EVERT JOHANNES NYSTROM IN MEMORIAM

S. E. STEN1J

Den 13 februari 1960 avled i Helsingfors medlemmen av denna tid-
skrifts redaktion, professorn i tillimpad matematik vid Tekniska Hog-
skolan i Helsingfors, Evert Johannes Nystrom. Hans franfille var
oviintat, han triffades av ett slaganfall da han stod i berdd att gé till
sin férelasning. Han hade visserligen latit forsta, att han hade for avsikt
att avgd fran sin professur, men han forefoll att vara vid fulla krafter,
och hans vinner trodde sig kunna vinta och hoppas, att han dnnu skulle
ha framfér sig en lang period av fruktbringande arbete.

Nystrom foddes den 25 sept. 1895 i Virtsila, som numera ligger utom
landets grinser. Hans far var forstmistare, och till f5ljd av férandringar
i dennes arbetsuppgifter vistades familjen pa olika orter. Nystrom blev
student fran Jyviskyld, en stad mitt inne i landet, men flyttade sedan
snart till Aggelby invid Helsingfors, varifrin hans slikt hirstammade
och dér han forblev boende resten av sitt liv.

Nystrom var i sin ungdom sjuklig, och han hade redan uppnétt tjugo-
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ett ars alder, d& han borjade sina akademiska studier vid Helsingfors
universitet. Dessa fortskred emellertid snabbt och han fann snart sitt
arbetsomrade. Fér honom lika som for s& ménga andra, var professor
Ernst Lindel6fs undervisning av genomgripande betydelse. Lindelof var
en mangsidig matematiker, som #dgde formagan att entusiasmera sina
elever och som helt uppoffrade sig i arbetet for dessa. Han kunde leda
in sina elever p& det omrade, som bést motsvarade envars personliga
laggning. Bland dessa intog Nystrom en séirstéllning till féljd av de
omraden av matematiken som han intresserade sig for. Nystrom var
fistad vid denna sin lirare med band av varm tillgivenhet och hogakt-
ning.

Efter att hava avlagt filosofie kandidatexamen 1921 fortsatte Nystrom
sina studier, dels i Helsingfors, dels i Gottingen, dar han vistades 1923-24.
Hér kom han i berdring med professor C. Runge, av vilken han emottog
viktiga impulser. Han hade valt ett &mne for sin doktorsavhandling som
nira anslot sig till Runges arbeten. Han blev filosofie doktor 1926. Han
hade d& redan borjat sin ldrarverksamhet; hans forsta arbetsplats var
Tekniska Laroverket i Helsingfors, dér han var lirare i matematik 1924~
28. I januari 1929 utndmndes han till lektor i matematik vid Tekniska
Hogskolan i Helsingfors. Han anknéts da till den institution, inom vilken
han skulle arbeta aterstoden av sitt liv. Som lektor skotte han till en
borjan den allminna matematikundervisningen pa hogskolans forsta
arskurs. Smaningom &vertog han éven undervisningen i deskriptiv geo-
metri, som sedan gammalt hade en viktig plats i hogskolans undervis-
ningsplan, med foreldsningar och ritévningar. Ar 1937 utnimndes Ny-
strom till professor i deskriptiv och projektiv geometri; benimningen av
hans professur dndrades ar 1944 till tillimpad matematik som uttryck
for den utveckling och de foérandringar, som han genomfért inom sitt
undervisningsomrade.

Vid sidan om sin huvudtjanst fungerade Nystrom som docent i mate-
matik vid Helsingfors universitet, fran och med 1928 till 1959.

Nystroms forsta sjalvstdndiga vetenskapliga publikation behandlade
grafisk konstruktion av algebraiska ekvationers imagindra rotter. Den
andra var den ovannimnda doktorsavhandlingen »Uber die numerische
Integration von Differentialgleichungen« som utkom 1925. Han hade
salunda redan tidigt kommit in i de tva omraden, pad vilka hans veten-
skapliga arbete skulle komma att rora sig, numerisk berikning samt
geometri och grafiska metoder.

Nystrém uppstéller i sin avhandling som mal att ge en framstéillning
av de viktigaste metoderna fér numerisk integration av differential-
ekvationer. Han var den forsta som tillimpade Runge-Kuttas integra-
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tionsférfarande pa differentialekvationer av andra ordningen. De av
honom hiérvid uppstéllda formlerna ha visat sig mycket anvindbara for
detta vid olika tillimpningar sérskilt viktiga fall. Han underséker vidare
integration av differentialekvationer genom numerisk kvadratur och fister
sérskild uppmérksamhet vid feluppskattning. Detta arbete av Nystrom
har blivit mycket uppméirksammat; i litteraturen férekommer ofta
bendmningen Runge-Kutta—Nystromska forfarandet.

I ett foljande arbete utforde Nystrom en undersékning av approxima-
tionsmetoder i variationskalkylen. Han betraktade hirvid savil nume-
riska som grafiska metoder och utvecklade ett nytt forfarande for grafisk
behandling av de isoperimetriska problemen.

I samband med sina undersékningar om anvindandet av de s. k.
medelvirdsmetoderna for utférande av kvadraturer uppstillde Nystrom
frdgan, huruvida dessa metoder kunde anviindas fér approximation av
integraler av funktioner av flere variabler eller parametrar, samt vad
dirigenom kunde vinnas fér numerisk behandling av differential- och
integralekvationer. Detta ledde till en serie arbeten berérande praktisk
upplésning av integralekvationer.

I det forsta av dessa (1928) behandlas de s. k. andra artens linedra
integralekvationer. Nystrom redogor fér olika metoder for erhallande av
en approximativ numerisk 1osning, varvid integralekvationen ersittes
med ett system av n lineéra ekvationer med lika manga obekanta. Dessa
utgdra den obekanta funktionens viirden i n diskreta punkter. Nystrom
visar, att det i allménhet &r mojligt att reducera riknearbetet till ett
minimum genom limpligt val av punkterna i friga. Nystrom tillim-
pade sin metod i ett flertal specialfall och visade i detalj, hur berik-
ningarna skall utfras, samt utférde uppskattning av den approximativa
18sningens fel. Han behandlade hérvid speciellt potentialteorins rand-
virdeproblem samt vissa problem ur elasticitetsteorin. Senare (1929,
1930) utvidgade han sina resultat genom tillimpningar och visade, att
den av honom utvecklade metoden kunde tillimpas pa s. k. belastade
integralekvationer samt integralekvationer av forsta arten och dven péi
randvéirdeproblem vid vanliga differentialekvationer (1943, 1944).

Méahénda var dock geometrin den del av matematiken som mest
intresserade Nystrém. Den andra huvuddelen av Nystréms vetenskap-
liga produktion behandlade geometri och grafiska metoder. Bland de
forsta av hértill horande arbeten kan nimnas nagra undersskningar
om anvéndning av nomografiska metoder i sfirisk trigonometri (1930)
samt om praktisk berikning av elliptiska integraler av forsta slaget
(1935), vilket skedde dels med tillhjilp av ett nomogram, dels medels
planimetrering.

8%
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Ar 1932 publicerade han en grundlig undersdkning av den Darboux—
Koenigs'ska planigrafen, varvid dennas egenskaper utreddes i detalj
samt angavs ett antal uppgifter, som kunde 16sas eller utféras med till-
hjalp av detta instrument.

Vidare behandlade han bl. a. den Staude’ska tradkonstruktionen av
ellipsoiden, andra ordningens kégelytor, stralkongruenser bildade av de
gemensamma tangenterna till tvd sfirer samt ett antal geometriska
fragor av praktisk art.

Nystroms geometriska undersékningar stodde sig pa4 hans framstéende
ritkunnighet. Sarskilt intresserade han sig fér den geometriska kinema-
tiken. I detta sammanhang boér nimnas hans arbeten berdrande mate-
matiska instrument. I ett av dessa (1934) behandlade han planimetern
som integrator. Vidare arbetade han med harmoniska analysatorer.
Som hans mirkligaste resultat i detta sammanhang kan namnas den av
honom konstruerade planimetern for grafisk utriakning av Stieltjes-inte-
graler (1936). Den bestod av den bekanta harmoniska analysatorn fram-
stalld av Mader-Ott, forsedd med en enkel tilliggsanordning. Olika vari-
anter av den Nystromska Stieltjes-planimetern har senare konstruerats
och visat sig vara mycket anvindbara for beriknande av flere i teori och
praxis, t. ex. vid tekniska tillimpningar forekommande integraler,
och det har vidare visat sig, att den ir anvéndbar i fall som tidigare for-
drat specialplanimetrar.

Vid utarbetandet av sina publikationer nedlade Nystrom mycket moda
och omsorg. Han nojde sig inte med detaljer, utan strivade i allménhet
att ge en fullstindigare framstéllning, dir den behandlade frégan fram-
gick som del av en helhet; de nya resultaten och de utvecklade metoderna
belystes med vil valda tillampningar.

Han var en framstiende stilist och &dgde en utmirkt pedagogisk
forméaga. Sina geometriska arbeten illustrerade han med figurer utforda
med utmérkt skicklighet och konstnérlig smak. Gediget innehéll och en
fullindad formell framstillning var karakteristiskt for hans arbeten.

Det ovansagda géller i full utstriickning om hans lirobocker, av vilka
han utgav ett flertal, som behandlade deskriptiv geometri, perspektivlira,
grafisk framstéllning och nomografi samt tillampad matematik. Sarskilt
bor namnas hans verk »Den hogre geometrins grunder med tillimpningar¢
(1948). Detta &r en grundlig och sjalvsténdig framstallning av omréadet,
uppkommen i samband med hans universitetsféreldsningar. Denna viarde-
fulla lirobok #r tyvirr otillginglig fér vidare kretsar, d& den utkommit
endast pa finska.

Nystrom var kind och uppskattad som foredragshallare. Han upp-
rattholl livliga forbindelser med kolleger i de nordiska lénderna samb
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Tyskland och Osterrike, till vilka linder han gjorde féredragsresor. Han
var medarbetare och redaktor i flere tidskrifter sdsom Arkhimedes och
Tekniska Hogskolans publikationsserie i hemlandet samt den internatio-
nella »Numerische Mathematik«. Han var sakkénnare pa det grafiska
omrédet, sarskilt da det géllde reproduktion av figurer i tryck, och under
artionden var det brukligt att forfattare av matematiska publikationer
vénde sig till honom f6r att f& hjilp och rad vid uppritandet av sddana
figurer.

Nystrém invaldes till Finska Vetenskaps-Societeten 1933, dir han var
trogen medarbetare, och det var i detta séllskaps skriftserier han publi-
cerade de flesta av sina arbeten. Han efterlimnade sin formogenhet at
Finska Vetenskaps-Societeten; han var ogift och hade inga syskon.
Bland hans sérintressen kan nimnas filateli. Han hade en unik samling
8. k. helsaker, och han publicerade &ven arbeten berérande fragor i filate-
lien.

