F. BACHMANN’S AKSIOMATISKE OPBYGNING AF
GEOMETRIEN, IT!

P. O. NEERUP

C. Den Bachmann’ske opbygning af plangeometrien.

Som foran omtalt vil i dette afsnit Bachmanns aksiomsystem og — i
steerkt begrenset omfang — hans opbygning af den plane geometri
blive gengivet.

P4 forhdnd bemerkes, at aksiomsystemet tilsyneladende ikke er af
geometrisk art, idet det handler om en gruppe G med visse egenskaber.
Til orientering skal dog allerede her anferes, at denne gruppe @ kan for-
tolkes som flytningsgruppen i en geometri (se C8), og at denne geometri
defineres ved hjelp af selve gruppen G' pa en efter afsnit B nerliggende
made (se C2).

Endvidere forudskikkes, at aksiomsystemet er af meget almen karak-
ter, idet det kun omfatter sidanne aksiomer, som — fortolket geometrisk
— er gyldige i alle de tre former for elementergeometri. Specielt skal
anfores, at de i aksiomsystemet omtalte delmeengder € og B (i geometrisk
fortolkning meengderne af linier og punkter) af hensyn til den elliptiske
geometri ikke forudseettes disjunkte, samt at aksiomsystemet af hensyn
til den hyperbolske geometri ikke indeholder nogen almindelig forud-
setning om eksistensen af, hvad man i geometrisk fortolkning kalder to
liniers skeeringspunkt (smlgn. bemearkningerne i B9).

Skent det felgende skal opfattes som en strengt aksiomatisk fremstilling,
er der indsat adskillige figurer. Det er helt veesentligt for forstaelsen, at
disse figurer — som allerede navnt i indledningen — kun betragtes som
visuelle hjelpemidler til at fastholde den logiske tankegang.

1. Givet en gruppe G bestdende af en maengde M={x, B, y, ...} med
en kompositionsregel samt to delmaengder f={a,b,c, ...} og P=
{4, B, 0, ...} af M, hvor @ er et system af involutoriske frembringere
for @, og ‘B er maengden af alle involutoriske produkter af to elementer
fra €. Bachmanns aksiomer er da fglgende:

1 Forste del sto i NMT, denne argang, s. 97-110.

NMT, Hefte 4, 1959. — 11 [145]
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I. Til P og Q, hvor P+Q, findes der mindst eet g sdledes, at g1 P,Q.
II. P+=Q og g,h]P,Q medforer g=h.
II1. Til P og g findes der mindst eet 1 sdledes, at I1.P,g.
IV. Til a, b, ¢, P, hvor a,b,c1 P, findes der et d sdledes, at abc=d.
V. Til a, b, ¢, g, hvor a,b,clg, findes der et d sdledes, at abc=d.
VI. Der findes tre elementer g, h, j sdledes, at g1h, men ikke jlg, tkke
g1k og ikke j1gh.

2. Vi definerer nu en geometri pa folgende made:

Elementerne i meengden P={A4, B, C, ...} kalder vi punkter.
Elementerne i mengden &={a, b, ¢, ...} kalder vi linier.

Et punkt 4 og en linie a siges at veere incidente, nar Ala.

To linier a og b siges at vere vinkelrette pa hinanden (a L b), nir alb.
De forste aksiomer kan herefter formuleres siledes:

I. Til to forskellige punkter P og @ findes der mindst een linie, som

er incident med P og Q.
II. Til to forskellige punkter P og @ findes der hgjst een linie, som

er incident med P og @.

III. Til et punkt P og en linie g findes der en linie /, som er incident
med P og vinkelret pa g.

Det sidste aksiom kan ved hjelp af nedenstdende setning 1 og aksiom
II formuleres siledes, idet g, &, j Abenbart er indbyrdes forskellige:

VI. Der findes tre linier g, &, j siledes, at g og & er vinkelrette pa hin-
anden, at j ikke er vinkelret p4 nogen af linierne g og A, samt at g, %, j
ikke er incidente med samme punkt.

Aksiomerne IV og V fortolkes ogsé let geometrisk, nar flytninger er
defineret (se C8).

3. Udfra aksiomsystemet kan man vise en raekke satninger.

SEINING 1: ab=P er ensbetydende med alb, Pla,b.

Bevis: 1) Hvis ab=P, er alb ifelge definitionen af P, og da ab=P er
ensbetydende med savel aP=b som Pb=a, er Pla,b.

2) Hvis alb, er ab=(. Ifolge 1) er da @la,b, og dette sammen med
Pla,b ville for P +@Q ifelge aksiom II give, at a=>0 i strid med ab=Q =e.
Altsa er ab=P.

SaTNING 2: o P medforer, at aP € L.

Bevis: Ifolge aksiom III findes der et b saledes, at bla,P. Da saledes
bla, Plab, folger af setning 1, at P=ab, altsd aP =b.
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SETNING 3: aPa € .

Bevis: Ifelge aksiom III findes der (fig. 6) et I siledes, at [la,P. Da
L1 P, folger af setning 2, at IP=p og dermed P =Ip. Specielt gxlder da
pll og altsd ogsé a,pll. Da a,p,all, folger af aksiom V, at apa=5. Da
lla, er aPa=alpa=Ilapa=1b, og da aPa er involutorisk, er aPa=1b=Q.

SzTNING 4: Tl a findes et A sdledes, at al A.

Bevis: Ifglge aksiom VI findes (fig. 7) et involutorisk produkt P af
netop to frembringere. Ifelge aksiom IIT findes der et I siledes, at
lla,P. Af l1a folger la =4 og altsd Aa=I, hvoraf al 4.

P
P
bp
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Q b
l l
Fig. 6 Fig. 7

S&ETNING 5: aga € &.

Bevis: Ifelge setning 4 findes der (fig. 8) et A siledes, at A ]a. Ifolge
aksiom III findes der et [ saledes, at I1g,4. Specielt er I1g og altsa lg=P.
Ifolge setning 3 er aPa=Q. Da a,l,alA, har vi ifelge aksiom IV, at
ala=m. Vi har nu: @Q=aPa=alga=ala-aga=m-aga. Heraf folger
aga=m@, og da siledes m1Q, folger af s@tning 2, at aga =mQ =h.

g

gPg

Fig. 8 Fig. 9
11*



148 P. 0. NEERUP

4. Da et vilkarligt element « i gruppen G kan skrives
6= 0l eve Qs Op, Ay ooy By €L,
fremgar af seetning 5, at

g € & medforer xga—'e &,
samt af setning 3, at
P e P medfgrer «Px—1e P.

