NAGRA TILLAMPNINGAR AV STATISTISKA IDEER
PA NUMERISK INTEGRATION

BJORN AJNE och TORE DALENIUS

Syftet med denna uppsats dr att framligga vissa resultat, som fram-
kommit, da vi pd problemet med numerisk integration tillimpat vissa
statistiska idéer. Vi behandlar endast det fall, d4 den funktion, som skall
integreras, betraktas som entydigt bestdmd fran borjan. Fér en diskus-
sion av det fall, da funktionen ifraga viljes slumpmaéssigt ur en klass av
funktioner, hénvisas till Ajne [1].

1. Approximationsmetoden. Vi presenterar hiir den metod fér nume-
risk integration, som dr foremalet for var uppsats. Utgdngspunkten ir,
att vi vill berékna en integral

b
(1) o-ay (g,

dér det exakta analytiska uttrycket for g(¢f) antingen &r okiint fér oss
eller s& komplicerat, att en direkt evaluering av integralen dr praktiskt
omoijlig.

Ovanstidende integral kan betraktas som ett specialfall av féljande
integral:

2) I-= Sg(t)dF(t).

- 00

Hér ar F(2) en kind fordelningsfunktion, d. v. s. F(f) anger den relativa
massan till vinster om punkten ¢ for en kéind massférdelning pa den reella
axeln. Tolkar vi denna massférdelning som en sannolikhetsférdelning,
representerar integralen I matematiska forvintan av ¢(¢), d. v. s. I = Eg(t).

Den vanligaste metoden att approximativt berikna I ér foljande: Vi
“bestdmmer virdet av g(f) i n stycken konsekutiva punkter ¢, <t,< ... <t,.
Lat dessa vdrden vara g¢,,¢,, ..., 4, Vi approximerar nu I medelst
linjairkombinationen
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n
I' = wigi +wegot . . . +wy9, =kZ' Wiy, >
=1

dir wy, w,, ..., w, & n stycken vikter. Vi stiller oss nu fragan, hur
punkterna £, %, ..., ¢, och vikterna w,, w,, ..., w, skall viljas for att
I’ skall vara en s& god approximation av I som majligt.

Det &r naturligt att krdva, att I’ =1 for den enkla funktionen g(¢)=1.
Vidare bor vi kréva, att I’ 2 0, om g(¢) &r en icke-negativ funktion. Dessa
bada krav leder till villkoren

n
Sw,=1; w, 20, k=1,2,...,n.
=1
Dessa villkor kan ur statistisk synpunkt tolkas pa foljande sitt:
Vikterna w,, konstituerar en diskret sannolikhetsfordelning w(¢), som vi i
det foljande kallar w-férdelningen. I’ &r m. a. o. lika med matematisk
forvéntan av g(f) med avseende pa w-fordelningen.
Av vad som just sagts foljer, att vi bor kunna vinta oss, att I’ &r en
god approximation av I, om férdelningsfunktionen
W)= 2 w
1747
F(¢)
wit)

Fig. 1. F(t) och W(¢) for n=>5.

i nadgon mening ansluter sig vil till fordelningsfunktionen F(z) i (2). Vi
ledes pa detta sdtt fram till att basera lsningen av vart problem s& som
det ovan formulerats pa kriterier f6r hur vil tva fordelningar ansluter
sig till varandra. Sadana kriterier utnyttjas bl. a. vid vissa statistiska
testforfaranden. '
Vi diskuterar i 2-4 tre olika kriterier. Flertalet av de approxima-
tionsformler och resttermer, som vi erhallit, finns utforligt behandlade i
sadana vilkidnda arbeten som Natanson [4] och Whittaker—Robinson [5].
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2. Kolmogorov-Smirnovs Kriterium. Detta kriterium anviindes for
provning av hypotesen, att ett stickprov om n stycken observationer har
dragits fran en population med specificerad foérdelningsfunktion F(f).
Som testvariabel anvindes darvid

d = sup|F,(t)—-F@) ,

dir F,(t) ar den till observationerna hérande empiriska fordelningsfunk-
tionen. Det pa detta kriterium baserade testforfarandet behandlas i
t. ex. Gnedenko [3].

Vi forutsitter i denna paragraf, att F(¢) dr kontinuerlig. I vart fall
motsvaras F,(t) av W(t), varfor var testvariabel blir

d = sup|W(t)—F()] .

Vi skall alltsé vilja w-férdelningen sé, att d blir si liten som méjligt.
Nu dr W(t) en stegfunktion. For att bestimma sup|W(t)— F(t)| dr det
darfor tillrickligt att underséka differensen W(t)-F(t) och dess vinster-

grinsvirde i punkterna #;, %y, ..., f,. Man inser da, att d &r det storsta
av talen
k-1 k
ISkl = | X wi—F(t)| och [T} =| Yw—~F), k=12 ...,n.
G=1 =1

Tydligen giller, att T, — S, =w;. Eftersom
n

n n n n
Z(Tk_sk) =3 w, =1, Z(Tk_sk) =2 iT1c|+2|Sk| )
1 1 1 1

1

maste nagot av talen S och T, till sitt absolutbelopp vara lika med eller
1

storre &n P och detta giller dd ocksa om det storsta av dem, d. v.s.
7

om sup | W(t) — F(¢)].

F(t)
Wwit)

11*
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2k—1 1 k-1
Viljer vi emellertid punkterna ¢, sa att F($,)=———=—+——, och
2n  2n  n

1 1
alla vikterna w,=-, blir motsvarande supremum exakt=2—. Detta #r
n n
alltsd den optimala w-fordelningen; jfr. fig. 2.
Var uppskattning av integralen I blir i detta fall

1 n
(3) I'=-2Xyg,
ny
Om F(¢) speciellt dr fordelningsfunktionen till en likformig fordelning
pd intervallet @ <¢ <b, erhalles approximationsformeln
’Z 1 n
- \gwdt ~ - g,

1
a

didr man far punkterna #, genom att dela in integrationsintervallet i »
lika stora delintervall och ta mittpunkterna pa varje delintervall; jfr.

e

1 ! L | 1

Fig. 3. Tangentformeln for n = 5.

fig. 3. Detta ar den s. k. tangentformeln. For tva ganger kontinuerligt
deriverbara och reella funktioner g(t) kan dess fel skrivas

Av det sitt pa vilket formeln (3) konstruerats framgar, att om g(¢) ar
av begrinsad variation, sa blir »felet«

o§9(t) ——ng = 0\0 t)dF () i\og dw (1) of.q(t dLF(t) — W (t)]

[F(t) — W(@)]dg(®)

8@,}8
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1 1
till sitt absolutbelopp = o (totala variationen av g(t)). Konstanten on
7 7

ar har den minsta mdojliga for alla uppskattningar av typen

n n
Zwkgka Zwk=17 wkgO.
1 1

Speciellt for funktioner g(f) av ovan nimnt slag torde darfor formeln (3)
vara beaktansvird; jfr. det enkla exemplet i 5.

Om g(t) uppfyller vissa deriverbarhetsvillkor, kan man emellertid i
allminhet hitta betydligt effektivare formler &n (3). Om vi atervénder
till problemet att approximera integralen (1), har exempelvis Simpson’s
formel

b
b —a)—1S gty

a

1
%‘__1) g1+ Gn+2(s+gs+ - .- +n-2)+ 42+ gat -« +Tn1)]

for fyra ganger kontinuerligt deriverbara, reella funktioner felet
(b—a)t @
— S O] <
180(n—1)4g (€, a=$

Hiarvid forutsittes n vara ett udda tal = 3.

b.

I\

3. Smirnovs w?-kriterium. Detta kriterium anvindes for provning av
samma slags hypotes som diskuterats i 2. Som testvariabel anvéndes
w? = S[Fn(t)—F(t)PdF(t) .

For en diskussion av Smirnovs test hinvisas till Cramér [2], kap. 30. I

vart fall far vi o

w? = S [W(t)— F(t)PAF() .
—00
Om man skriver denna integral som summan av integralerna éver inter-
vallen (;,_;, t;) och i var och en gér substitutionen u = F(¢), finner man att

n 123 t} oo
W= 3 S [W(t)— FO)2dF (1) + S +§
k=2 tp—1 —0 in
. Fap P 1
> S [ — W (ty,_y)J2du + Su2du+ S (u—1)2du
k=2 0 Fltn)

© 2ol SRR RGP R,
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dir vi anvant olikheten

b b
b\? 1
S(u——c)%lu > S (u——(f-'_—) du = — (b—a)?,
2 12
som giller for godtyckliga a, b, ¢; a <b.
Eftersom funktionen # &r konvex for ¢ 2 0, giller f6r godtyckliga icke-
negativa tal x,, 5, ..., z, olikheten

1 n 13 1 »

PR R

Om vi anvinder detta pa summan i (4), samt pa
[F(tl) +1 —l”'(tn)]3 [F(#)P+[1-F(t,)P?

= s
2 - 2
erhaller vi
o2

v

L ([F(t,)—F(t)P s
12 {W + [1 —(F(tn) —F(tl))] } .

3
Eftersom funktionen

+(1—x)3 har absolut minimum =— pi
n

(n—1)
intervallet 0 <z <1, finner vi slutligen, genom att sitta F(t,)— F(t,) ==,
1
att w2z —:.
12n?

finner man, att detta intriffar

Om man undersoker, nir w?= ,
12n2

exakt da ¢;,1,, ...,t, och w;, w,, ..., w, viljes p4 det sitt, som var
optimalt vid anvéndningen av Kolmogorov—Smirnovs kriterium. Smir-

novs w?-kriterium ger m. a. o. icke nagot nytt utéver just nimnda krite-
rium.

4. Momentmetoden eller Gauss’ metod. Denna innebér, att man viljer
w-fordelningen sa att dess nollpunktsmoment Gverensstimmer med mot-
svarande moment foér F(¢) till s4 hog ordning som mojligt. Eftersom
w-fordelningen beror pa 2n parametrar ¢y, f,, ..., t, och wy, w,, ..., w,,
bor man i allménhet kunna bestimma dessa si, att momenten 6verens-
stémmer upp till och med ordningen 2n—1. Denna friga dr utforligt
behandlad i Natanson [4], sid. 436 ., och vi ndjer oss dirfér med att
lamna resultaten.

Lat 1,(t) och v(f) vara polynomerna

II (t—t,) .
= Sk - _
W) = o "0 =Te=b).

ik
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Da giller foljande sats: Nollpunktsmomenten for w-férdelningen over-
ensstimmer med motsvarande moment for F(t) upp till och med ordnin-
gen 2n— 1, d och endast dé

(%) °§ o dFE) = 0
for varje polynom p(t) av ;;dtal <n-1, och
wy, = c,Sol,c(t)dF(t) .

Om t,t,, ...,1, valts sd att (5_)0;1' uppfyllt, s& dr talen w;, automatiskt

en sannolikhetsférdelning.

Om F(t) har hela massan péa intervallet a<t¢<b, och vi lyckats vilja
w-fordelningen enligt ovanstéende sats, silunda med a =t; <t < ... <ty
<b, sa blir I =I' + R, dir felet R, kan skrivas

gem(g) ¢
R, = (2n)!——§o'o(t)2dF(t), a<E<h.

Om F(t) speciellt ir fordelningsfunktionen till en likformig fordelning
1

pa intervallet —1<¢<1, sa att vi soker S g(t)dt, skall ¢, ty, ..., t, viljas
-1

anr
lika med rotterna till Legendrepolynomet m[(ﬁ—l)n]. Allmiint skall

ty, Ly, . ., 1, viljas som rotterna till det n:te polynomet i den till F(t)
horande foljden av ortogonala polynom, om detta har n enkla nollstéllen,
jfr. Cramér [2], kap. 12.