Nystroms verksamhet som akademisk lirare var av mycket stor bety-
delse. Det var han som vid Tekniska Hogskolan inférde de blivande inge-
nidrerna i handhavandet av de hjilpmedel som utgjorde en del av grun-
den for deras yrkesarbete, och han forenade i sin undervisning pa ett
lyckligt satt det de behovde av teoretiska insikter och praktiskt kun-
nande. Framstéillningen var #dgnad att uppvicka sjilvstindigt arbete
och omdoéme och hans foreldsningar karakteriserades av samma egen-
skaper som hans skrifter: tankens klarhet, formens fullinding och
dmnets omsorgsfulla utarbetning. Med sin fina humor priglade han ofta
uttryck vilka citeras som bevingade ord. I universitetsundervisningen
forde han sirskilt geometrins talan ; han ansig, att betydelsen fér blivande
skolldrare och naturforskare av denna del av matematiken inte alltid
nog beaktades.

Nystrém var personligen ytterst ansprakslos och tillbakadragen. Dar
han inte ansag det vara sin plikt att ingripa héll han sig helst i skymun-
dan. Men de som kommo i nidrmare kontakt med honom kunde inte
undgé att bliva paverkade av hans fina forsynta personlighet, och de
funno i honom en trogen vén, som alltid var redo att giva all den hjilp
det stod i hans makt att ge.




BAGARENS PROBLEM

ARNE BROMAN

1. En bagare kavlar ut en deg. Han skir den sa i tva bitar, lagger den
ena biten pa den andra och kavlar ut degen igen. Han upprepar denna
procedur ett stort antal ginger. Astadkommer han darigenom, att degen
blir vil blandad ?

2. Vi vill behandla detta problem matematiskt och méste da forst
formulera det matematiskt (eller &tminstone ge ett matematiskt problem,

som néira ansluter sig till det praktiska problemet).

Y y’

1 1 z
Fig. 1 Fig. 2

Betrakta fér den skull den transformation 7', som definieras av fore-
skriften
(2, 1y) ,da 0=z <},

<
oy =T — =
@ 9) =T@ Y =\ 91, 1y+1), da b <o < 1.

Man ser, att den pressar ihop den vinstra rektangelytan i fig. 1 i h6jdled
och vidgar den i sidled samt avbildar den pa den undre rektangelytan
i fig. 2. Analogt avbildas den hogra ytan i fig. 1 pa den 6vre ytan i fig. 2.

Upprepa eller iterera denna transformation en gang. Vi far da en sam-
mansatt transformation, som vi skriver (z', y') =T?(z, y) eller kortare T,
Denna avbildar vardera av fyra kongruenta rektangelytor, som star
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bredvid varandra i zy-planet pa var sin av fyra kongruenta rektangel-
ytor, som ligger 6ver och under varandra i 2'y’-planet. Betrakta all-
ménnare den n:te itererade transformationen, tecknad (x', ') =T"(x, y)
eller blott 7. Den avbildar 2" stycken rektangelytor bredvid varandra

y

y’

8

d 4

/| /N6

19 ot

<,/ N/ 13

N’ 5
' z 1 ,
12345678 z

Fig. 3 Fig. 4

i xy-planet pa lika méanga rektangelytor pa varandra i z'y’-planet.
Exempelvis avbildar 7% de rektangelytor, som &r mérkta 1,2, ...,8 i
fig. 3, pa rektangelytorna med motsvarande nummer (lisaren bor veri-
fiera detta) i fig. 4.

Antag nu att F ar en punktméngd i kvadratytan 0z <1,0=y<1, att
G ar en analog punktmingd i z'y’-planet och att de har areorna m(F)
resp. m(G) ytenh. Vi kallar talen m(F) och m(@) f6r matten av F resp. G.

I detta antagande far ligga, att F' och @ tillh6r nagon klass av punkt-
méingder, vilka kan métas eller har méatt. Vi fordrar, att dessa matt
skall ha atminstone de egenskaper vi behdver utnyttja i det foljande.
En vil kiand sddan klass av méngder dr Lebesgues! méitbara méngder i
planet. Denna klass &r for 6vrigt s omfattande, att ingen lyckats ge ett
konkret exempel pa en begrinsad plan punktméingd, som ej dr matbar i
Lebesgues mening.

Transformationen 7'* avbildar F pa en viss punktméngd i x'y’-planet
vilken vi tecknar T*F. Det ar klart, att T*F jamford med F &r sonder-
skuren och deformerad men att matten av de olika delarna av F' bevarats
vid transformationen. Vi betecknar mangden av de punkter, som tillhor

1 LeBESGUE (bokstaven s i namnet &r stum) ér upphovsmannen till den moderna matt-
och integrationsteorien. Han har skrivit det klassiska arbetet Legons sur U'intégration et la
recherche des fonctions primitives (Paris 1904). Senare har man funnit andra och lattare
viagar in i denna teori; se t. ex. Rimsz—=Sz.-NAGY: Legons d’analyse fonctionnelle (Buda-
pest 1952) och MUNROE: Introduction to measure and integration (Cambridge (Mass.) 1953).
— I denna artikel studeras vissa méatbara méangder i planet. Man har ocksé infért méatbara
méngder pa rata linjen, i det tredimensionella rummet m. fl.
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bade T"F och G, med T"FnG, vilket utlises skirningen av T"F och G
eller T»F skuret med G. Askadningen séger, att for stora virden pa n &r
T»F tamligen jaimnt utbredd 6ver kvadratytan i a'y’-planet och att
m(T"*FnG) darfor ar nira lika med produkten m(F) -m(G). Vi fragar oss
déarfor, om likheten
(1) lim m(T*F n G) = m(F)-m(G)

n—>oo
ar korrekt. Denna fraga later vi vara den matematiska motsvarigheten
till var inledande fraga.

3. Detta problem finns omnamnt i bocker i ergodteori! av den tyske
matematikern E. Hopf och den amerikanske matematikern P. R. Hal-
mos. Bigge ger skisser av 16sningar till problemet. Vi ger nedan en full-
stéindig 16sning, vilken 16sning ér néra lik Hopfs, men (dtminstone ytligt
betraktad) skiljer sig frin Halmos’. — Halmos némner, att transforma-
tionen 7T ibland kallas bagarens transformation.

Ergodteori ir en gren av matematiken, i vilken mattbevarande trans-
formationer studeras. En avsikt med denna artikel ar att soka intressera
lasaren for matteori och ergodteori.

4. Vi léser nu bagarens problem. — Dela
kvadratytan 0<x<1, 0=sy<l, i 22k kon-
gruenta kvadratytor? med hjilp av 2¢—1
vertikala och lika manga horisontella strack-
or. Varje sidan liten kvadratyta kallar vi
fér en maska av ordningen k. I fig. 5 dr en
maska av ordningen k=2 skuggad. Det
lamnas &t lasaren att verifiera féljande
pastienden, dir 1° medfor 2°, 2° medfor 3° 1
ete. Fig. 5

1° Om A ir en maska av ordningen k, s&
ar TkA en rektangelyta med den horisontella basen 1 l-enh. och den ver-
tikala héjden 2-%¢ l-enh.

1 8¢ Horr: Ergodentheorie (Berlin 1937), sid. 42; och HarLmos: Lectures on ergodic
theory (Tokyo 1956), sid. 37 (aven sid. 9 och sid. 29).
2 Om man vill precisera, vart randen hér, kan man foreskriva, att varje sadan kvadrat-

yta ér av formen
r—1)-2F<az<r 2% (s=1)-2F < y<s-27F,

dar 7 och ¢ &r hela tal bland 1, 2, . . ., 2¥. — En sadan precisering &r stringt taget onddig,
ty varje stricka ar noll ytenh.

o
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2° Om A ar en maska av ordningen k, sd bestar 7% 4 av 2k rektangel-
ytor, vardera med basen 1 l-enh. och hojden 2-3% I-enh. Dessa r jamnt
utspridda, i den meningen att avstandet mellan de undre baserna till
tva nirliggande rektangelytor &r 2-* l-enh.

3° Om A och B dr maskor av ordningen k, s& &r

m(T*AnB) = m(4)-m(B) .
4° Om 4 och B ar maskor av ordningen k och n > 2k, s& ar
m(T"AnB) = m(A4)-m(B) .

Giv ett tal e>0. D4 finns det en foreningsméngd @ av dndligt ménga
disjunkta maskor sadan, att!

m(F—-®) <e¢ och m@P-F)<e,
och en analog méngd I" sddan, att
m(G—I) <e och m(Il-G) <ce.

Antag, att k ar den hogsta ordningen pi nigon maska i @ och I'. For
n 2 2k ger punkt 4°, att

m(Trdn ) = m(DP)-m(I) .
Betrakta nu de sex talen

m(T"F 0 G), m(TFuP)nG), mTdna),
m(T*"®nT), m(®@) -m(), m(F)-m(Q) .

Hir ar absolutbeloppet av skillnaden mellan férsta och andra talet,
andra och tredje talet etc. ej storre an resp.?

e, & 2 0, 2¢.
Alltsa ar
[m(T*"F 0 Q)—m(F)-m(Q)] £ 6e, da n = 2k.

1 Med foreningsméngden till vissa givna punktmiéngder menas méngden av de punkter,
gom tillhér minst en av de givna méngderna. Féreningsmiingden till A och B tecknas
A U B, vilket kan utlisas A férenat med B. Tva punktméngder ér disjunkta, om de ej
har ndgon punkt gemensam. — Om A och B ér givna punktméngder, betecknar 4— B
miéngden av de punkter, som tillhér 4 men ej B. )

2 For de tva sista talen galler:

|m(D) - m(I")— m(F) - m(@)] £ m(D) - |m(I)—m(@)|+m(G) - Im(P)—m(F)| < et+e,

eftersom m(®P)< 1 och m(G)=< 1.
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Definitionen pa grinsvirde ger nu, att likheten (1) &r korrekt. Dédrmed
ar bagarens problem 15st.

5. Det finns en tredimensionell motsvarighet till problemet i punkt 2
och dess 16sning. Vid problemets formulering kan man utéva transfor-
mationen

@y, 2) = T(x,y,2) = (22, 2y, 17)
p4 den kubiska volymen 0sz<1, 0=y<l, 0=z<1, och sedan skéra
den erhallna parallellepipediska volymen i fyra kongruenta delar, som
staplas pa varandra etc. — Pa detta sitt erhalles nog en mera realistisk
matematisk motsvarighet till problemet i punkt 1.




ET BEVIS FOR 4-TOPPUNKTSSATNINGEN

FR. FABRICIUS-BJERRE

Lad k vere en lukket plan kurve uden dobbeltpunkter eller spidser.
Idet krumningen antages at variere kontinuert langs kurven, vil der altid
pa denne veere to punkter, i hvilke krumningen har et extremum, nemlig
de punkter, hvori krumningen er storst eller mindst. Et punkt, hvori
krumningen har et extremum, betegnes som et toppunkt pa kurven, og k
har saledes altid mindst to toppunkter. Man har imidlertid bevist, at
enhver kurve k af den betragtede art har ikke blot to, men altid mindst
4 toppunkter. Denne setning betegnes som 4-toppunktssetningen.

For det tilfelde, at k& er en konveks kurve, er seetningen forste gang
fremsat og bevist af Mukhopadhyaya (1909), mens A. Kneseri 1912
viste, at setningen gelder uathengigt af kurvens konveksitet. Siden er
der for 4-toppunktssetningen fremkommet talrige beviser, ofte af helt
forskellig art, og setningen er generaliseret i forskellige retninger. For
nylig har M. Barner og F. Flohr i en interessant artikel »Der Vier-
scheitelsatz und seine Verallgemeinerungen« (Der Mathematikunterricht,
1958, s. 43-73) givet en oversigtsmessig fremstilling af de herhen hgrende
spergsmél. Artiklen indeholder tillige en omfattende fortegnelse over
litteratur, der knytter sig til 4-toppunktssetningen og dermed besleg-
tede seetninger.

