de vanlige tilnsermelsesbrgker,
mens de »innskutte« ved kjedebrgksutviklingen er alt for anonyme. For
det annet blir da algoritmen brukbar til generalisering, hvilket neppe
kan sies om divisjonsalgoritmen. Det er ogsi verd & legge merke til at
Euklid selv, i sine Elementer [7], bare benytter seg av subtraksjon og
ikke av divisjon. Jeg gir da Euklids algoritme folgende form:

Gitt to reelle positive storrelser @ og b med a > b, og de fire naturlige tall
Z,, Yy OF Ty, Yp. Jeg erstatter skjemaet

a %y Y
bz, Ys

med skjemaet
a—>b

b

E51 Y1
T+ Ty Y1+Y2

Hvis her a—b>b, som jeg betegner som tilfellet «, kan regnestykket
gjentas. Hvis derimot a —b < b, som jeg betegner som tilfellet 8, mé forste
linje bytte plass med annen linje for at det sterste av tallene a—b og b
kan komme gverst. Hvis a —b =5 stanser algoritmen opp.

Algoritmen begynner ved Eulers eksempel med verdiene

a = log2 = 0,3010, b = log§ = 0,1761,

nar vi ngyer oss med fire desimaler. Som begynnelsesverdier for (z;, y,) og
(2, y,) velges (1, 0) og (0, 1). Regnestykket ser da slik ut:
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0,3010(1 0
0,1761 l
0,1249 ' 00,1761
= 0,1761 | 1|01249‘1 0
0,06512|1 1/0,1249|2 1
{’301249‘2 11]00512 11
I“O 073712 1
0,0512 |3 2
l 0,0225|2 1]0,0512| 5 3
‘90,0512 5 3”0,0225 21
0,0287| 5 3
2[“0&225 7 4
0,0062| 5 3/0,0225|12 7
Iﬁ 0,0225 | 12 7’0,0062 5 3
,, 0:0163] 12 7
0,0062 | 17 10
5], 0,0101 12 7
0,0062 | 29 17
I 0,0039 12 7
50,0062 41 24

Som lgsning pa problem 1 finner man da for eksempel

log2 log}
17 10

Det var den lgsning Euler fant. Lesningen

log2 log}

—_— A ——

41 24

gir bedre approksimasjon, men ogsé sterre nevnere. Tallene 1, 1, 2, 2 og 3
som er tilfgyet er overflodige, men er satt til for & vise sammenhengen
med Eulers kjedebrgksutvikling. Tallene angir antall »etasjer« mellom
to av de dobbelte vertikalstreker. Som en erstatning for kjedebroksut-
viklingen kan man sette bokstavrekken

BBxpafocp ....

Kjedebrgkens partialnevnere 1, 1, 2, 2, 3 kan man da avlese ved & legge
til en ener til antallet av «’er som stir foran hvert av bokstavene f.
La oss s& se pa problem 2, som kan behandles etter en tilsvarende
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algoritme. La a, b og ¢ vare tre reelle positive tall slik at a>b>c. Jeg
erstatter skjemaet

a1l Y12
b|xy Ys 2
c|% Ys %
med skjemaet ,
a-b| =z A 2 y
b | @ +% Y1 +Ys 21+
c Z3 Ys %3

Tre tilfeller («, 8 eller y) kan da inntreffe ettersom a —b er storst, mellomst
eller minst i det siste skjemaet. Linjene omordnes, om ngdvendig, slik
at sterrelsene a—b, b og ¢ blir en synkende tallfglge. Prosessen kan sé
fortsette.

Ved vart problem 2 er de tre gitte reelle tall
a = log2 = 0,3010, b = logd = 0,1761, ¢ = logé = 0,0969 .

Begynnelsen av algoritmen fir da dette forlepet:

0,3010|1 0 0
0,1761/0 1 0
0,0969 |0 0 1
0,1249(1 0 0] 0,1761[1 1 0
g 0,1761|110]0,1249|1 0 0
0,0969 |0 0 1/0,0969|0 0 1
0,0512[1 1 0[0,1249(2 1 0
y 0,1249 |2 1 00,0969 |0 0 1
0,0969 0 0 1/0,0612|1 1 0
0,0280 2 1 0[0,0069|2 1 1
» 0,0969|2 1 1/0,0512|1 1 0
0,0512|1 1 0[0,0280(2 10
0,0457 2 1 1
g 0,0512(3 2 1
0,0280 |2 1 0

Hvis regnestykket fortsettes, far man etterhvert bokstavrekken

BvyByBBByYBY - -,

og for sterrelsene z, y og z talltriplene

NMT, Hefte 1-2, 1961. — 8
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5) (2,1,1), (3,2,1), (5,3,2), (7,4,2), (12,7, 4), (19, 11, 6),
( (31, 18, 10), (34, 20, 11), (53, 31, 17), (87, 51, 28), etc.

Som en lgsning pa problem 2 far man da for eksempel

log2 log log}
31 18 10°
eller utregnet
971-10-5 ~ 978-10-% ~ 969-10-5 .

Metoden lar seg uten videre overfgre til fire tall. Skjemaet

@1 Ty Yy 2 Uy
b2y Yy 25 Uy
C| %3 Y3 23 Usg
A%, Yy 24 Uy
overfgres da til skjemaet
a—b| Y% % Uy
b @ty Yty 2tz Ut Uy
¢ Zg Ys 23 Ug
d Ty Ys 24 Uy

hvoretter linjene om nedvendig omordnes slik at tallfglgen a—b, b, ¢, d
blir synkende.
I problem 3 er de gitte reelle tall

a = log2 = 0,3010, b = logi = 0,2430, ¢ = log$ = 0,1761,
d = log$ = 0,0969 .

Begynnelsesverdiene for (z, y, z, u) er da
(1,0,0,0), (0,1,0,0), (0,0,1,0) og (0,0,0,1).
Algoritmen gir etterhvert falgende kvadrupler for z, y, z og u:

(2) 27 2’ ]')’ (3, 3’ 2) ]'), (4! 3, 2, 1)7 (5, 4’ 3} 2), (9, 7, 57 3)’
(6) | (13,10,7,4), (15,12,9,5), (18,15,11,6), (31, 25,18, 10),
(35, 28, 20, 11), (53, 43, 31, 17), (68, 55, 40, 22), ete.

Vi far for eksempel folgende lgsning pa problem 3:
' log2 log? log$ logs
31 25 .18 10’

eller
9711-10-% ~ 9722-10-6 ~ 9782:-10—¢ ~ 9691-10-6.
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La oss til slutt studere problem 4. Her er begynnelsesverdiene

log2 = 0,30103, log¥ = 0,24304, logi2 = 0,17609 ,
logl = 0,13830, log% = 0,09691 .

Algoritmen gir her fglgende sett av lgsninger (z, ¥, 2, u, v):

(4,3,2,2,1), (5,4,3,2,1), (6,5,4,3,2), (9,7,5,4,3),
™ (15,12,9, 7, 5), (17,14, 10, 8, 6), (22, 18, 13, 10, 7),

(37, 30, 22, 17, 12), (41, 33, 24, 19, 13), (63, 51, 37, 29, 20),

(72, 58, 42, 33, 23), etc. '

Som lgsning pa problem 4 far vi da for eksempel
log2 logi logi log4 log¥
a1 © 33 24 19 13

eller utregnet
7341-10-% A 7365-10~% ~ 7337-10—6 ~ 7279-10-% ~ 7454-10-5 .
Approksimasjonen blir bedre, men nevnerne sterre, ved lgsningen
log2 N logit N logi2 N logi N loglo
72 58 42 33 23

2

eller utregnet
4181-10-6 A 4190-10-6 ~ 4193-10-¢ ~ 4191-10-® ~ 4213-10-6.

Avvikelsene fra middelverdien av disse fem tallene belgper seg til mindre
enn en halv prosent av middelverdien for samtlige fem tall.

Til tross for at det teoretiske grunnlag for disse Euklidske algoritmer
enna er utilstrekkelig behandlet, viser det seg altsd ved disse eksempler
at man med fordel kan bruke algoritmene til & lose slike musikkteoretiske
problemer.

Jeg tilfoyer at den algoritme jeg har benyttet ikke er den eneste
mulige. Ved problem 2 hvor det var oppgitt tre tall a, b og ¢, hvor
a>b>c, erstattet jeg disse tre med a—b, b og c. Man kan ogsa velge en
annen algoritme, idet man erstatter a, b og ¢ med a—c, b og c. Bruker
man begge algoritmer samtidig fir man de to algoritmer

a
b
c

a—b a—c
b b
c c

3*
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Begge de to nye talltripler kan da, etter at leddene er omordnet s de
blir synkende, behandles pa samme vis som det opprinnelige talltrippel.
Man fér da den forgrenete kjedebrok som Pipping har studert i en rekke
artikler [11]. Forgreningen gjer at algoritmen blir mindre brukbar i
mange tilfeller. Men nar det gjelder disse musikkteoretiske problemer
vil muligens regningene bli overkommelige.

Man kan ogsa, som E. Selmer har gjort det, bare erstatte a, b og ¢
med a—c, b og ¢. Han behandler dette nsermere i det etterfolgende
arbeid [12].
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OM FLERDIMENSJONAL KJEDEBROK

ERNST S. SELMER

I tilknytning til Viggo Bruns undersgkelser over generalisert kjede-
brok arbeidet jeg for noen ar siden med det samme problem. Da jeg
som redaksjonssekretzer mottok Bruns ovenstiende artikkel [1] om
dette emne, var det naturlig for meg & prgve min egen algoritme pa
hans musikk-teoretiske problemer. I det folgende skal jeg gjere rede for
resultatene av disse regninger, samt for noen andre resultater som jeg
tidligere har kommet til. De nedvendige litteraturhenvisninger finnes i
Bruns artikkel.

Den umiddelbare generalisasjon av kjedebrgks-algoritmen til tre eller
flere tall er Jacobis divisjonsalgoritme. Denne algoritme kan imidlertid,
p. g. a. sin raske konvergens, »hoppe over« en rekke brukbare approksi-
masjoner. En slik ulempe gjor seg mindre gjeldende ved Bruns subtrak-
sjonsalgoritme, som konvergerer meget langsommere.

Hyvis man folger dette prinsipp til sin ytterste konsekvens, vil det vere
logisk & innfere en algoritme som konvergerer si langsomt som mulig.
Dette ma bli en subtraksjonsalgoritme hvor man danner den sterst mulige
differens. Istedenfor som Brun & trekke det neststorste tall fra det stor-
ste, vil jeg derfor erstatte det storste tall med differensen mellom det storste
og det minste, og si omordne det fremkomne tallsett i storrelsesorden.
Denne omordning vil jeg, som ved Bruns algoritme, kalle en «-, §- eller
y-operasjon, ettersom den nye differens er storst, mellomst eller minst.

En forenkling ved min algoritme trer straks frem: Innledningsvis
kan vi selvsagt fa noen «x-operasjoner, men sisnart det opptrer en f
eller y, vil algoritmen fortsette med bare - og y-operasjoner. La oss nemlig
anta at vi pi et visst trinn av algoritmen opererer med restene a,, b,
og ¢,, hvor a, >b, >¢c,. Vi skal erstatte a, med a, —c, og omordne etter
storrelsen. Ved en f-operasjon far vi

Aps1 = by, bpi1 = @ —0Cps Cpy1 = Cp s
og skal neste gang erstatte a,,; med a,,; —C,.;- Men
Api1—Cps1 = bp—Cy < @p—Cy = by

[37]
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(da b, <ay,), s& operasjonen « er utelukket. Og pa samme mate ser man
at dette ogsd gjelder etter en y-operasjon.

Ved Bruns algoritme kan alle operasjoner «, § og y opptre i vilkarlige
kombinasjoner. Ved visse anvendelser — serlig i forbindelse med perio-
diske utviklinger, som omtales nedenfor — byr min algoritme med bare
to operasjoner pa systematiske fordeler. (Ved lineer avhengighet mellom
utgangstallene er imidlertid Bruns algoritme overlegen.)

Som ved Bruns algoritme bygger jeg opp en slags »konvergentmatrises
(hos Brun betegnet med bokstavene z, y og z). For & gi en nermere
begrunnelse av de inngéende operasjoner skal jeg imidlertid ogsi innfare
en »koeffisienimatrises, for derved & vise at rekkene i konvergentmatrisen
gir tilnermelser til de gitte utgangsforhold. Jeg illustrerer fremgangs-
méten ved min algoritme, men prinsippet kan anvendes pa enhver
»N-dimensjonal kjedebroks-algoritme«, hva enten denne bygger pa divi-
sjon eller subtraksjon. Spesielt kan metoden, ved passende rekke-om-
byttinger, umiddelbart overferes til Bruns algoritme.

La utgangstallene veere de reelle, positive tall ay=a, by=b og cy=c,
med @ >b>c. Etter n skritt kaller vi restene (fortsatt ordnet etter stor-
relsen) for a,, b, og c,. Vi tilordner til hvert trinn en konvergentmatrise
X, og en koeffisientmatrise 5, etter skjemaet

I | T U 2| Sy 7y Ly
M bu| 2 U 2 | B iy G
Her skal Z, angi hvorledes a,, b, og c, er uttrykt ved de gitte tall a, b
ogec:

(2) b, = a&, +by, +ol,
¢, = a&, +by, +cll .

Ved utganspunktet méa derfor Z, veere enhetsmatrisen, og ved dannelsen

av a,—c, ma koeffisientmatrisen modifiseres slik:

Ay, —Cp xfb yzz z:n En _, S;u/ Nn _, 77;: é-n —; C;:
(3) b T Yn 2 | b N Cn
1 n ” 17

Samtidig er konvergentmatrisen modifisert i analogi med fremgangs-
méten ved Bruns algoritme. Ved 4 omordne rekkene sa tallene Ay —Cp»
b, og ¢, kommer i storrelsesorden, fremkommer samtidig de nye matriser
Xn+1 og En+1'

Vi lar ogs& utgangsmatrisen X, veere enhetsmatrisen, slik at spesielt
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produktsummen av korresponderende rekker i X, og E, er 1, av ikke-korre-
sponderende rekker 0. Da har ogsa to vilkdrlige sammenhgrende matriser
X, og E, denne egenskap, for hvis den gjelder i skjema (1), ser vi lett at
den ogsa gjelder i (3). Hver av de heltallige matriser X, og &, er altsi
den transponerte inverse av den annen.

Utgangsmatrisene X, og &, har determinanten 1. Da rekkeoperasjoner
ikke endrer verdien av en determinant, og da rekkeombyttinger § eller y
(de samme for X og ) bare kan endre tegnet, ma vi for determinantene
ha

(4) X, =8,=+1, n=012,....

Ved gjentatt anvendelse av subtraksjonsalgoritmen vil restene a,, b,
og ¢, bli stadig mindre. Da determinanten E,+0, kan vi ikke erstatte
samtlige venstresider i (2) med 0. Utelukker vi imidlertid en av disse
ligninger, f.eks. den forste, kan vi si at a, b og ¢ mé veare tilnermet
proporsjonale med lgsningene av de homogene ligninger

2l +yn+2ely, = 0, b, +yn, +20, = 0.

Disse har imidlertid lgsningen

TiYi2 = Xy YpiZy s

og pa samme mate far vi frem de gvrige rekker i konvergentmatrisen ved
& utelukke en av de andre ligninger i (2). Dermed har vi begrunnet at
rekkene i konvergentmatrisen md ventes d gi gode tilncermelser til de gitte
forholdstall a:b:c.

Som ogsi nevnt av Brun, er spersmalet om graden av approksimasjon
meget vanskeligere & avgjere. Dette problem er langt fra fullstendig lest.

Jeg har brukt min algoritme p& det samme tallsett som anvendt av
Brun i hans problem 2:

a = log2 = 0,3010, b = log3 = 0,1761, ¢ = logs = 0,0969 .
Man far felgende serie av operasjoner:

aByyBBByyYByYYYBYYE -
De konvergent-tripler hvor alle tall er >0 blir
(27 19 ]')’ (3) ]'7 ]'), (47 2’ 1)’ (67 37 2)’ (7’ 4’ 2)’ (3’ 27 1) 3
(6) 3¢9, 5, 3), (10, 6, 3), (19, 11, 6), (12,17, 4), (22,13,7),
(31, 18, 10), (34, 20, 11), (65, 38, 21), (53, 31, 17), (87, 51, 28), ete.