For nagorlunda reguljira g(f) &r Gauss’ metod mycket effektiv. Dess
storsta nackdel #r, att berikningen av punkterna #, %, ..., ¢, och vik-
terna wy, w,, . .., W, ir relativt komplicerad. For nagra vanliga fordel-
ningsfunktioner F(f) &r den genomfsrd i Natanson [4].

5. Exempel. Foljande ir en mycket enkel illustration till de formler,
som omnimnts i 2-4: Vi betraktar integralen

1 1
L1
I=S tdt:Sﬁdt=0,69315.
0g() )1

Vi erhaller foljande resultat med anvindning av funktionsvirdena itre
punkter:
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Virde enligt Gauss metod 0,69312
- - Simpsons formel 0,69444
- - tangentformeln 0,68975.

Om vi upprepar denna procedur med

1 for 0 =t=<0,5
gt) = 11-10(t—0,5) - 05=t<06
0 - 06 <t=<1 ,

for vilken integralen I =0,55000, far vi féljande resultat:

Vérde enligt Gauss metod 0,72222
- - Simpsons formel 0,83333
- - tangentformeln 0,66667 .

Jamfsrt med de Gvriga formlerna &r alltsd tangentformeln béttre i det
andra fallet &n i det forsta. I det andra fallet ir ju dock approximationen
6verlag mycket dalig.
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EN SYNPUNKT PA DERIVERING

HANS RIESEL

Lat f=f(xy, %y, ..., ®,) vara deriverbar. Om «,, x,, ..., %, &ro funk-
tioner av x, &r som bekant enligt »kedjeregeln«
af _of dx1+ of dz, N of du,
dr  ox,dx  owydx ' ox, de
Hérur fas derivatan av funktionen F(x)=f(x, z, ..., ), som blir
ar of 9§ 0
(1) — = —f—+—f—+...+i
dm 3.’51 3332 8xn XTy=qg=...=Tp=="

De bekanta reglerna for derivering av summor och produkter &ro
specialfall av (1). Lat

F(x) = fi(®) +fo@)+ ... +Fu(®)
G(@) = f@)fo(@) ... fol@) .
Med hjilpfunktionerna
f=fi@)+fo@)+ . .+ (@)
9 = file)fo(@,) - . . ful@,)

och

resp.
ger (1) uttrycken

d
O H@HR @+ 4@

och ic
= [ @) - L@ HA@ L @) - @)
HHE®) - fama@)f (@) -

Aven maénga speciella funktioner kunna deriveras enligt (1). For
y=a%far man: y =22 har derivatan ax®-1, och y = a® har derivatan a*loga.
Alltsa har 2 derivatan

z -1+ a® loge = x%(1+logx) .
[153]
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Motsvarande for y =2 blir:
a a z ]‘
y=ua%; y =a%® a =z ger r* -a%.—
x

y =a*"; y = a*loga-ax®; a =z ger x*°+a®-logx

’

y =a%; y = a"loga-a*loga; = x ger 2° -2%- (logx)? .

S
|

Hirav fas derivatan till y=a*":
1

2" % (—+10gx+ (log x)z) .
x

Den bekanta regeln for derivering av en bestimd integral med av-
seende pa en parameter, nimligen
ua()
F) = \ f@ e,
(%)

brukar hirledas enligt (1). Betrakta hjilpfunktionen
U(w2)

f=\rava.
wu1(w1)
Ur (1) finner man omedelbart

, , , u(x) 3f(x, t)
F@) = /@) [z (@) + u/@) [ u@) + | 2

u1(2)

dt .




OM ET PUNKTS BELIGGENHED I FORHOLD
TIL VISSE REGULZRE PUNKTSAT

DAVID FOG

I det folgende skal omtales forbindelsen mellem afstandene fra et
punkt til hjgrnespidserne i en ligesidet trekant, i et reguleert tetraeder
eller i et regulert simplex af flere dimensioner, dels nar punktet ligger i
trekantens plan, i tetraedrets rum eller i det ved simplexet bestemte rum
af hgjere dimension, dels nar punktet ligger uden for dette.

Dernzst foretages nogle anvendelser af de udledede formler, bl. a. pa
en figur, bestdende af et st cirkler, kugler eller tilsvarende punktmang-
foldigheder af hgjere dimension, hvor to vilkarlige mangfoldigheder i
settet bergrer hinanden.

1. Lad (fig. 1) 4,4,4, veere en ligesidet trekant, P et vilkarligt punkt
—
i dens plan. Vektorerne 4,4;, =+, betegnes a;; og deres fzlles lengde a;

vektorerne ATP betegnes x; med
leengder z;. Vi sgger en relation mel-
lem x,, z,, ; 0og a. Denne kan natur-
ligvis straks findes som specielt til-
feelde af den velkendte relation, der
sammenknytter de 6 afstande mellem
to og to af 4 punkter i en plan (den,
som udtrykker, at volumenet af det
»plane tetraeder« 4,4, 4,P er nul);
men af hensyn til den felgende ud-
videlse til flere dimensioner vil vi ga
frem som vist nedenfor.

Vektorerne x; kan skrives pa

formen
x; = Aollyp + Agyg
(1) Xy = Myly + by 1, A+l Ay =1,

Ty = Ayly; + A0

[155]
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hvor 2, A, og 13 er skalarer. Thi for et givet punkt P bestemmer den
gverste ligning (1) entydigt A, og 45, og fastlegges derefter 4, ved ligningen
leengst til hgjre, giver

Ly = Ay +%;, X3 = A3 +>y
straks de to naste ligninger (1).

Ligningerne (1) gzlder for enhver trekant 4,4,4,. Da vi ovenfor har
antaget trekanten ligesidet med siden @, bliver a;,2=a;%=0a® og
ay,-a3=1%a?, og vi far af den farste (1):

.’L‘lz = a2(222 + 2'32 + 12}43) .
Seettes
(2) A = 22+ A2+ A2+ Dydy + ds + Al
kan den foranstaende ligning omskrives til
2 = a¥ (A=A —hdy—Mds) = aF(A =AM+ A9+ 2)) = a®(A—1y) .
Vi har derfor

(3) x? = a¥(A-1;), 1=1,2,83,
altsé

(4) Yo = a¥34-1)

og

(5) at*+ Y2 = 3a24 .

Her og indtil videre skal, nar intet andet siges, summationer lobe fra
t=1tili=3.

Af (3) findes @t = a¥A2—242,+12) ,

altsa
St = a4(3/12—2/1+_):’lf) .

Nu er

2/1_2/1@'2 = ()‘1‘*‘}-24‘}“3)2 =1,
s& vi far
(6) Sxt = at(342-1)
og heraf
(7) at+ Jat = 3ata2,

Af (5) og (7) findes
(8) (a2+2xi2)2—3(a4+ e =0.

Vi indferer nu betegnelsen

n 2 n
(p(zo’ A TIRI zn) = (2'21,) _nzwzf 5




ET PUNKTS BELIGGENHED I FORHOLD TIL VISSE PUNKTSZAT 157
hvorefter (8) kan skrives
(9) D(a?, .2, 1,2, x?) = 0.
Dette er den gnskede relation, og vi har vist:

I. Afstandene x; fra vinkelspidserne © den ligesidede trekant til et vilkdrligt
punkt © dens plan tilfredsstiller betingelsen (9).

Vi antager nu trekanten omgivet af et tredimensionalt rum (et R,)

og afsetter i dette en vektor PQ af lengden % vinkelret pd trekantens
plan. Lengderne A4,Q betegnes y,. Da er

Yy = xl+h?,
a2+ Yy? = (a*+ 3'x?)+ 3h?
at+ Yyt = (a4 Y'wt)+ 202 a2+ 3k
Heraf fas med benyttelse af (9), at
(10) D(a2, y,2, Yo2, y52) = 6h%a® .

saledes at

og

Dette er en udvidelse af (9) og giver atter (9) for h=0. Vi kan formulere
resultatet (10) saledes:

1. Afstandene y; fra vinkelspidserne i den ligesidede trekant til et vil-
karligt punkt i afstanden h fra trekantens plan tilfredsstiller betingelsen (10).

Af I og II ses specielt, at afstandene y; fra vinkelspidserne i den lige-
sidede trekant til et vilkarligt punkt tilfredsstiller betingelsen

D, y:® ¥2% ¥s") 2 0,
og lighedstegnet gelder kun, nar punktet ligger i trekantens plan.

2. Vi vil herefter bevise omvendte setninger til I og II og begynder
med den forste:

III. Dersom tallene ;=0 tilfredsstiller (9), findes der netop ét punkt P,
hvis afstande fra trekantens vinkelspidser Ay, A, og A, er henholdsvis
%, &, 0f 4. Dette punkt ligger 1 trekantens plan.

Lad altsi ,, @, og x; betegne givne, ikke-negative tal, som tilfreds-
stiller (9). Ordnes denne efter faldende potenser af x, fas

(11) 224 —22,2(a2 + ;2 + 2,2) + 3(a + 2,4+ 2,%) — (a2 + 2,2+ 2,%)2 = 0.
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Da denne ligning, opfattet som en andengradsligning i 2, jo har en
lpsning, m4 dens diskriminant 4 veere =0. For 4 findes

4 = 4(a®+ 2%+ 2,%)? — 8[3(at + 2, + 2,%) — (a2 + 2,2 + 2,2)?] .
Dette kan omskrives til
(12) 4 = 12[(a®+ 2% +2,2)2 — 2(at + 2,2 + 7,Y)] = 12D (a?, 2,2, x,?) ,
hvor @(a?, .2, z,%) kan oplgses i faktorer som
(13)  D(a? )2 2,%) = (a+&;+2,)( —a+ 27 +2,) (@ — 2, +2,) (@ + Ty —%,) .

Lad os ferst betragte tilfeeldet 4>0. Af (13) ses, at der i sa fald ma
eksistere en trekant med siderne a, z, og x,, d. v. s. der findes i trekant
A,4,435’s plan to punkter P’ og P”, hvis afstande fra 4, og A, er hen-
holdsvis 2, og x,. Disse punkters afstande z,’ og z;"’ fra A,, der er for-
skellige, m& begge sammen med de givne x, og =, ifglge I tilfredsstille
(11), og da denne ligning kun har to ikke-negative lgsninger, ma enten
xy’ eller 3" vare lig det givne ;.

Lad dernzest 4=0. Af (13) ses, at der i sa fald findes ét punkt P’,
hvis afstande fra 4, og 4, er henholdsvis z, og z,, og dette punkt ligger
pé linien 4,4,. Dets afstand z,’ fra 4, vil ifelge I sammen med de givne
¥, 0g 2, tilfredsstille (11), og da denne nu kun har én ikke-negativ los-
ning, mé ;" veere lig det givne w,.

Bade for 4>0 og for 4=0 vil der altsa i planen 4,4,4, findes netop
ét punkt, hvis afstande fra 4;, 4, og 4, har de givne veerdier henholds-
Vis &, ¥, 0g 3. Uden for denne plan findes ifglge II ingen sidanne punk-
ter. Hermed er III bevist.

Inden vi beviser den omvendte swtning til II, vil vi godtgere rigtig-
heden af felgende hjalpessetning:

Dersom tallene zy, 2y, . . ., z, tilfredsstiller ligningen
n 2 n
(14) D(2g, 215 « ooy 2) = (2%) —n M22=0,
0 0
vil enten

1) alle Z’erne have samme fortegn, eller
2) et af Z’erne vil veere nul og alle de andre lige store.