I det folgende skal gives endnu et bevis for 4-toppunktssetningen. I
beviset udnyttes, at krumningscirklen i et punkt af en kurve ved en
cirkeltransformation overfgres i krumningscirklen i det tilsvarende punkt.

Lad AB veere en bue, hvor krumningen varierer kontinuert og mono-
tont. Det er bekendt, at krumningscirklen i et vilkarligt punkt af buen kun
har dette punkt felles med buen og skeerer igennem denne, og at krum-
ningscirkler i forskellige punkter af buen ikke har punkter feelles. Sam-
lingen af krumningscirkler for buen 4B udfylder et omrade w, der be-
greenses af krumningscirklerne ¢, og ¢ i punkterne 4 og B, og gennem
hvert punkt af o gir der en og kun én krumningscirkel for kurven.

Formen af buen AB afhanger af, om krumningen har konstant fortegn
langs buen, siledes at denne kun indeholder konvekse punkter, eller om
krumningen skifter fortegn, hvorved der fremkommer et vendepunkt.
I forste tilfeelde er buen en spiral, specielt en konveks bue. Den ene af
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de to krumningscirkler ¢, og ¢y ligger inden i den anden, og omradet w
er det endelige omrade, der er beliggende mellem de to cirkler. I det
andet tilfelde indeholder buen 4B et (og kun ét) vendepunkt V, og buen
bestar af to spiraler, specielt konvekse buer, V.4 og VB, hver beliggende
i sin af vendetangenten begrensede halvplan. De to krumningscirkler ¢,
og cp ligger i hver sin halvplan, altsd helt uden for hinanden, og omradet
o er i dette tilfeelde hele planen pa neer de af cirklerne indesluttede
omrader.

Ved en cirkeltransformation, specielt en inversion, vil en bue AB
med monotont varierende krumning overfgres i en bue A’B’ med mono-
tont varierende krumning, idet samlingen af krumningscirkler for 4B
overfores i samlingen af krumningscirkler for A’B’. Omradet w for buen
AB og de begrznsende cirkler ¢, og cy overferes i omradet o’ og de
begrensende cirkler ¢ 4. og cp. for buen 4’'B’. Man kan {. eks. ved anven-
delse af en inversion opna, at de sidstnevnte cirkler bliver koncentriske.
Inversionscentret veelges pa folgende made: Lad centerlinien for cirklerne
¢y og cp skare disse cirkler i punktparrene (P,P;) og (@,Q,), og
lad (R,R,) veere det punktpar, der er harmonisk forbundet med begge
de n®vnte. Inversionscentret skal da valges i R eller R,. Vealges centret
i R, vil det inverse punkt til R, vere det fxlles centrum for cirklerne
C4 0Z Cpr.

Lad nu k vere en lukket kurve uden dobbeltpunkter og spidser og
med kontinuert varierende krumning. Vi vil vise, at antagelsen af, at
denne kun indeholder to toppunkter, farer til en modstrid. Idet de to
toppunkter kaldes 4 og B, er k da sammensat af to buer 4B med mono-
tont varierende krumning. Krumningscirklerne ¢, og cy er felles for de
to buer, der da ogsd har felles omrade w.

Vi anvender pa k en inversion, der fgrer de nzevnte cirkler over i
cirkler med feelles centrum O. De to buer AB fores da over i buer 4'F’,
der begge er uden vendepunkt, og den til ¥ svarende kurve &’ ma vere
en lukket konveks kurve. Dersom %’ gennemlgbes fra 4’ mod B’, mé
tangenten have drejet en vinkel, der for en af buerne A'B’ er hgjst lig
med 7. Denne bues evolut er imidlertid en overalt lokalt konveks kurve,
der begynder og enderiO. Tangentdrejningen for denne bue er storre end =,
da der til buen kan legges parallelle tangenter. Da den nzvnte bue 4’5’
og dens evolut skal have samme tangentdrejning, er der derved frem-
kommet en modstrid.

Kurven %' og dermed kurven & ma da vaere sammensat af flere end to,
dvs. mindst 4 buer med monotont varierende krumning, og kurven k
indeholder da mindst 4 toppunkter. Hermed er 4-toppunktssetningen
bevist.




ALGOL -

DET INTERNATIONALE SPROG TIL AT BESKRIVE
LOGISKE OG NUMERISKE PROCESSER

PETER NAUR

Mange matematikere vil antagelig — nar de herer, at der er formuleret
et nyt formelsprog til beskrivelse af regneprocesser — udbryde: Hvad
skal vi med det — vi har jo allerede matematikken! Formalet med nzer-
verende artikel er blandt andet at vise, at dette ikke er en holdbar ind-
stilling. Samtidig vil der blive givet en redeggrelse for en del af sprogets
treek — veesentlig gennem simple eksempler. For den fulde formelle
definition af sproget mé der henvises til den officielle rapport [1].

Formalet med ALGOL. Arbejdet med sproget ALGOL er direkte
foranlediget af de behov, der er skabt gennem de fuldautomatiske regne-
maskiner. Det er endda sddan, at man med ALGOL har forsggt pa én
gang at lose to forskellige problemer, som er skabt af disse maskiner.
Det ene af disse problemer er kommunikationen mellem en maskines
brugere og maskinen selv. Problemet er her at skabe et sprog, som virker
bekvemt og naturligt for de mennesker, som gnsker at formulere pro-
blemstillinger for maskinerne, samtidig med at det er tilstreekkelig kon-
cist til, at det tillader en problemstilling, der er formuleret heri, at blive
opfattet af en maskine af de typer, som er almindelige i dag, uden yder-
ligere mellemled. Det andet problem er kun indirekte foranlediget af
maskinerne. Det er problemet at kommunikere beskrivelser af regne-
processer mellem mennesker indbyrdes. Dette problem er blevet stadig
vigtigere i de senere ar, da man gennem arbejdet med maskinerne i langt
hgjere grad end tidligere er blevet interesseret i at udvikle og forbedre
de rent numeriske metoder til at lgse problemerne inden for den anvendte
matematik.

ALGOL’s reprasentationer. Behovet for bekvemme symbolsprog til
brug ved kommunikation af disse to arter ytrer sig ikke kun inden for

[117]
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omradet numerisk analyse, men findes tveertimod inden for ethvert felt,
som med fordel benytter sig af de elektroniske regnemaskiner. Nar det er
inden for den numeriske analyse, at dette behov tidligst har fort til en
konkret lgsning, henger det utvivlsomt sammen med, at man inden for
dette felt har et selvfelgeligt udgangspunkt for opbygningen af sproget i
matematikken. Inden for andre felter, hvor et sidant felles stasted ikke
findes, bliver mulighederne s& omfattende, at problemet at né til enighed
om et sprog vokser alvorligt. Man mé nemlig gare sig klart, at udarbejdel-
sen af et procesbeskrivende sprog i vid udstrekning er afhengig af smags-
betonede sken. Der er tale om sken, ikke alene om hvilke egenskaber
sproget i store treek ber have, men om udformningen af symbolikken for
hver eneste af sprogets bestanddele, om hvorvidt man ber bruge decimalt
komma eller decimalt punktum, o.s.v. Det er en af fortjenesterne af
den gruppe, som udarbejdede det forste udkast til ALGOL, at den fandt
en lgsning pa dette problem. Denne lgsning beror pa erkendelsen af, at
det veesentlige ved sproget er strukturen, og ikke symbolikken. Sproget
ALGOL kan derfor realiseres ved brug af et vilkarligt antal set af grund-
symboler, som hver udger en representation af sproget. Alle repreesenta-
tioner er ligeberettigede, idet de alle gennem en simpel symbolombyt-
ning skal kunne overferes i hinanden. Af praktiske grunde er det naturlig-
vis ngdvendigt at bruge en bestemt repreesentation til at definere sproget,
og dette referencesprog vil uvegerligt ove en betydelig indflydelse pa
udformningen af andre sekvivalente sprog. Imidlertid er det af stor
praktisk veerdi at kunne afskeere enhver indvending, som kan rejses mod
referencesprogets symbolik, med en bemeerkning om, at det star enhver
frit for at arbejde med en anden symbolik, en anden repreesentation.

Denne bemzrkning har ogsé relevans til nervaerende introduktion til
sproget, hvor der overalt benyttes referencesprogets symbolik.

Matematik og procesbeskrivelse. Forskellen mellem matematikkens
muligheder og udtryksmaden i et algoritmisk sprog kan illustreres ved
et simpelt eksempel. Lad os tenke pa felgende problemstilling: Der er
givet et tal, n. Vi er interesseret i det mindste primtal p, som er lig med
eller storre end n. Hertil er forst at bemeerke, at det er med fuldt overlaeg,
at problemstillingen er beskrevet med den vage vending »vi er interesse-
ret i¢«. Det er nemlig netop i arten af interesse for p, at forskellen mellem
matematikken og et algoritmisk sprog kommer ind. Matematisk er man
forst og fremmest interesseret i eksistensen og entydigheden af lgsningen.
Frugten af en matematisk behandling vil veere en sa@tning, som udsiger
noget om disse ting. I beviset for denne setning vil der muligvis gares
brug af en specifik regel (en algoritme), hvorefter tallet p kan findes, nar




ALGOL — DET INTERNATIONALE ALGORITMISKE SPROG 119

n er givet, men dette behover ingenlunde at vere tilfzldet. Tveertimod
gelder det netop for talrige af matematikkens eksistensbeviser, at de er
fuldsteendig tavse med hensyn til, hvorledes man kan konstruere den
genstand, hvis eksistens de péaviser.

I modsztning hertil er det, som udtrykkes i et algoritmisk sprog, netop
en proces, som angiver, hvorledes et givet mal kan nas, i det foreliggende
eksempel, hvorledes man kan finde verdien af p, nar verdien af n er
givet.

Nu ville det naturligvis veere en misforstaelse at haevde, at beskrivelser
af processer er fuldstendig fremmede for matematikken. Det er langtfra
tilfzeldet. Ethvert bevis for en matematisk setning er i sig selv en proces
— den proces, som bringer leeseren fra de givne forudsetninger til resul-
tatet. Ligeledes gdr mange matematiske opgaver af den type, som stilles
med pzdagogiske hensigter, netop ud p& at formulere en proces. Det
geelder f. eks. geometriske konstruktionsopgaver og alle bevisopgaver.

Det bemerkelsesveerdige er imidlertid, at til trods for, at procesbeskri-
velsen indtager en betydningsfuld plads i matematikken, er der hidtil ikke
blevet indfert noget formelt sprog til at beskrive processer. I stedet
hjzlper man sig med beskrivelser udtrykt i seedvanligt sprog. (Muligheden
for at erstatte sidanne verbale beskrivelser med mere koncise, symbol-
ske beskrivelser fremgar forgvrigt umiddelbart deraf, at de verbale be-
skrivelser ofte i glosevalg og setningsbygning er yderligt stereotype.)