Da vi for tre vilkarlige gruppeelementer «, 8, ¥ har afo—l-aya—1=
o(By)ot, folger af den sidste bemeerkning i A 12, at

alb medforer can—1] abx—?

o8 al A medforer can=2] xAdox-1.

5. SmrNING 6: P+g, Pla,b og a,b L g medforer a=b.

Bevis (fig. 9): Af Pla,b folger ved hjelp af A12, at gPglgag.gbg
eller altsd gPgla,b. For P+gPg folger da af aksiom II, at a=b. For
gPg=P er Plyg, og ifelge setning 1 er da P =ag=>bg, hvoraf a=b.

S&ETNING 7: a,b,c] P og abc=d medforer d1P.

Bevis: 1) dP =abcP =abPc=aPbc=Pabc=Pd.
2) d+P; thi d=P ville medfgre abc=P, altsd ab=Pc og dermed
a1 b. Ifplge setning 1 var da P=ab, altsd c=¢ i strid med ce Q.

SETNING 8: a,b,c 1 g og abc=d medforer d 1 g.

Bevis: 1) dg = abcg = abgc = agbc = gabc =gd.

2) d#g; thi d=g¢ ville medfere abc=g, altsd ab=gc. For ab=gc=P
matte vi da ifelge setning 1 have Pla,b,c,g og P=ag=>5g, altsd a=>b,
men desuden a 1 b.

SaTNING 9: For a,b1P og a+b er abc=d ensbetydende med c] P.

Bevis: 1) ¢IP medfgrer a,b,cIP, hvor-
for aksiom IV kan anvendes.

2) Ifelge aksiom III findes der (fig. 10)
et | saledes, at [IP og I1c. For lc=C har
0 — vi ifglge seetning 1, at l,cIC. Ifglge aksiom

d IV er abl=m, og ifelge setning 7 har vi
mIP. Da az+b, er m=l. Hvis nu abc=d,

c er mlc=d, og altsd md =Ilc=C. Heraf folger
imidlertid mIC, og da saledes I,mIP,C,

m medferer [+m ifglge aksiom II, at C=P.

Fig. 10 Folgelig har vi ¢ P.
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S&ETNING 10: For a,b 1 g og a=+b er abc=d ensbetydende med ¢ _1 g.

Bevis: 1) ¢ L g medfaerer a,b,c 1 g, hvorfor aksiom V kan anvendes.

2) Ifelge setning 4 findes der (fig. 11, 12) et punkt P saledes, at Plec.
Ifglge aksiom III findes der et ¢’ saledes, at ¢’ P og ¢’ 1 g. Ifglge aksiom
V er abc’ =d’, og ifelge seetning 8 er d' Lg. Da a+b, er ¢’ +d’'. Hvis nu
abc=d, er ¢'d'=cd og dermed cc'd’=d. For c¢=c¢' har vi straks c_lg.
Ellers folger af setning 9, at d’'[ P, og ifelge s@tning 6 ma vi da have

P=g; for P=g har vi imidlertid ogsa ¢_Lg. P

lp

g
W
a| b dld’cle’ a b id °¢
Fig. 11 Fig. 12

SzrNiNg 11: For A,Blg og A+B er AcB=d ensbetydende med ¢ g.

Bevis: Ifolge aksiom III findes der (fig. 13) et a og et b saledes, at
ald,blBogab Ly, og ifelge setning 1 er A =ga og B=bg, altsa a=+b og
AcB=g-acb-g. Vi har derfor:

1) Hvisc L g, er AcB=ghg=d ifglge aksiom V og s@tning 5.

2) Hvis AcB=d, er g-acb-g=d, acb=gdg=h, cba=aha=1, abc=1 og
(ifolge seetning 10) ¢ Lg.

6. SmTNING 12: T4l a og b, hvor a=+b, samt C, hvor ikke bide Cla og
C10b, findes netop eet ¢ sdledes, at c1C og achb=d.

Fig. 13




150 P. 0. NEERUP

Bevis: Ifglge aksiom III findes der (fig. 14) et a, og b, siledes, at
a,,0,1C samt a; 1 a og b; 1 b. Ifglge setning 1 kan vi sette aa, =4 og
bb,=B. Her er A+ B, thi af A=2B, a+b ville folge a, b, og a,,b,1C,4
ville da ifelge aksiom II medfore, at O =4 =B, altsd Cla og C1b i strid
med det givne. Ifglge aksiomerne I og IT findes da netop eet [ siledes, at
l14,B.

For ethvert cIC har vi ifelge aksiom IV og setning 7, at a,ch; =1,
hvor 1,10, og derfor ach=A4-a,cb,- B=Al,B. Ifplge setning 11 har vi da
acb=d, nar og kun nar I, 1 I.

Da C=1 ville medfere a,,b,11 og ifelge setning 1 da ogsd 4 =aa,=la,
og B=0bb,=1b,, altsd a=1=0, er C=1l. Ved hjxlp af aksiom III og swt-
ning 6 indser man da, at der findes netop eet ¢ af den anferte art.

SarNiNe 13: T4l U, v, w findes der et a og et b sdledes, at Uvw=ab.

Bevis: 1) For v=w anvendes definitionen af U.

l

a
Fig. 15 Fig. 16

2) For v=+w findes der (fig. 15) ifglge aksiom IV eller ifglge seetning 12
et I saledes, at I1 U og lvw=>5. Ifglge aksiom III findes der et a saledes, at
alU og all, hvoraf U=al ifelge setning 1. Vi har da: Uvw=al-vw=
a-lvw=ab.

SamrNING 14: T4l w, v, w findes der et A og et b sdledes, at wow= Ab.

Bevis: Ifglge s@tning 4 findes der et W saledes, at W]w.

1) Vi betragter forst u=v. Ifglge aksiom III findes der et g saledes, at
gIlW og g1l w, og ifelge setning 1 er W=wyg. Vi har da wow=w=Wy.

2) For w=wv findes der (fig. 16) ifolge aksiom IV eller ifglge setning 12
et v’ saledes, at v' [ W og uwv’ =u'. Ifelge aksiom IIT findes der et I saledes,
at I[IW og lLu'. Ifglge aksiom IV er 'w=>b, og for u'l=A har vi da
www=uv'w=u'l-lw'w=Ab.
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7. Af setningerne 13 og 14 folger, at et vilkarligt element « i gruppen
@ kan fremstilles pa en af de to former: x =ab eller x = A4b.

Heraf folger ved setning 2, at der ikke findes andre involutoriske
gruppeelementer end punkterne og linierne.