Ligningen (14) kan omskrives til

(15) (29—21)%+ (29— 20)2+ (2, —29)2 + . . . + (@122 =222+ .. 2,2

Lad os forst antage, at alle z;+ 0, men at de ikke alle har samme fortegn.
Vi udvelger da pa venstre side af (15) specielt de kvadrater (2;—2;),
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hvor z; og z; har modsat fortegn. Ved udvikling af disse kvadrater frem-
kommer hvert 22 mindst én gang, og alle de dobbelte produkter — 2z;z;
bliver positive. Vi ser herved, at summen af de udvalgte kvadrater
overgar hgjre side i (15). Den herved opstaede modstrid godtger forste
del af hjelpesetningen.

Lad dernwst f. eks. 2, =0. Kvadraterne pa hgjre side af (15) genfindes
da pé venstre side, og alle yderligere kvadrater pa venstre side mé der-
for vere nul, d.v.s. zy=2,=...=2,_;. Hermed er hjwlpesetningen
fuldsteendig bevist.

Den omvendte setning til II lyder:

IV. Dersom tallene y,=0 tilfredsstiller (10), findes der i ethvert R,
som indeholder trekanten, metop to punkter, Q' og Q", hvis afstande fra
trekantens vinkelspidser 4,, A, og A, er henholdsvis y,, y, 09 ys. De to
punkter ligger symmetrisk med hensyn til trekantens plan, ¢ afstanden h
fra denne.

Lad altsd y,, y, og y; betegne givne, ikke-negative tal, som tilfreds-
stiller (10). Et eventuelt punkt @ af den i seetningen nevnte art ma ifolge
II have afstanden A fra trekantens plan. Afstandene x,, x, og 3 fra 4,,
A, og A, til @’s projektion P pa denne plan er derfor bestemt ved

(16) y,-z = xi2+h2 .

Indfgres dette i (10), gar denne over i (9), idet de regninger, som foran
forte fra (9) til (10), let fores baglens. Anvendes nu hjelpes@tningen
med z,=a? samt z;=z2 1=1, 2, 3, ses det, at de ved (16) indferte x;2
er =0, og sterrelserne x; eksisterer derfor som reelle tal (= 0). Ifglge III
er da den entydige eksistens af projektionen P sikret, og i ethvert R
gennem trekanten findes da to punkter @, beliggende pa trekantplanens
normal i P, i afstanden h fra P. Hermed er IV bevist.

3. Vi kan nu udvide dimensionstallet og erstatte den ligesidede tre-
kant med et regulert tetraeder 4,4,4,4, med kanten a. Sxettes for et

vilkarligt punkt P i det ved tetraedret bestemte R; vektorerne A—:P =ax;
med lengder z;, kan man bevise en til (9) analog relation

D(a?, x,2, .2, 232, x,2) = 0,
(D(aza x12: x22, x32: x42) = (0,2 + in2)2'~ 4:((1-4 + in‘i)

med summationer fra =1 til ¢=4. Ligeledes kan man bevise setninger
analoge med de gvrige foran omtalte.
I stedet for at udfere dette nermere vil vi — stadig med benyttelse af

hvor
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euklidisk metrik — foretage en direkte udvidelse til et vilkarligt dimen-
sionstal og erstatter derfor det reguleere tetraeder med et reguleert
simplex 8, hvor » er vilkarlig. Vi vil bevise setninger analoge med de
tidligere. Bevisforelsen ligger s& nar den allerede givne, at vi nsesten
overalt kan ngjes med at anfore de vigtigste formler, og for at tydelig-
gore analogien giver vi dem samme numre som deres tilsvarende, blot
forsynede med en stjerne.

Lad der altsi foreligge et regulert simplex S, med hjornespidser
4y, 4, ..., 4, og kantlengde a. Lad P betegne et vilkéarligt punkt i
det ved S, fastlagte B,_;. Idet vi bruger betegnelser analoge med foran

=
og altsa f. eks. swtter 4,P=w,;, i=1, 2, ..., n, kan vektorerne x,; skrives
pa formen
‘wl = Aoltyy +Agtys + . . . +}'na1nl
(1%) ®y = lyay +Agl05 + . .. + 2,8, é—iv =1
’ 0 .
......................................... n

Sxetter man nu

(2%) A =02+ . A2+ A+ DA+ o Ay A

fas som tidligere ;
(3%) z? = a¥A-1,;), |
der nu fgrer til ‘
(4%) Jr? = a¥(nd-1) 1
og
(5%) a?+ d'x? = na?d .

Her og i det folgende skal man, nar ikke andet siges, lade summatio-
nerne lgbe fra i=1 til ; =n.
Videre fas, svarende til de tidligere (6) og (7), 1

(6%) et = al(na2—1) |
og

(7%) at+ Yt = natd?, ;
Af (5%) og (7*) findes ‘
(8%) (@+ Ya2—n(a*+ Yab) = 0 |
eller ’
(9%) D(a?, x,2, 252, ..., 2,2 =0,

Altsa:
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I*. Afstandene x; fra hjornespidserne det reguleere S, til et vilkarligt
punkt ¢ dettes R,,_, tilfredsstiller betingelsen (9%).

For punkter i afstanden & fra dette R,_, finder man pa ganske samme
made som for
(10%) D(a2, Y%, Y2, - - -, Yn2) = 2nh%?,
d.v.s.

II*. Afstandene y; fra hjornespidserne i det regulere S, til et vilkarligt
punkt i afstanden h fra dettes R, _, tilfredsstiller betingelsen (10%).

Heraf ser vi i analogi med tidligere, at afstandene y, fra hjernespidserne
i det regulwmre S, til et vilkarligt punkt tilfredsstiller betingelsen

dj(a/27 y127 y22’ Tt ynz) g 0 ’

og lighedstegnet gzlder kun, nir punktet ligger i det ved S, bestemte
R

n—1°

4. Vi gér herefter over til de omvendte swetninger til I* og IT*. De far
falgende ordlyd:

III*. Dersom tallene 2,20, 1=1, 2, ..., n, tilfredsstiller (9%), findes der
netop ét punkt P, hvis afstande fra simplexets hjornespidser A,, A4, ...,
A, er henholdsvis xy, @y, . . ., T,. Dette punkt ligger © simplexets R, ;.

IV*. Dersom tallene y;=0, i=1,2, ..., n, tilfredsstiller (10%), findes
der i ethvert R,, som indeholder S,,, netop to punkiter, Q' og Q"', hvis afstande
fra simplexets hjornespidser Ay, A,, ..., A, er henholdsvis Yy, Yz, - - > Yn:
De to punkter ligger symmetrisk med hensyn til simplewxets Ry, i afstanden
h fra dette.

Bevisgangen er den samme som foran, men fir dog her karakter af
en induktion. For S, (den ligesidede trekant) er de to seetninger bevist
foran, og idet vi antager dem gyldige for S,_;, vil vi vise, at de ogsé
geelder for S,.

Vi begynder med IIT*. Lad altsd x;, x,, ..., %, betegne givne, ikke-
negative tal, som tilfredsstiller (9*). Svarende til (11) far vi ved ordning
efter faldende potenser af x,,:

n—1 n—1 n—1 2
(11%) (n—1)x,*—2x,> (a2+ ‘;xf) +n (a4+ ‘12':1:1-4) - (a2+ %’xﬁ) =0.

Opfattes dette som en andengradsligning i «,% mé som fer diskriminan-
ten 4 vaere =0. For A fas her

NMT, Hefte 4, 1960. — 12
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n—1 2 n—1 n—1 2
4=4 (a2+ wa) —4(n—1) [n (a4+ Zx#) - (a2+ fo) } ,
1 1 1
der kan omskrives til

n—1 2 n—1
A = 4n [(az—i— inz) —(rn—=1) (a4+ in4>]
1 1
eller
(12%) 4 = 4nd(a? % 2,2, ..., 2, ,2) .

Da III* og IV* jo ifelge antagelse gwlder for det ved punkterne A4, A,,

.., A, bestemte simplex S,_,, far vi:

For A4>0 findes der i det til S, herende R,_, to punkter P’ og P",
hvis afstande fra hjgrnespidserne A;, 4, ..., 4, ; er henholdsvis
%y, Ty, -+ .5 &y, Og Man viser ganske som for, at for det ene af disse er
afstanden fra 4, lig #,. For 4 =0 findes der i det n®vnte R,_, netop ét
punkt P’, hvis afstande fra 4,, 4,, ..., 4,_; er henholdsvis z,, Loy v ooy
*,_1, 0g man ser som for, at afstanden fra 4, bliver z,,.

Ifglge setning IT* findes der uden for det til S, herende R,_, ikke
noget, punkt, hvis afstande fra S,’s hjornespidser tilfredsstiller (9%*),
og hermed er setning IIT* bevist.

Seetning IV* vises herefter ganske som for, idet den foran omtalte
hjzlpesetning nu benyttes i fuldt omfang (for vilkarligt ).

I det felgende vil vi foretage forskellige anvendelser af den ovenfor
fremstillede teori.

5. Vi bemerker, at (9*) ikke blot — som pa forhiand klart — er sym-
metrisk i #’erne, men at o indgar pi lige fod med «’erne i en mere omfat-
tende symmetri. Idet vi derfor betegner a med z,, fores vi til felgende
seetning : '

V. Lad xy, %, ..., x, vere afstande fra hjornespidserne i et reguleert
simplex S, med kanten xy til et punkt Py i dettes R, ;. For ethvert =0
vil da 0gsd g, Ty, . . ., iy, Tyyy, ..., €, vEre afstande fra hjornespidserne

i et reguloert simplex SE med kanten x, til et punkt P, ¢ dette sidstes R,_,.

Ifglge I* tilfredsstiller tallene zy(=a), , 2y, ..., x, nemlig (9*). An-
vendelse af den omtalte symmetri sammen med IIT* fgrer da til den
nevnte konklusion.

For n=3 kan denne setning indses helt elementert; men allerede
for n=4 synes et sddant simpelt bevis ikke umiddelbart at frembyde
sig.

Den ovennszvnte symmetri giver ogsa anledning til falgende:
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VI. Lad 9y, Ys, - - -» Yn veere afstande fra hjornespidserne i et regulcert
simplex S, med kanten y, til et punkt Q, uden for dettes R, _,. For ethvert
P40 vil da 0gsd Yo, Y1 - - > Yi1> Yirp> - - +»> Yn vETe afstande fra hjorne-
spidserne i et regulert simplex S med kanten y; til et punkt @; uden for
dette sidstes R,_,. Betegnes afstanden til @; fra det ved St bestemte R, _,

med h;, haves
Yoho = iy = .. = Yl -

Dette folger umiddelbart af den omtalte symmetri under anvendelse

af IT* og IV*,

6. Vi betragter atter et regulert simplex §, med kanten a og et
punkt P i dettes R,_;. Som for swmttes 4,P =x; med lengde ;. Lad M

-
betegne simplexets centrum og 4;M =m,. Vi har da:
®; = Aoy +3lygt ..+ A0,

1 1 1
m, = —Qp+—a5+...+-ay,.
n n n

Vektoren M?"’ =x, —m, bliver
1 1 1
xr,—m,; = (22 ——) a;, + (A3 ——) a;+ ...+ (/ln——) a,
n n n

og dens leengde MP kan bestemmes ved

2

1\2 1
MP? = (x,—m,)® = a® [(22 —;) +...4 (An—;> +

() (D) () ()

eller, idet A’ betegner det udtryk, som fremgéar af A, nér 2; erstattes

1
med 4;,——:
n
1\ 2 1
(17) MP? = a? [A’ - (al—_) 2(/1,;-—~)] — @A,
nl 9 n
Ved udregning findes )
A=A
2n

hvorefter (17) bliver

1
(18) MP? = a? (A—E’—)
. 2n

12*
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Lader vi her specielt P falde i A,, bliver A=1, og radius p=M4, i
simplexets omskrevne hyperkugle! bestemmes ved

n+1
¢ 2=g2(1-—"") .
(19) ot =at(1-200)
Af (18) og (19) fas
(20) MP2—g? = g2(4 1),

Vi vil nu for enhver konstant %> 0 bestemme mengden af punkter P
i simplexets R,_,, for hvilke

D(w)?, 2, ..., 2,2 = nkt,
d. v.s.

n 2 n
(21) (2%2) —(n—1) 3 2t = nkt.
1 1
Betingelsen (21) kan ved (4*) og (6*) skrives
a'(nd—1)2—(n—1)a4(nA2—1) = nkt,
der ved reduktion giver
a¥A—-1)2 = [t

eller
a*(A-1) = +k2.