ALGOL er et formelt sprog til at udtrykke algoritmer d. v. s. regne-
processer. Det er ikke — og pretenderer ikke at veere — et sprog til at
udtrykke mere generelle processer, men dette faktum behgver ikke at
stille sig i vejen for, at adskillige af de trek, som nu efter moden over-
vejelse er fundet vardige til at optages i ALGOL’s grundleggende struk-
tur, ogsé kan vise sig at veere anvendelige i sprog, som er beregnet til at
beskrive andre typer af processer.

Procesbeskrivelsens elementer. Nar man fgrst har erkendt det gnske-
lige i at formulere et sprog specielt til at beskrive processer, er der ikke
langt til at indse, hvad de veesentligste treek i en meddelelse udtrykt i et
sddant sprog méa veere. Man behgver blot gere sig de felles trek klart,
som findes i de utallige procesbeskrivelser, som vi mennesker allerede nu
er omgivet af: vejledninger i telefonering, i udfyldelse af selvangivelse, i
brugen af disedbnere, strikkeopskrifter, kogebgger o. s. v. De fundamen-
tale treek star helt klart. Der er altid tale om serier af imperative udsagn
opstillet i en bestemt rakkefolge, eller, med andre ord, om at man forst
skal ggre det, dernzst det, o.s.v. Det bliver ogsd hurtigt klart, at et
hyppigt tilbagevendende traek i procesbeskrivelser, der ikke er helt
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simple, er betingede imperativer af typen: hvis det og det er tilfeeldet,
gor da det og det, ellers gor det og det. :

Set ud fra dette synspunkt er det klart, at matematikkens vigtigste
ytring, ligningen, ikke umiddelbart kan opfattes som en bestanddel i en
procesbeskrivelse. Ligningen

a?+b2+2ab = (a+Db)?

udtrykker som bekendt ikke nogen proces, men et statisk faktum.
Der er dog en speciel og vigtig undtagelse hertil. Det er det tilfelde,
at ligningen har form af en formel som f. eks.

Q =y+o2.

I sadanne tilfelde bruges ligningsformen til at beskrive den proces, der
bestar i at beregne veerdien, der svarer til et givet symbol, nar verdierne
svarende til visse andre er givet. Det kan derfor ikke overraske, at denne
form er overtaget nasten uendret i ALGOL, som i det betragtede eksem-
pel skriver: Q:i=y+vi2.
En afsluttet operation af denne art kaldes i ALGOL for en setning —
ikke at forveksle med en s@tning (et teorem) i matematisk forstand.

Der er dog adskillige enkeltheder, som ikke ma overses i denne sam-
menhseng. Den vigtigste er, at ALGOL-s@tningen star for en enkelt af-
sluttet operation pa givne tal til et givet tidspunkt. Der impliceres sé-
ledes slet ingen funktionel sammenheeng ved ovenstdende ALGOL-sat-
ning. (Dette betyder ikke, at funktioner ikke kan udtrykkes i ALGOL.)
Dette bringer os ngdvendigvis til en omtale af de variable, som man kan
arbejde med i ALGOL.

ALGOL’s frie betegnelser, identifikatorerne. Forst et par ord om de
betegnelser, man kan velge: Hver af de storrelser, som man i et givet
problem gnsker at referere til, mé betegnes med en sakaldt identifikator.
En identifikator er et bogstav (lille eller stort), eller et bogstav efterfulgt
af et vilkarligt antal andre bogstaver eller cifre, f. eks.: q7, W, Word,
QQq, A98vsT. Det ses, at ALGOL pé dette punkt afviger fra sedvanlig
matematisk sedvane, der bortset fra indices kun tillader betegnelser,
som bestar af et enkelt tegn. Det er klart, at man herved overvinder den
sedvanlige symbolngd, samtidig med at man har mulighed for at etablere
en ngje korrespondence mellem de betegnelser, som bruges i en vilkarlig
problemstilling, og betegnelserne i en tilsvarende ALGOL formulering.
For eksempel kan graeske bogstaver skrives fuldt ud i ALGOL, som for
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eksempel: alfa, kappa. Ligeledes vil man kunne anvende betegnelser,
som har en direkte mnemoteknisk veerdi. For eksempel vil man kunne
bruge betegnelser som: krumning, grad, xsol, og lignende. I de eksempler,
som gives i det felgende, vil der undertiden gores brug af sidanne mulig-
heder.

Identifikatorer kan repraesentere enkelte tal, szt af tal (f. eks. matricer)
eller frit definerede funktionslignende mekanismer, som gar under beteg-
nelsen procedurer.

En identifikator, som repraesenterer et enkelt tal, mé imidlertid ikke
opfattes som en matematisk variabel, men blot som navnet pa en slags
beholder, som til enhver tid ma indeholde et bestemt tal.

ALGOL-formlen udtrykker da blot den proces, som bestar i, at man
tager veerdierne, der svarer til de identifikatorer, som findes pd hajre-

siden af := tegnet, udfgrer den beregning, som angives ved udtrykket,
og indsetter resultatet som veerdi for den identifikator, som skrives til
venstre for :=. Grunden til, at man har valgt symbolet : = og ikke blot

=, er netop, at man gnsker at pointere den retning fra hgjre mod ven-
stre, som ligger i setningen. Kolonet ma opfattes som en slags stiliseret
pilespids rettet mod venstre.

Denne aktive betydning af ALGOL-s@tningen illustreres yderligere af,
at man uden videre kan skrive

n:=n+1l.

Denne sxtning er ikke blot tilladt, men nyttig. Den udtrykker, at det
oprindelige n skal erstattes med et nyt n, der er en enhed sterre.
Talverdier, udtrykt som sedvanlige decimale tal, kan uden videre
bruges i ALGOL’s udtryk. Desuden er der mulighed for at skrive tal
med en tilfgjet skalafaktor, udtrykt som en potens af 10. Eksempler:
6.22,,— 2, 888.32,,7. Disse to konstruktioner betyder henholdsvis

6.22x10~2 og 888.32x107.

Hgjresiden af en ALGOL-formel kan igvrigt opbygges ved brug af
operatorerne +, —, x, [, 4. Her betegner den sidste potensfunktionen.
Multiplikationstegnet kan ikke udelades, da man gnsker, at den syntak-
tiske opbygning skal give fuldsteendig oplysning om meningen, selv ved
identifikatorer, som bestar af flere bogstaver eller cifre. Parenteser kan
bruges pa sedvanlig made. Ligeledes kan man uden videre benytte for-
skellige af de elementeere funktioner sin, cos, o.s. v. pa4 en umiddelbart
forstielig made. Man kan for eksempel skrive:

NMT, Hefte 3, 1960. — 9
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I

8:= (v+sx(2—y)/PU
PU := sin(fi+pi x S)+5/(8—grad)
E := kappat (Q@—v[2).

Operationer med de tal, der star som elementer i flerdimensionale seet
af tal (de sakaldte arrays), ma altid udferes ved hjelp af en rekke ope-
rationer pa disse elementer taget et ad gangen. Kt enkelt element i et
talset kan for eksempel se sidan ud: MA[3, 4]. Her er M A en identifi-
kator, som betegner hele talsettet, medens veerdierne af de sterrelser,
som star i listen inden i den skarpe parentes, er indices. Det, der skrives
som index, behgver imidlertid ingenlunde at veere et tal, men kan veere
et udtryk. Ved en bestemt anvendelse af elementet i en formel vil dette
udtryk udregnes lobende, hver gang den pageeldende formel skal udfores,
og den samme formel kan derfor under forskellige faser af en beregning
komme til at arbejde med forskellige elementer af settet. En sddan formel
kan {. eks. se ud pa folgende made:

MA[n, m+1]:= MOM[q, n+ 1]—ypsilon/[2 .

Il

Erkleringer. Da identifikatorer kan velges frit til at betegne enheder
af forskellig art, er det nedvendigt eksplicit at levere oplysninger om,
hvad de identifikatorer, som benyttes i et bestemt program, star for.
Disse oplysninger gives gennem sakaldte erklevinger (declarations). En
simpel erklering kan se ud som folger:

real v, s, pt .

Meningen hermed er blot, at hver af de tre identifikatorer v, s, pt betegner
et enkelt reelt tal. P& lignende made kan man erklere identifikatorer
til at betegne heltal (integer) eller logiske veerdier (Boolean). Omradet
for logiske vardier er true og false.

Skrivemaden for erkleringer giver et simpelt eksempel pé, hvorledes
man i ALGOL, s& snart der ikke findes en vedtaget matematisk symbolik,
skaber nye symboler, som har form af sedvanlige ord. De understregede
ord ovenfor ma opfattes som nye grundsymboler i sproget side om side
med f.eks. + og —. De har altsd ingensomhelst relation til lignende
bogstavkombinationer uden understregning (real, integer o.s.Vv.), som
uden videre vil kunne benyttes som identifikatorer.

Identifikatorer, som betegner swt af tal, erkleres som folger:

array MA, MOM[1:17, 2:5] .

Denne erkleering viser, at hvert af de to set, M A og M OM, har to indices,
hvoraf den forste antager verdierne fra 1 til 17 og den anden veerdierne
fra 2 til 5.
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Den dynamiske rzkkefglge. De aktive setninger, som et progrant
opbygges af, vil i almindelighed udfares en efter en i den raekkefolge, i
hvilken de er opskrevet. Imidlertid er det vigtigt at kunne bryde denne
rekkefolge og f. eks. repetere visse een gang opskrevne swmtninger. En
sddan eksplicit definition af den dynamiske reekkefglge kan udfares ved
hjelp af go to-setninger, som refererer til etiketter (labels) for andre
givne setninger. En etiket er en identifikator eller et helt tal. Etiketten
skrives efterfulgt af kolon foran den seetning, den hgrer til, som my i
falgende eksempel :

my: S := MOM[int+2,8]/(PUF—-2)42.
En go to-sztning, som henviser til denne etiket, ser saledes ud:

go to my .

Logiske udtryk og betingelser. ALGOL inkluderer den logiske alge-
bra i fuld udstrekning. Man kan saledes danne logiske udtryk ved hjelp
af de logiske operatorer, 1 (ikke), A (og), v (eller), > (implicerer) og =
(kvivalent) og siledes formulere beregninger af sandhedsfunktioner.

Logiske udtryk kan imidlertid ogsd dannes som relationer mellem
aritmetiske udtryk. Heri indgar en af relationsoperatorerne >, >, =,

<> =, *, §eks. AQ+EX < VY +7
que = 8.

Det er vigtigt at holde sig disse konstruktioners karakter af logiske ud-
tryk helt klar. Saledes er que=8 analog med que+8, blot er det farste
et logisk udtryk og vil kun kunne antage en af veerdierne true eller false.
medens det andet er et aritmetisk udtryk.

De logiske udtryk indtager en central rolle i ALGOL’s struktur gen-
nem deres optreeden i betingelser. Disse dannes alle ved hjelp af den
sakaldte if-konstruktion, som kan illustreres ved folgende eksempel:

if AQ+EX < VY +7then.

Den vigtigste anvendelse af denne konstruktion treeffes i sakaldte if-
setninger, for eksempel:

if ¢ = 8 then goto my .

Den formentlig indlysende mening hermed er, at seetningen g0 to my vil
blive udfert, sifremt veerdien af det logiske udtryk er true, ‘medens den
1 modsat fald vil blive sprunget over.