Endvidere gzlder det, at ingen linie og intet punkt er ombyttelig med
alle gruppeelementer. Dette kan ses saledes:

1) Lad a vere en linie, som er ombyttelig med alle gruppeelementer,
specielt altsd med g, &, j fra aksiom VI. Disse linier g, 4, j er som tidligere
bemserket indbyrdes forskellige, hvoraf folger, at @ ma vare forskellig fra
dem; thi hvis @ var en af dem, matte denne vaere vinkelret pa de to andre
i strid med aksiom VI. Vi har altsd a_1g¢,h,j, men a1 g,h medferer for
gh =P ifglge setning 6, at a=P, og a1 j medforer da P[j i strid med
aksiom VI. Der findes altsa ingen linie ¢ af den navnte art.

2) Lad dernzst 4 vere et punkt, som er ombytteligt med ethvert
gruppeelement, specielt altsd med g, A, j fra aksiom VI. 4 mé vere for-
skellig fra disse linier; thi hvis 4 var en af dem, matte denne som for
veere vinkelret pd de to andre i strid med aksiom VI. Altsa har vi, at
Alg,h,j, men Alg,h medfgrer ifglge setning 1, at A =gh, og A1) med-
forer da ghlj i strid med aksiom VI. Der findes altsd intet punkt af
den neevnte art.

Yderligere gelder det, at der ikke findes noget fra e forskelligt gruppe-
element, som er ombytteligt med alle gruppeelementer. Dette kan ses pa
folgende made:

Lad « veere et fra ¢ forskelligt gruppeelement, som er ombytteligt med
alle gruppeelementer. Vi har da, idet «=po, hvor p og o er involutoriske
gruppeelementer, at

XX = XPO = QKO = PQOC = E& = E,

hvoraf fglger, at « er et involutorisk gruppeelement, altsa et punkt eller
en linie i strid med, at ingen linie og intet punkt er ombyttelig med alle
gruppeelementer.

Ifglge A 11 kan vi nu slutte, at gruppen af alle indre automorfier © G er
isomorf med @.

8. I den i C2 definerede geometri indferer vi begrebet flytning ved
folgende definition:

En flytning er en indre automorfi i G.

Ifglge C4 vil en flytning lade en linie svare til en linie, et punkdt til et
punkt, et punkt incident med en linie til et punkt incident med den til-
svarende linie og to pa hinanden vinkelrette linier til to pa hinanden
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vinkelrette linier. Ifglge C7 er flytningsgruppen isomorf med den givne
gruppe G.

Da gruppen G har liniem#ngden & som frembringersystem, er en indre
automorfi i G entydigt bestemt ved den permutation af &, som den
fremkalder.

Da en ret linie er entydigt bestemt ved to forskellige punkter, som er
incidente med linien, har vi endvidere, at en indre automorfi i G er
entydigt bestemt ved den permutation af punktmeengden B, som den
fremkalder, hvis vi blot kan vise, at der til enhver linie ¢ findes to for-
skellige punkter P og @, som er incidente med a. Dette kan ses saledes:

Forst viser vi, at der ikke findes nogen linie, som er incident med alle
punkter. Lad os antage, at « var en sidan linie. Idet g, %, j er linierne i
aksiom VI, findes der (fig. 17) ifolge aksiom III en linie [ saledes, at [ 1]
og L1 P, hvor P =gh, samt en linie m saledes, at m 1 g og m1Q, hvor @ =1j.
Ifolge aksiom VI gewlder der ikke PIj, hvoraf felger, at P+@. Ifelge

Fig. 17 Fig. 18

aksiom IT havde vi da x=I. Ifolge aksiom VI gelder der hverken j g
eller j | k, hvoraf folger l4g og I+ h. Ifelge aksiom II gelder da hverken
QlIg eller @Q1h. For R=gm kan vi nu ikke have RIl, thi RII ville ifelge
aksiom II medfere, at R=P, og dermed m="h, og, da QIm, at QIA.
Altsd har vi, at der ikke geelder RIz, og det er i strid med antagelsen
om z.

Lad dernzst (fig. 18) a betegne en vilkarlig linie. Ifelge swtning 4
findes der et punkt A saledes, at Ala. Til b= Aa findes der — som lige
vist — et punkt B siledes, at der ikke gmlder BIb. Ifelge aksiom III
findes der en linie ¢ saledes, at ¢IB og ¢La. For C=ca er O+ A, thi
O = A ville medfgre c=b og derfor BIb. Altsi er A,0la og A+C.

9. SmrNiNG 15: Tl A, B, O, w og w, hvor A+C, wAu=DB og wBw=_C,
findes et s sdledes, at sAs=C og usw e L.
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Bevis: Da 4 =w ville medfgre C =uBu=A, er w+w. Ifglge setning 12
(eller aksiom IV) findes der (fig. 19) et v siledes, at vI B og wvw=s. Vi
har da dels, at usw=v, og dels, at sds=wvu-A-vvw=wv-B-vw=
wBw=C.

10. SmrNiNg 16: Tl A, B, C, U og W, hvor A+C, UAU=B og
WBW =C, findes der en linie s sdledes, at sAs=C og UsWe L.

v |
Fig. 19 Fig. 20

Bevis: Da U= W ville medfore C=UBU=A, er U+ W. Ifplge aksiom
I findes der (fig. 20) et ¢ saledes, at t1U,W, og ifelge aksiom IIT et v
saledes, at vI B og v 1 ¢. Ifglge seetning 11 er UvW =s. Vi har da dels, at
UsW =v, og dels, at sds=WoU-A-UvW=Wv-B-vW=WBW=C.

11. S&ETNING 17: For o= Ab, hvor hverken A =0 eller A1b, er alo—1=1
ensbetydende med 114 og 11 b.

Bevis: 1) Hvis 114 og 110, er al=Abl=Alb=14Ab=1x.

2) Hvis alx1=1, er AblbA=I. For blb=1, er altsa AlA=I, d.v.s.
l,=AlA. Lad os forsggsvis antage [, +! m
(fig. 21). Ifglge aksiom III findes der et
m saledes, at mIA og m11l; vi matte l
da ogsd have AmA | AlA eller altsa
m 1 1l;. Dall,b=1bl € &, ville af seetning 10
folge, at m 1 b, og for a= Am derefter af A a
aksiom V, at able®. Ved hjelp af
al,a=Am-l;-mA=ALA=1 ville vi nu
fa abl=al,b=1lab=0bal, altsd ab=ba, og
heraf Ab=mab=mba=bma=>bA i strid
med det givne. Vi har derfor 7, =1.