De understrekede tripler forekommer ogsé ved Bruns algoritme. Jeg
far ikke med alle hans konvergenter, idet triplet (5, 3, 2) mangler oven-
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for. P4 den annen side konvergerer min algoritme langsommere, si jeg
far med en rekke tripler som ikke dukker opp hos Brun. Vi legger ogsa
merke til at mine tripler, i motsetning til Bruns, ikke fremkommer i
monotont voksende rekkefolge.

Uten & komme inn pi et mal for den oppnadde ngyaktighet, kan vi
si at approksimasjonen ber vare bedre jo storre tallene i triplet er. En
undersgkelse ut fra denne forutsetning viser at de konvergenter som
forekommer hos meg men ikke hos Brun, er omtrent like gode som vare
felles konvergenter. De siste gir kanskje i gjennomsnitt noe bedre til-
neermelser, hvilket ogsa er & vente ved en raskere konvergerende algo-
ritme. Vi har det samme forhold ved vanlig kjedebrgk, hvor de ordinsre
tilnermelsesbroker er meget noyaktigere enn de »innskutte« breker som
kommer i tillegg ved Euklids subtraksjonsalgoritme for to tall (smlgn.
Bruns artikkel).

Det er klart at min algoritme ogsi kan brukes for flere enn tre tall.
Derved fremkommer nye konvergenter i Bruns problemer 3 og 4, men
det har liten hensikt 4 komme inn p4 tallregningene her. Vi kan bare
nevne at for fire tall kan vi ogsa ha en »mellom-algoritme, hvor det nest-
minste tall trekkes fra det storste. I hgyere dimensjoner far vi flere slike
mellom-algoritmer.

Hvis vi anvender min algoritme pa N tall, ved & trekke det minste
tall fra det storste, kan det tenkes at den fremkomne differens kommer
pé 1., 2., ..., N-te plass etter storrelsen. De tilsvarende operasjoner vil
vi betegne med «y, «,, ..., ay. Som for N=3 er det da lett & vise at
etter et visst antall skritt forekommer bare operasjonene oy—y 0 cy. Ved
Bruns algoritme kan alle operasjoner «,, &g, ..., 0y Opptre i vilkarlige
kombinasjoner.

Da jeg innfgrte min subtraksjonsalgoritme, var det ikke for & bestemme
tilneermelser til gitte tall, men for & undersgke forholdene ved periodiske
utviklinger. For vanlig kjedebrgk er det velkjent at en periodisk ut-

vikling svarer til en kvadratisk irrasjonalitet A+B]/5 (D>0), og at
omvendt et slikt uttrykk gir en periodisk kjedebrek. I flere dimensjoner
er det fortsatt lett & vise at periodisitet gir en algebraisk irrasjonalitet,
men det omvendte problem er her enna ulgst.

Vi skal illustrere problemet for N =3, og antar at vi har en eller annen
kjedebroks-algoritme, f. eks. Bruns eller min. Utviklingen av a:b:c vil
veere entydig bestemt hvis vi kjenner den fullstendige folge av symboler
«, B og y. Periodisitet opptrer hvis og bare hvis vi far samme forhold
mellom restene pa to forskjellige trinn av utviklingen:
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a’m:bm:cm = m+n:bm+n:cm+n .

Hvis n er det minste naturlige tall for hvilket dette er oppfylt, blir peri-
odelengden n.

For m=0 har vi en rent periodisk utvikling ut fra de gitte tall a, b
og ¢. Tar vi imidlertid (for m>0) a,,=a’, b,,=b" og en=C¢ til utgangs-
punkt for utviklingen, blir denne rent periodisk med

! U ’ ’ ’ ’
a:b:c =a,b,c,,

a, = Ja', b, =W, c, =12,

eller

hvor 1 er periodeforholdet. Ved innsetning i (2) (med merkede a, b og ¢)
blir derfor (&, —1)+bn, +dt, -0

a's, +0' (n,—A)+C'C, 0

dEL w¥n +EC-D) =0,

It

som viser at A er en egenverdi for koeffisientmatrisen E,,:
(6) &, =i G, | =0.
1

Periodeforholdet 1 er altsa rot i en tredjegradsligning. Hvis denne er
irreduktibel, blir 1 en kubisk irrasjonalitet.
Ved utregning og med benyttelse av (4) far ligningen (6) etter tegn-

skifte formen B+ A2+BAF1l =0,

med visse heltallige koeffisienter A og B. Da koeffisienten for hoyeste
ledd er 1, blir A et sakalt helt algebraisk tall. Kalles ligningens gvrige rgt-
ter for A’ og A", si viser konstantleddet at

NN = +1.

Hele algebraiske tall som oppfyller denne relasjon kalles enheter, og
periodeforholdet A er derfor en slik enhet.

Vi skal her ngye oss med denne meget korte skisse av teorien. Den
kan utvikles videre i forskjellige retninger. To typiske problemstillinger
er f. eks. gitt ved:

1° En systematisk undersekelse av periodeforholdet for alle de kor-
teste perioder. Da min algoritme bare gir operasjonene f§ og y, er det
her meget lettere 4 holde rede pa kombinasjonsmulighetene enn ved
Bruns algoritme, hvor ogsd « opptrer. Selv for korte perioder blir slike
undersgkelser noksé omfattende (men regningene skulle ligge vel til rette
for anvendelse av elektronisk regnemaskin).
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2° La tallene a, b og c tilhgre en og samme kubiske tallring (eller tall-
kropp). Underspk om kjedebrgken for a:b:c blir periodisk, slik at vi
finner en enhet i tallringen. — Problemstillingen har antagelig bare rent
teoretisk interesse. For det forste er det slett ikke sikkert at man finner
noen periodisitet, og selv om man gjgr det, kan den resulterende enhet 1
bestemmes langt raskere ved andre metoder.

Et enkelt eksempel er den rent-kubiske tallring R(V—ﬁ), hvor D er et
naturlig tall. Tallene i ringen er gitt ved

p+qVD +rVD2,

med hele rasjonale koeffisienter p, ¢ og . Man kan vise at det finnes en
eneste grunnenhet ¢,, slik at alle enheter er uttrykt ved

e= +eh, t=0,+1, +2,....

En nerliggende fremgangsmate for 4 bestemme en enhet er 4 anvende
en kjedebrgks-algoritme pa utgangstallene

(7) VD2:VD:1.

Brun har gjennomfert dette for sin algoritme med D=2, og fant at etter
en operasjon y fulgte en periodisk utvikling med periodelengde 18:

yyooyBanfyanyfyyyyp yasy ... .

periode

Det viser seg at periodeforholdet er 5-te pofens av grunnenheten.

Jeg har forsgkt Bruns metode for D=3, men klarte ikke & finne noen
periodisitet. Ulempen ved slike regninger er at restene etterhvert blir
ungyaktige p.g.a. avrundingsfeil. Dette skjedde etter ca. 110 skritt,
til tross for at jeg brukte 24 desimaler i utgangsverdiene. (Hele regningen
gjennomferes selvsagt ikke med denne ngyaktighet. I begynnelsen brukte
jeg 6 desimaler; fra et visst punkt gikk jeg over til 12, si til 18 osv.
Ved hver overgang kan de ngyaktigere rester beregnes som lineserkom-
binasjoner ut fra koeffisientmatrisen.)

Ved min algoritme kan vi imidlertid hape pa enklere perioder, p. g. a.
den langsommere konvergens. Derved gker nemlig sannsynligheten for
at vi ikke skal »hoppe over« konvergent-tripler med forhold som har
opptradt tidligere. Dette bekreftes ogsa delvis av regningene.

For D=2, 3 og 4 gir min metode, anvendt pa tallene (7), rentperiodiske
utviklinger som alle har grunnenheten som periodeforhold:
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D = 2, b5 skritt, periode yByyf

D=310 » , » pByBByBByvB
D=4,11 » , » PByByByBByvB.

Med stor optimisme gikk jeg si los ps4 D=5. Her begynner utvik-
lingen med en «-operasjon (som ikke kan gé inn i perioden); vi erstatter
altsa tallene (7) med . — .

(\/25—1):\/—5:1 .

For disse utgangstall fant jeg faktisk en rentperiodisk utvikling, men
den er pa 109 skritt, og periodeforholdet er 5-te potens av grunnenheten.

For D=6 og D=1 klarte jeg ikke & finne noen periodisitet, til tross for
24 desimaler i utgangsverdiene.

Utgangstallene (7) er selvsagt de mest nerliggende ved den rent-
kubiske tallring. Men det ma presiseres at vilkarlige lineserkombinasjo-
ner av disse tall ogsd kan brukes som utgangstall, som godt kan tenkes
& gi enkle perioder selv om (7) ikke gjor det. Ved valget av mulige line-
@rkombinasjoner har man imidlertid ingen holdepunkter.

LITTERATUR
[1] V. BrUN: Musikk og Euklidske algoritmer. NMT 9 (1961), s. 29-36.



OM REKURSIONSFORMLER FOR BERNOULLIS TAL

HANS RIESEL

Nedan hérledas vissa rekursionsformler f6r Bernoullis tal med »sym-
bolisk« metod. Formlerna aro sedan linge kiéinda ; de finnas i Ramanujans
forstlingsarbete [2]. Vidare givas de vilbekanta formlerna for potens-
summorna uttryckta i Bernoullis polynom samt analoga formler inne-
hallande Eulers tal.

Definiera som vanligt Bernoullis tal genom de symboliska rekursions-
formlerna

(1) (B+1)» = Bm, m =23,...,

dar B¢ ersiittes med B, efter utveckling av (B+ 1)™. Vidare sittes B,=1.
Da blir (se [1], sid. 17):

B0=1,B1=—%»B2=%’B3=0’B4="'31'0:
By=0 By=4 By=0, By= —, ....

Det kan vara pa sin plats att papeka, att f6ljande operation ar tilliten
for system av rekursionsformler av typen (1): Bildning av godtyckliga
linedrkombinationer av relationerna i systemet samt reduktion av form-
lerna i symbolisk form. Efterat sittes Bi=B,.

Innan vi ga vidare, vilja vi undersoka (1) fér fallen m=0 och m=1.
Hér ger m=0 en riktig formel, nimligen (B+1)°=B° eller 1=1 (=B,).
Déremot ar (B+ 1)1+ Bl

Lat x vara ett godtyckligt komplext tal. Ur (1) féljer

2> (f) (B+1)iak—t = 3! (f) Bigk—i

oller i1 i¥1
(B+1+4a)e—k(B+1)2*1 = (B+ )k —kBxk-1

eller

(2) (B+1+x)—(B+z)e = kak-1,

Uttrycket (B+x)" 4r som bekant Bernoulli-polynomet B, (z) framstillt

i symbolisk form. Genom att summera (2) fér z=0,1,2,...,n—1

erhalles

[44]
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n—1 1 ] k-1 k
Nkt = _[(Bnfi—B] =< Y ( ) Bk,
m=1 k k =0 ?
vilket #ro de bekanta formlerna for potenssummorna.
Genom att valja olika speciella viirden for z i (2) kan man harleda
olika samband mellan Bernoullis tal. Den enklaste av dessa egenskaper
ar, att

By=By;=B;,=By=...=0.
Detta kan visas pa foljande satt: x= —§ ger i (2)
3) (B+3Ye—(B—1F = b(—$)**.
I dessa relationer ingd endast vartannat Bernoulli-tal; i utskriven form
1/k 1 /k 1 /k
; (1) B, +2—3<3) Biyt g (5)Bk_5+ = — k(=)

Om k &r jimnt kommer vénstra ledet att sluta med termen

g (7) Ba = k-4,

eftersom B, = — 4. Denna term kommer dérfor precis att upphéva hogra
ledet; kvar stdr en homogen relation mellan B, Bj, By, ..., B,,_,, dar
k=6, 8, 10, .... Eftersom B;=0 féljer att B;=0 for +=5,7,9, ....

Detta faktum kan i symbolisk form tecknas
(B—x)k— (B+x)* = kak-1

for alla komplexa z, om k &r jamnt.
Andra samband, innehéllande vartannat Bernoulli-tal fir man genom
att i (2) sitta =0 och = —1 samt addera:

(4) (B+1)k—(B-1)k = k(—1)k-1,
Genom att i stillet subtrahera far man
(5) (B«}-l)"+(B——1)’°—2B’c = k(—1)*.

Relationerna (3), (4) och (5) dro desamma som (2), (4) och (3) hos Ra-
manujan [2]. Givetvis kan man fi ytterligare samband av liknande
slag genom att addera (2) for ett antal konsekutiva heltalsvirden pi z,
namligen foljande:

r—1

(B+r)k—(B—r)f =k 3 mF1.

Om k &r jimnt kan hogra ledet forenklas till — krk-1,
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Relationer innehéllande vart fjirde Bernoulli-tal kunna fas genom att

?

i(2) satta x=—:
1(2) satta x P
i+ 1\* i—1\* i—1\*1!
By—) - ([B+—) =k|{—

(#+55) - (B+5) =+ (%)

A ml(3) - ()

vilket kan skrivas

S (B pea () i (1)

m=0 2

eller

L2
Uttrycket e ¢ [(—¢)™—1] antar fér m=0, 1,2, 3, 4, 5, 6 resp. 7 (mod 8)

vardena 0, —Vé, 24, ]/é, 0, [/5, —2¢ och —]/é Tar man imagindra de-
len far man darfor

k 1 /k 1/k I\ m(k—1)
(2)Bk_z—?(ﬁ)B,c_6+§;(10>Bk_lo—-... = —k<_]7§> Bin ——.

Denna och liknande relationer, som &ro intressanta endast f6r jamna k,
finnas ocksa hos Ramanujan [2].
Vidare kan man pé liknande sétt ganska enkelt héirleda relationer inne-

—1+3)/3
hallande endast vart sjatte Bernoulli-tal. Sattes x= _..ii i(2), sdfas

(125~ (0 =135 4 (21395

2

eller
- k=1

) - R ()

vilket kan skrivas
k k 2aim 2ni\ m 2ni(k—1)
,,é;(m) By e 3 [(—e3> -—1}=ke 3,

2nim 200
Uttrycket e 38 [( —e?> - 1} antar for m=0, 1, 2, 3, 4 och 5 (mod 6)

virdena 0, 1, i]/g, -2, —i]/§ och 1 resp. Tar man reella och imaginéra
delarna, far man
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& k k k 20 (k—1)
(6) (1) B, -2 (3) By 5+ (5)Bk-5 + (7> B, ,—... = k COS—T—
och
k ke k k k. 2m(k—1)
<2> By o — <4) By s+ (8) By s— (10) By 1o+ ... = l~/—§sm-~§— .

Genom att kombinera (6) med (4) far man

k k k k E o 2m(k—1)

som aterfinnes som formel (12) hos Ramanujan [2]. Genom att arbeta
med enhetsrotter av hogre ordning kan man pa analogt sitt hirleda
formler innehallande precis vart p:te Bernoulli-tal.
I anslutning till dessa formler av Ramanujan kan det ha sitt intresse
att papeka, att hans teorem 14 i [2] ér fel. Dar pastds némligen, att
a1s By . . . 174611 _
téljaren i ~, T primtal, men for Byy= — 330 géller 174611 =283-617,
vilket visar, att satsen ar fel. Aven sats 18, som ar en enkel foljdsats av
sats 14 samt de fortydligande exemplen i [2] till dessa satser dro dérfor
felaktiga.

n—1
Liksom man pi ett enkelt sitt kan hirleda potenssummorna J3'mF

m=1
2n—1
uttryckta i Bernoullis polynom, kan man uttrycka 2 (=)™ (2m+ 1)k
med motsvarande Eulers polynom. m=0

Definiera hirfér som vanligt Eulers tal genom rekursionsformlerna

(7) (E+1)m+(E—1)» =0, m=1,2,3, ..

*

dar E sittes = E, efter utveckling. Vidare sittes E,=1. Da blir (se [1],
sid. 23):
E,=1,E,=0,E,=-1,E,=0,E,=5,

By, =0, By = —61, B, = 0, By = 1385, ... .

For m=0 giller ej (7), utan (E+1)°+(E—1)°=2. Med samma metod
som tidigare fs, om x dr ett godtyckligt komplext tal:

% (I:) (B+ 1)"xk—i+£('§) (E—1)igh— = 0
eller

(8) (B+1+4z)+ (B—1+2)k = 22%.