If-konstruktionen kan suppleres med operatoren else til dannelse af
betingede swetninger, som vist i folgende eksempel:

g%




124 PETER NAUR

if ¢ > b then a:= OP—FU else p:= OP[FU .

Hver gang denne betingede swmtning udferes, vil en af de to variable a
og p, men ikke begge, {4 tilskrevet en ny verdi.

For-setningen. For at lette formuleringen af visse meget hyppigt
forekommende repetitive operationer er der i ALGOL medtaget den
sakaldte for-setning. En for-setning dannes analogt til if-seetningen ved,
at man foran den ALGOL-s@tning, som man gnsker repeteret, skriver
en for-konstruktion. En af de vigtigste praktiske anvendelser vil vise,
hvad sagen drejer sig om:

for i := 1 step 1 until » do VA[i]:= VB[]+VC[i].

For-konstruktionen strekker sig fra for til do. Den efterfolgende setning
er den satning, som vil blive repeteret. For-konstruktionen viser, at
repetitionen vil udfgres n gange, idet den variable i successivt antager
veerdierne 1, 2, ..., n. Forste gang setningen udfgres, vil den se sidan

ud: VA[1]:= VB[1]1+VC[1],
VA[2]:= VB[2]+VC[2],

anden gang sadan:

0.8.V.

Man ser altsi, at for-setningen blandt andet tillader, at man pa simpel
made udtrykker en vektoraddition.

Sammensatte sztninger og opbygningen af et program. Pa samme
méde, som man i et udtryk kan sammenfatte visse dele til en helhed
ved at anbringe dem inden i en parentes (), kan man i ALGOL sammen-
fatte flere smtninger til en sammensat s@tning ved at anbringe dem inden
i setningsparentesen begin end. Dette er af interesse i betingede seet-
ninger og for-saetningﬁris_den operation, som styres af if- eller for-
konstruktionen, ikke kan udtrykkes ved en enkelt elementer setning.

Swtningsparentesen er ligeledes ngdvendig ved opbygningen af et pro-
gram, idet erkleringerne for de identifikatorer, som indgér i programmet,
skal anbringes forst i en sammensat s@tning umiddelbart efter begin.

Setninger og erkleringer adskilles indbyrdes og fra hinanden ved
skilletegnet semikolon. Som eksempel pa strukturen af et lidt mere
indviklet program skal der her gives en algoritme til losning af det pro-
blem, som blev omtalt ovenfor: Find det mindste primtal, som er = n.

begin integer n, a, Resultat; real y;

Y= n/2;
if y = entier(y) then n:= n+1;
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Al:a:= 3;
A2:y:= nfa;

I

if y = entier(y) then begin n:= n+2; go to A1 end;
a:=a+2;
if y > a then go to 42;

Resultat := n
end

Her betegner entier(y) det storste heltal som er < y.

Indholdet af dette program, oversat til almindeligt sprog, er fol-
gende:

n betegner i starten det givne tal. Hvis n/2 er hel, forkastes dette =,
og man gar frem til et n, som er 1 storre. (Hvis n/2 derimod ikke er hel,
gir man videre med det oprindelige 7, smlgn. indfgrelsen af if-then
konstruktionen side 123.)

Man velger =3 og danner /3. Hvis n/3 er hel, forkastes det nu-
veerende n (samt det neeste, der er lige), og man gar frem til et n, som er
2 storre, og starter igen ved A1. Man prover altsa, om det nye n/3 er et
helt tal (det er det ikke, og narvarende algoritme ber i det hele taget
ikke tages som menster pa en effektiv metode, men blot som en simpel
proces til illustration af ALGOL).

Man har altsa nu et ulige n, som ikke er deleligt med 3, og gir da over
til et @, som er 2 storre, d. v.s. a=5. Hvis n/52 5 (altsd n > 52), starter
man igen ved 42, og far herved efterhanden fundet et n, hvori ingen af
de forste tal af raekken 2,3,5,7,9,11,... gar op (de sammensatte
ulige tal tages med p4a linie med primtallene). Nar man ps denne méde
er niet frem til et n og et a, hvor n < a?, har man fundet det spgte primtal.

Procedurer. De regneprocesser, som direkte kan udtrykkes med
ALGOL’s grundsymboler, indskreenker sig til de simple aritmetiske og
logiske operationer pa skaleere storrelser. Da sproget siledes hverken har
vektor-, matrix- eller kompleks aritmetik, kan det fra et matematisk
synspunkt forekomme fattigt. Denne fattigdom opvejes dog af den let-
hed, hvormed man i et givet program kan definere og arbejde med
vilkarlige processer gennem de sakaldte procedurer.

Den proces, som udferes af en given procedure, er knyttet til en iden-
tifikator og defineres gennem en procedure erklering. Nar processen
siledes en gang er defineret i et program, kan den bruges si ofte, det
gnskes fra andre steder i programmet — blot gennem en angivelse af pro-
cedure identifikatoren og de parametre, den skal arbejde pa. Som eksempel
skal angives erkleeringen for en procedure, som udfgrer beregningen
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D=A+BxC,
hvor 4, B, C og D er kvadratiske matricer af n’te orden.

procedure MATLIN(n, A, B, C, D); array A, B, C, D; integer n;
begin integer 1, j, k; real s;

for i := 1 step 1 until » do

for j := 1 step 1 until n do

begins::Zi,j];

" for k:=1step 1 until n do s := s+ Bfi, k] x C[k, j1;
D[i,j]:=s

end

end

Den forste linie af erkleringen er en slags overskrift. Her vises det,
hvad det er for parametre, proceduren arbejder med. Herefter folger en
sammensat setning, som definerer selve processen. Denne indeholder
dels de identifikatorer, som er nsevnt i overskriften, dels andre interne
identifikatorer, som benyttes under procedurens arbejde. Den aktive del
af proceduren bestar veesentlig af tre for-konstruktioner, som er ordnet
som tre kinesiske ssker. Allerinderst findes den swtning, som udferer
den egentlige beregning. Denne setning adderer til hvert element i
matricen 4 en sum af produkter af elementer fra matricerne B og C.
Hvilke elementer der multipliceres, bestemmes af de lgbende veerdier af
de variable ¢, j og k. Disse styres af de tre for-konstruktioner. Det er ikke
vanskeligt at indse, at den inderste seetning under et givet gennemlgb
af proceduren vil udferes n® gange.

Den definerede procedure kan nu anvendes i proceduressetninger. En
procedureszetning svarende til ovenstéiende erklering kan for eksempel

se saledes ud:
MATLIN (7,t, UN, CO, PI) .

Her méa identifikatorerne ¢, UN, CO, PI alle vere matricer af 7-ende
orden. Virkningen af denne proceduressetning vil veere, at man udferer
falgende matrixoperation:

PI =t+UNxCO.

Det anforte eksempel giver kun et svagt indtryk af de muligheder, som
procedurebegrebet indebzerer. I virkeligheden kan enhver numerisk pro-
ces, inversion af matricer, integration af differentialligninger o. s. v. ud-
trykkes gennem en procedure. Det vil vasentligt vaere i form af proce-
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durer, at ALGOL vil blive brugt til at meddele numeriske metoder tvears
over alle landegraenser.

ALGOL’s historie. Forlgbere til ALGOL kan spores tilbage til om-
kring 1950, da man mange forskellige steder begyndte at gere eksperi-
menter med at benytte algoritmiske sprog til at kode for elektroniske
regnemaskiner. Disse bestraebelser var s frugtbringende, at problemet i
lobet af fa ar blev ikke at opstille et sprog, men at holde rede pa de for-
skellige sprog, som var i mere eller mindre udstrakt brug ved forskellige
regnemaskinecentre. Initiativet til bestraebelserne for at skabe mere
enhed i arbejdet forskellige steder blev taget af Gesellschaft fiir Ange-
wandte Mathematik und Mechanik, som i 1957 henvendte sig til den
amerikanske Association for Computing Machinery. Denne var positivt
indstillet til henvendelsen, og der blev ivarksat et samarbejde, som
niede en forelobig kulmination i et mgde i Ziirich fra den 27. maj til
den 2. juni 1958 med deltagelse af fire representanter fra hver af de to
organisationer. Resultatet af dette mode blev en formulering af sproget
ALGOL som beskrevet i en forelgbig rapport [2].

Udbredelsen af kendskabet til det nye sprog blev i den fglgende tid
formidlet gennem mgder i Mainz i november 1958, i Kobenhavn i februar
1959 og ved UNESCO’s konference om databehandling i Paris i juni
1959. Ved modet i Kebenhavn blev der endvidere truffet aftale om, at et
videre samarbejde om sproget skulle varetages gennem skriftlige medde-
lelser. Sadanne meddelelser er siden med f& méaneders mellemrum fra
Regnecentralen i Kgbenhavn blevet udsendt til interesserede.

Den lgbende diskussion gjorde det i stigende grad klart, at det sprog,
som er beskrevet i den forelgbige rapport, endnu behgvede revision og
afklaring, og datoen for en ny konference blev berammet til januar 1960.
Som forberedelse til denne konference blev der i november 1959 holdt
mgder mellem interesserede parter bade i U.S. A. og i Europa (Paris,
12.-14. november). Ved disse meder blev der udvalgt deltagere til den
endelige konference, som fandt sted fra den 11. til den 16. januar 1960.
Ved denne konference niede man pany til enighed om et sprog, som —
skent det i hele sin karakter ligger meget ner ved det tidligere — dog pa
veaesentlige punkter betyder en nydannelse. Dette sprog, som betegnes
ALGOL 60, er fuldt beskrevet i en rapport [1]. Det er dette sprog, som
er omtalt i nerveerende artikel.

Brugen af ALGOL som kodesprog. Da ingen eksisterende regne-
masgkine i sin indre struktur ligger seerlig ner op ad ALGOL-sprogets
struktur, er det klart, at intet ALGOL-program vil kunne udferes af en
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regnemaskine uden en vis omskrivning. Denne omskrivning bestar af en
omdannelse af de enkelte elementer i ALGOL-koden til en kode, som
maskinens indre automatiske funktion bygger pa. Da maskinens egen
indre kode igen kan betragtes som et kodesprog, er det klart, at om-
skrivningen i virkeligheden er en oversattelsesproces.

Den store betydning af ALGOL som kodesprog ligger nu i, at det er
88 preecist i sin form, at et program, der er udtrykt deri, vil kunne over-
seettes til et maskinsprog gennem en rent mekanisk proces. Dette forhold
udnyttes p& den made, at man lader den selvsamme elektroniske regne-
maskine, som man gnsker skal udfere den proces, som udtrykkes ved
ALGOL-koden, udfgre oversettelsen fra ALGOL til maskinsproget. For
at dette skal kunne geres, ma man blot en gang for alle konstruere et
program for maskinen, som er i stand til at udfere den pagwldende
oversattelse.

Oversatterprogrammer af denne art er nu faerdige eller under udarbej-
delse for en lang rekke maskiner ved regnecentraler verden over. I
Skandinavien har der varet vist interesse for sagen fra en lang rekke
institutioner, bide offentlige og private, siledes bl. a. Norsk Regnesen-
tral, Matematikmaskinnimndens Arbetsgrupp (BESK, Stockholm), Mate-
matiikkakonekomitea og Regnecentralen (DASK, Kgbenhavn). Ved den
sidstneevnte institution regner man med at have en oversatter feerdig
til brug fra efteraret 1960.