Af blb=1 og AlA=1 folger 11b,A, - L
fordi I=b eller I=A4 ville medfgre
Ab=0b4 i strid med det givne. Fig. 21
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SmTNING 18: Huwis a, b, ¢ er tre linier sdledes, at abc ikke er en linie
og abc ¢, samt gy, hy, h, tre linier, for hvilke der gelder:

(*) aly=hea, bhy="hyb, ch,=hg,
(**) bhoce &, chyae &, ahbe &,
sd gaelder h hph, € L.

Bevis: Da abc ikke er en linie, er
& h,%+a, hy+b og h,+c ifolge (¥*); af (¥)

h folger da h, 1 a, ky Lb og b, Lc (fig. 22).
b Af (*) og (*¥*) fas:

h, = ah,a = ab-bh,c-ca = abc-hy-bea

by = a-alyc-c = a-chya-c = ach-ly-bac,

h, = che = ca-ahb-bc = cab-h,-abc ,

hvoraf
hoph, = abe-hhyh,-abe ,
altsa
(F*%) B=opox med x=abc og f=h,hyh,.
Ifglge setning 14 findes (fig. 23) P, R, ¢, s ]
saledes, at o« =Pq og f=Rs, og af det givne
folger, at der gw®lder hverken P=gq eller Plq. P P

Ifolge aksiom III findes der et [ siledes, at
IIP og l1gq, og ifglge setning 17 har vi da
ala—t=1. Da tillige U« =1, far vi ved hjzlp q
af (***) endvidere for I,=pIf~", at aljx™!

=af-l-plat=Pat-l-aft=plp~1=1,. Ved °
hjzlp af setningerne 17 og 6 slutter vi nu,
at I, =1, altsd at ogsa plf1=1. R

Da ax+e, er B+¢, altsd R=+s. Lad os an- yr r

tage, at der (som vist pa fig. 23) ikke gjaldt
Rls. Ved fornyet anvendelse af satning 17
fik vi da IIR og lLs. For p=Pl og r=RIl
ville vi nu ved hjelp af aksiom V fa

Fig. 23

Oéﬂ = Pq-RS = lpq-lrs = lp-lq.rs o p.qrs — rqp_s — r‘qu
= lr-lsp-q = lraslp.q = Rs.Pq — ﬁOC ,

som sammen med (***) ville give ax=e¢ i strid med det givne. Altsd er
R1s, hvoraf folger f=Rs e L.

12. En geometri med det i C1 angivne aksiomsystem kalder Bach-
mann en absolut geometri. En sidan geometri er som tidligere bemaerket
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af meget almindelig karakter, og da sivel den euklidiske som den ellip-
tiske og den hyperbolske geometri tilfredsstiller Bachmanns aksiomer,
vil setninger fra den absolutte geometri have gyldighed specielt i disse
tre geometriformer.

Det viser sig dog muligt at indlejre enhver absolut geometri i en pro-
jektiv plan (hvor Pascals seetning er gyldig). Det kan man gere ved at
indfgre ideale punkter og ideale linier. F. eks. kan man til to linier a og
b, hvor a=+b, indfere det af @ og b bestemte idealpunkt som meengden
af linier z, for hvilke abx € . Man kan vise, at det samme ideale punkt
bestemmes af to hvilkesomhelst forskellige af disse linier . Hvis a og b
har et punkt P felles, bliver det af a og b bestemte ideale punkt ifelge
aksiom IV og s®tning 9 netop meengden af linier, som er incidente med P.
Betegnelsen abc € & kan herefter fortolkes siledes, at linierne a, b, ¢ er
incidente med samme ideale punkt.

Saledes ser man, at setningerne 15 og 18 er generalisationer af sat-
ningerne: Midtnormalerne for siderne i en trekant gir gennem samme
punkt, og den analoge for hgjderne i en trekant. Tilsvarende er setning
16 en generalisation af setningen: En midtpunktstransversal i en tre-
kant og den tilhgrende trekantsside har en falles normal, som er midt-
normal for trekantssiden. Ogsé s@tningerne: Halveringslinierne for vink-
lerne i en trekant gir gennem samme punkt, og den analoge for media-
nerne i en trekant, kan vises i passende formulering at have gyldighed i
en absolut geometri.

De forskellige s@tninger ma nedvendigvis formuleres forsigtigt, nar de
skal have gyldighed blot i de tre klassiske geometriformer. Saledes er
forudssetningen P #g¢ i setning 6 nedvendig, fordi setningen uden denne
forudseetning ikke er gyldig i den elliptiske geometri; i denne betyder
P =g nemlig, at punktet P er pol for linien g. Endvidere kan eksempelvis
anferes, at vi i setning 15 sikres eksistensen, men ikke entydigheden af
en spejlingsakse s for 4 og O, og at u, s og w har et idealt punkt, men ikke
ngdvendigvis et punkt felles; i den elliptiske geometri har nemlig 4 og
O en fra s forskellig spejlingsakse gennem polen for s, og i den hyperbolske
geometri behover u, s og w ikke at have noget punkt felles.

13. Man kunne spgrge, hvordan man af en absolut geometri kan ud-
skille en geometri af f. eks. euklidisk type. Dette kan ske ved tilfgjelse af
falgende to aksiomer:

VII. Til 4, B, C findes et D siledes, at ABC=D.
VIII. Til @ og b findes enten et P siledes, at Pl a,b, eller et p saledes,
at pLla,b.
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Aksiom VII er i tilfeelde af, at A, B, C er incidente med samme linie,
en folge af aksiom IV. Af aksiom VII felger specielt, at b La,c og d La
medfgrer d 1 ¢, thi for da=4, ab=B og bc=C har vi ifglge aksiom VII,
at der findes et D séiledes, at D=ABC=da-ab-bc=dc, hvoraf d | c. Af
aksiom VII fglger med andre ord, at hvis to linier har en fxlles normal,
er enhver normal til den ene af de to linier tillige normal til den anden.
Man kan vise, at denne s@tning endda er ensbetydende med aksiom VII.

Herefter er det neerliggende at definere to parallelle linier som to linier,
der har en falles normal. Aksiom VIII sikrer da, at to forskellige i denne
betydning parallelle linier er ensbetydende med to linier, som ikke er
incidente med samme punkt.

For en absolut geometri, som tilfredsstiller aksiomerne VII og VIII,
viser sig at geelde, at der til A og B findes et m saledes, at mAm = B, altsa
at to vilkarlige punkter har en spejlingsakse. Dermed er specielt sikret, at
der findes en flytning, som forer det ene af to givne punkter over i det
andet, eller med andre ord, at to vilkarlige punkter er kongruente. Der-
imod er linier i almindelighed ikke kongruente, og to linier behgver sa-
ledes ikke altid at have en spejlingsakse.