Ved hjelp af (20) fas heraf
(22) MP? = g2+ )2,
Vi har hermed vist:

VIL. Det geometriske sted for et punkt i simplewets R, _,, for hvilket
D(x:?, %, ..., 2,2) =0, er simplexets omskrevne hyperkugle.

VIIL. Det geometriske sted for et punkt i simplexets R, _,, for hvilket
D(w:2, @2, ..., x,2)=nk*>0, er to hyperkugler, koncentriske med den lige
neevnte, dog med den begreensmwing, at den ene svinder ind til et punkt,
resp. bortfalder for k=, resp. k> .

Lad os specielt betragte tilfeeldet n=3. Betingelsen @(x,2, 2,2, x,2)=0
udtrykker (sml. (12) og (13)), at det ene af stykkerne x;, x, og x, er lig
med summen af de to andre. Det hertil svarende tilflde af VII er vel-
kendt og kan direkte udledes ved anvendelse af den ptolemziske lzere-
seetning og dennes omvendte s@tning. VIII giver her (ved Herons formel)

! Ved en hyperkugle i et R, vil vi forsta samlingen af punkter i dette, hvis afstand
fra et fast punkt (i det betragtede Ry) har en given verdi.
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stedet for et punkt P, for hvilket en trekant med siderne z,, , og 23 har
konstant areal.

7. Vi vil behandle endnu et problem, som star i forbindelse med det
foran fremstillede. M. E. Wise har [1] udledet en nedvendig betingelse
for, at 5 kugler med givne radier kan placeres, s& de parvis bergrer hin-
anden (d. v. s. siledes at hver af dem bergrer hver af de andre, og med
forskellige rgringspunkter). Visse dele af bevisforelsen lader sig ikke
umiddelbart udvide til flere dimensioner. Vi skal her med anvendelse af
det foranstiende gennemfore en sddan udvidelse og samtidig godtgere,
at den fundne betingelse ikke blot er ngdvendig, men ogsé tilstreekkelig.

Vi betragter n parvis bererende hyperkugler K, K, ..., K, i et
R, _,. Disse ma enten ligge saledes, at alle bergringer er udvendige, eller
ogsé ma n—1 af dem parvis have udvendig bergring, men ligge inden i
den storste, med hvilken de altsd har indvendig bergring. De to tilfelde
kan behandles under ét, nar vi regner diametrene d,,d,, ..., d, med
fortegn pa en sddan made, at udvendig berering for to hyperkugler
svarer til, at deres diametre har samme fortegn, og indvendig bergring
til modsat fortegn. Vi kan da uden indskreenkning antage, at diametrene
dy, ds, - .., d,_; alle er positive, medens d,, er positiv eller negativ, efter
som K, ligger uden for de andre hyperkugler eller omslutter dem.

ﬂ:,) .N-2
S,
0
P
S,
8
TN, U
1 1

Fig. 2

Vi begynder pa ganske samme méade som i den n®vnte afhandling
med at anvende en inversion, hvis potens er 1, og hvis centrum er rg-
ringspunktet O mellem K, og K, (fig. 2). Herved fores disse to hyper-
kugler over i to parallelle hyperplaner! m; og m,. Afstandene fra O til

1 En hyperplan i et Ry er et Ry, indeholdt i Ep.
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1 1
disse bliver ON, = 7.8 ON,= R Seettes hyperplanernes afstand N, N, =4,
fas 1 2
1 1
23 6 = — -,
(23) P Z
og er P midtpunktet af N,N,, bliver
1/1 1
24 OP = —|———|.
(24) 2\d, d,

En vilkarlig af de andre hyperkugler K, med diameter d, fores over i
en hyperkugle K;, som rerer =, og m, og altsd far diameter 8. Dens
centrum kaldes 4;. Med benyttelse af de ovrige betegnelser pa figuren
haves 08,-08;=1, siledes at O’s potens & med hensyn til K; bliver

, 0oU, U, U, ¢
a = 0U, 081—5:9—;_@2—_@,
Potensen kan ogsa skrives

62
o« =042——,
4
saledes at
6 o2
25 42 =22

Derefter findes

0 1/1 1\2 1/1 1)2
P42 = 042-0Pr = _(_ _—) __(___>
3, i\q g,
eller, nar vi ssetter PA4,=x;:

(26) L.
22 = —4—.

Y d; dyd,

Udledelsen af (25) og (26) gelder for alle i =3, 4, ..., n. Det bemsrkes
specielt, at den geelder for i =n, bide nar d,, er positiv og negativ.

Hertil har vi, bortset fra dimensionstallet og nogle regnemsssige
simplifikationer, fulgt Wise’s metode. For nu at komme videre benytter
vi den foran fremstillede simplexteori. Punkterne A,, 4,, ..., 4, er
hjgrnespidser i et regulart simplex S, , med kanten 8. Da P ligger i
simplexets R, _,, ma afstandene x; ifolge I* tilfredsstille ligningen

(27) D%, x5, 2%, ..., 2,2) =0

eller

(28) (62+ émi2>2—(n—2) (64+ %n'xi‘*) =0.
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Indfgres her veerdierne for ;2 fra (26), fis

—2\? L | 26 n—2
(52+52d 5 )—(n—z)(a4+522~+d1—2307 d12d2)=0,

der ved omskrivning af venstre side kan reduceres til

52l62+26§’$;+(2n'%)2—(n 2) (62_1—+§n§1—)} =0

3 Wi

Efter division med 6% og yderligere lidt omskrivning fis
"1 2 n 1

(29) (27) ~m-2355=
1 d‘t 1 d

der, som det kunne forudses, er symmetrisk i alle diametrene. Vi har
hermed vist:

IX. Dersom n hyperkugler i et R,_, med diametre dy, dy, ..., d, kan
placeres med parvis beroring, geelder betingelsen (29).

Det er dette resultat, som for n=5 (og n=4) findes i Wise’s athandling.

I formuleringen af IX skal tenkes indeholdt, at diametrenes fortegn
og bergringens art er knyttet sammen som tidligere omtalt. Dette
gelder ogsa for den folgende setning, som er omvendt til IX, og som
lyder:

X. Dersom tallene dy, dg, . . ., d, tilfredsstiller betingelsen (29), kan man
i et R,_, placere n hyperkugler med diametre d;, siledes at de har parvis
beroring.

For at vise dette bemerker vi forst, at hvis der blandt tallene d; ikke
findes to positive, kan vi opna dette ved at multiplicere dem alle med
—1, hvilket hverken sndrer gyldigheden af (29) eller problemstillingen
igvrigt. Vi kan derfor antage d, og d, positive.

Vi indferer sterrelsen 6 ved (23) og opbygger et regulert simplex
A4A, ... A, med kanten 6. I et R,_, gennem dette anbringes med hver
hjgrnespids som centrum en hyperkugle med diameter ¢; disse hyper-
kugler har parvis udvendig bergring. Hyperplanerne 7, og x, bestemmes
let. Vi indforer derpa storrelserne z,, z,, ..., %, ved (26). Ligning (29)
kan da omskrives til (28) og (27). Af den tidligere viste hjelpesetning
folger nu, at alle z,2> 0, siledes at x;’erne er reelle. Ifglge III* eksisterer
derfor (entydigt) i simplexets R, _, et punkt P, hvis afstande fra hjerne-
spidserne A; er x;. Dette punkt ligger midt imellem 7; og 7,. Ved (24)
bestemmes derpa i det benyttede R, _, inversionscentret O med beliggen-
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hed mellem 7, og 7,, p4 normalen gennem P, og en inversion om dette
punkt med potensen 1 forer z; og 7, samt de n — 2 lige store hyperkugler
over i n parvis bergrende hyperkugler med diametrene dy, d,, ..., d,.

Vi mangler nu blot at vise, at bergringens art er i overensstemmelse
med diametrenes fortegn. Der bliver her to tilfzelde at betragte:

1) O ligger uden for alle de n— 2 lige store hyperkugler. I sa fald vil
efter inversionen alle n hyperkugler parvis have udvendig bergring.
Da man af (26) jo kan udlede (25), indtraffer dette tilfelde, nar d;,
dy, ..., d, alle er positive ligesom d, og d,.

2) O ligger inden i en (og kun én) af de n— 2 lige store hyperkugler;
lad det veere K, med centrum A,. Efter inversionen vil den tilsvarende
hyperkugle K, omslutte de n—1 andre, medens disse som for vil have
udvendig bergring. Af (25) ses, at dette indtreffer, nar d,, dy, ..., d,_,
alle er positive ligesom d, og d,, medens d, er negativ. Hermed er X
fuldsteendig bevist.

Betingelsen (29) er altsd bade nedvendig og tilstrekkelig for hyper-
kuglernes parvise bergring, nir dennes art knyttes til diametrenes for-
tegn pa den betragtede made.

Lader vi d,, — oo, gar (29) over i

30) ¢<1 ! ! ) 0

( dl, d2’ o0y dy: -_ .
Ligning (30) mé& derfor vere nedvendig og tilstrekkelig betingelse for,
at n—1 hyperkugler i et R,_, bergrer hinanden parvis og desuden alle
bergrer samme hyperplan. Dette kan ogsd fis mere direkte saledes:

Vi tenker os i opgavens formulering hyperkuglen K, erstattet med en

1
hyperplan. Dette medferer, at man i (23) og (26) skal saette —=0.

Herved simplificeres disse to formler til 1
5 1 . 1
= —, X:e = )
dy " dyd;

som indsat i (27) giver
1 1 1
¢<_, R )=O:
dy? dydy dyd

1 1 1
¢(~,—“.q_)=o,
dy dy " d

n

der panzr de benyttede indices stemmer med (30).
For n=3 giver (30) specielt, at betingelsen for, at 3 cirkler med dia-
metre d,, dy og dj rgrer hinanden parvis og har en fwlles tangent, er
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1 1 1
Q(_, 7 —') = O:
A, dy dy

1
d.v.s. (sml. s. 158), at den ene af storrelserne —

V_, l/ og —— er lig summen
2
af de to andre. Dette stemmer med, at leengden af fae]lestangenten for

to (udvendigt) bergrende cirkler med diametre d; og d; er ]/d,;dj.
Til slut skal anferes, at i et rum med sfeerisk metrik bliver (29) er-
stattet af

(Zn'cotri>2—(n—2)zn’cotzri = 2(n—2),
1 1

hvor r; betegner hyperkuglernes »sfariske radier«, malt mellem —g og
7
5 %8 regnet med fortegn pa passende made.

Om beviset skal her blot n®vnes, at det kan feres ud fra (29) ved

anvendelse af en inversion.
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G. AssEr: Einfihrung in die mathematische Logik. Teil 1. (Mathema-
tisch-naturwissenschaftliche Bibliothek 18.) B. G. Teubner Verlagsgesell-
schaft, Leipzig, 1959. 44184 ., 7 Fig. DM 11.25.

(Innholdsfortegnelse i NMT, denne &rgang, s. 41.)