(9)

48 HANS RIESEL

Genom att i (8) successivt sitta x=1, 3, 5, ..., 4n—1 samt omvixlande
addera och subtrahera de erhallna relationerna, far man

s —(E+4n)k = 21—k 4 5k—  —(4n—1)¥]

2n—1

I (=1 (mes 1 LB+ 4~ B¥] = 1’5‘( ) Eugany—,
2 220

vilket dr den s6kta formeln.

Liksom fallet 4&r med Bernoullis tal, dro dven Euler-talen av udda
index =0, dock bérjar detta redan med E,. Pastdendet f6ljer direkt av
att definitionsformlerna (7) endast innehalla vartannat Euler-tal och
dro homogena, om m #r udda. Detta medfér for 6vrigt, att relationerna
dro intressanta endast fér jimna m-virden. Analogt med de hirledda
formlerna for Bernoullis tal kan man fa motsvarigheter for Eulers tal.
Satt x=14 1 (8):

(B+1+2)f+(B—=1+12) = 2¢%,

Tar man reella delen, far man

2 k\
B,—22 (4) By o+ 28 (8) Byom ... = (=12

(om k forutsittes vara jimnt).
Sittes =i}/3 i (8), blir

(E+1+il/§)’“+(E—1+il/§)’° = 2(i)/3)",

eller, sedan reella delarna tagits:

2.90 (73) B,—2 (’2“>Ek_2_ 2 ({:) By, +2-28 (’;) By ... = 2(—3)2,

om k &r jamnt. Genom att i (8) sétta =1 och addera (9), fir man

2(1+ (- 3)4?)—E,
. :

k
Ek+26 (I;) Ek—6+212<12) Ek—l2+ o e —
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OM MATEMATISK LOGIK!

TAGE GUTMANN MADSEN

I

Klassisk logik kender De alle noget til. Jeg skal blot til illustration
anfore et enkelt slutningsmenster med et tilsvarende konkret eksempel:

intet M er P ingen neger kan flyve
nogle 8§ er M nogle mennesker er negre
nogle § er ikke P, nogle mennesker kan ikke flyve.

Den konkrete slutning far man frem, nar M, P og 8 tillegges felgende
betydning:

M : ting med egenskab at vaere neger, dvs. neger,
P: ting med egenskab at kunne flyve,
S: ting med egenskab at vere menneske, dvs. menneske.

Den klassiske logik er grundlagt af Aristoteles (384-322 f. Kr.).
2000 ar senere skriver Kant (1724-1804) i forordet til 2. udgave af
Kritik der reinen Vernunft: »Merkwiirdig ist noch an der Logik, da8 sie
auch bis jetzt (seit Aristoteles) keinen Schritt vorwirts hat tun kénnen
und also allem Anschein nach geschlossen und vollendet zu sein scheint.«

I virkeligheden rzkker dog den klassiske logik ikke langt. Den afgo-
rende mangel er, at den kun er en egenskabslogik; den behandler egen-
skaber ved en ting (at vere neger, at kunne flyve, at vere primtal), men
ikke relationer mellem flere ting. Eksempelvis er kongruens en relation:
der skal to figurer til, for man kan tale om kongruens. Nu bagefter kan
man mene, det er forblgffende, at logikerne ikke var opmerksomme
herpé. Det skyldes vel til dels, at sproget ikke har noget seerligt udtryk
for relationer. Prov at lese op: 3 < 7. S@tningen kommer til at lyde, som
var talen om en egenskab ved det ene tal, skont den skulle udtrykke, at

1 Foredrag holdt ved efterdrsmedet 1960 i Foreningen af Matematiklerere ved Gymna-
sieskoler og Seminarier i Danmark.

NMT, Hefte 1-2, 1961. — 4 [49]
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3 og 7 ligeberettigede star i en vis relation. »Lis og Gerda er studenter«
betyder »Lis er student, og Gerda er student«; sml. »Lis og Gerda er
kusiner«.

II

Matematisk logik er logik udtrykt i formelsprog. Det sarlige er saledes
blot en udformning med udstrakt anvendelse af symboler efter mate-
matisk forbillede. Herved opnas, at logisk teenken afspejles eller ligefrem
erstattes af en bogstavregning, som man kender den i algebra siden
omkring 1600.

Et eksempel til belysning:

Lad der vare givet en talfelge a,, a,, ..., a,, ... samt et tal a.

Vi betragter udsagnet: »talfelgen konvergerer mod a«. Det er maske
sandt, maske falsk — betyder i hvert fald

»til ethvert ¢ findes et N, sa for ethvert n> N gelder: |a,—a|<e¢,

hvor ¢ refererer til positive reelle tal, N og n til numre. — Mere bekvem
for os er formen

»til ethvert ¢ findes et N, sa for ethvert n galder: n < N eller |a, —a| < &,

i symbolik:
WedNVr(n=N V |a,—al<e).
Eller, v, er brugt i betydningen: mindst en af delene.
De skal nu se, hvorledes man ganske mekanisk kan finde udtryk for
udsagnets negation, altsé for, hvad det vil sige, at »talfglgen ikke kon-
vergerer mod a«, — noget, der ellers ofte kan volde en del kvaler:

»1eVYNIn(n>N & |a,—al2¢€),
altsa:

»der findes et ¢, si for ethvert N findes et n, hvor n >N og |a, —a|Ze«.

De kan selv formulere den benyttede regneregel; bemark at n> N er
negation til n < N.

Et vigtigt eksempel, De nu kan more Dem med: Lad der vare givet en
funktion y=f(z) i et interval I. Udtryk i symbolik: funktionen er kon-
tinuert i et punkt z,, funktionen er kontinuert i intervallet, funktionen
er ligelig kontinuert i intervallet. Sammenlign. At negere udsagnene
skulle falde Dem let.

I algebraen ligger symbolikkens betydning i fglgende: 1° Man opnar
en lettelse, en god skomomi med sin &ndelige indsats, idet meget gar
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mekanisk, og alt er mere overskueligt. 2° Man opnar sterre ngjagtighed ;
det er lettere at undgd tvetydigheder og misforstielser.

Under den matematiske logiks udvikling var malet at vinde tilsvarende
fordele.

Leibniz (1646-1716) er den forste, der har klare planer om en mate-
matisk logik. Hans tanke var at skabe »et alment symbolsprog, hvor alt,
der beror pa fornuften, er reduceret til en art kalkyle. Det kunne samtidig
vere et internationalt skriftsprog, men uendelig forskelligt fra alle,
man hidtil har foreslaet; thi selve skrifttegnene og ordene ville styre

tanken, og fejlene ... ville kun vare regnefejl, les erreurs ... n’y
seroient que des erreurs de calcul. Il seroit trés difficile de former ou
d’inventer cette langue ...; mais trés aisé de 'apprendre sans aucuns

dictionnaires.« (1666). Senere skriver han: »Den, der ikke er profet eller
fyrste, kan aldrig udrette noget, der vil bldrage mere til menneskeslaeg-
tens gode og Guds zere.¢

Det forblev dog for Leibniz’ eget vedkommende ved planer og udkast,
vaesentligt i handskrifter, som 14 upaagtede hen pa det kurfyrstelige
bibliotek i Hannover til omkring 1900.

George Boole (1815-64) regnes da for den matematiske logiks grund-
lzegger. Hans to beger: The mathematical analysis of logic, being an essay
towards a calculus of deductive reasoning, 1847, og An investigation of
the laws of thought, 1854, er let lmselige, tillige let tilgengelige, da de er
optrykt inden for de senere &r. De ville have forngjelse af at blade i de
originale veerker, at fa forfatterens oprindelige fremstilling af en teori,
han selv har skabt.

Booles logik har ikke sterre rekkevidde end den klassiske; det nye er
udformningen. Man kan sige, det er den klassiske logik i algebraens

sprog:

Lad os betragte en mangde 7. I det folgende vil vi ikke interessere
os for individer udenfor; vi kan da kalde v totalmengden eller »universe«.
(Boole bruger altid samme t; det er da en nok s inhomogen mengde
rummende mennesker, far, floder, tal, funktioner, .... Vi vil hellere
ved forskellige lejligheder benytte forskellige totalmzengder. I Booles
eksempler nedenfor skal De blot tenke Dem 7 valgt tilstraekkelig om-
fattende.)

Med «, f,y, ... vil vi betegne delmengder af 7, rclasses«. — »Let us
then agree to represent the class of individuals to which a particular
name or description is applicable, by a single letter, as «. If the name is

A*
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(13

men’’, for instance, let & represent “all men’”, or the class “men’ .«
Boole gor opmarksom pa, at et navn eller en beskrivelse kan passe P
et enkelt, alle eller slet ingen individer i v. Som delmwngder regnes da
ogsé sddanne, som kun indeholder ét element, 7 selv og den tomme
mengde. Den sidste vil vi betegne 0.

Nu noget afgerende: »Let it further be agreed, that by the combina-
tion «f shall be represented that class of things to which the names or
descriptions represented by « and B are simultaneously applicable.
Thus, if « alone stands for “white things”, and § for “sheep”, let p
stand for “white sheep” .«

«p skal altsd betegne mzngden af elementer, som er falles for x og 8.

+ benytter Boole som »sign of that mental operation whereby we
collect parts into a whole«. Han skriver derfor kun «+8, nir « og
betegner adskilte klasser, dvs. nar «f=0; f.eks. «: mend, 8: kvinder.
Denne indskrankning er imidlertid ubekvem, og vi udvider hans regne-
operation, s& ogsa overlappende klasser kan adderes:

«+p skal betegne meaengden af elementer, som tilhgrer netop én af
meangderne « og B.1

Hosstéende figurer illustrerer de to regneoperationer. v er ikke tegnet
ind.

af a+ B

Der gezlder nu en rxkke regneregler, det ikke er vanskeligt at verifi-
cere. De kan stotte Dem til figurer i smag med de viste.

x+f =pB+a, (x+f)+y = a+(B+y), x+0 = &, a+2 = 0 har Igsning,
xf = px, (o«B)y = x(By), (x+B)y = ay+py.

Af de anforte regler folger andre, lost sagt de fra talregning kendte,
nar man ser bort fra alt, der vedrgrer division eller stgrrelse. Med moderne
abstrakt algebras terminologi star vi over for en kommutativ ring. Bl. a.
gaelder

1 Ofte trmffes o+ i betydningen: mangden af elementer, som tilherer mindst en
af mengderne & og f. Overensstemmelsen med szdvanlig bogstavregning bliver da mindre.
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o +2 = 0 har netop én lgsning; denne betegnes —«,
&+ = B har netop én lesning, nemlig f+ (—«); man skriver ogsé f—«,
«0 = 0.

Rigtigheden af de nevnte pastande indses i gvrigt let direkte. Prov.
Sluttelig skal jeg anfore folgende to simple regler:

KT = &, XX = & .

Den forste giver anledning til, at vi med Boole ogsé vil benytte beteg-
nelsen 1 for vort »universe« 7.

Den anden er mere bemzrkelsesveerdig. I denne regel, i modsetning
til de svrige usedvanlig for den, der er fortrolig med tallenes algebra,
ligger i virkeligheden gemt alt det, der er sarligt for klassernes algebra.
En ring, hvor denne regel gwlder, kalder man derfor nu en Boole ring.

En markverdighed, De méske har bemsrket ovenfor: —a=« og
dermed f— & =f+ «, kan siledes fores tilbage til reglen «®=«. Det drejer
sig om at udlede x+«=0; dette fis af

atoatoato =ol+ol+al+oa? = (o+a)(ota) =at+a,
idet man benytter, at ligningen «+«+& =0+« kun har én lesning, 0.

Vi kender nu de vigtigste regler for at manipulere med bogstaver i
Booles kalkyle. Lad os da preve en anvendelse, fore et problem over i
denne symbolik: Vi vil udlede konklusionen af preemisserne i den syllo-
gisme, jeg skrev op ved foredragets begyndelse.

Forberedelse. Nar 4 star for: ting med vis egenskab, vil vi med «
betegne mangden af alle 4, dvs. af alle ting med den pagzldende egen-
skab; tilsvarende for andre bogstaver. Vi kan da udtrykke udsagn af
formerne

intet A er B: af =0,
nogle A er B: aff £0,
nogle A er ikke B: a(l—B) = 0,

alle A er B: a(l—p) =0.

Tegn figur. Bemerk at »nogle« betyder »mindst en«, og at »alle A er B«
regnes sandt, nar der slet ingen 4 findes.

Nu syllogismen. Givet: un=0, ou=0. Vis: o(1 —x)=+0.

Af forste preemis fas ounm=0. Sammen med anden premis giver dette
ou—oun=0. Idet

op—oum = opl —opn = ou(l—x) = p(o(l-=)),
har vi altsd p(o(1—m))+0. Og heraf felger o(1—x)=+0.
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I Booles logik er der lige s4 lidt som i den klassiske teenkt pa relationer
mellem flere ting. Et udsagn som »hvis et primtal gar op i 2310, si ogsé i
33 eller 70« kan man udtrykke, idet talen er om forskellige egenskaber,
et tal kan have. Som univers kan vi f. eks. benytte de naturlige tal;
lader vi = betegne meengden af primtal, y, , ¢ mengderne af divisorer i
henholdsvis 2310, 33, 70, far vi wy(1—(6+¢))=0; sml. »alle 4 er B.
Derimod kunne Boole ikke udtrykke: »hvis et primtal gar op i et produkt,
84 i mindst en af faktorernec.

Ggqttlob Frege (1848-1925) og Giuseppe Peano (1858-1932)
skable symbolsprog med udtryksmuligheder svarende til matematik-
kens behov. Det er virkelig nye symbolsprog; de laner ikke som Boole
et gammelkendt. Peano udgav tillige, sammen med en rekke medarbej-
dere, en Formulaire de mathématiques, 1895-1908, som skulle rumme alle
kendte s®tninger, skrevet udelukkende i symboler: »Maintenant une
Société de Mathématiciens publie un formulaire qui se propose de contenir
toutes les propositions connues sur certains sujets de Mathématique. Ce
formulaire, écrit entiérement en symboles, est publié par la Rivista di
Matematica. Ont déja paru les formules de logique, de I’algébre élémen-
taire, de I’arithmétique, la théorie des grandeurs, la théorie des ensembles
de points, et sont sous presse la théorie des limites, des séries, des fonctions
continues, des dérivées, etc.«

Fremskridtet beror pa felgende iagttagelse: En matematisk setning
er oftest bygget op af dele, som ikke selv er udsagn, men »udsagn med
variable«. Et par eksempler:

P gar op i ab, kort p|ab. Nar de »variable« p, a og b tillegges talvardier
— og forst da — fas et udsagn, sandt eller falsk. F. eks. p, a, b=17, 2, 5.
p er et primtal, kort I7(p).

Peano forklarer (1888): »En proposizione kan udtrykke en sammen-
heng mellem ganske bestemte sterrelser; den skal da kaldes categorica;
den kan kun vzere sand eller falsk. Eller en proposizione kan indeholde
ubestemte storrelser (variable), den skal da kaldes condizionale; betin-
gelsen udtrykt ved en siddan proposizione er i almindelighed opfyldt af
visse storrelser, ikke af andre; dog kan den vere opfyldt af alle storrel-
serne eller af ingen. Enhver pastand geres med en proposizione cate-
gorica; en proposizione condizionale kan kun vere del af en proposizione
categorica. Saledes er f.eks. »x?—3x+2=0« en proposizione condizio-
nale, indeholdende det ubestemte tal z; »ligningen #%2—3x+2=0 har
rgdderne 1 og 2« er en proposizione categorica.«
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Skrevet pa formen: »hvis p er et primtal og p|ab, s& pla eller p|bg,
er det tydeligt, at den tidligere omtalte setning indordner sig under
dette synspunkt. Betydningen af hvis ..., sd ..., brugt mellem to
proposizioni condizionali, forklarer Peano: »quelles que soient les valeurs
de p, a, b, ... pourvu quelles satisfassent & la premiére condition, elles
satlsferont aussi & la seconde.«

At en proposizione condizionale, et »udsagn med varlable« slet ikke er
et udsagn — s lidt som sinz er et tal — understreger Bertrand Rus-
sell godt ved at benytte navnet propositional function (1903); det er vel-
valgt: der er jo tale om funktioner, hvis vardier er udsagn. Ordet propo-
sition har han da til radighed for en proposizione categorica. P4 dansk
kan vi sige udsagn og udsagnsfunktion.