En absolut geometri, som tilfredsstiller aksiomerne VII og VIII, er
altsé en geometri, som er mere almindelig end den sedvanlige euklidiske.
Eksempler pa en sddan geometri har man i en analytisk geometri, hvor
man kun opererer med rationale tal, eller hvor man kun betragter hele
tal og opererer med restklasser modulo et primtal (#+2). I de navnte
eksempler gwlder det endda, at to p4 hinanden vinkelrette linier altid
har en spejlingsakse. Tilfgjer man yderligere folgende aksiom:

IX. Til a, b findes et m saledes, at mam =>b,

far man en geometri, der f. eks. kan vere en sedvanlig analytisk geome-
tri over et sikaldt pythagorzisk tallegeme, d. v. s. et tallegeme K, som
opfylder folgende betingelse:
Til «,f € K, hvor (x, f)=(0, 0), findes et y +0 siledes, at a2+ f2=12
Et pythagoreisk tallegeme er — som man let ser — et dellegeme af de
reelle tal, der omfatter alle rationale tal. Som eksempel kan foruden de
reelle tal anfores legemet af alle konstruerbare tal.
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SIMPLE BEVISER FOR
EN APPROXIMATIONSSATNING AF A. HURWITZ

ASMUS L. SCHMIDT
1. T teorien for diophantiske approximationer indtager folgende saet-
ninger af Hurwitz [3] en central plads:
SazTNING A. Tl ethvert reelt irrationalt tal & findes uendelig mange par

af hele tal (p, q), ¢ =0, som tilfredsstiller uligheden

(1) E——

V5q

SaTNING B. Konstanten i (1) kan ikke forbedres. Thi er ¢ > Vg, findes der
reelle irrationale tal &y, sddan at uligheden

Y
* g o
kun har endelig mange losninger (jo, ), ¢+0. Tallet 3(1 +]/E) er et sddant
kritisk &,.

Hurwitz’ originale bevis benyttede regulere keedebreker. Efter at
Borel [1] havde vist, at af 3 pa hinanden fglgende keedebrgkskonvergenter

Pn— 1 pn P+
Qn- 1 Qn An+1
[6 (1929), p. 49] og Fujiwara [2. Gengivet i [6] (1954), p. 42] meget korte
beviser for denne skerpede form af seetning A.

For setning B har Perron [7 (1921), p. 130; (1939), p. 130] givet et
simpelt bevis. Dette gengives for fuldsteendighedens skyld i 2. Det forste
helt elementere bevis for setning A er givet af Le Veque. Dette bevis
skitseres i 5. Efter en lille forberedelse i 3 vil jeg i 4 give et nyt, simpelt
bevis for setning A, som er karakteristisk ved, at man trinvis nir frem
til uligheden (1).

(n21) til £ vil mindst en tilfredsstille (1), gav bl. a. Perron

2. Bevis for setning B: Antag, at de hele tal (p, ¢), ¢+ 0 giver en los-
ning til uligheden

[157]
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1+)/5

M:I:él{&_% T c > VE’
d. v. s. opfylder betingelsen

1+)/5 1 _
(2) +/ —£=~—-2, hvor |y| > ¢ > /5.
2 ¢ 79
Da er
g 1 Vs
hvoraf ved kvadrering
1 Vs
(3) PP—pg—g® = ———"—.,
v¢t v

Det hele tal pa venstre side af (3) er 0, da g0, og ligningen 2 —2—1=0
ingen rationale rgdder har. Vi har derfor

;Jf’ o | L V5,
vl = e v
1 5 5
_2@2(1_&) >cz(1_V_) . 0.
q lyi ¢
g er altsd begrenset: |¢| < ———==. Ifolge (2) er da ogsa p begrenset.

Vl - 5/c

Dette viser rigtigheden af seetning B.

3. Der findes uendelig mange par af indbyrdes primiske hele tal
(p, 9), >0, som tilfredsstiller uligheden

P 1
(4) &— —‘ <—
9 ¢
Bevis (Dirichlets skuffeprincip): Lad n veere et vilkarligt naturligt tal.
Vi betragter tallene 0, (&), ..., (r€), hvor (z)=x—[z]. Blandt disse n+1

tal, som alle ligger i intervallet 0 <¢ < 1, findes to, hvis indbyrdes afstand
er mindre end 1/n, d. v. s.

1
[(mg€) — (n18)| < e hvor0 = n; < my < m,

1
|(ns —1)€ = ([nof] - [maé])| < —.
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Sattes ny—n; =q og [nyE]—[n,&]=1p, har vi altsd |g§—p|<1/n, 0<g=n,
hvoraf

(5)

1
<—=<

1
g2 =
ng q

q

Idet vi siledes til ethvert naturligt tal » bestemmer hele tal (p, q),
¢ >0, som opfylder (5), far vi — i hvert fald formelt — uendelig mange
lgsninger (p, q), ¢>0 til (4). At der er uendelig mange forskellige par
blandt disse, folger af, at

a) tallene p/q har & som fortetningspunkt ifelge forste ulighed i (5),

b) £ er irrational.

Skriver man hver iseer af de uendelig mange forskellige p/g, ¢ >0, som
opfylder (4), pa uforkortelig form, far man bestemt uendelig mange par
(p, q) af den gnskede art.

4. Bevis for setning A: Lad p, ¢ veere indbyrdes primiske hele tal, ¢ > 1.
Der findes da hele tal p;, ¢;, sadan at

(6) Pg—gqpy = 1.
Herved er g; bestemt modulo ¢, d. v.s. ¢;/¢ er bestemt modulo 1, og
¢:+0,da g>1.
0 og d, defineres ved ligningerne
) )
E_'l_):_z, E—ﬁ =“’32-
9 9 1 G

Sammenhsengen mellem 6 og ¢, er da ifglge (6)

0 p P 0 1 6

@ ¢ @ ¢ 9 ¢

2
o =L is (@> .
¢ \q

Ideen i beviset er nu, at man ud fra en relativt darlig approximation
plg til & (med I/Vgg |6| <1) under hensyntagen til (6) fremskaffer en
bedre approximation p,/g, (med |8, < 1/1/5) For at udfgre dette mé vi
undersgge, for hvilke z-veerdier polynomiet f(x)=x+ dx? opfylder betin-
gelsen |f(z)] <1 /]/5 Af symmetrigrunde kan vi ngjes med at se nermere
pa tilfeldet 6 > 0.