Bogen er det forste og nok mindste af tre planlagte bind. Tilsammen
skulle de ifelge forordet give en indfering i den matematiske logiks
»Gesamtgebiet«, — dette dog ment i snavreste forstand: talen er udeluk-
kende om den klassiske matematiske logik med to sandhedsveerdier: sand
og falsk. 1. bind rummer udsagnskalkylen.

Logikkens egentlige problem er forholdet: forudssetninger—konsekven-
ser. Man kan i stedet behandle »almengyldige udtryk, tautologier, og
det har forfatteren gjort. Men desvzrre nmvner han ikke forbindelsen
til det egentlige problem. Den uindviede lweser vil derfor neppe forstd,
hvad hele teorien skal tjene til. Han far ikke hjelp af bogens eksempler.

I ovrigt burde nok forfatteren ved overgangen til bogens anden del,
dvs. i § 6, fremheaeve, at det emne, der nu tages op, »Ableitbarkeit«: »Ein
Ausdruck H heiit genau dann aus einer Menge X von Ausdriicken
ableitbar (X Abl H), wenn . . ., er noget ganske andet end konsekvens—
forudseetninger.

Udsagnskalkylen har et meget simpelt indhold. Desveerre skjuler for-
fatteren til dels dette. Som eksempel kan anfores § 5, omhandlende nor-
malformer: Et blik pa sandhedstavlen forst for et elementaralternative,
s& for en vilkérlig »kanonisk konjunktiv normalforme, er i virkeligheden
tilstraekkeligt til at godtgere rigtigheden af samtlige pastande i § 5. Der
gives ogsi en antydning i denne retning, ganske vist sloret af en over-
tledig antalsbetragtning, — men forst efter, at leeseren gennem henved
en snes sider mé tro at beskaftige sig med noget dybsindigt.

Fremstillingen er bred, men ikke tilsvarende klar. Som eksempel kan
jeg nevne diskussionen af omtalte »Ableitbarkeitsrelation«, 451, En fod-
note s. 104 gor opmeerksom pé, at de fleste af de felgende resultater ogsa,
geelder for en vilkarlig »Ableitbarkeitsrelationg; i virkeligheden har teksten
undertiden kun mening i det almene tilfzelde. Forfatteren springer nu fra
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det specielle synspunkt til det almene (forste gang s.75!) og tilbage, ofte
uden et ord; for leseren er det ganske besvearligt at prove at holde rede
pa, hvor forfatteren er i gjeblikket.

Udsagnskalkylen har sit symbolsprog. Det ma man naturligvis. leere.
Derimod vil jeg mene, at bogen var lettere lest, om ikke forfatteren
rundhéndet havde stroet ud et veeld af mere hjemmelavede betegnelser.
Det er mest forkortelser af tyske ord, som f. eks. ausd: mangden af alle
»Ausdriicke«. Hvad angar betydningen af Ab, Aba, Abe, Abl, Abla, osv.:
benyt henvisningerne i registret; det har jeg gjort adskillige gange.

Nar disse indvendinger er gjort, skal det ogsa siges, at bogen inde-
holder meget stof af interesse.

Jeg finder det endvidere fordelagtigt, at forfatteren opnéar en fast linie
ved at bygge fremstillingen p4 begreber som maengde og afbildning i deres
handfaste form. .

Meget benyttes der vel ikke herom; vasentligt for leeserens udbytte vil
det alligevel vere, at det er begreber, han pa forhind er fortrolig med.
Men selv om denne betingelse er opfyldt, kan jeg, som man vil forstd af
indvendingerne ovenfor, ikke tilride denne »Einfithrung« som et forste

bekendtskab med matematisk logik. Tage Gutmann Madsen

F. BAcHMANN : Aufbau der Geometrie aus dem Spiegelungsbegriff. (Grund-
lehren der mathematischen Wissenschaften 96.) Springer-Verlag, Berlin,
Gottingen, Heidelberg, 1959. 13-+311 8., 160 Fig. Ganzl. DM 49.80.

(Innholdsfortegnelse i NMT 7 (1959), s. 127.)

Det forste kapitel i Bachmanns bog er af propsedeutisk karakter. Her
samles pa et intuitivt grundlag (der kan preeciseres ved Hilberts aksiom-
system) erfaringer om spejlinger i den sedvanlige plane geometri, ind-
fores betegnelsesmader, der letter vejen til den senere anvendte gruppe-
teoretiske kalkule med spejlinger, og bevises visse fra den sedvanlige
geometri kendte setninger ved regning med spejlinger. Endvidere refe-
reres modeller af elliptisk og hyperbolsk geometri. Dette kapitel er umid-
delbart tilgeengeligt og giver et overblik over den plane geometri fra et
ikke traditionelt synspunkt.

Senere i bogen finder man refererende afsnit om projektiv geometri,
i kapitel IT pa aksiomatisk og i kapitel III pé analytisk grundlag. Der
er her tale om projektiv-metriske planer, d. v. s. projektive planer, hvori
der er givet en polaritet (ved hjeelp af hvilken man kan definere flytninger).
Analytisk kan en sadan plan fremstilles ved et metrisk vektorrum, d.v.s.
et vektorrum, hvori der er defineret et skalert produkt (ved en sym-
metrisk bilinearform), og flytningerne i planen kan fremstilles ved ortogo-
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nale transformationer af vektorrummet, d. v. s. linesere transformationer
af vektorrummet, ved hvilke skalarproduktet er invariant.

Vedrgrende bogens hovedemne, der — som titlen angiver — er en
opbygning af den plane geometri pa grundlag af spejlinger, skal her blot
henvises til den udferlige introduktion, der er givet i NMT 7 (1959),

. 97-1 . 145-156.
8. 97-110 og s. 145-156 Poul Neerup

Fr. FaBrICIUS-BIERRE: Leerebog i geometri, I. 3. sendrede udgave. Jul.
Gjellerups forlag, Kgbenhavn, 1958. 255 s., 64 fig. D. kr. 40.00.

(Innholdsfortegnelse i NMT 7 (1959), s. 40.)

Vid Danmarks Tekniske Hgjskole finns en sirskild lirostol i geometri,
nagot som ger geometriundervisningen dir en starkare enhetlighet dn
vad fallet ar t.ex. vid de svenska tekniska hégskolorna dar geometri-
kursens olika delar &r utspridda pa ett flertal andra liroimnen.

Den féreliggande boken &r tredje upplagan av Fabricius-Bjerres vil-
kénda och utmérkta lirobok som innehaller den danska kursen. En jam-
forelse med andra upplagan visar att en stark omarbetning och om-
disposition &gt rum, si att den linedra algebran kommit att intaga en
mycket centralare plats &n tidigare. I de tre forsta kapitlen behandlas
determinanter, lineéira ekvationssystem och vektorkalkyl i tre dimensio-
ner. Fjirde kapitlet behandlar rita linjen och planet i det tredimensio-
nella rummet. Femte, sjitte och sjunde kapitlen behandlar n-dimen-
sionella vektorrum, matriskalkyl och lineiira transformationer med geo-
metriska tillimpningar (t. ex. koordinattransformation) varefter boken
avslutas med tvé kapitel om andragradskurvor och andragradsytor. I
ett tilligg inféres den geometriska terminologien i #-dimensionella vektor-
rum, vilka dock hér liksom tidigare (i kap. V) behandlas som rum av
n-tupler av tal (ay, a,, ..., a,).

Det ar overflodigt att ga in pa detaljer da det géller att berdmma
framstillningen i denna redan vilkinda lirobok, utan det ma ricka att
konstatera att omarbetningen ér lika littlist som den tidigare upplagan
trots att en modernisering och utvidgning av lirostoffet foretagits.

Till sist en kritisk reflexion. Franvaron av ett axiomsystem fér den
euklidiska geometrien gér att flera som satser betecknade pastaenden
bara kan géras troliga men inte bevisas. Detta kunde litt ha avhjalpts
om vektorrum med inre produkt hade definierats abstrakt med hjalp
av ett axiomsystem. En sidan definition ger pa en ging ett axiomsystem
for euklidisk geometri och méjlighet att ordentligt bevisa isomorfien
mellan ett godtyckligt n-dimensionellt vektorrum och det speciella n-
dimensionella vektorrum som bestir av n-tupler av reella tal. Att syste-
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matiskt utnyttja denna isomorfi utgor ju den analytiska geometriens
grundidé. .
Hans Radstrom

O. HANNER — M. HAsTaDp - S. Scuwarz: Tentamensproblem med 1os-
ningar for AB (2 betyg) i matematik. Almqvist & Wiksell, Stockholm,
1960. 152 s. Sv. kr. 17.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 179.)

Denne oppgavesamling er beregnet pé svenske studenter, men den vil
etter anmelderens mening ogsi kunne vere til nytte for andre skandi-
naver. Enhver som underviser i de emner som dekkes av boken, vil
kunne finne mange gode oppgaver her. Svart fa av oppgavene byr bare
pé ren »slaveregnings, og en god del av dem mé sies & veere interessante,
i den grad matematiske problemer pa dette trinn kan veere det.

Det er et spersmal om eksamensoppgaver behgver & vare interessante
eller ymorsomme«. Erfaringen lerer oss nemlig at mer trivielle oppgaver
kan gjere god nytte til eksamen, og er ulike mye lettere & lage enn de
interessante, spesielt fordi en kan ha vanskelighetsgraden bedre under
kontroll. Mange har vel, som anmelderen, gjort den erfaring at det helst
er eksamensoppgavene, og oppgaver som ligner disse, som har studentenes
interesse. Grunnen er antagelig at formilet med studiet, i strid med
universitetets intensjoner, oppfattes som det & kunne mestre eksamens-
situasjonen best mulig. Har man dette i tankene, ser man at det er all
mulig grunn til & veere meget omhyggelig i valg av eksamensoppgaver.
Slik gir denne oppgavesamlingen oss et godt forbilde.

Boken inneholder fullstendige lgsninger til alle oppgavene, og i mange
tilfelle flere losninger til samme oppgave. Dette gjor at en student vil
kunne bruke boken pé egen hand. Det eneste aber ved en slik anvendelse
av boken er at en del av oppgavene vil vere for vanskelige for en middels
student, og problemet for lesere utenfor Sverige blir da & finne ut hvilke

oppgaver dette er, uten forst & forsgke & regne dem.
Helge Tverberg

KurT ScHUTTE : Beweistheorie. (Grundlehren der mathematischen Wis-
senschaften 103.) Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960.
11+ 355 S. Ganzl. DM 48.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 182.)

Denne bok, som vel neppe kan sies 4 vare helt elementeer, gir en
systematisk fremstilling av problemkomplekset omkring den elementaere
tallteoris konsistens.
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Med relementer tallteori« menes den del av tallteorien som kan (£. eks.
pé grunnlag av Peanos aksiomatikk) formaliseres innen forste ordens
predikatkalkyl. Denne kalkyl kjennetegnes ved at kvantorene (»da« —
det fins en x, og »Wa« — for alle #) begrenses til bruk pa variable over
individene i grunnomradet (dvs. de naturlige tall), men ikke til variable
over egenskaper ved individer.

Fra en fundamental sats av K. Godel (1931) felger at man 1kke kan
bevise konsistensen av den elementere tallteori ved metoder som er
formaliserbare (uttrykkbare) innen denne teorien selv, altsd heller ikke
ved reffektive« eller »finite« bevismetoder, men ma gripe til sterkere
slutningsregler. G. Gentzen viste i 1936 at en kan gjennomfore et kon-
sistensbevis om en i tillegg til finite bevismetoder benytter induksjon
opp til det forste e-tall. Hvor stor vekt en tillegger dette konsistensbevis,
avhenger av ens innstilling til transfinit induksjon; mange finner det
vanskelig & godta et konsistensbevis for den elementare tallteori som
bygger pa bevismetoder som gir ut over denne teori selv.