Det er da opbygningen af en matematisk seetning af udsagnsfunktioner,
der overfores i symbolik:

(II(p) & plab) = (pla Vv plb).

Peano konkluderer (1894): »On peut changer la forme des signes, ..
on peut en supprimer, ou en ajouter d’autres, modifier quelques con-
ventions, etc. Mais nous sommes maintenant en cas d’exprimer toutes
les propositions de Mathématique au moyen de peu de signes, ayant une
signification précise, et assujettis & des régles bien déterminées.«

»Aprés avoir énoncé les propositions d'une branche des Mathématiques,
et reconnu entre elles les définitions, il faut prouver la vérité des autres;
et & cela est d’une grande utilité la logique mathématique.

Certainement on a raisonné, et trés bien, pendant longtemps, sans
recourir aux lois de cette science tout & fait nouvelle. Mais aussi Dio-
phante a résolu, sans connaitre d’Algébre, un grand nombre des pro-
blémes algébriques parmi les plus difficiles.

Les régles de la logique, pour transformer un ensemble d’hypothéses
dans la thése & prouver, sont analogues aux lois de 1’Algébre pour trans-
former un ensemble d’équations dans une forme ou elles soient résolues
par rapport aux inconnues.«

Man bemerke, at Peano sigter mod begge de mal, vi har noteret:
god okonomi og ngjagtighed.

Medens Peano var den forste, som udtrykte en hel teori, setninger,
definitioner og beviser, fuldsteendigt i symboler: Arithmetices principia,
nova methodo exposita, 1889, var Frege forst med at skabe et symbolsprog,
hvori det kunne geres: Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens, 1879.
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Freges Begriffsschrift — begrebsskrift, ideografi — er klodset, og
sregning« i den besveerlig. Hans motiv var nu heller ikke at udvikle en
simpel kalkyle:

I 1800’erne moder vi en udtalt tendens mod strenge beviser, skarpe
definitioner, forkastelse af den mere intuitive betragtningsmade. Frege
interesserede sig for grundlagsproblemer i aritmetikken; han fandt her
det sedvanlige sprog for ungjagtigt, derfor skabte han sin Begriffs-
schrift. yMeine Absicht ist also auf liickenlose Strenge der Beweisfiihrung
und groBte logische Genauigkeit gerichtet, daneben auf Ubersichtlichkeit
und Kiirze.«

Det tunge i brugen af Begriffsschrift er til dels prisen for i hgjere grad
at undgd tvetydighed og uklarhed. I virkeligheden gar de to formal:
god okonomi og stor najagtighed ikke i spand. Den overskuelighed, man
kender fra sedvanlig algebra, beror ofte pa, at meget underforstas. Stor
ngjagtighed kraever, at alt tages med.

En status i dag over den matematiske logik vil vise, at man er blevet
skuffet i forhabningen om en afgerende lettelse i matematiske raesonne-
menter; der er ikke udgivet nogen Formulaire siden 1908. Derimod an-
vendes den matematiske logiks symbolsprog uafladeligt i grundlags-
forskningen.

Jeg kan beskrive situationen ud fra et Frege-citat: »Wenn ich die
Arithmetik mit einem Baume vergleiche, der sich oben in eine Mannig-
faltigkeit von Methoden und Lehrsitzen entfaltet, wihrend die Wurzel
in die Tiefe strebt, so scheint mir der Wurzeltrieb, in Deutschland wenig-
stens, schwach zu sein. Selbst in einem Werke, das man dieser Richtung
zuzéhlen méchte, der Algebra der Logik des Herrn E. Schréder, gewinnt
doch bald der Wipfeltrieb wieder die Oberhand, bevor noch eine groBere
Tiefe erreicht ist, bewirkt ein Umbiegen nach oben und eine Entfaltung
in Methoden und Lehrsitze.« — Det er i studiet af rodnettet, den mate-
matiske logik har fundet sin anvendelse.

Det skal dog tilfgjes, at en behersket brug af symboler undertiden
kan vere en hjelp for overblikket. Idet sma bogstaver refererer til rette
linier, store til punkter, kan parallelaksiomet formuleres

VIVP (der gar hgjst en parallel til I gennem P),

»for enhver linie / og ethvert punkt P galder, at der gér hgjst en parallel
til [ gennem P«. Det er her let at overse, hvad det betyder, at parallel-
aksiomet ikke er opfyldt:

3P (der gar mindst to paralleller til I gennem P).
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Vil man fore symboliseringen videre, gir det ud over overskueligheden,
som i fglgende fremstilling af parallelaksiomet ( ™ star for »ikkeq):

VIVPYmVn(7(m#l & Ppam & n#l & Ppan) v m=n).

Her kan endelig parallelitet udtrykkes ved den grundleggende relation
»punkt pa linie«:

For m 1 skal De da indfgre 73Q(Q pam & Qpal).

Dette vil man tenke sig gjort, nar man driver grundlagsforskning.

Frege siger, at hans Begriffsschrift forholder sig til seedvanligt sprog
som mikroskop til gje. Den matematiske logik er iseer egnet til det dybe
indblik i matematikkens grundlag. Maske kan den dog ogsd vare gymna-
sieeleven til hjelp — nér lereren har vurderet, hvad der er egnet til at
betragtes i mikroskopet, og hvilken forsterring der giver mest.

LITTERATUR

A. CaurcH: Introduction to mathematical logic. Princeton 1956.

D. HILBERT — W. ACKERMANN: Grundziige der theoretischen Logik. 4. Aufl., Berlin 1959.
W. QUINE: Methods of logic. New York 1950.

A. Tarski: Introduction to logic. New York 1941.



ET SPILTEORETISK PROBLEM

OLE RINDUNG

Det spil, der her skal behandles, spilles efter folgende regler:

I en urne anbringes 100 sedler, hver paskrevet et reelt tal. De 100
reelle tal er to og to forskellige. Af urnen udtreekkes sedlerne én ad gan-
gen. Spilleren, der ikke ved, hvilke tal der forekommer pé sedlerne,
men som bliver bekendt med tallene, efterhanden som de udtrzkkes,
har til opgave at standse udtreekningen af sedler pa et af ham selv valgt
tidspunkt. Hvis han standser udtrakningen umiddelbart efter, at det
storste af tallene er udtrukket, har han vundet spillet. I modsat fald
har han tabt.

Hyvilken strategi skal spilleren valge, nar sandsynligheden for gevinst
skal veere storst mulig, og hvor stor er den maximale gevinstsandsynlig-
hed ?

Da det er fuldstendig ubestemt, hvilke tal der forekommer pa de
100 sedler, vil man ved en forste overvejelse vere tilbgjelig til at mene,
at gevinstsandsynligheden er overordentlig ringe. Det forekommer der-
for overraskende, at det — som pavist i det folgende — er muligt at til-
rettelegge en strategi, der bringer gevinstsandsynligheden helt op pa
37%. Der skal desuden her fares bevis for, at denne strategi er den bedst
mulige.

Begrebet »en strategi« vil vi definere pa felgende made:

Med I7 vil vi betegne mengden af ordnede, reelle talset

(@, ag, - . ., ap) 5

hvor p <100, og tallene a,, a,, ..., a, er indbyrdes forskellige. Ved »en
strategi« vil vi forstd en funktion s, defineret pa meengden /7, med fol-
gende egenskaber:

1° Hvis de p forst udtrukne tal danner talsettet «, angiver s(«) sand-
synligheden for, at spilleren siger »stop« umiddelbart efter udtraekningen
af det p-te tal.

2° Hvis P(G,lx)=P(G,|B), s4 er s(x)=s(f). Her betegner P(G,|«x)
den betingede sandsynlighed for, at stop efter den p-te seddels udtreek-

[58]
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ning vil fore til gevinst, under forudsetning af, at de p forst udtrukne
tal danner talsettet «. ' ‘

Betingelse 2° er udtryk for, at vi ikke tager sadanne tilfzelde i betragt-
ning, hvor spilleren lader sig lede af uvedkommende motiver.

Vi vil skelne imellem talseet af A-type og talset af B-type. Et talsaet
o= (ay, Ag, ..., )€l vil vi klassificere som vezrende af 4-type, hvis

a, > a; for 1= 1,2,...,p—1.

Alle andre talseet i I skal siges at veere af B-type.
Hvis det efter udtrekningen af det p-te tal foreliggende talset o er
af B-type, vil det naturligvis gelde, at

(1) P(Gyla) = 0.

Det er derfor klart, at nar det gzlder om at maximere den samlede
gevinstsandsynlighed, ma man satte

(2) s(x) = 0, nar « er af B-type.

Vi vil derefter betragte P(G,|x), nar x er af A-type. Lad os antage,
at talseettene

& = (ay, 89, ..., 4,) 08 P = (by, by ...,0p)
begge er af A-type. Da det er fuldstendig ubestemt, hvilket talset pa
100 tal der forekommer pa sedlerne, ma man sette sandsynligheden for,

at alle tal i settet er <a,, lig med sandsynligheden for, at alle tal i
settet er <0, Dette betyder imidlertid, at

(3) P(G,|x) = P(G,|p), nar & og f begge er af A-type .
I henhold til 2° gelder det derfor, at
(4) s(x) = s(B), nar « og B begge er af A-type .

Pa grund af (2), (3) og (4) vil vi i stedet for funktionerne P(G,|x) og
s(x) operere med funktionerne P(Q,|t) og s(p,t), hvor ¢ er en variabel,
der kan antage to forskellige veerdier, 4 eller B, alt efter typen af tal-
settet «, der foreligger efter udtrekningen af det p-te tal.

Af (1) og (2) felger, at

P(G,|B) = s(p,B) =0 for p=23,...,100.

Bestemmelsen af P(G,|4) foretager vi ved en opgerelse af nogle permu-
tations-antal for seettet (7, Ty ..., Ti00) af tal, der forekommer pi de
100 sedler.

Antallet af permutationer af dette sw®t, hvor det af de p ferste tal
dannede delsxet er af A-type, er
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(5) (100) (p—1)! 100—p)! = 2
p )

Antallet af permutationer, hvor det storste tal star pd den p-te plads,
er 99!, og vi far derfor

91
(6) P(G,d) = P _ P

100! 100"

Idet vi lader 4, vere betegnelse for den heendelse, at det af de p farst
udtrukne tal dannede talset er af 4-type, og B, vare betegnelse for den
komplementeare hendelse, sgger vi folgende betingede sandsynligheder:

P(Ap+llAp) P(Ap+11Bp)
P(Bp+1[Ap) P(Bp+1pr) .

Antallet af permutationer af talssettet (tq, T, ..., T1ge), der tilhgrer

A, NnA,, er
(7) () -1y 09-p)! = 100!
p+1)P" P e+ 1)

Antallet af permutationer, der tilhgrer 4,, er givet ved (5). Vi har derfor

1
(8) P(Ap+1lAp) = p__*_"I .
Heraf finder man, at
9 PBA) =1 = P
( ) p+1| ) - m p+ 1 .

Antallet af permutationer, der tilhgrer 4,,,nB,, er ifelge (5) og (7)
100! 100! 100! (p—1)
p+1 pp+1)  pe+1)

og antallet af permutationer, der tilhorer B, er ifolge (5)

b

100! 100! (p—1)

100! —
p P
Heraf far vi da, at
1
(10) P(Ap+lpr) = ﬁ‘i s

og dermed, at

(11) P(Bya|By) = ——
Vi vil for kortheds skyld satte
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s(p, 4) = s,, p=12 ...,100.
Strategien er fuldstendigt bestemt, nar vi har bestemt talseettet

(815 83y « « +» S100) -

Ligesom G, betegner gevinstsituation ved stop efter det p-te tals ud-
traekning, lader vi 7', betegne tabssituation ved stop efter det p-te tals
udtreekning.

Hele spillets forlgb kan nu beskrives som »en vej« fra venstre mod
hgjre i folgende skema:

G, P G, Gy Gioo
12 4711 Zsz Z’Ta Z"T” /
(12) A, A2><‘A3>< o .. >———<;\A99—"’Awo
B, B, v By~ BT

Overgangssandsynlighederne er ifelge (6), (8), (9), (10) og (11) angivet
ved folgende skema:

Til
Fra Gp Tp Ap+1 Bp+1
4, |s, 2 |s (1——7’—> (Lms,) | (L—s,) P
P P100 | * 100 Pip+1 o+l
B _ _ b P
P p+1 p+1

Lad a, betegne sandsynligheden for, at punktet 4, i skema (12) pas-
seres, og b, sandsynligheden for, at punktet B, passeres. Vi kan da
opstille folgende rekursionsformler:

1

= 1-8)——+b,——
Ap+1 ap( sp)p+1+ pp—{—l
P P

b = l1—-s)——+b, ——
pi1 = Ay p)p+1+ P+l

a, =1 b =0.

Ved lgsning heraf finder man
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Sandsynligheden for, at vejen gennem (12) ender i punktet @, er derfor

1 =t "
(k—s;)8,-— for n=2,3,...,100
’n‘k= 100
og
8
L for m=1.
100

Sandsynligheden for, at spillet i det hele taget far gevinstudgang, er derfor

P s 10 ng 1 ;)10 n—1 8

13 Ty =15+ s 1- 21,

(13) P(G) = 100 ,,Z;momﬂ‘ 100{1 = “,!]1( k)}
Det er derefter vor opgave at bestemme tallene s,, s, . . ., 81qo saledes,

at P(@) bliver storst mulig.

Da udtraekningen skal standses senest efter udtrekningen af seddel
nr. 100, er s;0=1. Vi vil bevise, at P(G#) far sin maximale vardi, nar
man velger
(14) 8 =8 =8 = ... =83 =0

Sgg = S3g = S40 = ... S100 = 1.

Vi ferer beviset ved en art induktion fra s, ned til s,. Vi antager, at
vi for et eller andet m, hvor
38 < m < 100,
har valgt
(15) Smi1 = Smyg = ... =810 =1,

og skal da vise, at vi for at maximere P(G) ma sette s,, = 1, uanset valget

af 81,89, .« .5 Sy
Vi har
100
10 P@) = goo b S [T (1=5)) + 10 2 e 1T (1-)
Forste led afhenger kun af s;,s,, ..., s,_;. Sidste led kan ifglge (15)
skrives

1(1)6m(1‘8‘) [8“ (-2 {”%m ,ﬁ(l‘%)” ‘

Da faktoren foran parentesen [ ] er positiv og kun afhenger af s,, s,,
, 8m-1» behever vi kun at betragte parentesen [] med henbhk Pa
maximering.
Da
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kan den nzvnte parentes skrives

(17) 8m+(1_;){1+ 2> —T—l = 1+m2 —+s (1—29%1).

n=m+2 N n=m+1 T nemM
Da 0 1
Y -<1 for 38 <m < 100,
n= mn

mé vi veelge s,,=1 for at gore (17) sd stor som muligt. Dermed har vi
vist den sidste linie i (14).

Ovenstdende betragtninger frem til formel (17) har ogsd gyldighed
for m =37, men da 0 1

> ->1,

n=37 M

viser formel (17), at vi mé vealge s;;,=0 for at opnd maximering.
Lad os derefter antage, at vi for en veerdi m, hvor

1<m< 37,

har valgt

Smi1 = Smig = -.. = 8 =0

83g = 839 = ... =899 = 1.
Vi skal da vise, at vi — uanset valget af s, 8,, ..., s,_; — ma valge
8y, = 0.

Ved en tilsvarende spaltning af P(G) som i (16) foretaget far vi

P@) = o5 (s 3o 0T (1-%))

n=2

rid] (=3 (=213 0=

Ganske som for kan man indskraenke sig til at betragte parentesen [ ]
med henblik p4 maximering.
Denne parentes kan omskrives til

1+372 1+ 37( 99 1)
Spr—(—=— ¥ =) .
n=38 N 37 né:;n

m
— <1 ->1,
37~ % n_23; n
er koefficienten til s,, negativ, og s,, ma derfor velges lig med 0.
Dermed er det bevist, at den fordelagtigste strategi er bestemt ved (14).
Ved indsettelse i formel (13) far vi gevinstsandsynligheden
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1 29 1 1
P(@Q) = --—(1+37 3 —) = - (1+837-0,9758) = 0,37.
@) = 100 ,:_f‘ssn oot )

Hvis antallet af sedler i urnen er N i stedet for, som her, 100, skal
man bestemme det mindste hele tal ¢ >0, for hvilket det gwlder, at

N-1

' -<1.

n=q N
Den bedste strategi vil da vere bestemt ved

8 =8 = ...=8_,=0

8g =841 = ... =8y =1,
og den vil svare til gevinstsandsynligheden
1 N1y
PO = (1+@-0 2 1)
For veerdier af N, som ikke er helt sma, har man med tilnermelse:
1

og PG =-.

g=-
€ e




OM LOSNING AV VISSA DIFFERENTIALEKVATIONER
MED 7z-METODEN

AKE BJORCK

Vi skall betrakta en funktion y(x), kontinuerlig pa intervallet [0, ]
av reella axeln, for vilken y(0)=a,=1. Vi antar vidare att y(x) satisfierar
en lineir homogen differentialekvation med polynomkoefficienter, vil-
ken vi skriver
(1) L(D)y(x) = 0.