1) ﬂ/g< 6 < 1. De betragtede x-veerdier udger et abent interval (fig. 1)
omsluttende —1/d og 0, altsd af leengde >1/6>1.

altsa
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/
i~
L
F
P4
=
O
I~
B

I~ | |
N4l

Fig. 1 Fig. 2

2) 1/]/3<6§ ﬂ/g. De betragtede z-verdier udger to abne intervaller

Y1+a8)/5-)/1-40)/5 L

20

(fig. 2), hvert af leengde

3) 6= l/l/g De betragtede z-
veerdier udger to dbne intervaller
y=f() (fig. 3), hvert af lengde 1; ende-

punkter i —3/5—% —1/5-1%
o x og —¥/b+h —H/5+E
Da ¢;/q ved (6) kun er bestemt

modulo 1, kan vi for 1/]/5 <dé<l1
Fig. 3 i alle 3 tilfzelde ved passende
valg af ¢, opnd, at

2| 1
g \g/| 'UNRE
T tilfelde 3) benyttes, at endepunkterne er irrationale.
Beviset afsluttes nu saledes. I 3 viste vi, at der er uendelig mange par
af indbyrdes primiske hele tal (p, q), ¢> 1, for hvilke || <1. (Vi ser bort

fra de to par, hvor ¢=1). Er yderligere 6l <1 /1/3 for uendelig mange af
de i 3 konstruerede par, er vi feerdige med beviset. I modsat fald vil vi

‘511 =

til ethvert af de uendelig mange par (p, q) med 1 /\/3 <|6| < 1 bestemme et
par (py, q;) efter ovenstéende forskrift. Herved fas — i hvert fald formelt

— uendelig mange par (p;, ¢;) med [0;| <1 /Vg At der er uendelig mange
forskellige par blandt disse, folger af, at

a) tallene p,/g; har & som forteetningspunkt, idet

lp, P 1 1

a_n__- <z

@ g ol T4
og tallene p/q vides at have & som forteetningspunkt,
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b) & er irrational.
Hermed er seetning A bevist.

Bemarkning: For 6=1/)/5 (fig. 3) sker der det ekstraordinzre, at de
betragtede intervaller har leengden 1, samtidig med at afstanden mellem
dem er 1. Disse omstendigheder setter, som man let kan overbevise sig
om, en naturlig greense for gennemfgrelsen af ovenstaende reesonnement.
Setning B lerer os, at dette ikke er en mangel ved beviset, idet seetning

A jo slet ikke gelder, nar 1/5 erstattes med et storre tal.

5. I en nylig udkommet talteori af Le Veque findes et meget smukt
bevis for setning A ved hjzlp af Fareybregker, som fortjener omtale i
denne sammenhzang [5, p. 1564]. Ved Fareyrekken F,, hvor n er et vil-
karligt naturligt tal, forstds her samtlige uforkortelige broker p/q,
1<q<n opstillet i voksende raekkefglge. For to pa hinanden felgende
breker p/q og r/s gelder der da den simple relation gr —ps=1.

Le VEQUES SETNING : Huvis & ligger mellem de pd hinanden folgende broker

P og -1 F,, da vil mindst et af tallene P pT — tilfredsstille uligheden (1).
q q’ q+s

Da £ er irrational, fis for n=1, 2, ... uendelig mange forskellige los-
ninger til (1). (Smlgn. Le Veques s@tning med Borels skerpelse af swet-
ning A.) a

Bevis (skitseret): Omkring hver uforkortelig brok — leegges et &bent
interval I (2) o 1 g+—1—\ ¢>0. Le Veque kan nu under ud-

\5) \b et® b b2/ T q
nyttelse af ovennsevnte relation vise, at mtervallet \— -> fuldsteendigt
p+r

overdamkkes af I, (—) I, (
q q+s

) I, (i) , sifremt 0 <c= [/5. Heraf fol-
s

ger, at £ tilhorer et af intervallerne I,z ( ) Iys (z):r) Iz ( ) hvilket
q 8

var setningens pastand.

Leesere, som matte vare interesseret i at leese mere om diophantiske
approximationer, henvises forst og fremmest til den fortrinlige oversigt
af Koksma [4].
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NUMERISK BESTAMNING AV BAGLANGDER

CARL-ERIK FROBERG

Antag att en funktion y=f(x) 4r given och att baglingden s skall
bestimmas. Om funktionen &r deriverbar har man

b
(1) s=S]/1+y'2dx,

a

och denna integral kan beriknas antingen exakt eller numeriskt med
t. ex. Simpsons formel. Om funktionen &r given i tabellform for
x=...,%—h, xy, xo+h, y+2h, ... skulle man vara tvungen att nume-
riskt berdkna derivatan i alla punkter. For att undvika detta kan foljande
metod anvéndas.

Ur den givna tabellen bygges ett differensschema upp t. o. m. andra
differenserna (definierade genom 6%y, =y,_; — 2y; +¥;.1)- Sedan anvénder
vi Everett’s interpolationsformel i intervallet oSz s2y+h=x,:

+1 +2

Yp = PY1+ (p3 )52y1+(p5 )64y1+---
+1 +2

+9Yo+ <q3 )52y0+ (q5 )54y0+...,

dér x=x,+ ph och p+g=1. Derivation ger:

;1 3p2— 1 3g2—1 Bpt—15p° + 4
Y =3 Yi— Yo+ 6%y, — 0*yo + 10 6y,
5q*—15¢2 + 4
. S ¥ YOI
120

Vi siitter nu &=y, —y, och s,=}/h%+k?. Da giller:
12% [163]
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1 1 1
Qe— S 3p2 — 1
s = S]/1+y’2dx = S]/k2+h2yp2dfp = SOS [1+ P s—ko2y,
6s;
0 0 0
3¢2—1 5pt—15p2 + 4 5q*— 1592+ 4
- kotyy+ L~ P T ey, ST R
P L TT Y h 12052 Yo
k*\ ((3p? — 1) (3¢>—1)?
1—— ) (22277 (52412 ) (820.)2
+( s%)( 7255 Oy + 7257 %)
(Bp*—1)(3¢*-1)
— = 0%y, 62 ... ldp.
3652 Yo ?/1>+ J P

Hir har formeln [/14+x=1+}z— 122+ ... kommit ill anvindning. Vid

integrationen forsvinner alla linedra termer och vi finner:
2

2603

360s

2) 8 = 8o+ s (4(8%0)2 + 4(8%9,)% + T6%, 0%yy) + . ..