Med transfinit induksjon mener en induksjon hvor grunnomradet for den
vanlige tallteoretiske induksjon, de naturlige tall, er erstattet med klassen
av ordinaltall. Med induksjon til et ordinaltall « mener en altsa folgende
slutningsregel: Hvis en egenskap 4 som gjelder for alle ordinaltall mindre
enn et gitt ordinaltall £, ogsa gjelder for &, si vil A gjelde for alle ordinal-
tall mindre enn «. (Settes her « lik w, det forste ordinaltall falgende de
naturlige tall, fas vanlig induksjon.)

Et e-tall er et ordinaltall « som oppfyller likningen 2*=w; det forste
e-tall, &, vil veere det minste ordinaltall sterre enn alle ordinaltall i
folgen o . a®

o, 0%, 0, ... .

Ved bruk av ¢p-induksjon viste si Gentzen at den elementare tall-
teori var konsistent. Det er ogsi ganske interessant & vite at ey-induk-
sjon, i en viss betydning, er en »minimal« utvidelse av de »finite« bevis-
metoder, idet induksjon opp til ethvert ordinaltall mindre enn &, lar seg
representere innen den elementzre tallteori, mens derimot &,-induksjon
ikke lar seg redusere pa denne mate. (Indirekte folger dette av Godels
teorem, direkte viste Gentzen det i 1944.)

Gentzens opprinnelige beviser var meget kompliserte; i den forelig-
gende bok har vi fatt en fremstilling av Gentzens resultater bygget pa
en fra forfatteren stammende systematisering av den elementzare logikk,
som viser seg serdeles hensiktsmessig pa dette omradet av bevisteorien.

Boken inneholder for gvrig en lang rekke andre resultater, for en stor
del bygget pa forfatterens egne arbeider, bl. a. blir forfatterens fullsten-
dighetsbevis for den elementzre predikatkalkyl gjengitt, den elementzre
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tallteori utvides ved overgang til sakalte »halvformale« systemer (hvor
man tillater slutningsregler med et uendelig antall premisser), og i bokens
siste avsnitt betraktes typeteoretiske systemer med henblikk pa en videre
formalisering og bevisteoretisk undersgkelse av analysen.

Som vanlig med Springer-bgkene, er boken typografisk og handverks-
messig av hgy klasse. Trykkfeil fins omtrent ikke; deres trivialitet illu-
streres best ved et par eksempler: pa side 86 star det (4 A B,) i stedet
for (4 A B),, pa s. 129 skal siste ligning ¢,=« veere ¢,=«. Forngyelig
er det at forfatteren stadig insisterer pa & henvise til sats 8.4 (f.eks. pa
sidene 87, 88, 153), nar sats 8.4 overhodet ikke forekommer i boken!

J. E. Fenstad

Structures algébriques et structures topologiques. (Monographies de I’En-
seignement Mathématique, No. 7.) Association des Professeurs de Mathé-
matiques de ’Enseignement Public, et Institut de Mathématiques, Uni-
versité, Genéve, 1958. 198 pp. Fr. suisses 20.00.

(Innholdsfortegnelse i NMT 7 (1959), s. 42.)

Denne ymatematiske essaysamling« kaller pa var spesielle interesse, ikke
bare fordi de enkelte »essays« er sjeldent instruktive og vel gjennom-
tenkte innfegrings- og oversiktsartikler, men ogsé fordi boken er et vitnes-
byrd om et vellykket forsgk pa & knytte kontakten mellom universitetets
og skolens lerere, og pd & gi skolens lerere en praktisk mulighet til &
falge med i den senere tids raske utvikling innen deres eget fag.

Det er naturlig for en anmelder i forste rekke a feste seg ved den idé
som ligger bak denne boken og bak den foredragsserie som den er bygget
over. Bokens eget forord, som er forfattet av G. Choquet (professor ved
Sorbonne) og G. Walusinski (formann i Foreningen av franske mate-
matikklektorer), kan p4 mange méater oppfattes som en programerklee-
ring for denne idé, og det kan derfor veere av interesse & gjengi dette
forordet i en (noe forkortet) norsk oversettelse:

»I 1956 besluttet Fransk matematisk forening (Société Mathématique
de France) i samarbeid med Foreningen av matematikklektorer (Associa-
tion des Professeurs de Mathématiques de I’Enseignement Public), &
arrangere forelesningsserier spesielt beregnet pad matematikklerere pa
ethvert undervisningstrinn.

Den forste serie p4 8 forelesninger (februar til juni 1956) behandlet
algebraiske strukturer. Den annen serie pa 10 forelesninger (november
1956 til juni 1957) behandlet topologiske strukturer. Alle disse forelesninger
ble holdt ved Institut Henri Poincaré ved Sorbonne i Paris, foran et
tallrikt og oppmerksomt auditorium av praktiserende lektorer. Unge
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leerere og granende kolleger fant seg her forenet pa universitetsbenkene,
og de enkelte foredrag ble fulgt av spersmal og debatter som ikke er
tatt med i boken.

Foredragene ble alle skrevet ned av forfatterne selv og publisert regel-
messig i Tidskriftet for Foreningen av matematikklektorer (Bulletin de
I’Association des Professeurs de Mathématiques). Samlingen av disse fore-
dragene til et bind i serien »Monographies de I’Enseignement Mathéma-
tiques« gjor dem né tilgjengelige for alle som ikke har hatt anledning til
4 skaffe seg de forskjellige nummer av dette tidsskriftet. Samtidig vitner
det om et pedagogisk samarbeid som fortjener & bli understreket.

Denne bok er ikke en samling vitenskapelige avhandlinger, — heller
ikke er den et forsgk pa en forenkling, som her ville vaere demt til & bli
en banalisering. Den ber heller oppfattes som en innfering til studiet av
samtidens avhandlinger. Den vil motivere og begrunne de nyere retnings-
linjer i matematikken, og den vil gi leserne lyst til & sette seg nermere
inn i de mer moderne aspekter. P4 den maten vil den i neste omgang
bidra til & fornye var undervisning. Organiseringen av foredragene ble
ogsd lagt opp med dette mal for gye. Deres suksess har bevist at man
her imgtekom et behov for kontakt mellom de som underviser den fer-
dige vitenskap og de som underviser den vitenskap som enna star i for-
vandlingens tegn.

Den raskt gkende utbygning av forskningen, de stadig raskere frem-
skritt med hensyn til vitenskapelige resultater, tvinger selv de lzrere
som underviser pa elementeert niva, til 4 fornye sine teoretiske kunn-
skaper. De erindringer de har bevart fra sine egne universitetsstudier
trenger en periodisk oppfriskning. Deres egen undervisning ber nyte godt
av vitenskapens nyvinninger. I dag m4 man undervise matematikken av
i dag. Slik forbereder man studentene pa den beste méate til de studier,
eller til den forskning, som venter dem.

Disse foredrag utgjor siledes en del av et permanent pedagogisk fore-
tagende, som har det dobbelte mal & tilpasse undervisningen til viten-
skapens utvikling og & utvikle pedagogikken selv. Man har nylig kritisert
den form for pedagogisk forskning som utelukkende har veart viet de
»profesjonelle knep, de »metoder som lykkes«, uten tanke pa & klargjore
de underliggende prinsipper og dermed bane veien for videre fremgang i
faget. Disse foredrag &pner derimot perspektiver mot samtidens viten-
skap, og ber kunne folges av en innsats i den pedagogiske forskning som
tilsvarer dagens enorme behov for vitenskapelig undervisning.

Fremtiden for denne pedagogiske forskning kan imgtesees med opti-
misme. I lgpet av foredragene vokste det frem en stigende samarbeids-
vilje og gjensidig aktelse mellom laerere pa de forskjellige undervisnings-
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trinn. I forste omgang var det, naturlig nok, universitetslererne som
hadde den storste delen av arbeidet, men i neste omgang vil lektorene
pa lavere trinn yte dem en gjentjeneste ved bedre & forberede elevene
til de hgyere studier. P4 denne méten illustrerer dette samarbeidet den
dyptgaende enhet i en undervisning som ved vel tilpassede metoder ber
kunne fore elevene helt frem til de hoyeste studier uten & tape den ene-
stdende skaperevne og virketrang som de som barn &penbarer nesten
hver eneste dag.«

Det ville fore for langt om vi her skulle komme nzrmere inn pa de
enkelte artikler. Innholdsfortegnelsen viser hvilke emner som er repre-
sentert. Den kan gi et visst inntrykk av det faglige grunnsyn som preger
den gruppen av matematikere som har gatt sammen om dette fore-
tagendet.

Det star bare igjen 4 enske at boken fir mange lesere, savel innenfor
den gruppe foredragene opprinnelig var beregnet for, som innenfor grup-
pen av studenter som er interessert i & orientere seg i faget matematikk.

E. Alfsen

NMT, Hefte 4, 1960. — 13
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OPPGAVER TIL LOSNING

Lesninger av oppgavene 200-205 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lgsning av hver oppgave. Lesninger av oppgaver i dette hefte ma, for & komme
med i neste hefte, veere sendt innen 10. mars 1961.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lgsning.

200. En ricka a; <a,< ... <ap<ap,,<...< @y, 1 &V Pa varandra fol-
jande hela kvadrater dr given. Bevisa att vid ett visst viirde pa k och a,
som funktioner av n ar

k 2n+1
2a,=2a,.
p=1 v=k+1

A. V. Peljo

201. I rekken
In2 =1-3+3-%+...

skal en ordne leddene slik at der forst kommer P, positive ledd, deretter
¢, negative, s& p, positive og g, negative osv. Velg tallfelgene {p,} og

slik at
{q'n} pn 1 1 2n
Pn —(1 +—) .
q, 4 n

Vis at rekken da far summen s=1. R. Tambs Lyche

202. Bevis formelen

o 1
4
_S/ 2 N %34 s
n=1 n4 n
n
o0
der s, = 3 k.
k=1 W. Ljunggren
Tidligere formler av samme type:
o 1 ]
> =4}s, (Knopp, Unendl. Reihen, 1922, s. 259).

2n

S
Il
-
3
S
~//
N
N——

[184]
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3

203. Finn antallet av de n-sifrede naturlige tall hvis tverrsum er ¢ < 10.

= £ s, (Hjortnees, Skand. Kongr. Lund 1953, s. 212).

Brynjolf Dokken

204. Gennem midtpunktet af hver side i en indskrivelig firkant traek-
kes en linie vinkelret pa den modstdende side. Bevis, at disse linier alle
gér igennem det samme punkt. (Der bliver ialt 6 lodlinier, idet vinkel-
spidsernes orden er ligegyldig.) Om firkanten kan der omskrives een
ligesidet hyperbel. Hvilken rolle spiller lodliniernes skeringspunkt for

?
denne * Stgurkarl Stefdnsson

205. Bevis formelen

+C.