Enligt en sats av Weierstrass kan funktionen y(z), da den &r kontinu-
erlig pa ett slutet @ndligt intervall, godtyckligt noga likformigt approxi-
meras med ett polynom. Lét oss for y(x) formellt ansitta MacLaurin-
serien

oo
(2) y(@) = aza* .
k=0
Substitueras denna i differentialekvationen erhalles rekursionsformler
for koefficienterna a,, varur dessa enkelt kan l6sas. Den n:te partial-

summan betecknar vi n

S, (x) =kg; a,zk .

Konvergensen av den pa detta vis erhallna serien fordrar dock en sir-
skild unders6kning.

C.Lanczos har i [1] utvecklat den s. k. r-metoden att bestimma en
f6ljd polynom

3) Yn(@) = X'by(n)a*,  n=0,1,2, ...,
k=0

s4 att y,(x) konvergerar likformigt mot y(x) snabbare an S, (x) och under
betydligt svagare villkor. Koefficienterna b,(n) bestdms ur rekursions-
formlerna fér a,. Vart antagande att differentialekvationen har poly-
nomkoefficienter medfor att dessa rekursionsformler far &ndlig ordning.
For att i det foljande kunna ge explicita uttryck foér koefficienterna

NMT, Hefte 1-2, 1961. — 5 [65]
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b,(n) skall vi ytterligare inskrinka oss till att a, satisfierar en tvdterms
rekursionsformel. (For en generalisering till rekursionsformler av hogre
ordning hinvisas till [2].)

Antag att vid inséttning av serien (2) i differentialekvationen (1)
koefficienten for a* blir M, a1+ N,a;. Rekursionsformeln lyder da

(4) Mk+1ak+1+.Nkak=0, k=0, ]., 2, cee e

Om vi forsoker satisfiera differentialekvationen med S, (z) blir i (4) den
(n+1):sta ekvationen i regel ej uppfylld, d& vi har n+ 1 ekvationer for
de » obekanta koefficienterna a,, a,, ..., a,. Tydligen satisfierar emel-
lertid S, (x) differentialekvationen

L(D)8,(x) = N,a,z".

Hogra ledet kan hir uppfattas som en felterm, vilken vi infért for att
gora differentialekvationen losbar med en #ndlig potensserie. Denna
felterm &r visserligen liten for smé z, men #r inte laimplig som ersittning
for hogerledet 0 i (1) i hela intervallet [0, §].

Vi kan analogt, med en mer generell felterm 7P, (x) som hogerled,
bestimma 7 s& att differentialekvationen L(D)y(x)= tP,(x) far en 16sning
av formen (3). Med P,(x) avses t.v. ett godtyckligt polynom av n:te
graden. For att f4 en felterm, som é&r liten i hela intervallet [0, 8], visar
det sig ofta lampligt att anvéinda de till detta intervall hérande Tscheby-
scheffpolynomen.

Tschebyscheffpolynomen pa intervallet [ — 1, 1] betecknas {T',(x)} och
kan definieras av T, (cos 0) = cos .

Ur definitionen f6ljer att |T',(z)| <1 for |x| < 1. Man verifierar dven litt
att T,(z)/2"* har hogstagradskoefficienten lika med 1.

Dessa polynom har féljande fundamentala egenskap, som hir anfires
utan bevis (se t. ex. Ove J. Munch: »Om nogle uligheder af W. A. Mar-
koff«, NMT 8 (1960), s. 21-23):

LemMma. Lit P,(x) vara eft godtyckligt polynom av n:te graden med
hagstagradskoefficienten lika med 1. Dd gdller
max|P,(z)] = max|T,(x)/2""] = 1/27-1,
Jz|=1 Jz]<1
Polynomet 7, (x)/2"! kan i denna mening anses vara det normerade
polynom av n:te graden, som pa intervallet [—1, 1] minst avviker fran
noll.
Vi gor nu en linedr transformation av intervallet [—1, 1] pa inter-
vallet [0, 1] och far de skiftade Tschebyscheffpolynomen
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n
T*@) = T, (2x—1) = 3 Pat .
. k=0

Koefficienterna ¢ dr heltal och finns tabellerade for n=1(1)20 i [2].
Vi skall nu som felterm vilja 7' (z/8) och loser alltsi

(5) L(D)y(x) = T (x[p) .

Insiittning av serien (3) hiiri ger foljande inhomogena system rekursions-
formler for b, :

w®Ipt, k=0,1,...,n

6 M, b N,b, =
(6) k+19%+1 V0 {0 k>,

Antag att vi 16st MacLaurin-koefficienterna a,. Vi viljer by=a,=1 sa
att y,(0)=y(0). Det visar sig sedan limpligt att infora kvantiteter w,
genom relationerna

k-1
(7) bk=ak(1+12w,), k=12 ...,n+1.
r=0 !

Insdttning i (6) ger, da a, satisfierar motsvarande homogena rekursions-
formel (4):

Mk+1ak+11wk = Tcg{c)/ﬂk, k = 0, 1, “ ey n.
Vi 16ser hirur w;, och far
o® ¢®
n n

(8) Wy = =
b Myaapaft Nyap*

k=01,...,n.
Storheten t blir bestimd ur villkoret att y,(x) skall vara ett polynom
av gradtalet n dvs. n
bn+1 = a’n+1 (1+12wr) = 0 ’
r=0

vilket ger
' 1
(9) . ; = — Z'w,. .

Det foljer sedan av (6) att b, =0 dven for k>n+ 1. Med anvéndning av
(9) forenklas slutligen (7) till

1 k-1 n
(10) bk=akr(—+2w,)= -yt S w, k=12,...,n.
T r=0 r=Fk
Vi skall nu visa en tolkning av storheterna w,. Insitt (10) i (3) och
byt summationsordning :

Yn(®) =2”, [xk(_r)akjwr] = -1 njw,(jakw") .

k=0 r=k r=0 k=0
5'
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Detta kan skrivas

n

2 w8, (@)
(11) Yul@) = =,

S,

r=0

vilket 4r en viktning av de n forsta partialsummorna av MacLaurin-
gerien. Viktkoefficienterna w, ér avpassade efter antalet termer » som
medtages, till den speciella differentialekvationen samt till intervallets
langd p.

Ett flertal viktiga transcendenta funktioner satisfierar, eventuellt
efter nigon enkel transformation, en differentialekvation av ovansté-
ende typ. Vi skall som avslutning behandla tva numeriska exempel och
viljer forst Besselfuktionen J,(z), som satisfierar

2+, + (22 —pP)J, = 0.

Gor vi hiar transformationen
1
2z = 2‘/;5, Jp(2) = ———
P

far vi for y(z) differentialekvationen
xy'" +(1+p)y' +y =0
med begynnelsevillkoret y(0)=1. Insittning av (2) ger nu
(b+1)(k+1+p)ag +a, = 0.
Speciellt for p=0 blir med tidigare beteckningar
Ne=1, @ = (—D¥@EE.

Vi skall genomféra berikningarna av b, ur ekvationerna (8), (9) och
(10) for n=5 og B=4. Rikningarna har uppstillts i tabell 1.

Tabell 1.
5
rk ¢ 1/a, w, Sw, 21647b,,

r=Fk
5 512 — 14400 7200 7200 -1
4 —1280 576 2880 10080 35
3 1120 - 36 630 10710 —595
2 —400 4 100 10810 5405
1 50 -1 12,5 10822,5 —21645
0 -1 1 » 1 10823,5 21647
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Approximativt géller da i intervallet 0sz<4:
To(2V/7) = siker (21647 — 216450 + 540522 — 59529 + 3524 — ) .

Maximifelet &r ca: 3-10-5 Den avkortade MacLaurinserien med samma
antal termer har maximifelet 7-10-3. Anmirkas bér dock att T-metoden
ger en interpolerande approximation, dvs. utanfor 1ntervallet [0, A1
stiger felet mycket snabbt.

I detta exempel konvergerar 4ven MacLaurinserien i hela intervallet:
Vid viktningen av partialsummorna ligges hir ocksa storre vikt vid de
av hogre ordning (se tabell 1).

Vi skall nu studera ett exempel pa ett motsatt extremfall nér Mac-
Laurinserien divergerar for alla x = 0. -

Exponentialintegralen E(z) definieras som

Eyz) = St-le’dt; :

Denna integral dr konvergent for z < 0. Vi onskar studera E,(z) for stora
negativa virden pa z och sitter

y(x) = —le;E ( 1).

z
Vi finner d& att y(z) satisfierar differentialekvationen
2 +(1+a)y =

Denna differentialekvation #r dock ej homogen. Om vi emellertid som
felterm hir anviinder vaT, (x) ger insittning av (3):

bo+ Y [bysr+ (k+1)b]ak = 1+ 72 Y Pt .
k=0 k=0

Tabell 2.
r o @iy 45w, 8,(1) 45w,8,(1)
5 512 720 32 —100 —3200
4 —1280 —120 480 20 9600
3 1120 24 2100 —4 — 8400
2 — 400 -6 3000 2 6000
1 50 2 1125 0 0
0 -1 -1 45 1 45
P 6782 4045
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Alltsa &r by=1 och med M, =1, N,=k+1 fas ater rekursionsformlerna
(6) for b;. Da kan de tidigare hirledda formlerna anviindas dven hir.
MacLaurinserien blir '

y@) = 1—az+2122-31a3+ ...,

och divergerar for alla 0.
Efter tabell 2 kan y;(1) beriknas som en viktning av de fem forsta
partialsummorna enl. (11) dvs. med =1 och n=5:

y(1) = 848 = 0,59643 (korrekt 0,59635) .

Viktningen har hér tydligt dimpat de hogre partialsummornas konver-
gensforstérande verkan.
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CraAtrRE FisHER ADLER: Modern geometry. An integrated first course.
McGraw—Hill Book Co., New York, Toronto, London, 1958. 14+ 215 pp.
sh. 50/6.

(Innholdsfortegnelse i NMT 8 (1960), s. 178.)

Geometrien inntar i mange land en noksi dominerende stilling innen
matematikkundervisningen i den hayere skole, szrlig pa dens lavere trinn.
Det er imidlertid pafallende at universitetene i stor utstrekning unnlater
4 »folge opp« med en overbygning over den egentlige skolegeometrien.

Ved Universitetet i Bergen ville vi innfgre en slik overbygning, i form
av et kurs som skulle omfatte noe geometrisk aksiomatikk, en videre-
foring av skolens euklidske geometri, projektiv geometri og litt ikke-
euklidsk geometri. Serlig la vi vekt pa den projektive geometri; med den
dominerende stilling som analytisk kjeglesnittsteori idag har i gymnasiet
(i hvert fall i Norge), er det viktig for vordende lerere & vite at kjegle-
snittene ogsd kan innferes pa en helt annen méte.

Nar man pa denne maten stiller opp kravene til et matematisk emne,
er det ofte bare én lgsning pé lereboksproblemet: Skriv om stoffet selv,
og utgi det stensillert. I dette tilfelle var vi imidlertid heldige, idet vi fant
den lzrebok av Adler som her skal anmeldes, og som jeg selv foreleste
etter for forste gang ifjor hgst. Den er si & si »midt i blinken« for vére
gnsker, og vi behgver bare & supplere den pa enkelte punkter med et
lite stensillert hefte.

Etter en (litt for »amerikansk«) innferelse av logikkens grunnsetninger
gir forfatteren en kort oversikt over Euklids og Hilberts aksiomssystemer,
som presenteres i et appendiks. Noen dypere inntrengen er det naturlig-
vis ikke tale om; den aksiomatiske trening kommer i forbindelse med
projektivgeometrien. I appendiks gis ogsa en stor del av Kuklids set-
ninger, som forfatteren utnytter pa en meget elegant méite: Hver gang
han skal referere til en elementergeometrisk setning som forutsettes
kjent fra skolen, henviser han til Euklids originale versjon.

Skolegeometrien utbygges sa videre med Menelaos’ og Cevas setninger,

[71]
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teorien for harmoniske elementer og dobbeltforhold i euklidsk geometri,
og inversjon m. h. p. en sirkel (som senere anvendes i Poincaré’s modell
av den hyperbolske geometri).

En stor del av boken opptas av projektiv geometri. Aksiomssystemet
gis i sin helhet, men kommentarene er ofte sveert knappe. Selvsagt er
det i en forste innfering ikke mulig & g& langt med aksiomatikken, men
en setning som »to rette linjer i et plan skjerer hverandre i et punkt«
burde jo unektelig bevises ut fra aksiomene. Dualiteten innfgres meget
instruktivt, men dens relasjon til aksiomatikken nevnes ikke.

Harmoniske elementer og perspektiviteter (i syntetisk fremstilling)
har fatt et vel avveiet omfang, men anvendelsene pi generering av
kjeglesnitt er etter min mening for knappe, smlgn. de innledende be-
merkninger om analytisk kjeglesnittsteori. Dette er ett av de punkter
hvor vi utvider pensum i forhold til boken. Det samme gjelder den analy-
tisk-projektive fremstilling og et avsnitt om transformasjoner. Med bruk
av matriser (som ikke forutsettes i boken) kan man pa fa ekstra sider
komme meget lenger. Men innfgringen av plane homogene koordinater,
med strile- og planknippe i et euklidsk rom som modell, er i seg selv
meget tilfredsstillende gjort.

De siste 45 sider behandler ikke-euklidsk geometri. Da de ogsa skal gi
plass til en — for gvrig meget verdifull — historikk, er det klart at frem-
stillingen ma bli svaert overfladisk. Likevel sitter leseren igjen med et
meget klart inntrykk av hva det dreier seg om. Ved eksamen ifjor hgst
var det i hvert fall pafallende hvor godt vare studenter hadde oppfattet
sertrekkene ved elliptisk, parabolsk og hyperbolsk geometri.

Adlers bok er meget godt skrevet, faktisk inspirerende, selv om stilen
av og til kan vere litt »flaset«. En leser far lyst til 4 trenge dypere inn i
stoffet, og til hjelp har han et utall av litteraturhenvisninger. Listen om-
fatter 77 lerebgker, og det er for meget for en bok pi dette niva. Et
mindre utvalg av videregdende verker ville veere meget nyttigere for en
nybegynner.

Som i de fleste amerikanske bgker er sats og figurer av hgy kvalitet.
Boken skjemmes imidlertid av en god del trykkfeil og ungyaktigheter,
i et slikt antall at vi deler ut en lang liste over feil til vire studenter.
Videre mangler alt som heter tegnsetning i formler.

Til tross for visse innvendinger er helhetsinntrykket av boken abso-
lutt positivt, og stoffvalget fornuftig — eller i hvert fall etter vire gnsker
i Bergen. I et innledende kurs er det alltid noe man vil savne, men en
foreleser far da anledning til & ri sine kjepphester og supplere stoffet etter
gitt eget hode.

Ernst S. Selmer



LITTERATUR 73

Ravrra P. Boas, Jr.: A primer of real functions. (Carus Mathematical
Monographs 13.) Published by the Mathematical Association of America.
John Wiley & Sons, New York, 1960. 11 + 189 pp. $ 4.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 81.)

Boka gir ingen systematisk innfering i teorien for reelle funksjoner.
Forfatteren sier at hans hensikt er & gi lesere uten spesielle forkunn-
skaper del i noen resultater han finner sewrlig interessante. (Av forkunn-
skaper anbefales et kurs i elementer analyse.)