Om intervallingden % &r tillréickligt liten, kan man i varje intervall
ersitta 6%y-termerna i dndpunkterna med medelvirdet:

0%y = 3%y, +0%y,); 0%y, =~ 8%y, ~ Oy,
och dirvid erhélles f6ljande enkla approximativa formel:

k2(62y)2
2458 ) )

(3) s=so-(1+

Numeriska exempel:,
1. S6k baglingden mellan =0 och x=0.1 f6r parabeln y =22
a) Exakt: §(0.1)/1.04+}log (0.2 +/1.04)) = 0.10066 272.
0.01-0.022
a1 0.01012)
¢) Ur Simpsons formel: 0.10066 257.

0.10066 295.

b) Ur (3): }/0.0101 (1

o

Sok baglangden mellan x = 0.2 och # = 0.3 for cirkeln 2%+ 32=1.
a) Exakt: arcsin0.3 —arcsin0.2 = 0.10333 47.
b) Ur (3): 0.10333 55.



ON THE EXPANSION OF = IN A REGULAR
CONTINUED FRACTION, II

PEDER PEDERSEN

A paper [1] which recently appeared in NMT reported the results of
computations by which the number = was converted into a regular con-
tinued fraction. The partial quotients, a,, were then calculated up to and
including a,q,. This computation has later been extended, and it is the
purpose of this paper to present the results obtained. After the conclusion
of the computations, it is now possible to give all the partial quotients
up to and including a,y, in the expansion of z in a regular continued
fraction.

As in the previous series of computations, the method described by
D. H. Lehmer was used in a slightly modified form. A characteristic
feature of this method is that the computation of the partial quotients
is performed in several smaller steps, by which the work involved in the
Euclidean algorithm is appreciably reduced. The details of this proce-
dure were described in [1], and it will here suffice to report the results of
the latest computations.

Table I shows the partial quotients, a,, in the expansion of the con-
tinued fraction for z from @y, to @yy,. As in the corresponding table in [1],
o designates the number which is written with the first two digits in the
subindex n, while § denotes the last digit of the subindex. The largest
number occurring in the table is @y, = 436.

As the computation of the numbers z,, which enter into the Euclidean
algorithm, can be performed when only the denominators of the con-
vergents of the continued fraction are known, it is not necessary to cal-
culate the numerators. Of the denominators of convergents used in the
computations, I state only four, viz. B,gg, Bygg, Bagy and By, The last
two of these may be used as the starting point for a continuation of the
computations.

Tables II and III are continuations of corresponding tables in [1].

Table IT shows the difference M, (x) — K, where M ,(7) = 7\L/a1 @y. . .a,, while
[165]
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K =2.685550 is Khintchine’s constant. Table IIT gives the values of
nv B, — L, where L=3.275823 is Lévy’s constant. It appears from the two

tables that also for 200 <% <400, M, (x)— K and 7\1/B—n——L may assume
comparatively large values, and that they coincide as far as the signs are

>\ﬂ o | 1| 2| 3| 4|5 | 6| 7|8/ 09
20 | 3 1 | 23| 1| 15 | 1 3 | 7 1 | 16
21 | 1 2 1 | 21| 2 1 1 2 | 9 1
22| 6 | 4 |127] 14| 5 1 3 | 13| 7 9
23 | 1 1 1 1 1 5 | 4 1 1 3
2¢ | 1 1 | 29| 3 1 1 2 | 2 1 3
25 | 1 1 1 3 1 1 | 10| 3 1 3
26 | 1 2 1| 12 | 1 4 1 1 1 1
271 | 7 1 1 2 1 | 11| 3 1 7 1
28 | 4 1 | 48 | 16 | 1 4 | 5 | 2 1 1
20 | 4 | 3 1 2 3 1 2 | 2 1 2
30 ] 5 | 20 1 1 5 | 4 1 | 436 | 8 1
31 | 2 | @ 1 1 1 1 1 5 1 2
32 | 1 3 6 | 11 | 4 3 1 1 1 | 2
33| 5 | 4| 6 | o 1 5 1 5 | 15 | 1
3¢ | 11 | 24 | 4 | 4 | 5 2 1 4 1 6
35 | 1 1 1 4 | 3 2 | 2 1 1 2
36| 1 | 58 | 5 1 2 1 2 1 1 2
31 | 2 7 1| 15| 1 4 8 1 1 4
38 | 2 1 1 1 3 1 1 1 2 1
39 | 1 1 1 1 9 1 4 3 | 15| 1
0 | 2

Table I
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concerned. In fig. 1, the values of M, (7)— K are plotted as ordinates
against the values of » as abscissas for n=20, 30, ..., 400. The left
half of the curve was also shown (in a larger scale) in [1].

B299 = 2
38026 14343 04983 14519 34572 48959 03698 90627 82578 39385
63771 71291 99431 97458 25181 56381 82165 09912 89646 43187
84219 60854 06037 82944 96460 41498 12827 27446 44861 69096

Baoo = 12
78208 23834 41736 32354 37461 15400 29653 14236 01306 23103
38745 91345 73784 43335 46653 59491 53104 00237 94646 53511
23598 27100 33699 16958 28126 38378 82396 51542 02291 45241

B399 =

583 35421 91526 94297 73392 68937 20269 24319 34413 35724
95096 75206 91420 13109 86661 93995 08709 09562 53397 26859
81654 30015 27870 01336 70742 16016 28963 61698 11924 30887
55019 08861 53423 35903 28985 53679 13966 61953 46979 36177

B400 =

1714 30065 84222 35703 25880 23829 20172 78477 52672 12235
42207 31857 48012 62273 55746 42672 64728 83962 71234 39686
02275 85194 93488 30290 07370 57889 94882 00710 88953 88002
85547 85920 87858 22818 16194 01885 38774 07549 97168 47937

Mpy(n)—K
A
+ 0,5
0,4f
0,3
0,2\

0,1+

300 350 4?0

PR NN T ST T B Y B

ny . o
50\1 1000 150 200 250

0

—-0,1+

_ 0’2'> Fig. 1



168 PEDER PEDERSEN

[ J—

n M,(m)— K n VB,—L
200 +0.0418 200 +0.0163
210 +0.0630 210 +0.0278
220 +0.0506 220 +0.0182
230 +0.1502 230 +0.1199
240 +0.0764 240 +0.0539
250 +0.0411 250 +0.0222
260 —0.0049 260 —0.0215
270 —0.0380 270 —0.0515
280 —0.0589 280 —0.0752
290 —0.0401 290 —0.0560
300 —0.0677 300 —0.0866
310 —0.0233 310 —0.0367
320 —0.0792 320 —0.0903
330 —0.0753 330 —0.0855
340 —0.0436 340 —0.0577
350 —0.0306 350 —0.0490
360 —0.0687 360 —0.0853
370 —0.0770 370 —0.0914
380 —0.0728 380 —0.0902
390 —0.1246 390 —0.1375
400 —0.1331 400 —0.1455