ALGOL’s fremtid. Den interesse, som ALGOL allerede pa nuveerende
tidspunkt har vakt, lader formode, at sproget fremover vil fi4 en ind-
flydelse, som streekker sig langt uden for den kreds, som umiddelbart
har bergring med arbejdet med de elektroniske regnemaskiner. For dem,
der pa nert hold felger udviklingen, vil det saledes ikke vaere nogen
overraskelse, hvis ALGOL, inden der er giet mange ar, er et selviglgeligt
vaerktoj for alle, der beskaftiger sig med videregiaende naturvidenskabe-
ligt eller teknisk arbejde, og indtager en fast plads i den hgjere under-
visning.

Et af de storste problemer i denne sammenhang ma formodes at blive
den fortsatte fastholden af en enkelt, eller i alle tilfelde blot nogle fa,
varianter af sproget. Trangen til selv at bidrage med forbedringer til et
konventionelt system af denne art synes at veere helt uimodstaelig hos
mange af dem, som arbejder med det — et forhold, som imidlertid let
kan forklares, nar man beteenker, at disse folk ofte er overvejende op-
taget af at forbedre og udvikle deres veerktgj.

Modveegten mod denne tendens udgeres af de brugere, som kun er
interesseret i sproget som middel til at udtrykke deres ideer. De vil
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naturligvis have brug for et sprog, som er s universelt og uforanderligt
som muligt. Losningen pa denne konflikt vil forhabentlig blive, at man
vil ngjes med udvidelser til sproget, uden samtidig at &ndre meningen af
de bestiende konventioner. Da vil alle processer, som er formuleret i en
bestemt variant, bevare deres gyldighed ogsa fremover.
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BOKMELDINGER

RoBERT M. EXNER — MyYRON F. Rosskopr: Logic in elementary mathe-
matics. McGraw-Hill Book Co., New York, Toronto, London, 1959.
94274 pp. sh. 52/6.

(Innholdsfortegnelse i NMT 7 (1959), s. 128.)

Detta dr en bok om teorin f6r matematisk bevisféring, ndrmast inom
ramen for elementdr algebra och geometri. Som framstéillningsmedel
anvinds formell logik, vari inga férkunskaper forutsétts.

Forfattarna ger forst en kort 6versikt av Aristotelisk logik och Gvergar
s& till satskalkyl, vars operationer, syntax och slutledningsregler presen-
teras. De logiska formlerna 4r baserade pa sanningstabeller, icke pa
axiom, vilket dr forstaeligt, da det ar fraga om att ge lidsaren en oriente-
ring i logistik, for att denna sedan skall kunna anvéndas, varemot boken
icke vill vara en lirobok i logik.

Satskalkylen finner anvindning i kapitel III, som handlar om for-
merna for matematiska bevis. Den hirvid utvecklade bevisteorin illu-
streras genom stringent behandling av négra konventionella geometriska
teorem.

Fjirde kapitlet dr en trevlig tillimpning av féregdende. Framstall-
ningen dr huvudsakligen dgnad en viss éndlig geometri, baserad pa tio
axiom. Idén dr lyckad i det man hir inom ett relativt litet utrymme kan
visa strukturen av ett matematiskt system, som &r ytterst forenklat.
P4 detta stille utvecklas denna modell »pa vanligt sprak« pa sjutton
sidor. I ett appendix ges en stringt formalistisk behandling av samma,
modell p& tjugoatta sidor. Lisaren far dérigenom en uppfattning om
vilket utrymme en oavkortad korrekt behandling av t.ex. Euklidisk
geometri skulle kriva.

Predikatkalkylen med syntax och slutledningsregler behandlas i femte
kapitlet. Helt naturligt dr den lika litet som satskalkylen stringt axio-
matiserad, vilket ddremot dess tillimpningar &r.

Sjatte kapitlet ger en logisk framstéllning av bl. a. abstrakta grupper
och filt jaimte interpretationer, linjira och kvadratiska ekvationer,
omvénda riknesitt, olikheter, absolutbelopp, gréinsvirden. Mingdlira
behandlas icke, fastdn den skulle ligga nira till hands. En intressant sak

[130]
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ar att forfattarna visar, hurusom det #r enklare att ge en formelltoan-
tastlig framstéllning av algebran &n av geometrin. Detta papekande kan
ses mot bakgrunden av den aktuella amerikanska reaktionen mot att
den formella bevisféringen inom skolmatematiken hittills onaturligt
mycket har koncentrerats till Euklidisk geometri.

Boken stiller sig vansklig for dldre skolelever, ty fastin logistiken
presenteras rétt sd heuristiskt och dess tillimpningar giller omraden av
matematiken, vilka &r bekanta for varje gymnasist, samt Gvningsupp-
gifterna &r litta, torde de formella avsnitten vara tunglista for nybdrjare.
For ldrare och andra, som i#r intresserade av elementir matematik ur
hogre stdndpunkt, kan boken ha sin betydelse. Fastiin man icke pa skol-
stadiet kan behandla alla teorem med full stringens, kan verket ge en
larare impulser for uppliggning av bevis s, att man kommer idealet

DAra. Carl G. Wolff

I I. Priwarow: Einfihrung in die Funktionentheorie, I1. (Mathema-
tisch-naturwissenschaftliche Bibliothek 22. Aus dem Russischen iibersetzt
von Victor Ziegler.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1959.
54194 S., 28 Fig. DM 8.00.

(Innholdsfortegnelse i NMT, denne argang, s. 45.)

Andet bind af den tyske overswttelse af Priwalows lerebog i elemen-
teer kompleks funktionsteori kan i det store og hele karakteriseres pa
samme made som ferste (se NMT 7 (1959), s. 181-182): Fremstillingen
er veldisponeret, sivel med hensyn til udvalg og raekkefolge af de be-
handlede emner som til behandlingens omfang; den stotter sig dog i
rigelig grad til ikke preecist angivne forkundskaber i reel analyse og
skeemmes noget af en del ungjagtige eller vage formuleringer, bade af
definitioner, satninger og beviser, samt af mange mere eller mindre
uskadelige trykfejl.

De tre forste af de syv afsnit eller kapitler udger tilsammen neesten
to trediedele af bogen, og de fire sidste kommer derfor nermest til at
virke som kortfattet orientering i speciellere emner. Fordelt pé de enkelte
afsnit findes ialt ca. 75 opgaver, hvoraf omtrent halvdelen ledsages af
lgsninger.

Forste afsnit behandler Cauchys integralsztning og -formel og bygger
temmelig meget pa teorien for reelt kurveintegral; endvidere benyttes,
som om de var helt selvfolgelige, en del ubeviste regneregler for integralet
af en kompleks funktion af en reel variabel. Afsnittet er igvrigt meget
indholdsrigt, saledes bevises det (under anvendelse af en smule Lebes-
guesk integralteori), at Cauchys integralsetning gewlder for en vilkarlig
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rektifikabel Jordankurve og en funktion, der blot forudsettes at veere
kontinuert i det lukkede omrade, der har kurven som rand. Sidst i afsnit-
tet findes nogle paragraffer om integraler af Cauchysk type og grense-
veerdier af sddanne — et emne, som forfatteren selv har bidraget til, og
som forgvrigt ikke findes behandlet i de gengse elementere leerebgoger.

Andet afsnit giver en udmearket behandling af rekker, herunder spe-
cielt potensraekker. For et par af de vigtigere setninger gives to helt
forskellige beviser; forst et noget tungt, men sikkert fremadskridende
arbejdsbevis, og dernzest et, der pa en elegant made skyder en genve;j.
Flere af setningerne afgreenses ved velvalgte modeksempler og ledsages
af kommentarer, der giver et godt udblik over nogle af de emner, der ikke
tages op til neermere behandling.

Et par mangler ved disse afsnit skal nevnes. Adskillige steder, hvor der
er tale om en kurve, der ligger i et vist omride, anvendes pa afgerende
made den mindste afstand fra kurven til omradets rand, uden at det
overhovedet omtales, at der her foreligger et eksistensspergsmal. Og
Borels overdaekningssetning, som i ferste bind er formuleret helt kor-
rekt, bruges den ene gang efter den anden pa omrader, der ikke udtrykke-
ligh forudswttes begreensede, si at i hvert fald beviserne, men tit ogsa
seetningerne bliver forkerte. Endelig savner man en definition pi, hvad
det vil sige, at en ikke ngdvendigvis lukket eller selvgennemskzarende
kurve omkredser et punkt.

Det er fristende at omtale en enkelt terminologisk meerkveerdighed:
En analytisk funktion defineres som en funktion, der er differentiabel i
et vist omrade, og en holomorf funktion som en, der kan udvikles i en
potensraekke. Iovrigt defineres senere en meromorf funktion som en, der
med den sedvanlige betegnelse er meromorf i hele planen.

Tredie afsnit behandler Laurentudvikling og singulariteter (Weier-
strass’ setning om veesentlige singulariteter tilleegges J. W. Sochozki)
og afsluttes med en paragraf, som pa en meget tilfredsstillende méde
anvender det foregiende pa hydrodynamiske problemstillinger.

Fjerde afsnit er en kort, men vel gennemfert indferelse i residueregning
med nogle anvendelser; bl. a. bevises Rouchés satning.

I femte afsnit bevises Picards seetning pa velkendt made ved hjzlp af
Landaus seetning.

Sjette afsnit er en indferelse i de uendelige produkters teori med nogle
anvendelser, dels p4 meromorfe funktioner, dels pa nogle generalisationer
af entydighedssetningen for analytiske funktioner; undervejs bevises
Jensens formel (som her opkaldes efter Jacobi og Jensen).

I syvende afsnit, der er meget kort, introduceres begrebet analytisk
fortsettelse, dog ikke langs en kurve, men kun fra omrade til omrade.

I
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Behandlingen fores altsé ikke ret langt frem, og der bliver slet ikke tale
om at na til f. eks. monodromissetningen.

De i forste bind sa ofte forekommende hardhendede infinitesimal-
betragtninger findes kun ganske enkelte steder i andet bind.

Trykfejlene er som sagt mangfoldige: ombytninger af bogstaver eller
tal; manglende angivelser af integrationsveje; numerisktegn, der er ble-
vet til kantede parenteser; manglende fortegn og brekstreger; manglende
eller forkert anbragte merker og indices; forkerte krydshenvisninger;
linier, der hopper op og ned, s at eksponenter en gang imellem bliver
til faktorer o. s. v. I beviset for, at en ligeligt konvergent raekke kan diffe-
rentieres ledvis, far man brug for at integrere ledvis; pa dette sted star
der differentiere i stedet for integrere.

Til sidst et par kuriositeter: En Ableitung er en enkelt gang blevet til
en Anleitung og et Hiaufungspunkt til et Hiufigkeitspunkt.

Tork:l Heiede




OPPGAVER TIL LOSNING

Lesninger av oppgavene 195-199 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et felgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lpsning av hver oppgave. Lesninger av oppgaver i dette hefte ma, for & komme
med i neste hefte, veere sendt innen 20. november 1960.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lgsning.