Boka er delt i to kapitler. Det forste har overskriften »Sets«. Her ut-
vikles de grunnleggende deler av mengedeleren (intuitivt). Videre folger
en innfering i metriske rom, med begrepene kompakthet og kompletthet.
Kapitlet kulminerer med Baire’s kategori-teorem. Som anvendelse av
dette pavises bl. a. eksistensen av overalt ossilerende kontinuerlige funk-
sjoner. Videre vises at de funksjoner over [0, 1] som har en ensidig deri-
vert i minst ett punkt, danner en mengde av 1. kategori i rommet av
kontinuerlige funksjoner over [0, 1], forsynt med uniform topologi. —
Til slutt felger et avsnitt om mengder med Lebesgue-mal 0.

Kapitel 2 har overskriften »Functions«. Forst behandles kontinuerlige
funksjoner, og folger av slike. Her konstrueres en Peano-kurve, og Weier-
strass’ approksimasjonssats bevises. Videre far vi det velkjente resultat
at mengden av kontinuitetspunkter for en funksjon av 1. Baire-klasse
(over [0, 1]) er overalt tett. — I siste del av kapitlet behandles de Dini-
deriverte, med forskjellige anvendelser. Bl. a. bevises Lebesgue’s teorem:
En monoton funksjon har endelig derivert nesten overalt. Her er ogsa
et avsnitt om analytiske og uendelig mange ganger deriverbare funk-
sjoner, et om konvekse funksjoner, og et om funksjonallikninga f(x +y) =
J @) +f(y).

Framstillinga er svert klar, stilen nsermest kaserende. Boka kan
anbefales til alle som uten spesielle forkunnskaper gnsker en forste orien-

tering om reell funksjonsteori. .
Olav Njdstad

Worreane Franz: Topologie, I. Allgemeine Topologie. (Sammlung
Goschen 1181.) Walter de Gruyter & Co., Berlin, 1960. 144 S. DM 3.60.

(Innholdsfortegnelse i NMT, dette hefte, s. 82.)

Boken er en lerebok i generell topologi og den ferste i en serie pd to
bind. Annet bind er annonsert og skal handle om algebraisk topologi.
I hovedtrekkene er oppbygningen som i tidligere lerebgker i generell
topologi. Det er selvsagt 4 vente nar den behandler et emne hvor de
fundamentale resultater og begreper stort sett er fullstendig klarlagt og



74 LITTERATUR

har fatt en fast form. I lopet av knapt hundre sider er de fleste av de vik-
tigste satsene i generell topologi annonsert og bevist. Fremstillingen ser
ut til & veere grei og oversiktlig.

Forste del behandler generell teori. Innledningsvis defineres et metnsk
rom og en omegn i et metrisk rom. Dette taes som en kort motivering for
definisjonen av et topologisk rom som na innferes ved omegnsaksio-
mene. Her forekommer en upresis formulering som er lett tilgivelig,
men likevel ungdvendig. »Eine topologische Struktur, kurz eine Topolo-
gie T, iiber einer Menge R ist dadurch definiert, dass ...« og s& felger
omegnsaksiomene. Deretter omtales topologien 7' pa de fglgende sider.
En slik formulering definerer ikke noe matematisk begrep som kan
symboliseres ved T, spesielt ikke for en leser som studerer topologi for
forste gang. Det ville derfor veere & foretrekke at en enten valgte en presis
formulering og like godt forklarte eksplisitt hva 7' var, eller unnlot &
innfgre »topologisk struktur« som eget begrep.

Den samme innvendingen gjelder desto mer nar forfatteren innferer
begrepene u-topologi, 7', o-topologi, T,, og k-topologi, T'). Disse star
for topologi definert ved henholdsvis omegner, 4pne mengder og tilluk-
ningsoperasjon. Det er for gvrig et spersmal om det er verdt bryderiet &
innfere denne kompliseringen av begrepene, selv om den er rent midler-
tidig.

I del II innferes de viktigste topologiske invarianter, bortsett fra
sammenheng og tellbarhetsbetingelser som er innfort i del I. Forst be-
handles separasjonskravene. Hausdorff-rom, regulert rom og normalt
rom defineres i Bourbaki-terminologi, og Urysohns sats bevises. Kon-
vergens av en punktfelge i et Hausdorff-rom defineres, men behandles
svert kort. Filter eller rettet familie innfares ikke. S& folger definisjonen
av et kompakt rom og en del av de viktigste egenskapene. Tychonoffs
sats bevises bare for endelige produkter. Den generelle satsen burde,
etter anmelderens mening, veert bevist i en systematisk fremstilling som
denne. Satsen er blant de aller viktigste i generell topologi, og beviset
kan tross alt skrives pad mindre enn en side. Av kompaktifiseringer
nevnes etpunkts kompaktifiseringen til et lokalt kompakt rom.

Del III behandler metriske og metriserbare rom. Her fins blant annet
bevist den generelle metriseringssatsen som ble funnet uavhengig av
Smirnov, Nagata og Bing i 1950.

Del IV er 33 sider dimensjonsteori. 15 sider gar med til & innfere sim-
pleks, simplicial kompleks og noen innledende begreper, sa det blir en
ganske kort innfering. Overdekningsdimensjonen defineres og utvikles
for et kompakt, metrisk rom. Brouwers sats om at det n-dimensjonale
Euklidske rom R» har topologisk dimensjon n bevises. Deretter bevises
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at et kompakt, metrisk rom av dimensjon » kan imbeddes topologisk i
R2n+1,

For de som er interessert i en god innfering i generell topologi, i lomme-
format og til en rimelig pris, anbefales hermed boken. Jon Reed

HerBeErT Lucowskr — HANNS JoacHiM WEINERT: Grundzige der
Algebra, II, 11I. (Mathematisch-naturwissenschaftliche Bibliothek 10,
11.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1958, 1960. 250 und
275 S. Gebunden DM 11.00 und 13.80.

(Innholdsfortegnelse i NMT 7 (1959), s. 41, og 8 (1960), s. 180.)

Disse bokene er annet og tredje bind i en serie pa tre lerebgker i ab-
strakt algebra, og berer titlene »Allgemeine Ring- und Kérpertheorie
og »Auflosungstheorie algebraischer Gleichungen«.

De to forste kapitlene i annet bind gir en klar og grei innfering i de
grunnleggende algebraiske begrepene, slik som gruppe, ring, ideal, inte-
gritetsomrade og kropp med mange belysende eksempler. Avsnittet om
polynomringer starter meget presist med definisjonen av formelt poly-
nom over en gitt ring R, og gir si eksistensen av en polynomring
R[2;, %, ..., %,] i n ukjente. Ved denne presentasjonen kommer for-
skjellen mellom formelt polynom (litt uheldig kalt for hel rasjonal funk-
sjon) og polynomfunksjon tydelig frem. Denne forskjellen er for gvrig
ogsa klargjort gjennom et »Einsetzungsprinzip«. Siste kapitel omhandler
delbarhetslere og utgjer tyngdepunktet i annet bind. Dette kapitlet
er bygget opp slik at vekselvirkningen mellom divisorbegrepet og ideal-
begrepet kommer serlig klart frem. I de forste tre avsnittene er delbar-
hetsleren saledes utviklet etter divisorbegrepet, mens de to siste gir en
idealteoretisk oppbygning av de samme satsene. Dette opplegget er i
full overensstemmelse med den historiske innferingen av idealbegrepet,
og gir en forstaelse av dette som en ikke uten videre ville ha tilegnet seg
ved den moderne motiveringen boken ellers gir.

Over alt finner en en gjennomfert stringens og en prisverdig klarhet i
behandlingen av stoffet. Saledes er det for eksempel gjort tydelig rede
for at delbarhetssatsene egentlig er utsagn om klasser av assosierte ele-
menter, og at den vanlige ordningsrelasjonen for en Euklidsk ring er
forenlig med delbarhetsrelasjonen. Dette er sma ting, men ting som det
ofte slurves med i elementwre lxrebgker. For gvrig er hvert avsnitt
rikelig forsynt med eksempler og kommentarer, og det fins et vell av
oppgaver (med lgsninger) til & gve seg pa.

Tredje bind er skrevet i samme stil som de to gvrige. Boken har tre
kapitler hvorav de to siste, algebraiske kropputvidelser og Galois-teori,
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utgjer tyngden i bindet. Presentasjonen her er for si vidt standard og
behgver ikke kommenteres. Galois-teorien er naturligvis anvendt pa
problemet om lgsbarhet av algebraiske likninger, og rotopplgsningen
av den generelle. 3. og 4. gradslikningen er gjennomfert i full detalj.
Spersmélet om nér en geometrisk konstruksjonsoppgave er lesbar med
passer og linjal er presisert og fort frem til losning. Deretter har forfatterne
vist ulesligheten av de tre klassiske problemene: kubens fordobling,
vinkelens tredeling og sirkelens kvadratur. Kapitelet avsluttes med &
vise hvilke og hvordan regulere n-kanter kan konstrueres.

Det skulle fremgé av denne anmeldelsen at presentasjonen og utvalget
av stoffet er den beste. La oss si noen ord om nivéet bgkene ligger pa.
De er selvforsynte og skulle med fordel kunne anvendes til hovedfags-
forelesningene i algebra ved Universitetet i Oslo. En bifagsstudent eller
hovedfagsstudent i matematikk, som er interessert i algebra og uten ser-
lige forkunnskaper, burde derfor ha adskillig glede av & konsultere disse
beokene. Pa den annen side vil ogsa litt mer erfarne studenter og lererne
selv ha nytte av den klare gjengivelsen og det rikholdige materialet av
illustrasjoner og oppgaver. Per Holm

H. K. NickgrsoN — D. C. SPENCER — N. E. STEENROD: Advanced
calculus. D. van Nostrand Co., Princeton, Toronto, London, New York,
1959. 8+ 540 pp. $ 6.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 83-84.)

Tittelen »Advanced calculus« har blant matematikere etter hvert
mistet sin opprinnelige betydning. Slar en opp i en leerebok med denne
tittelen, vil en i ni av ti tilfeller finne en hoyst elementer innfering i
analytisk geometri og differensial- og integralregning. Det er derfor med
noen forundring en finner kjente matematikernavn pa en bok med denne
flertydige og misbrukte tittel. Denne forundring forsvinner etter hvert
som en gir igjennom boken: Forfatterne har med dette arbeidet villet gi
uttrykk for hva de mener en »Advanced calculus« anno 1959 ber inne-
holde. Resultatet av denne revisjonen er blitt en bok utenom det vanlige.

Den omfatter kort vektoralgebra og vektoranalyse, tensoralgebra og
tensoranalyse, topologi, differensiable mangfoldigheter (vesentlig R*) og
differensialformer, samt geometrisk integrasjonsteori.

De fem forste kapitlene (se innholdsfortegnelsen) gir det algebraiske
fundamentet for vektoranalysen i en swrdeles elegant form (p& ner ett
punkt). I de umiddelbart etterfolgende kapitler studeres s& vektor-
valuerte funksjoner over et skalaromrade (inkludert parametriserte rom-
kurver), skalarvaluerte funksjoner over et vektorrom (inkludert funk-
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sjoner av n variable) og vektorvaluerte funksjoner over et vektorrom.
I hvert tilfelle introduseres den generelle deriverte funksjon (den Frechet-
deriverte), og gamle kjenninger som gradient, retningsderivert, divergens
og curl opptrer som spesialiseringer av denne. Den direkte praktiske
anvendelsen er gitt i et avsnitt om stasjoneere strommende veesker.

Kapitel IX presenterer tensorproduktet av vektorrom pa den koordi-
natfrie maten. Deretter utvikles et formidabelt apparat av graderte
vektorrom og graderte algebraer, og kapitlet avsluttes med studiet av
den ytre algebra over et endeligdimensjonalt vektorrom.

Kapitel X gir en standardinnfering i de delene av den mengdeteore-
tiske topologi som er mest ngdvendige for analysen. Teoremene om
implisitte og inverse funksjoner er utviklet, bl. a. av hensyn til de
etterfglgende kapitler.

De to neste kapitlene omhandler differensialformer i endeligdimen-
sjonale vektorrom og integrasjon av slike. Den ytre deriverte blir inn-
fort, og den del av den singulere homologiteori som er ngdvendig for
utviklingen av integrasjonsteorien blir enkelt og greit presentert. Kapitel
XTI gir ogsa utviklingen av den generelle Stokes’ke formel for integra-
sjon av ytre differensialformer, fra hvilken en far de forskjellige mul-
tippelintegral-teoremene i analysen. Siden boken til dette punkt bare
behandler reelle vektorrom, finnes s et siste kapitel som utvikler de
viktigste tidligere resultatene for komplekse rom.

Den foreliggende bok star i seerklasse hva enhetlig fremstilling og
matematisk stringens angar. Det er tydelig at det har ligget forfatterne
mer p& hjertet & klarlegge den underliggende matematiske struktur pé
dette omradet, enn & gi et hendig formelapparat. Anmelderen kjenner
ellers ingen annen bok som gir en samlet fremstilling av samme stoff.
Presentasjonen er imidlertid ikke alltid like god.

For eksempel er determinanten for en lineser operator til & begynne
med bare definert dersom det underliggende vektorrom har dimensjon
1, 2 eller 3. Denne skavanken blir ikke rettet opp for i niende kapitel
og gjor at fremstillingen halter pa enkelte punkter. I slutten av kapitel IT
finnes ogsé et avsnitt om eksakte folger som nybegynneren er fullstendig
umotivert for, og det forblir han da ogsa mer eller mindre.

Den alvorligste kritikken er imidlertid rettet mot fremstillingen i
niende kapitel. For det forste er den koordinatmessige innfgringen av
tensorbegrepet fullstendig utelatt. Studenter som gnsker & komplettere
sine kunnskaper i tensoralgebra fra mer klassiske innferinger, vil derfor
antagelig ha betydelige vansker med & gjenkjenne begreper de trodde
seg fortrolig med. Dernest vil ogsé de for hvem denne boken er beregnet,
vere umotivert for den veldige formalisme som utvikles under avsnit-
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tene om graderte. vektorrom og graderte algebraer, hvis eneste beretti-
gelse er & definere tensoralgebraen og den ytre algebra over et vektorrom.
En fremstilling som i Bourbaki’s »Algébre multilinéaire« matte veere langt
& foretrekke. I kapitel XII kunne ogsé de generelle Stokes’ke og Green’ske
formler veert spesialisert til de vanlige i-R3.

Anmelderen  gjor oppmerksom pa at ovenstdende kritikk er rettet
mot svakheter av ren pedagogisk art, som ikke forhindrer at boken er
enestaende i sitt slag. Intet bibliotek ber vaere den foruten.

Et beskjedent antall trykkfeil er observert. Definisjon 11.12 av direkte
sum av n linesere underrom er saledes en litt for direkte »generalisering«

av definisjonen for direkte sum av to delrom.
Per Holm

IsraEL H. RosE: 4 modern introduction to college mathematics. John
Wiley & Sons, New York, London, 1959. 21 + 530 pp. $ 6.50.

(Innholdsfortegnelse i NMT 7 (1959), s. 132.)

Bogens moderne tilsnit antydes pa omslaget med meangdelerens sym-
boler, og indledningen er da ogsid en gennemgang af de grundleggende
begreber inden for meengdeleren. Forfatteren tager sit udgangspunkt i
simple og overskuelige meengder og indferer ganske instruktivt begreberne
(delmsengde, foreningsmeengde, gennemsnit), men det er imidlertid ejen-
dommeligt, i hvor ringe grad forfatteren senere i bogen gor brug af denne
leeres symboler og terminologi.

Bogen er igvrigt delt i tre dele, beregnet for hvert sit semester.

I forste del findes behandlingen af det reelle talsystem, hvor forfatte-
ren efter en preaecisering af hovedreglerne for regning inden for dette tal-
omrade giver beviser for en rekke setninger, f. eks. ¢-0=0-a=0 0. s. v.
Det mest interessante afsnit her er maske afsnittet om ulighed, der
behandles pa grundlag af et godt formuleret aksiomsystem. Men at kom-
plekse tal sa klares pa under to sider, siger lidt om stringensen i behand-
lingen af dette emne.

Trigonometrien er hovedsagelig henlagt til anden del, og der gives en
god gennemgang med udledning af de sedvanlige formler og en rekke
ovelseseksempler pa deres brug, ligesom formler for trekanter udledes.