¢ 1—cosnx "~lcogkxr cosnx
\—~—-smxdx = -2}
D k=1

1—cosz n

1. Johansson

LOSNINGER

168. Talen c,, i uppgift 161 ha fér konstant r ett maximum c,,,. For
¢=0 giller att
loge,,, ~ rlog2,

varmed menas att kvoten gar mot 1. Bevisa i fallet ¢ >0 att

loge,,, ~ gqrlogr.
Gerhard Arfwedson

Da ingen lgsninger er innkommet, gjengir vi oppgavestillerens eget forslag:

Losning: Enligt losningen till uppgift 161 ar

fo@) = X c,am = a5 J] (1—ji),
r=s—1 J=1

saledes att

" 1 8
¢ \fs(z)z—"—ldz = — S ze-r=2dz [f (1—-j%)1,
D 271 P

1
rs — .
2m1 P j=1
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dir cirkeln C' omsluter origo men ej punkten s—2. Vi sitter

z = kis—%tr, k <1,

och far
27

1
(1) Crs = 5 g eq}(@dtp
276 o)
0
dar

=1

3 ki\ ¢ .
D(p) = q(r+1—s)lo ;—(r+1—s)i¢p— D' log [1——(5) e"”J,
varav

8 i\ ¢
000 = i tos - S 1= ()]
J=

Den forsta termen har for konstant » ett maximum ~ grlogr f6r s~ r[logr.
1

Den andra termen dr ~s g log (1 — k%%) dz: och saledes av mindre ordning.
Av (1) foljer 0

2n
1
loge,, = @(O)+log%Se¢(w>_¢(o) dp .
0

Den andra termen &r mindre én Max Re[D(p) — D(0)]. Nu ar

1 1
Re[D(p) —D(0)] ~ s S log (1 — k%x%)dx — sRe g log (1 — k2xteie) dzx ,
0 »

0

vilket 4r av mindre ordning #n grlogr. Harmed &ar beviset slutfort.

194. La « veere et tall mellom 0 og 1. En plan kurve er gitt ved lik-

ningene
g 0.4

x = 2t(1—-»;_m>, y = t2+2(1—-£:> .
Y1—¢ Y11

En viss del av kurven begrenser et trekantet flatestykke. Finn dets areal.

B. Tambs Lyche

Losning: En elementir undersokning av funktionerna x(¢) och y(¢t) ger

Tmin = —2(1—a23)32  for ¢ = —(1—a23)12
Tmax = 2(1 — a2/3)32 for ¢t = (1—oa23)12
Ymin = 2(1 —x) for t=0,

Ymax = 3(1 —«3/3) for t= +(1—a28)12,
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dy . .. <
Man kan observera att a—-——t for t+t,= + (1 —a3)¥2; dock &r
x

d d
lim 2 = lim Y = 4,

t—>to— dx  sstor dx

(o,

t—1

Ytan T ar
Y1—a2 Y1i—a2

dy o o
—2 ( oar=-s | 2(1— )( - )dt
S) 7 J ¢ (1— )12 1 (1—12)32

Y1-a2 V1-a2

T

It

s x o242
—8 2(1— — — .
(S) ( (1 —t2)3/2 (1 —t2)1/2) dt—8 § (1 _t2)2 dt ’

som med vanliga metoder ger

I

1 1 — (1 — x2)1/2
T = 4[§(l—zx2)3/2——zx Arc sin (1 —a2)172 — 2 ln————( 0‘_)__]‘
o

Torsten Strom
195. Vis at 2(22% — 1) enten er lik nevneren i Bernoullis tall B, =4,/N,,

eller er et multiplum av N, (B;=3} By=#%, By=4, ...). Lag en grei
regel til & danne N,,.

Johs. Lohne
Losning: Beviset bygges pa von Staudt’s setning:
1
(—=1)"B, = 3 — (mod 1),
p;
hvor summationen gar over de primtal p;, i=1,2, ..., r, for hvilke geel-

der (p;—1)|2n. Heraf fas umiddelbart

I P1P2 - - - Py
R +H-ppy. . . Py

oy

(-4, 1 1 1 = P
e T e — 4. +—+H =
N, P11 P Dy P1P2- - - Pr

b
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hvor H hel. Da A4,/N, er forudsat uforkortelig, og broken pa hgjre side
dbenbart er uforkortelig, gwelder altsa

Nn=p1p2"'prs

hvilket giver en metode til beregning af NV,,.
Vi vil nu vise, at p,2(22»—1) for 4=1,2, ...,r. Abenbart geelder
2(2(22"—1). For p, > 2 galder iflg. Fermats setning 22*=1 (mod P;), altsd

pzl(22n - 1) s
thi (2, p;)=1 og @(p;) = (p;—1)|2n.
Af ovenstaende fas, idet p,, p, ..., p, er forskellige primtal, altsa

specielt indbyrdes primiske, at der geelder

N, = pyps...p,J2(22—1), q.e.d.
Arne Brondsted

196. Om alla rotter till ekvationen
™+ @y 2" tata, =0 (a, + 0)

ar positiva, géller

aa,,
_L’E_lgnZ_

Arne Fransén

(2 ) - 3 (L 2emy
2z; 2a; e, 2w T

i %=1
Johs. Lohne
Ogsé lost av Per Roar Andenws, Bernhard Andersen, Ragnar Dybvik, Poul
Einar Hansen, Audun Holme, Rolf Hovstad, P. W. Karlsson, Lennart Lindskog,
Stieg Mellin-Olsen, A.V. Peljo, N. Solberg, Ragnar J. Solvang, Sigxnund Soma,
Steffen Strebak, Torsten Strém og Kurt Wolff.

197. Beregn integralet

1—11/1+ 2. Arct Vl—xédx
_§ v Arotg ) T dar.

W. Ljunggren

Losning: 1det en bemerker at

0 1+ a2
— <Arctg _y‘,> = V1+e ,
oy Y1+ 2 L+a% 442
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ser en at det gitte integral kan skrives som et dobbeltintegral:

1 2
I= Ss—idxdy’
1) 1+a%+y*

hvor  er den kvadrant av sirkelen 22+y2<1 der 20, y = 0. Innfering
av polarkoordinater gir da

in 1 in

I=§d0$1—+Mrdr= g

! 7
— 2.sin2 2 1 92y .
1472 9 (In2-sin26 + cos?0)db = _8( +In2)

[=]

Per Roar Andences
Ogsé lost av Rolf Hovstad.

198. Funksjonsfelgen {f,(x)} er definert ved

1
filw) = % fona@) = F(ful@)y n=1,2,....

Finn en eksplisitt formel for f, (x). R. Tambs Lyche

Losning: Ved induksjon ser en at

(@) = Kop—3% + Xon—2g
() = 22T =2

3
Gop—2& + Koy

der «, er det p-te ledd i Fibonacci’s tallfglge, gitt ved

xq=o0g=1; &y =0a,+to,, p20.
N4& er
> (i)
X =
D ,-=[%ﬂ] p+1l—r
(jfr. NMT, bd. 6, oppg. 156). Derfor blir
a,x+b,
fn( ) = b —
n%t+ Cp
der
2n—2 po 2n—1 ‘ r 2n r
On = T=2n:1(2n—‘2-r>’ bn =é,: (2n——1—r>’ On _Tg (Zn—-'r)'

Per Roar Andences

Ogsé lest av Ole Bostrup, Arne Brendsted, Poul Einar Hansen, Johs. Lohne,
A. N. Lyngbye og Ragnar J. Solvang.
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199. Er pl/q og r/s to uforkortelige broker, sier vi at den ferste er
kortere enn den andre dersom ¢ <.

La a og b vre to reelle tall mellom 0 og 1. Finn med hjelp av kjede-
brekene for a og b den korteste brek y/x som ligger mellom a og b.

I det tilfelle at @ =p/q, b=r/s er rasjonale, skal en bestemme de tilfelle
der x er mindre enn bade ¢ og s.

Viggo Brun
Losning: Lad
1 1
O<a=— 1 <b=— 1 <1
“1 + - bl + T
@+ . by + .
(kzedebrgkerne angivet).
Er a;=b,,...,a, ,=b, 4, a,+b, (f. eks. p lige, o: Api1> by ), da vil
1
a<R= <b
a4+ .
+
g+ —

b,+1

i almindelighed gewlde. Et lidt kompliceret specialtilfzelde er imidlertid,
hvis a=det opskrevne R. Her har tre typer af b interesse, nemlig hvis

(i) bp11 = 2, og breken bryder af her; da velges

D
R 1
b
1+ _'+ 1
b,+%
(i) b,,; = 2, broken bryder ikke af; eller by > 2; da veelges
1
R =3
1t - 1
b,+%
(iii) b4y = 1; her velges
1
b+
1+ ,+1 :
b+~ 1
bp+1+
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Er nu omvendt 7 rational, @ <7 < b, mé r’s kedebrgk til og med (p — 1)-te
koefficient vzere som a og b’s, og man kan ved at ga tilfzeldene efter indse,
at r er kortest, nar man velger de nevnte B=r. Tilfxeldet p ulige, o:
@p41<bpy giver en analog diskussion.

Lad nu @ og b begge vre rationale og f. eks. atter p lige. I special-
tilfzldene er a abenbart kortere end R, mens i det almindelige tilfeelde
R er kortere end a altid og kortere end b, nar og kun nar b’s kedebrek
ikke bryder af fra og med b,,;. Dermed er undersggt, hvornar R er
kortere end bade a og b. Atter er der en analog diskussion for p ulige.

Poul Einar Hansen

DEN TREDJE INTERNORDISKE PRISOPPGAVE

Oppgaveteksten sto i NMT 7 (1959), s. 136-138. Resultatet av konkurransen
ble kunngjort i forrige hefte, s. 143.

Losningene nedenfor bygger pa innkomne besvarelser ; oppgavelgserens navn er
gitt ved hver oppgave. Besvarelsene er til dels noe forkortet. For enkelte oppga-
vers vedkommende var det selvsagt mange nesten likeverdige lesninger & velge

mellom. Johs. Dstvold
1. (Arne Sirom.) Vi har ligningen

) 1+1 1 1
—_ _+__= —_—
a b ¢ a+bdb+c

der abc+0 og a+b+c=+0. Ordner vi denne ligningen med hensyn til ¢
far vi (@+b)e2+ (a+b)2e+(a+bab = 0.

Uttrykket pa venstre side kan lett spaltes, og vi far da

(2) (@+b)(@+c)b+c) = 0.

Dette gir oss de tre mulighetene

(3) a= —b,a = —c eller = —c.

Vi ser altsa at tre tall @, b og ¢ som tilfredsstiller (1) ogsd vil tilfreds-
stille (2). Men omvendt ser vi at tre tall a, b og ¢ som tilfredsstiller (2)
og som er slik at abc=+0 vil tilfredsstille (1). Ligning (2) sammen med
betingelsen abc+ 0 er altsi ekvivalent med ligning (1).

P4 grunn av symmetrien er det likegyldig hvilken av de tre mulig-
heter (3) vi velger. Vi bestemmer oss for den siste. For hvert ulike tall n,
positivt eller negativt, far vi da b"=(—c)"= —c", og dette gir
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4 1 + 1 + 1 1 1
(4) ar b ¢*  qr  artbr4en

(Oppgavens begrensning til positive ulike tall » synes & veere noksa
ubegrunnet. I det ovenfor gitte bevis er det likegyldig om = er positiv
eller negativ, men selv om man bruker en bevismetode som krever at n
er positiv, ser man lett at (4) vil holde om man bytter ut n med —mn.)

Parentesen er Stroms egen merknad til oppgaven.

2. (Kaarel Voitk.) I den rad som inneholder m er m det minste tallet.
I den kolonne som inneholder M er M det storste tallet. For det tallet ¢
som er felles for den rad som inneholder m og den kolonne som inneholder

M gjelder m<t, M2t altsams< M.

3. (Soren Lauesen.) La kulens sentrum vare O, og la O, vamre O’s
projeksjon pa .

Det til § svarende punkt pa det geometriske sted kalles P. Ved drei-
ning av figuren om OO, innsees da, at det geometriske sted ma vzere ro-

tasjonssymmetrisk om 00,. Vi sgker
1 04 S derfor & bestemme skjeeringskurven
mellom stedet og et vilkarlig (men i
det folgende fastholdt) plan g gjen-
nom 00,.