195. Vis at 2(2%" — 1) enten er lik nevneren i Bernoullis tall B, =4,/N,,,
eller er et multiplum av N, (B;=} B,=4, B;=4, ...). Lag en grei

regel til & danne N,,. Johs. Lohne

196. Om alla rotter till ekvationen
@2+ a, x4 taxtay, =0 (a, + 0)

ar positiva, giller
C{II&‘;I > nl

aoa’n
Arne Fransén

197. Beregn integralet

I= il/vl——kwﬂcz-Arot Vijz da
= ) : gy 5 ot
W. Ljunggren
198. Funksjonsfolgen {f,(x)} er definert ved

z+1

x4+ 2

fl(x) fn+1(x) = f(fn(x))7 n = 1: 2 e .

Finn en eksplisitt formel for f, (). R. Tambs Lyche

199. Er p/q og r/s to uforkortelige brgker, sier vi at den forste er
kortere enn den andre dersom ¢ <s.

[134]
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La a og b vere to reelle tall mellom 0 og 1. Finn med hjelp av kjede-
brgkene for @ og b den korteste brok y/x som ligger mellom a og b.
I det tilfelle at @ = p/q, b=r/s er rasjonale, skal en bestemme de tilfelle

der z er min n bade g s, .
er x e dre en q og Viggo Brun

LOSNINGER

187. Visa, att ekvationen

J@ = a\fway.

x—1

dir 0<a<1 och f(x)=1 for <0, har for 20 en entydig 16sning. som
kan framstidllas antingen som en #ndlig, alternerande serie eller som en
odndlig, positiv serie. (Jfr. uppgift 175, NMT 7, s. 91.)

Gerhard Arfwedson

Losning: Om f(y) antages integrerbar for positiva y, sa dr integralen
i h.1. av den definierande ekvationen kontinuerlig som funktion av x,
sdledes dven f(x). P4 samma sétt finner man att f(z) ir deriverbar for
positiva z:

(1) (@) = af(x)—af(x—1) for x> 0.
I det slutna intervallet (0, 1) géiller

(2) f@) = 1+(a—1)e® .
Inséittes f(x)=1+g(x)e® far vi

(3) g'@) = —aeg(x—1),

varur man far g(x) i intervallet (n,n+1) om funktionen &r kind i
(n—1,n). Dé& g skall vara kontinuerlig fa vi den sékta entydigheten.

Uppgiftens andra del forefaller vara litet olyckligt formulerad. Man ser
omedelbart att f(x) 4r positiv f6r alla positiva z vilket sikrar existensen
av de begirda framstillningarna, det gar att ange hur manga man kan
onska. Den efter uppgiften givna hénvisningen antyder att de patinkta
framstéllningarna skall ha en viss form, som vi skall soka fa fram.

Lat N ange heltalsdelen av « och betrakta

N

(4) f(IU) = 14 (a,— 1) 2 (n__x)n(n!)-lalneax—an .
0

Denna funktion uppfyller (1) och (2) och #r siledes den sékta. I den i
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uppgift 175 givna formeln insittes — z for a och a for z. Tillimpas dér-
efter formeln, s foljer att

(5) fl@) = (1—a) ;‘ (n— ) (n!)laneaz—an

I (5) ar termerna positiva, i (4) har de alternerande tecken om a—1
multipliceras in och termerna skrivs efter stigande index.

Magnus Tideman

190. Idet 7 betegner arealet af en trekant ABC og m,, my, m, dens
medianer, skal man bevise formlen

T = }Vo(o—2m,) (0 — 2my)(c —2m,) ,

idet o =m,+my+m,. Christian Berg

Losning: La M, vere midtpunktet av BC og av AA4,, C midtpunktet
av BA,. Da vil trekanten 44,4, ha sidene 2m,, 2m, og 2m, og arealet

3T = Vo(o—2my,)(0 — 2my) (0 — 2m,) . N. Solberg

Ogs4 lost av Per Roar Andenes, Bernhard Andersen, Valgeir Bjornsson, Ragnar
Dybvik, Arne Fransén, Sven-Ake Gustafson, P. W. Karlsson, Johs. Lohne, A. N.
Lyngbye, Stieg Mellin-Olsen, Tage Norgaard, A.V. Peljo, Arne Sandum, J. Sol-
vang, Steffen Strebeek, Torsten Strém og Bolli Thoroddsen.

191. Nar en smal parallell stralebunt gér inn i en homogen brytende
kule slik at tgi = 2tgr
(i =innfallsvinkel, r=brytningsvinkel), vil brennpunktet falle i kulens
bakre overflate.

Dette, for regnbuens teori meget viktige resultat finnes i Herriott’s
forarbeider til en bok om regnbuen (Brit. Mus. mss. 6788). Hvis Herriott
har benyttet infinitesimale betraktninger, er dette viktig som en tidlig
anvendelse av slike metoder. Men kan relasjonen ogsi finnes ved rent

; 9
klassiske metoder ? Johs. Lohne

Losning: Skeres stralebundtet med en plan gennem kuglens centrum,
kan man betragte de to yderste straler. Lad disse have indfaldsvinklerne
i, 0g i,=1i,+v, og lad de to brydningsvinkler hedde r, og r,. Vinklen
mellem radierne til indfaldsstederne vil da veere v, og vinklen mellem de
to brudte straler vil vere r,—r;. Man har da:
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sin¢;  sin(¢;+o)

sing, sinr,

og derf . . . o
J o sin(¢; +v)—sine;  sin(i; + ) +sind,

sinr, —sinr, sinr,+sinr,
Nar storrelserne gores logaritmiske, fas heraf
T+ 7y

t’Ut " . v tf'2——7‘1
€%y _g<z+2)g 2

Ifolge det opgivne fas heraf med tilnsermelse

To—71
2 b

tgo = 2t
g5 =2tg

d. v. s. for et smalt bundt: jv=r,—r,. Men det betyder, at vinklen mel-
lem de brudte straler er halvt si stor som centervinklen v, den er da
periferivinkel, og de to betragtede straler samles da pa kuglens overflade.

Bernhard Andersen
Ogsé lost av Bolli Thoroddsen og Magnus Tideman.

192. La

QH

hvor samtlige bokstaver er naturlige tall og hvor 4/B ikke lar seg for-

korte. Vi
orte. Vis at @1+qe+t...+q, < 22-npB,

Sammenlign eventuelt oppg. 180, NMT 7, s. 183. Viggo Brun

Lgsning: Jeg vil nummerere g-ene i motsatt orden, slik at

4_4, 1 ~ 1 B, ,
B Bn Qn+ — Qn"'An—l/Bn—l Bn—lqn +An—1'
Qn—1+ °. 1
C
91
Det gir
(1) An = Bn—l’ Bn = Bn—lQn’*'An—l = Bn—-lq'n"'Bn—z .

Ligningene (1) viser at B, > B,,_; for alle k. Da er
Bn > Bn—1(1+QM) > (1+q'n)(1+q'n—1) e (1+QZ)B1

= (1+¢)1+q,) .. (1+g2)0s
NMT, Hefte 3, 1960. — 10
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2n 21L

= 1 + ... -1) =

_n+1(+qn +¢:—1) nrl

etter oppg. 180. N4 viser (1) ogsa at 4,, og B,, ikke kan ha noen faktor > 1
felles; altsa er B, =B, og ulikheten ovenfor blir

1+t ... +4q,)

2%
B >n+1(91+Q2+---+(1n):
11
erer @1+t ... +q, < 27Mn+1)B < 22 B |
fordi

2="(n+1)

< - foralle =n.
22-1ng 2

Audun Holme
Ogsd lost av Magnus Tideman, som gir den skarpere ulikhet
G+t ... +q, S nB/BY,
der ]
B} = V: (T — g, r,s =1+ ]/5) .
5

193. Beregn integralet

1 T 1 (@2—202y+y2)
S S Y
tTS Se 2~ daedy, ol < 1.

Arnljot Hoyland

Losning: For at udregne det givne planintegral, benyttes polere ko-
ordinater; dette er tilladeligt, da integranden har konstant fortegn i
integrationsomradet. — For at komme igennem, er det nedvendigt til-
lige at indfere som ny variabel {=tg0; man far si:

e E 1 in 26)
— = (1—e sin 72
do g e 20-¢® rdr

w 5
1—p2 1 db
e Se—“clu = »«]/1—@25~ ——
2n

|
| b
O 38 ORIy Oty
IS
>

27)/1— g2 1-p s1n260 01—9s1n26

i — dt 1 t—o 17
=—V]_—Q2 2 2 2=—I:AI'C1J ——i]

27 12—20t4+02+1—-0%2 2xm V1_92 =0

1 — 1 Arc cos(—
= — (Z—Arctg A;> = ——( + Arc smg) = (=e)

27\ 2 V1_92 27 27

P. W. Karlsson

Ogsé lgst av Erling B. Andersen, Arne Fransén og Torsten Strém.

194. Av plasshensyn utstér lesningen til neste hefte.




EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen viren 1960 pa de
matematiske gymnasielinjer i de nordiske land.

DANMARK

Matematik 1.
1. Los ligningssystemet
r—3y+4 y-—-2
3 2-3

zy—x—y—1=0.

2. Idet p og q er givne liniestykker og v en given vinkel, skal man konstruere
en trekant A BC, séledes at vinkel 4 er lig med v, hejden fra B lig med p og vinkel
A’s halveringslinie lig med gq.

Diskussion kraeves.

Beregn trekantens sider og ubekendte vinkler, nir »=150°, p=3 og ¢=2.

3. Givet ellipsen
3x% 4-8y? = 72.

En ligesidet trekant 7', er indskrevet i ellipsen, og en ligesidet trekant 7', er om-
skrevet om ellipsen. Enhver af de to trekanter har en side, som er parallel med
z-aksen, og som skaerer y-aksens negative del.

Bestem koordinaterne til trekanternes vinkelspidser.

Ved multiplikation med et tal m med hensyn til et punkt O gir trekant T, over i
trekant T',. Bestem tallet m og koordinaterne til punktet O.

Matematik I1.
1. Bestem de positive hele tal n og p sdledes, at

K, p-1:Kp,p:Kn, pt1 = 1:2:3.
(Kn, q betyder antallet af kombinationer af g elementer udtaget blandt n givne.)
2. Undersog og tegn kurven
y = 2sin®x —3 sinx 0 =2 =m).
Beregn arealet af den lukkede figur, der begrenses af kurven og z-aksen.

3. Lt ligebenet trapez ABCD med siderne AB =CD =4, siden BC =4V§ og siden
AD=8V2 er beliggende i en plan «. Ud ad normalen til « gennem A afsettes

10 [139]
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AE =4, og ud ad normalen til & gennem D afsmttes DF =4; E og F skal ligge pa
samme side af «. B/ og B, E og F samt F og C forbindes.

Find alle toplansvinkler i det konvekse polyeder, hvis hjernespidser er 4, B, C,
D, EogF.

Find polyedrets rumfang.

FINLAND

Léngre kursen.

1. Berdkna summan av alla positiva tresiffriga hela tal som icke dro delbara
med vare sig 9 eller 11.

2. Punkterna O og 4 ligga p& samma lodréta linje, 4 1 km 6éver O. Léngs en
horisontal rét linje genom A rér sig ett flygplan med hastigheten 0,4 km/s. Ljudets
hastighet ér § km/s. Huru manga meter férbi 4 har planet hunnit, d& bullret fran
detsamma boérjar hoéras i O ?