I den analytiske geometri behandles ret linie i forste semester, og i
anden del af bogen findes en praecis udledning af ligning for cirkel, para-
bel, ellipse og hyperbel, bl. a. geres der ngje rede for den tilbagegaende
regning. Endvidere behandles den almindelige ligning af 2. grad i = og ¥,
og som gvelseseksempler vises, hvorledes ellipse og hyperbel kan define-
res ud fra ledelinie, breendpunkt og ekscentricitet.

e
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I alle tre dele har forfatteren et afsnit af funktionsteoretisk karakter.
I forste del indferes funktionsbegrebet som afbildning af en mengde
ind i en anden, men efter et par indledende eksempler gar forfatteren
over til funktioner, der kan beskrives ved simple matematiske udtryk,
og den grafiske afbildning demonstreres ved afbildninger af andengrads-
polynomier. :

Anden del indeholder en omtale af eksponential- og logaritmefunk-
tioner. Behandlingen indledes med potens med hel eksponent, en para-
graf om potens med rational eksponent og en meget kort omtale af
potens med irrational eksponent, svarende til den gennemgang, der gives
i visse danske bgger for realklassen. Logaritmefunktionen defineres der-
pa som den omvendte funktion til eksponentialfunktionen, og den sterste
plads ofres pa den praktiske brug af logaritmeregning.

I tredie del fortsettes gennemgangen af funktionsteorien med diffe-
rential- og integralregning. For at gere den studerende fortrolig med
grenseovergang indleder forfatteren med overvejelser over hastighed.
Derfra nar han til begrebet greenseverdi, men begrenser hurtigt sagen
til tilfeelde, hvor man ganske primitivt kan angive denne, idet der anferes
falgende: Det tal (hvis der findet et), som f(k) nermer sig til, nar A
narmer sig til 0, betegnes med L[ f(%)], {. eks. L(2 + A + h?)=2. Der gores

dog opmerksom pa, at et udtryk som f(k)=

ville kraeve en mere
2h 1

praecis grenseveerdidefinition, som imidlertid ligger uden for bogens ram-
mer. Derefter indferes tangentbegrebet og i forbindelse hermed

L[fE ) i,

men hele sagen illustreres stort set ved eksempler, der alle handler om
polynomier (spec. andengradspol.). Beviser for regneregler m. m. gives
ikke, ligesom anvendelser p4 monotoni og ekstremumsproblemer baseres
pa pastande om resultater og pa eksempler af beskedent omfang. Selv
om der er tale om en »introduction¢, matte det nok have varet muligt
— nér der tenkes pa 3. semesters elever — at give en noget mere dybt-
géende analyse af problemerne, bl. a. ville de trigonometriske funktioner
vere inden for rekkevidde.

Integration defineres som den omvendte proces til differentiation,
men der kan ifglge oplegget ikke gives nogen videre underspgelse, og
der noteres veesentligt, at opgaven har uendelig mange lgsninger. An-
vendelse af integralregningen knyttes til areal, men beviset for sammen-
haengen mellem areal og integral gennemfgres kun for funktionen y =22,
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idet det navnes, at lignende kan geres for enhver anden funktion y=
g(x), hvor g(x) > 0. Endelig omtales i en afsluttende paragraf de »klassiske«
symboler 4, d og {.

Bogens sidste afsnit, der omhandler statistik og sandsynlighedsreg-
ning, indledes med en omtale af middeltal og varians, og sandsynlig-
hedsbegrebet indferes derefter pa rent intuitiv basis, belyst ved eksempler
med plat og krone, terningkast m.m. Der fortszttes med en ganske
instruktiv behandling af permutationer og kombinationer, og selv om
de almene resultater noteres som konsekvenser af overvejelserne knyttet
til de til grund liggende eksempler, virker behandlingen kort og klar.
Herefter sluttes med en omtale af regneregler for sandsynligheder.

Alt i alt m4 siges: A modern introduction to college mathematics er
en stor bog af omfang, den behandler talrige emner, en del af dem ngj-
agtigt og klart, men i mange har forfatteren benyttet en si ordrig og
uprzcis stil, at det kan veare sveert at finde sagens kerne, og det kan
knibe for leseren at fa et virkeligt indtryk af emnet.

Regnar Norgil

TR
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Ralph P. Boas, Jr.: 4 primer of real functions. (Carus Mathematical
Monographs 13.) Published by the Mathematical Association of America.
John Wiley & Sons, New York, 1960. 11 +189 pp $ 4.00.
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Lesninger av oppgavene 206-210 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte méa, for & komme
med i neste hefte, veere sendt innen 15. august 1961.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lgsning.

206. Antag att ekvationen
2 —@ 214 a,2" 2 — L ta, 12+ (—1)"x =0,

dir n>1 och 0 <« <1, har alla sina rotter inom eller pa enhetscirkeln.
Bestam for varje koefficient a, det stérsta mojliga absolutvirdet. (Pro-
blemet stills i en uppsats om system av differentialekvationer med
periodiska koefficienter, V. M. Starzhinskii: On the stability of a trivial
solution of a linear system with periodic coefficients, Appl. Math. and
Mech. 1958, p. 913, dir i. 6. specialfallet k=1 behandlas inkorrekt.)

Magnus Tideman

207. Den normala fordelningsfunktionen @(z) ér definierad genom
@(x) = ——= S e_itzdt .

Om a =0 och b=0, visa att
P(—a—-b) £ 20(— -b).
(—a ) = (—a)®( ) Carl-Gustav Esseen

208. Hvilke vilkdr ma de komplekse tall p og g oppfylle dersom

funksjonen .
f(z) = sinpz—cosqz ,

foruten nullpunkter av forste orden, ogsé skal ha nullpunkter av annen
orden? Bestem i tilfelle disse nullpunktene av annen orden.

D. 8. Mitrinovi¢ (Beograd)
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209. La a, b, ¢ vare tre innbyrdes ulike reelle tall. Sett a+b+c=p,
a?+b2+c*=q, ab+bc+ca=r, og bevis riktigheten av ulikhetene

3 min(a, b, ¢) < p—Vq—r < p+Vq—r < 3max(a, b, c).

D. 8. Mitrinovi¢
(Teksten til oppg. 208 og 209 er oversatt til norsk av red.)

210. I et rettvinklet koordinatsystem fyller et glasslegeme den kva-
drant hvor bade x og y er positive. En lysstrale med retningskosiner
x> Bos Vo g&r inn i glasset gjennom planet y=0. Hvis stralen forlater
glasset gjennom planet =0, blir z-aksen brytende kant. Hvilke ret-
ningskosiner «, §, y har strilen etter utgangen, uttrykt ved oy, By, 7o

og brytningstallet » ?
g brytning Johs. Lohne

LOSNINGER

Oppgave 201 har fatt en uheldig utformning, idet rekken etter den foreskrevne
omordning bare konvergerer med summen 1 dersom leddene grupperes sammen
pé en passende mate.

200. En ricka @, <@y< ... <@, <@y < ... <0y, av pd varandra £5l-
jande hela kvadrater ar given. Bevisa att vid ett visst virde pa k och a,

som funktioner av n 4r k on+1
2, =

A. V. Peljo

Losning : Eftersom foljden #r vixande, maste k vara =n+ 1. Vilj
Api14+p=(b+p)?% dir b enligt forutsittningen dr >n. Skriv om likheten

2n+1
2 a,+ 2 a, = Y a,— 2 a,
p=n+1 v=n+1 v=n+1
till
k—n—1
b%+ 2 b+p)? =14 pr
p=

Med kinda summationsformler ger detta

2n(n + 1)

b2+blk—n—1-"""""1
+ n —n

+3k—n—1)2k—2n—1) = 0.
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Ett nodvindigt villkor for heltalslosningar i b &r heltalskoefficienter;
k—n delar 2n(n+1) for k=n+1, n+ 2 och 2n (k < 2n + 1). Konstantledets
varde for respektive k-virden ér 0, 1 och §(n—1)(2n—1). Det nodvin-
diga villkoret #r allmént uppfyllt endast for k=n+ 1 som ger b= 2n%+ 2n,

alltsa
k=n+1, a, = (2n2+n)2.
Bertil Marksjo

Samme lgsning er funnet av Harry Bjoérk, Erik Engegren og Johs. Lohne. Om
der for visse n ogsd finnes andre lgsninger, er et pent spersmal.

203. Finn antallet av de n-sifrede naturlige tall hvis tverrsum er { < 10.

Brynjolf Dokken

Losning: Ett n-siffrigt tal med siffersumman ¢ (f< 10, n>1) kan ha
uppkommit antingen ur ett (n—1)-siffrigt med siffersumman ¢ genom
att man har tillfogat en nolla, eller ur ett n-siffrigt med siffersumman
t—1 genom att man har adderat en etta. (Sista siffran var ju dér séikert
mindre #n 9.) Om a,, , &r antalet n-siffriga tal med siffersumman ¢ géller

alltsa
Oyt = Q¢+t 0y 11 5

med a, ;=1 fort=1,2, ...,9, a, ;=1 for alla n. Talen a,  bildas alltsd
pa liknande sétt som binomialkoefficienterna, och

n4+t—2
@y, = i1 .

Oppgaven har til dels vert tolket slik, at en skulle finne antallet av alle n-sifrede
tall med tverrsum < 10, altsd

9
Zan,t = (
t=1

Harry Bjork

n+8)
8 .

Oppgaven er ogsé lest av Oskar Backlund, Gunnbjerg Gismarvik, Johs. Lohne
og Stieg Mellin-Olsen.

204. Gennem midtpunktet af hver side i en indskrivelig firkant treek-
kes en linie vinkelret pa den modstdende side. Bevis, at disse linier alle
gar igennem det samme punkt. (Der bliver ialt 6 lodlinier, idet vinkel-
spidsernes orden er ligegyldig.) Om firkanten kan der omskrives een
ligesidet hyperbel. Hvilken rolle spiller lodliniernes skzringspunkt for

?
denne? Sigurkarl Stefdnsson
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Losning: De vinkelrette gennem midtpunkterne P, og P, af to mod-
stdende sider danner sammen med disse siders midtnormaler et parallelo-
gram P,SP;0, hvor O er centrum for den omskrevne cirkel. Diagonalen
P,Py’s midtpunkt M er tillige midtpunkt i parallelogrammet P,P,P,P,.
S er da i alle tre tilfeelde symmetrisk med O med hensyn til M.

S er hyperblens centrum. Leegges et koordinatsystem siledes, at
hyperblen far ligningen xzy=1, far M abscissen } X'z,;. Betingelsen for,
at firkanten er indskrivelig, er at x;2,252,=1. Anvendes dette, far O
abscissen § 2'z;. Tilsvarende far M og O ordinaterne } X'1/z; og } X'/,
og 8 bliver da (0, 0).

Bernhard Andersen

205. Bevis formelen

¢ 1—cosnzr | "~lcoskxr cosnx
S—smxdx: -2’ - +C.
1—cosx P S
1. Johansson
Losning: Man har
1 sinfnzsin}(n—1)z sin2inx .

D sinkx = . = — cos 32 — sin inx cos nzx .
P sin {x sin fa

sinz
N4 er cotg %x=1————~ og 2 sin?4{nx =1—cosnx. Dette gir

cosz
1— cosnzx nl .
sine = 2 }'sinkz +sinnx .
1—cosx k1

0 f 1 falger da ved int jon.
ppgavens formel folger da ved integrasjon Per Roar Andencss

Ogsé lest av Otto Borgersen, Ragnar Dybvik, Erik Engegren, Gunnbjerg Gis-
marvik, P. W. Karlsson, Per M. Kjeldaas, Johs. Lohne, Bertil Marksjo og Norvald
Midttun.

RESULTAT AV PRISTAVLINGEN FOR SVENSKA GYMNASISTER
(Uppgifterna i NMT 7 (1959), S. 188-189.)
Losningar inséindes frdn sammanlagt 36 deltagare. Férsta pris, 100 kr., till-

delades Gustav Ehrnst, Hogre allm. liroverket, Bromma, medan andra pris, 50 kr.,
tillf6ll Kjell A. Jonsson, Karolinska Hogre allm. liroverket, Orebro.



KRONIKK

MUTEREFERATER FOR 1960 FRA DE
UTGIVENDE FORENINGER

Dansg MATEMATISK FORENING.

8.2 P.C. Hammer, Wisconsin: Planar convex bodies.
3.3 Diskussion om forslag til ny leseplan i matematik for det matematisk-
naturvidenskabelige gymnasium, indledt af O. Rindung.
17.3 E. Thue Poulsen, Aarhus: Lidt om nogle vigtige problemstillinger inden for
partielle differentialligninger.
21.3 A.W. Goldie, Newcastle: The structure of rings with maximum condition.
5,7.4 W. V. D. Hodge, Cambridge: Complex manifolds: A survey. Algebraic varie-
tres.
25.4 K. Krickeberg, Heidelberg og Aarhus: Martingaler over ikke-monotone sto-
kastiske baser.
9.5 N. E. Nerlund: Om konfluente hypergeometriske funktioner.
23.5 J. A. Clarkson, Massachusetts: The fundamental theorem for two-person games.
26.9 H. Tornehave: Konform afbildning ved hjelp af elektronregnemaskine.
20.10 Vilh. Jergensen: Om nogle forseg pd at simplificere den klassiske differential-
og integralregning.
24.10 M. D. Donsker, Minneapolis, (Aarhus): Some connections between stochastic
processes and analysis.
7.11 J. L. Lions, Nancy, (Aarhus): On interpolation theory.
17.11 D. Fog: Om et punkts beliggenhed ¢ forhold til visse requlere punktscet.
28.11 H. Hasse, Hamburg: Uber die Bernoullischen Zahlen.
12.12 L. Greenberg, Brown University: Discrete subgroups of the Lorentz group.

FORENINGEN AF MATEMATIKLEARERE VED GYMNASIESKOLER OG
SEMINARIER I DANMARK.

19.10 T. Gutmann Madsen: Om matematisk logik.

19.10 H. Tornehave: Matematikkursus under den nye studieplan for cand. scient.-
studsiet.

20.10 J. Helms: Eksempler pd praktisering af de nye laeseplaner.

Endvidere var foreningen medarranger af OEEC’s fazlles-skandinaviske mate-
matiklererkursus i Aarhus 4.-16. juli. )

FiNLANDS MATEMATISKA FORENING.

27.1 A.B. Clarke, University of Michigan: Random processes arising in the theory
of waiting lines.

[89]



90 KRONIKK

28.1 K. Krickeberg, Heidelberg : Sukzessive Mittelbildungen in Orliczschen Riumen.
10.2 P.J. Myrberg: Funktioista, jotka tyydytiivit toisen asteen kertosidnnién [Om
Sfunktioner, som satisfiera en multiplikationsregel av andra graden].
16.3 K. Inkeri: Thue—Siegel-Roth'in lauseen erdista sovellutuksista [Om ndgra
tillimpningar av Thue—Siegel-Roth’s sats].

24.3 N.I.Bech, Kebenhavn: Om de elektroniske regnemaskiners fremtid og om
Regnecentralens virksomhed.

13.4 L. Garding, Lund: Fundamentallésningar.

11.5 M. Donsker, Minneapolis: Inversion formulae for characteristic functionals of
stochastic processes.

18.5 T. Klemola: Differenticlleisti algebroista [Om differentiella algebror].

24.5 F.W. Gehring, University of Michigan: Conformal capacity and quasicon-
formal mappings in space.

7.9 H. H. Keller, Zirich: Eine Integrabilititsbedingung fiir Systeme von partiellen

Differentialgleichungen erster Ordnung.

19.10 P. J. Myrberg: Rationaalisesti polymorfisista funktioista [Om rationellt poly-
morfa funktioner].

23.11 O. Lokki: Lineaaristen yhtiléryhmien iteratiivisista ratkaisumenetelmistd [Om
sterativa losningsmetoder for linedra ekvationssystem].

FINLANDS MATEMATIK-, FYSIK- OCH KEMILARARFORBUND.

21.2  Arsmote.
20-22.6 Forelisnings- och diskussionsdagar i Helsinki. Program: ekonomisk
uppfostran, samhéllsmatematik och statistik.
5-6.11 Foreldsnings- och diskussionsdagar i Hémeenlinna. Féredrag av mate-
matiskt innehéll:
A. Kantanen: Losning av ekvationer med hjilp av rdknestickan.
C. G. Wolff: Undervisning ©+ mangdlira.
V. Kuuskoski: Undervisning ¢ rdkning efter Montessori-metoden.

]L.SLENZKA STARPFRAEDAFELAGID.