Kjeglen bergrer kulen i en sirkel
med sentrum P, hvor P ligger pa for-
bindelseslinjen mellom O og S. Et
punkt S, som ikke ligger i planet §,
gir folgelig et punkt P utenfor 8, da
OS bare har punktet O felles med
planet (O og P kan jo aldri falle
sammen). Den sgkte kurve i planet
bestemmes altsa ved samtlige S i skjsringslinjen I mellom « og . Opp-
gaven er hermed redusert til et geometrisk sted av alminnelig plangeo-
metrisk art (se figur).

A og B er bergringspunktene for tangentene fra . Linjen AB vil
alltid skjere 00,. Skjeringspunktet er D. Av A ODP~ A 080, faes:

o8 00, R?

~—=—,00,-0D = 08:0OP = A0* = R?, OD = —— = k t.
oD~ 0P 1 0 00, onstan

D ligger altsh fast, og da £ OPD=90° ma P bevege seg pa en sirkel
med OD som diameter. Men ethvert punkt +0O pa denne sirkel svarer
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til et punkt S, som faes ved & forlenge OP til skjering med I. Hele det
2

R
geometriske sted er altsd kulen med OD=_—— som diameter (hvor D
1
ligger mellom O, og 0), idet punktet O dog ikke tilhgrer stedet.

4. (Hans Erik L. Madsen.) Som folge av den gitte figurs beskaffenhet
kan det lukkede omrade innskrives i en terning hvis midtpunkt er O og
hvis sideflater er vinkelrette pa hver sin kjegleflateakse. Sidekanten kan
ha lengden 2a. Kjegleflatene skjerer terningens sideflater i kurver som
gar gjennom terningens hjorner.

La u betegne vinkelen mellom en Q
kjegleflateakse og en diagonal i ter-
ningen. Da er

QP _a)2 - o
tgu—AO—P—-;_—[/2,u—54,73. a/Z
Av u<v<90° ser vi at kjegleflatene
avgrenser et lukket omrade nar

54°73 < v < 90°.

u v
De punkter pa det lukkede om- 0 k A a-k P

rades overflate som har storst avstand 3
fra O, er hjornene i den omskrevne terning. Den sgkte avstand 0Q =a)/3
bestemmes slik (se figur):

AP a—Fk k

gy = —=—n, 0 =——,
e Qpr a]/2 1—V2 cotgv

altsa

- k)3
0 = 3 =,
¢ a]/ 1~]/2 cotgv

5. (Hans Erik L. Madsen.) Vi velger et punkt A, for hvilket det
gjelder, at antallet av punkter som en kan na direkte fra A er storst
mulig. Vi vil bevise at 4 har den forlangte egenskap.

Fra A4 kan en na direkte til p punkter. Fra et punkt B blant de
gvrige gar det hoyst p linjestykker med positiv retning bort fra B, og et
av dem er BA. Blant de gvrige punkter er der altsi hgyst p—1 punkter
hvis forbindelseslinjer med B har positiv retning bort fra B. Fra minst
ett av de p punkter en kan na direkte fra 4, kan en folgelig na direkte
videre til B.

NMT, Hefte 4, 1960. — 14

AR
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Hermed er bevist at en kan n4 til ethvert punkt, enten direkte fra A
eller gjennom ett ekstra punkt.

6. (Arne Strom.) Vi innforer tre nye ikke-negative hjelpevariable a,

b og ¢ slik at %o+ By— zta =1

—3x— 8y+2z+b =14
—2x—12y+32+c¢c = 9.
Loser vi dette ligningssettet med hensyn til z, y og 2, far vi
x =$+8b—%c
(1) y=¥-a—-tb+lc
R = %—4:(1—‘%4‘1)'*‘};0 P}
som gir % = —bxr+8y+3z = 2 —-20a—-8b+3c.
Setter vi a=b=c=0, far vi u =27, Hvis vi gker verdien av a eller b,
vil verdien av » avta. Oker vi verdien av ¢ vil verdien av u gke. Av (1)
ser vi at hverken y eller z vil bli negative uansett hvor mye vi gker

verdien av ¢. Men z vil bli negativ hvis vi gjer verdien av ¢ storre enn 3.
Av den forste ligningen i (1) finner vi na

c=3+3b—35u,
og dette gi
8 GOWe B = w1200 9b1%e = 66— 200—Tb—3x .
Da hverken a, b eller # kan vare negative, ser vi at vi far

Upax = 66
for =0, y=3, z=14.




PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1961, arrangert av Norsk Matematisk Forening.

Den beste samling besvarelser vil bli tildelt H. K. H. Kronpring Haralds premie
pd 200 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster veere med. Oppgavene faller inn under reallinjens pensum.
Jo enklere og mer elementere losningsméter en kan finne, dess bedre. Oppgavene
bor dreftes og greies ut s& fullstendig som rad er. Det er ikke nedvendig & ha svart
pé alle 6 oppgavene. Ingen kan vinne hovedpremien mer enn én gang.

En sender lgsninger til lektor Ragnar J. Solvang, Ris skole, Vindern, Oslo, innen
1.6.1961, ledsaget av en erklering om at oppgavene er selvstendig lest. Oppgi
skole og klasse.

1. Parabelen y2=2px er gitt. I et punkt pa kurven trekker vi tangenten,
som danner vinkelen « med z-aksen. Gjennom tangeringspunktet trekker
vi en korde som danner en vinkel § (i positiv retning) med tangenten.
Finn lengden av korden uttrykt ved p, « og f. Vis at korden far sin
minste lengde nar 3sin (2« + f) =sin g, der « varierer og  holdes konstant.

2. Vis at . .
(1 +sintz + costx)? = 2(1 +sindx + cosdx)
for alle z.

3. Vi har gitt en geometrisk rekke

by, by, by, oo v,
der vi vet at
td = t,.

Finn x av likningen ¢,2 = {,. Hva er betingelsen for lgsning?

4. En brukket linje skal tegnes pa falgende mate: I et koordinatsystem
avsettes langs den positive z-akse et linjestykke a fra origo. I endepunktet
oppreises en normal med lengde bk. I dennes endepunkt oppreises atter
en normal lik ak? i retning mot y-aksen. I dennes endepunkt oppreises
atter en normal lik b%3 i retning mot x-aksen, osv., slik at vi far en »spiral«.
Under forutsetning av at 0 <k <1, skal man finne det punkt som »spira-
len« konvergerer mot. |

[195]
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Finn det geometriske sted for konvergenspunktene nar k varierer.

Finn forbindelsen mellom %, & og b dersom konvergenspunktene skal
ligge pa linjen y==.

Formuler og los den oppgave som gir en hyperbel til geometrisk sted,
nar o og b blir brukt pd samme maten som ovenfor.

Et punkt (x, y) er bestemt ved rekkene

x = a(k?+2k*+ 3k +4k8+ .. )

y=bk+k+k+...) Osk<l.

Hvilken kurve far vi dersom vi lar k variere i intervallet 0<k<1?

5. To hjorner i en trekant er faste, mens det tredje beskriver en rett
linje. Hvilken kurve beskriver hgydenes skjeringspunkt? Hvordan er
den funne kurves beliggenhet i forhold til de gitte hjorner og den gitte
linje? Diskusjon!

6. Studer kurvene

Alx|+By = C, Axz+Bly| = O, Alx|+Bly| = C,

der |x| betyr tallverdien (absoluttverdien) av .
Los og diskuter likningssystemene

(1) Yl = ke+1, y = 2|+,
og
2) @l +2ly = ¢, |zl +Dlyl = 1.

PRISOPGAVER FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier udskriver
herved nedenstidende prisopgaver for danske gymnasieelever og kursuselever til
studentereksamen. Opgaverne enskes behandlet s& fuldstendigt som muligt, og
der legges vaegt pa en omhyggelig og overskuelig fremstilling. For at komme i
betragtning ved premieuddelingen skal man have lest mindst fire af opgaverne.

For den bedste besvarelse udsattes en premie pad 150 kr., og der kan even-
tuelt uddeles ekstrapramier.

Besvarelserne indsendes senest 31. marts 1961 til lektor Henrik Meyer, Bakke-
draget 15, Birkered. Besvarelserne skal ledsages af en erklering om, at opgave-
lesningerne er selvsteendigt arbejde. (Benyttelse af litteratur dog tilladt).

1. Bestem alle par (z, y) af hele tal (positive eller negative), der op-
fylder betingelsen
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1 1 1
2y 6

2. A, B og C er tre punkter pa en parabel. Bevis, at en ngdvendig og
tilstraekkelig betingelse for, at parablens normaler i A, B og C gar gen-
nem samme punkt, er, at medianerne i trekant 4BC skeerer hinanden i
et punkt pa parablens akse.

3. En klub optager som medlemmer (reelle eller) komplekse tal. For
optagelse gwlder folgende regler: Som forste medlem kan optages ethvert
tal undtagen 0 eller 1. Optagelse af hver folgende ansoger ¢ kan kun
finde sted, hvis enten 1—¢ eller {1 allerede er medlem.

1) Bevis, at klubben hgjst kan fa 6 medlemmer.

2) Bevis, at klubben kan ngdsages til at standse optagelse af med-
lemmer, allerede inden maksimaltallet 6 er niet. Angiv i hvert af disse
tilfzelde alle klubbens medlemmer.

4. Seks punkter ligger i en plan, saledes at ikke tre ligger pa ret linie.
Bevis, at man af denne punktmengde altid kan udtage tre punkter, som
danner en trekant, hvori en vinkel er sterre end eller lig med 120°.

5. I en plan er givet punkterne 4, B og C. Bestem det punkt P i
planen, for hvilket den storste af afstandene PA, PB og PC er sa lille
som mulig.

6. I en plan er der givet en trekant ABC. Idet P betegner et vilkarligt
punkt i planen, benyttes betegnelserne

PA=2z, PB=y, PC=z,
BC =a, AC =b, AB=c.
Bestem meengden af punkter P (vdet geometriske sted for de punkter

Px), der optylder betingelsen
ar+by = cz.




SUMMARY IN ENGLISH

BiorN Asne and TorE DALENIUS: Some applications of statistical ideas
to numerical integration. (Swedish.)

The usual approximation of a definite integral by a finite sum is applied in
the more general case
o]
n
{owdare ~ Zweg
k=1

—0o0

where F(t) is a known distribution function. Interpreting W(t) = 3wy as a discrete
=t

probability distribution, this can be adjusted to the given digtribution F(t) by

well known statistical methods. It turns out that the criterion of Kolmogorov-

Smirnov and Smirnov’s w?-test both lead to the so-called tangent-method approxi-

mation of ordinary integrals, whereas the moment-method leads to gaussian nu-

merical integration.

Haxs RiESEL: A point of view on differentiation. (Swedish.)
Let f=f(x1, 22, .. .,v,) and F(z) =f(x,, ...,2). The well-known formula

dF 9) 9) 17
LIRS 3
dz oxy oOxg 127 PO

is applied to differentiate a sum, a product, the functions 2% and 2%, and a de-
finite integral depending on a parameter.

Davip Foa: The position of a point with reference to certain reqular
point-sets. (Danish.)

In an (n— 1)-dimensional Euclidean space (an R,_) is given a regular simplex
A1A4s. .. An with edge a. With the abbreviated notation

n

n 2
D(20, 215 - . ., 20) = <2zz> —-n 'z,
0

0
the following theorems are proved:

If P is a point of the space of the simplex, with A;P=uw;, i1=1,2,...,n
then ®(a?, i, 23, ..., 22) = 0.

If @ is a point at distance h from the space of the simplex, with A4,Q=y,
then @(a? y3, y2, .. ., y2) = 2nh*a?.

The converses of these two theorems are also proved.

These results are applied to different problems, in particular to the packing
of five spheres in mutual contact. A necessary condition for the radii, given by
M. E. Wise, is shown also to be sufficient, and the problem is solved in gene-
ralized form for n hyperspheres with mutual contact in an R,_o.
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