3. For vilka reella virden p& x dr polynomet 22— 14z + 39 till sitt absoluta
belopp mindre dn 6?

4. En parabel har brannpunkten i origo och vertex i punkten (0,2). I vilken
punkt skéres y-axeln av den i parabelns skérningspunkt med den positiva z-axeln
dragna tangenten ? Rita figur.

5. Bevisa formeln fér produkten av tv& potenser med samma bas, di exponen-
terna dro positiva brak.

6. En med O som medelpunkt uppritad halveirkelbige 4B halveras av punkten
C. P dr en godtycklig punkt p& bigen. Fran C drages en parallell till PB och pa
denna avsittes in&t cirkeln striickan CD =hilften av AP. Bevisa, att punkten D
ror sig pd den med CO som diameter uppritade cirkellinjen, d& P ror sig pa bagen
ACB.

7. 1 @ndpunkten B av en cirkels diameter 4B dras tangenten, och p8 densamma
avsittes strickan BC =den i cirkeln inskrivna kvadratens sida. I vilket férhallande
delas strickan AC av cirkelperiferin ?

8. Vilket &r det storsta réta tresidiga prisma som kan inskrivas i en reguljir
tresidig pyramid sdlunda att prismats bas dr en del av pyramidens bas? Bestim
férhéllandet mellan det namnda prismats och pyramidens volymer.

9. I triangeln ABC ér vinkeln A 45° stérre én vinkeln B; sidan AC &r 8 em och
sidan BC &r 8 cm. Berdkna vinkeln B.

10. Bestdm det storsta virde, som funktionen a® — 8x% 4+ 3z uppnér d& 0<a <2.

ISLAND

I.

1. I en indskrivelig firkant 4BCD er siden AB="17,735 cm, diagonalen AC =
9,864, vinklen BAC =23,05° og vinklen CBD =40,12°, Beregn firkantens ube-
kendte sider og vinkler samt diagonalen BD.
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2 2
2. 04 og OB er to konjugerede halvdiametre i ellipsen — J% —1. P& 0A ligger
a

punktet 4, sdledes at 04, =2m-0A, og p4 OB punktet B;, séledes at OB, =2n-0OB
(m og m er to bestemte tal). Midtpunktet af 4,B, betegnes ved P.

Find det geometriske sted for P, nadr 4 og B gennemlober ellipsen, siledes at
0A og OB stadig er konjugerede.

Hvilken betingelse m& m og n opfylde, for at dette geometriske sted skal falde
sammen med den givne ellipse ? (Det tilrddes at anvende ellipsens parameterform.)

3. Los de to folgende ligninger
xt+4x+3 =0

A +al2-w+3)d =0,

nér det er givet at de hver for sig har en dobbeltrod.
Vis derefter, at betingelsen for, at ligningen x* + pz + ¢ = 0 har en dobbeltrod, er, at

4 3
(2) = (%) (p og q reelle tal) .

II.

1. y=a® —ax, hvor a er en positiv konstant, er ligning for en kurve. Tegn en
sddan kurve, f. eks. for @ =3. Beskriv i hovedtrek, hvorledes kurvens form for-
andres, nir a varierer.

Find ligningen for kurvens normal i punktet O(0, 0). Denne normal skeerer kurven
yderligere i to punkter, hvoraf det ene, N, ligger i forste kvadrant. Bestem leengden
af ON og arealet af det omrade S, som begrenses af liniestykket ON og kurven.
Vis, at leengden af ON og arealet af omradet S hver for sig har en mindsteveardi
for en vis veerdi af a. Bestem disse verdier af a.

a\”7
COS — .
(5)

(tgx +tgdx)dw .

2. a) Beregn storrelsen

b) Udregn integralerne

S sin 3xsinTxdr og

iy ="y

; %67 =23 )/ 102. Find a.

3. ABC er grundflade i en reguler tresidet pyramide med toppunktet 7'. Grund-
fladens side er a, hejden 2a. Find pyramidens toplansvinkler samt radius i dens
indskrevne kugle. Gennem A legges en plan, som rerer den indskrevne kugle og er
parallel med kanten BC. Bestem det forhold, hvori denne plan deler pyramidens
rumfang.

NORGE

Reallinjen.

1. Vis at sin3v =3 sinv —4 sin®v.
I trekanten ABC er AB=a, /A=v og /B=3v. Hva for grenser ma v ligge
mellom ?
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Dra gjennom B en rett linje som skjaerer AC i D slik at £ ABD =2v. Dra gjennom
D en parallell med AB. Parallellen skjerer BC i E. Dra gjennom E en parallell
med BD. Denne parallellen skjerer AC i F. Dra gjennom F en ny parallell med
AB, og gjennom skjaringspunktet for denne parallellen med BC en ny parallell
med BD osv.

Vis at trekantene ABD, BDE, DEF osv. har flateinnhold som danner en geome-
trisk rekke. Finn kvotienten i denne rekka uttrykt ved sinv, og avgjer hva for
verdier vinkelen v ligger mellom nér rekka er konvergent. Hva for verdier ligger da
kvotienten mellom ? Finn summen av den uendelige konvergente rekka nar v = 30°,
og kontroller svaret ved & regne ut trekanten ABC.

2. En reguler trekantet pyramide er innskrevet i en kule med radius R, slik at
alle hjerner ligger i kuleflata. Bayningsvinkelen mellom sidekanten og grunnflata i
pyramiden er v.

Vis at pyramidevolumet blir ¥ =2R3)/3-sintv cos?v. Finn den sterste verdien
pyramidevolumet kan ha nér v varierer, og finn den tilsvarende verdien av v.

Konstruer et snitt gjennom pyramiden og kula for denne verdien av v. Snittet
skal g& gjennom sentrum i kula og en sidekant i pyramiden. Bruk R =5 cm nar du
konstruerer.

3. Hva er den geometriske betydning av likningene #% —y —a =0 og ax —y =0,
der a er et konstant reelt tall ? Hva for verdier av @ er det som gir skjering mellom
de to kurvene, og hva for verdier gir tangering ? Gjer greie for hvilke kvadranter
skjeeringspunktene ligger i.

Finn likningen for det geometriske stedet for skjzringspunktene nar @ varierer.
Likningen framstiller en kurve. Hvordan kan vi straks se av likningen at denne
kurven ikke kan vare noe kjeglesnitt ?

Finn de omrader for x der kurven ligger over w-aksen, der den ligger under
x-aksen, der den stiger og der den faller med voksende z. Finn maksimal-, minimal-
og vendepunktene pd kurven. Hva for likning har tangenten til kurven i vende-
punktet ?

Lag en skisse av kurven. Bruk 1 cm til enhet pa begge koordinataksene.

SVERIGE

Matematiska grenen.

1. Upprita kurvan y=a*—622+5 i dess huvuddrag. Kurvan och z-axeln be-
grénsar tillsammans tre éndliga omréden. Hur férhaller sig ytorna av dessa om-
réden till varandra ?

2. En fyrsidig pyramids basyta &r en rektangel. Vinklarna mellan sidoytorna
och basytan #r i ordning 30°, 45°, 50° och 45°. Berikna vinklarna mellan sido-
kanterna och basytan.

9 10 9
3. Upprita kurvan 4y =—— —— + ——, och ange eventuella asymptoter samt
z+2 x x—-2

maximi- och minimipunkter.

1
4. Upprita i ett rdatvinkligt koordinatsystem kurvan y = i dess huvuddrag.
cosx
7
Kurvan, linjen x=; samt koordinataxlarna begrénsar ett dndligt omrade, som

f&r rotera kring x-axeln. Berikna volymen av den alstrade rotationskroppen.
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5. Den ena asymptoten till en liksidig hyperbel har i ett ratvinkligt koordinat-
system ekvationen # 4y +1=0. Hyperbeln gar genom origo och tangerar den rita
linjen z + 2y = 0. Bestdm hyperbelns ekvation.

6. I ekvationen y =23 +ax har konstanten a ett sddant virde, att motsvarande
kurva har en maximi- och en minimipunkt. Bestém det stérsta virde, som den
spetsiga vinkeln mellan tangenten i inflexionspunkten och sammanbindningslinjen
mellan maximi- och minimipunkten kan anta.

7. Parabeln y?=4x och den réta linjen x =a, dir a ér en konstant, &r givna.
Parabelns topp ér O, dess brénnpunkt F. Genom en punkt P pé parabeln drages
diametern. Denna eller dess férlingning skir den givna linjen i punkten 4. Bestim
ekvationen f6r orten for skiérningspunkten mellan linjerna OA4 och PF. Undersék,
hur den geometriska betydelsen av denna ekvation #ndras, nir a antar alla reella
virden.

8. I en triangel kénner man en sida och férhsllandet mellan de bada andra.
Beriikna vinkeln mellan den givna sidan och bisektrisen till den motstiende vin-
keln, néir triangelns yta &ér s& stor som mojligt.

RESULTAT AV DEN TREDJE INTERNORDISKE PRISOPPGAVE
(Oppgavene sto i NMT 7 (1959), s. 136-138.)

Det kom inn ialt 21 besvarelser: 14 danske, 2 islandske, 1 norsk og 4 svenske.
Et utdrag av de beste lesninger vil bli publisert senere i NMT.

Etter innstilling fra bedemmelseskomiteen gkes det samlede premiebelop til
n. kr. 250, som deles likt mellom innsenderne av de to beste besvarelser: Knud
Lonsted, 1II G mn, Ostre Borgerdydskole, Kebenhavn, og Arne Strom, 5 Rg,
Holtet h. skole, Oslo (klassene referer seg til forrige skolear).

NMT takker alle deltakerne for den utviste interesse.

RESULTAT AV PRISOPPGAVER FOR NORSKE GYMNASELEVER
(Oppgavene i NMT 7 (1959), s. 187-188.)

Det kom inn 6 besvarelser. Best var for tredje gang Arne Strom, 5 Rg, Holtet
h. skole (artium 1960), og nr. 2 var Dag Belsnes, 5 Rg, Holtet h. skole (artium
1960). Da Strem bare kan vinne hovedpremien en gang, er premien for 1960
tildelt Dag Belsnes.




SUMMARY IN ENGLISH

S. E. SteN1s: Evert Johannes Nystroém in memoriam. (Swedish.)

A short general and scientific biography of Evert Johannes Nystrém, Sep-
tember 25, 1895—February 13, 1960.

ARNE BroMAN: The problem of the baker. (Swedish.)

A baker rolls his dough, cuts it in two, puts one piece on top of the other
and continues the process repeatedly. Does he thereby obtain a well mixed dough ?
—The problem is solved (in the affirmative) for an analogous mathematical
problem concerning a simple plane measure-preserving transformation. The solution
is similar to the one given in Hopf: Ergodentheorie (Berlin 1937), p. 42.

Fr. FABRICIUS-BIERRE: A proof of the four-vertex theorem. (Danish.)

By means of circular transformations, the author gives a new proof of the
well-known theorem, that on any oval there are at least four vertices.

PerEr NAUR: Algol—the international language for description of
logical and numerical processes. (Danish.)

A short description of the algorithmic language ALGOL, illustrated by simple
examples. The historical background and the possible future developments are
also briefly sketched.
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