3.2 Leifur Asgeirsson: Om begyndelsesveerdiproblemet for linecere partielle differen-
tialligninger af anden orden.
2.5 N. I Bech, Kebenhavn: Om elekironregnemaskiner.

Norsk MATEMATISK FORENING.

10.5 O. Reiersol: Noen ikke assosiative algebraer som kan studeres ved hjelp av
summerings- og differensoperatorer.

19.5 8. Bundgaard, Aarhus: Eudoxos’ proporsjonslere i lys av nyere betrakinings-
madter. '

9.6 A. Speiser, Basel: Leonhard Eulers geometrische Arbeiten.

23.8 J.O. Stubban, Trondheim: Theorema elegantissimum — en flateteoretisk
setning av Gauss med mange elementeere anvendelser.

27.9 0. A. Laudal: Produktformelen % dimensjonsteorien.

15.11 O. Hustad: Om utvidelse av positive lineere funksjonaler.




29.1

3.3

15.3
30.3

2.4

24.9
2.11

26.11

20.4

20.11

7-8.1

KRONIKK 91

NorsSK LEKTORLAGS MATEMATIKESEKSJON.

K. Kjelberg: De forelopige planer for matematikkundervisningen i den ni-
drige skolen. (Oslo.) .

I. Johansson, K. Mennesland og J. Sandven: Eksamen — Standpunktprover.
(Oslo.)

M. Flordal: Eksaminasjon og karaktergiing. (Drammen.)

K. Kjelberg, B. Rudberg og J.Sandven: Den nye undervisningsplanen for
regning og matematikk ¢ den nidrige enhetsskolen. (Oslo.)

J. Svendsen: Forsoksplanen © matematikk.

A. Gjelsvik: Matematikken pd OEEC-seminaret i Frankrike. (Kongsvinger.)

Max Slagstad: Gjeldende siffer. (Alesund.)

A. Kullerud og O. Heyvoll: Matematikken i U.S. A. og Danmark etter de
nye planer. (Oslo.)

SVENSKA MATEMATIKERSAMFUNDET.
Mote i Stockholm:
A. Pleijel: Asymptotisk egenvirdefordelning vid icke-definita problem.
I. Wik: Om linedrt beroende inom slutna mdingder.
A. Tengstrand: Rotationsinvarianta distributioner.
Orientering angdende internationella matematikerkongressen i Stockholm
1962.
B. Kjellberg: En sats om minimimodulen for hela funktioner.
H. Wallin: Konvergens av jimuviktsfordelningar vid starkt singulira kdrnor.
A. Persson: Om spektrum till operatorn — A +q(x).

Mote i Stockholm:
Y. Domar: Ndgot om spektralteorien for komplexa funktioner.
T. Ganelius: Om en sats av Ganelius.

Mote i Stockholm:

N. O. Wallin: Ett problem for elliptiska operatorer.

B.Rosén: Om den asymptotiska fordelningen av summor av lika fordelade
oberoende statistiska variabler.

K. Bjérup: Om olikheter av Poincarés typ.

A. Pleijel: Tauberteorem.

E. Asplund: Approxzimation av symmetriska konvexa figurer med parallello-
gram.

L. Lind: En dterationsmetod vid konform avbildning.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Lunp.
Varmoéte med studiebesok hos Skénska Attiksfabriken i Perstorp. Foredrag
hoéllos om olika kemisk-teknologiska problem.
Hostmote, som dgnades at fysik och kemi.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

Arsméte. Se referat i NMT, Bind 8, s. 52-53.
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VASTSVENSKA FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG
UNDERVISNING.
12.2 Mote i Alingsds:
G. Holmstrém: Fysikundervisningen ¢ enhetsskolan. Diskussion.
J. Amundsson: Synpunkter pd elementdr geometriundervisning. Diskussion.

30.10 Arsmote i Goteborg:
C. E. Sjostedt: Aktuella problem i matematikundervisningen.

Vid arsmétet omvaldes till ordférande resp. vice ordférande rektor Arne Pleijel
och rektor Sten Friberg samt till sekreterare resp. kassafoérvaltare lektor Per
Higgmark och adjunkt Ilmar Melin.

FORENINGSNYTT

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

holl arsmote den 3—4 januari 1961. Till ordférande, sekreterare resp. skattméstare
omvaldes lektor Ernst Knave, adjunkterna Jan O. Unenge och Jacob Isander.
Till vice ordférande valdes rektor Walter Ekman efter lektor Fredrik Ehrnst,
som undanbett sig aterval.

Under arsmétet holls f6ljande foredrag och demonstrationer:

K. Lindbergh, Kéln demonstrerade fysikaliska experiment med ny apparatur.

J. Klein: Redogirelse for resultaten fran gemensamma provrikningar 4 mate-
matik © enhetsskolan, drskurs 7.

A. Fredga: Adamantoida foreningar.

C. E. Sjostedt: Ndgra intryck fran en studieresa ¢ Sovjetunionen.

C. E. Sjostedt: Nya typer av realexamensskrivningar i matematik.

E. Knave: Den moderna fysiken i undervisningen. Diskussion.

Studiebesok vid AB Atomenergis forskningsstation i Studsvik.

FORENINGENES FORMENN

Nedenfor angis navn og adresse til formennene i de utgivende foreninger:

Dansk matematisk forening : Professor Werner Fenchel, Senderengen 110, Sgborg.

Foreningen af matematiklerere ved gymnasieskoler og seminarier i Danmark:
Lektor Henrik Meyer, Bakkedraget 15, Birkered.

Tinlands matematiska férening: Kansler P. J. Myrberg, Helsingfors Universitet.

Matematik-, fysik- och kemildrarférbundet: Dr. Urpo Kuuskoski, Linnan-
koskenkatu 12 A, Helsinki.

fslenzka sterdfredafélagid: Lektor Sigurkarl Stefansson, Barénsstigur 24, Rey-
kjavik.

Norsk matematisk forening: Dosent Karl Egil Aubert, Matematisk Institutt,
Blindern, Oslo.

Norsk lektorlags matematikkseksjon, Oslo krets: Lektor Johan Borse, Mellom-
belgen 19, Lambertseter.

Svenska matematikersamfundet: Professor Ake Pleijel, Matematiska institu-
tionen, Sélvegatan 14, Lund.
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Féreningen for matematisk-naturvetenskaplig undervisning i Lund: Rektor
Johan Hemmingsson, Johannes Samrealskola och Gymnasium, Rédmansgatan 24,
Malmo S. ’

Féreningen for matematisk-naturvetenskaplig undervisning i Stockholm: Lektor
Ernst Knave, Nickrosviigen 14, Solna.

Vistsvenska foreningen for matematisk-naturvetenskaplig undervisning: Rektor
Arne Pleijel, Drottninggatan 58 C, Trollhéttan.

UTNEVNELSER

Til professor i matematik ved Danmarks tekniske Hojskole: Dr. phil. B. Fuglede
som efterfalger for professor, dr. phil. A. F. Andersen.

Til professor i matematik ved Danmarks Lererhejskole: Afdelingsleder samme-
steds B. Christiansen som efterfelger for professor P. O. Neerup.

Till professor i matematik vid:Oulun Yliopisto: Docent O. Tammi.

Tl dosent i anvendt matematikk ved Universitetet i Bergen: Dr. philos. 8. Tjotta.

NY TIDSKRIFT

Nordisk Tidskrift for Informationsbehandling (BIT) ér en ny nordisk publikation
som i frimsta rummet kommer att innehalla nordiska forfattares arbeten inom
omradena numerisk analys, matematikmaskinteknik, operationsanalys, program-
mering samt databehandling inklusive kontorsautomation. Avsikten &r i forsta
hand att ge plats for nya resultat inom dessa omrdden, men dérjimte kommer
utrymme att beredas éven for orienterande oversiktsartiklar. Formella utgivare
ar de olika nordiska samfunden for informationsbehandling och huvudredaktor
#r Carl-Erik Froberg, Avd. f6r numerisk analys, Sélvegatan 14, Lund. BIT utkom-
mer med 4 héiften per &r och kan bestéllas frén Regnecentralen, Gl. Carlsbergvej 2,
Kobenhavn Valby. (Pren.priset #r 16 DKr, 16 NKr, 750 FMk, 90 IsIKr och 12
SKr resp.)

NORDISK EKSPERTUTVALG

Gjennom Nordisk Kulturkommisjon er det nedsatt et Nordisk ekspertutvalg
vedrerende modernisering av matematikkundervisningen. Utvalget har felgende med-
lemmer:

Danmark: Viceskoleinspektor Agnete Bundgaard, professor Bent Christiansen,
universitetslektor Erik Kristensen og lektor Ole Rindung.

Finland: Overl., dipl. ing. Harkko Helvelahti, lektor Yrj6é Juve, professor Matti
Koskenniemi og rektor Inkeri Simola.

Norge: Ovingsskolestyrer Torgeir Bue, lektor Henrik Halvorsen, professor Inge-
brigt Johansson og rektor Kay Piene.

Sverige: Adjunkt Goéran Holmstrém, undervisningsrddet Lennart Sandgren,
lektor Sixten Thérnqvist og direktér Thure Oberg.

Utvalget har hatt meter i Stockholm 3-4.10 1960 og i Oslo 26-28.2 1961. Under-
visningsradet Sandgren er valgt til formann. Det er nedsatt.tre arbeidsutvalg som
behandler planer for klassetrinnene 1-6, 7-9 og 10-12. Deres utkast til planer ble
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droftet pd metet i Oslo, og det er meningen & f3 i stand forseksundervisning
i enkelte emner i skoledret 1961-62,
Utvalgets sekreteer er lektor M. Hastad, Stockholm.

AVTALE MED AMERICAN MATHEMATICAL SOCIETY

Dansk matematisk forening, Finlands matematiska, férening, fslenzka sterd-
freedafélagid, Norsk matematisk forening og Svenska matematikersamfundet har
inngétt en avtale med American Mathematical Society. For & gjere medlemmer
av de nordiske matematiske foreninger oppmerksomme pé de rettigheter avtalen
gir dem, gjengir vi de aktuelle utsnitt av avtalen:

*“An individual member of any of the reciprocating organizations may join the
American Mathematical Society by submitting an application for membership on
the usual form, which may be obtained from the office of the Society. However,
the usual requirements that the application be endorsed by two members of the
Society and that the candidate be elected by the Council are waived.

The annual dues of individuals who are members of both the American Mathe-
matical Society and one of the reciprocating organizations and who reside outside
the North American area are fixed at one-half the full rate. A% present, the full
rate is § 14.00 and members eligible under this provision pay annual dues of
$ 7.00.

By action of the Board of Trustees of the American Mathematical Society,
members eligible for dues at one-half the full rate as explained above may also
subscribe the TRANSACTIONS OF THE AMERICAN MATHEMATICAL
SOCIETY at the special rate of $ 3.50 per volume (compared with $ 4.00 per
volume for other members and $ 8.00 per volume for non-members). Thus when
four volumes of the TRANSACTIONS are published in a year, the annual sub-
scription rate for those eligible under this provision is $ 14.00 per year.

In addition to the special privileges mentioned above, members of the Society
under one of the reciprocity agreements enjoy all the usual privileges of member-
ship such as receiving the NOTICES; the PROCEEDINGS, and the BULLETIN ,
and presenting papers at meetings of the Society, purchasing the publications of
the Society and certain other publications at reduced rates, and subscribing to
MATHEMATICAL REVIEWS at the members’ rate of $ 16.00 per year. They
are also permitted to substitute the TRANSACTIONS for the PROCEEDINGS
upon payment of a premium to dues of $ 10.00 in 4-volume years. They are also
allowed to substitute MATHEMATICAL REVIEWS for the PROCEEDINGS
by paying a premium of $ 10.00 to the dues. These and other privileges are set
forth in detail in a BULLETIN OF IN FORMATION, which may be obtained from
the Headquarters Office of the Society, 190 Hope Street, Providence 6, Rhode
Island, U. S. A.

Persons who are members of both the American Mathematical Society and one
of the reciprocating organizations and who reside (even on a temporary appoint-
ment) in the North American area are not entitled to special privileges in the
American Mathematical Society. However, appropriate special privileges are
presumably extended to such persons by the reciprocating organizations of which
they are members.”




SUMMARY IN ENGLISH

Nius Asuunp: The fundamental theorems of information theory, I.
{Swedish.)

The fundamental concepts of information theory are introduced in connection
with a study of the lengths of messages at optimal coding. In part I, the first
fundamental theorem is proved. Some loss of generality is accepted in order to
achieve simple derivations. Emphasis is given to the fact that information theory
is an abstract mathematical model, and references to the physical world which
might obscure this point have been avoided.

PouL Einar HANSEN: The Jordan content of point sets. (Danish.)

A simple proof is given for the well known result that every bounded convex
point set in Euclidean n-dimensional space has a Jordan content.

Vieco BrRUN: Music and Euclidean algorithms. (Norwegian.)

* In four problems from music theory (equations (1)—(4) pp. 29-30), the simul-
taneous approximation of certain real numbers by rational numbers with the same
denominator is wanted. The problems are all handled by the same subtraction
algorithm, introduced earlier by the author, whereby the largest number at each
step is replaced by the difference between the largest and the second largest number.

As a result, the approximations (5)—(7) pp. 34-35 are obtained for the problems
(2)—(4) respectively.

ERNsT 8. SELMER : Continued fractions in several dimensions. (Norwegian.)

In connection with the preceding article by V. Brun, another subtraction
algorithm is introduced, whereby the largest number at each step is replaced by
the difference between the largest and the smallest number. This means slower
convergence and consequently more convergents, as illustrated for Brun’s problem

(2). The not underlined triplets of (5) p. 39 represent approximations not obtained
by Brun.

In three dimensions, the two methods are compared with respect to the problem

8 — 8
of periodicity of the expansion for VD?:}D:1. Such a periodicity is obtained
for D=2 with Brun’s method, for D=2, 3, 4 and 5 with the author’s. The cases

D=3 (Brun) and D=6, 7 (Selmer) do at least not show any periodicity within
the first 100 steps.

Haxs RIESEL: Recursion formulas for Bernoulli’s numbers. (Swedish.)
Bernoulli’s numbers B, can be defined by the symbolic relation
(B+1)m—Bm =0, m=23,...; B,=1,

where B¥ is replaced by By after expansion. The author points out that a linear
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combination of such relations also yields a valid symbolic formula. A useful
le is

example i (B+1+2)b— (B4a)t = kab-1,

with arbitrary complex . Suitable choices of = give a simple deduction of

recursion formulas which contain only every second, every fourth or every sixth

Bernoulli number. These formulas were already given in Ramanujan’s first paper

(Collected papers, pp. 1-14). — An error in theorem 14 of this paper is pointed out.
Similar recursion formulas are also deduced in the same way for Euler’s numbers,

defined by the symbolic relation

(B+l)mt(E-1)m =0, m=1,2,3,...; Ey=1.

TAGE GUTMANN MADSEN: About mathematical logic. (Danish.)

A short survey of the logical systems of Aristoteles, Boole, Peano and Frege,
with particular emphasis on Boolean logic.

OLE RINDUNG: 4 problem concerning a certain game. (Danish.)

In a box are placed N slips, each with a real number written on it; the
numbers are all different. The player, who does not know the numbers in ad-
vance, draws one slip after the other, and wins the game if he breaks off just
after drawing the largest of the N numbers.

It is shown that the optimal strategy consists in first drawing ¢—1 slips, where
g is the smallest integer such that

N-17

2 -<1 ’

n=q n
that is gasN/e for large N. From the drawing of the ¢’th slip onwards, the game
should be broken off if a number larger than all the preceding ones is drawn.
The probability of winning the game is then

pt (1+( 1)N2—1 1) !
= — - ~-.
N N

n=q M €

The proof is carried through for N =100, giving ¢=38 and P=0,37.

AxE BISRCK: On solving certain differential equations with the —method.
(Swedish.)

The method, due to C. Lanczos, essentially consists of the approximation of
the given differential equation by addition of a small term to its right-hand side,
so that the equation so modified has a polynomial solution

n
Yn(@) = 2 b(n)ak .
k=0
In the article, explicit expressions for bg(n) are developed in the simple case
when the solution of the given differential equation has a MacLaurin—series whose
coefficients satisfy a two—term recurrence relation. The Bessel function J,(z) and
the exponential integral Si ot letdt are treated as numerical examples.