Table IT Table ITL
REFERENCE
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LITT KOBLINGSALGEBRA

ODDLEIV HOLTE

Matematisk behandling av problemer i koblingsteknikken er av for-
holdsvis ny dato. Det var amerikaneren C. E. Shannon [4] som i 1938
utviklet en teori for & analysere slike problemer. Teorien er blitt kalt
koblingsalgebra (eng. »switching algebra«). Denne teorien viste seg & ha
mange likhetspunkter med en teori om matematisk logikk som George
Boole [2] kom med nesten 100 ar tidligere. Koblingsalgebraen blir derfor
undertiden ogsd kalt Boole’s algebra. Den har i tiden etter siste verdens-
krig funnet store anvendelser, bl. a. ved planlegning og oppbygning av
elektroniske sifferregnemaskiner.

I koblingsteknikken har man & gjere med elementer som kan ha to
forskjellige tilstander. Slike elementer finnes det mange av i elektrotek-
nikken. En bryter kan vere av eller pa, et reléanker kan vere tiltrukket
eller ikke, et ror kan vere ledende eller i »cut-off« (blokert) osv.

For & symbolisere disse to tilstander kan vi karakterisere den ene med
1 og den andre med 0. Hvilken tilstand som blir kalt 1 og hvilken som
blir kalt 0 er prinsipielt likegyldig. Som regel vil det imidlertid vere
naturligere & kalle en bestemt tilstand 1 og den andre 0 enn omvendt.
F. eks. vil man helst kalle den tilstand at en bryter er lukket for 1 og den
tilstand at den er dpen for 0.

Her mé vi understreke at sifrene 1 og 0 ikke star for tall i vanlig betyd-
ning. I koblingsalgebraen far vi en rekke regneregler som er akkurat de
samme som i vanlig algebra, men ogsé noen som er forskjellige fra vanlig
algebra. Av denne grunn mé det presiseres at koblingsalgebra ikke er en
algebra med tall, men med tilstander.

Postulater. La = betegne koblingselementets tilstand. Da « bare kan
anta to forskjellige »verdier«, kalles den en bincer variabel. Vi har da
falgende postulater som teorien bygger pa:

[169]



170 ODDLEIV HOLTE

(Ia) =0 hvis %1 (Ib) z=1 hvis x40
(ITa) 0-0=0 (IIb) 1+1=1
(ITTa) 1-1=1 (ITTb) 0+0=0
(IVa) 1:0=0-1=0 (IVb) 0+1=1+0=1
(Va) 0'=1 (Vb) I'=0.

Tegnet - leses »og«, og operasjonen kalles logisk multiplikasjon. Et annet
symbol for det samme er &. Men ofte sloyfes tegnet helt ved logisk multi-
plikasjon hvis det ikke er fare for misforstaelse.

Tegnet + leses »eller, og operasjonen kalles logisk addisjon. Et annet
symbol som ogsa brukes er v.

x’ leses »ikke x«. En annen mate & skrive det samme pa er Z. Opera-
sjonen kalles komplementering.

Postulatet I sier at den variable x kan anta de to »verdiene« 0 og 1.
Postulatet V sier for sa vidt det samme bare med en annen skrivemaéte.
I postulatene II-IV er de oppferte relasjoner de samme som for vanlig
algebra bortsett fra IIb.

Videre legger vi merke til at postulatene er skrevet parvis, og at vi
kommer fra a til b ved & bytte om 0 og 1, og - og +.

Ut fra de ovenfor anferte postulater kan vi na vise en rekke setninger
eller regneregler. Nar det gjelder bevisene i koblingsalgebraen, er de
prinsipielt lette & gjennomfore. Nar vi skal vise gyldigheten av en set-
ning, kan vi vise at den gjelder for alle mulige kombinasjoner av de vari-
able. Og da de variable bare kan anta verdiene 0 og 1, er dette ofte lett
overkommelig.

Setninger. Vi skal her ta med en del av de viktigste setningene i kob-
lingsalgebraen.

(la) x+0=2 (1b) z- 1=z

(2a) 1+z=1 (2b) 0:2=0

(3a) z+z=x (3b) z-x=2x

(4a) z+z'=1 (4b) z-2'=0

(5a) z+y=y+x (6b) z y=y-=x

(62) (x+y)+z=2+(y+2) (6b) (zy)z=2(yz2)

(7a) (x+y)z=2z+yz (7b) xy+z=(x+2)(y+2)
(8a) (z+y)' =2y (8D) (xy) =" +y’

(9a) z+zy=2x (9b) z(x+y)==

(10a) (x+y')y=2y (10b) 2y’ +y=x+y

Som eksempel pa bevismaten skal vi ta setn. (9a). Vi setter da opp en
tabell over alle mulige kombinasjoner av de variable  og y. En slik
tabell kalles en kombinasjonstabell.
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De to kolonnene til hgyre i tab. 1 er regnet ut

x y |2y x+ay
bare v. hj. a. postulatene. Sammenligner vi ko- o0l 0 oro=o
lonnen lengst til hoyre med kolonnen lengst til +0 =

. . L. 010 0+40=0
venstre, ser vi at for alle mulige kombinasjoner 10l o 141021
av x og y er de like. Altsa gjelder +9 =
11 1 141 =1
T =atay. Tabell 1.

Som regel kan vi imidlertid bevise en setning
enklere ved & ta tidligere viste setninger til hjelp. Ved & bruke noen av
de foregiende setningene, kan vi vise setning (9a) pa felgende méate:

z+ay = x- 142y = 2(l+y) =21 =2,
idet vi omskriver v. hj. a. setningene (1b), (7a), (2a) og tilslutt (1b).

Noen anvendelser. Mellom punktene ¢ og b pa fig. 1 er det plasert en
bryter. Den kan enten veere apen eller lukket. Vi betegner tilstanden nar

a e b

e} O [e] O

Fig. 1. Bryter.

bryteren er lukket med 1 og apen med 0. Valget spiller som tidligere
nevnt ingen prinsipiell rolle, men hvis vi tenker pa en overfgring (trans-
misjon) av signaler fra a til b eller omvendt, er det naturligst & velge som
vi har gjort.

Vi tenker oss at vi plaserer en spenning V, mellom punkt a og jord og
maéler spenningen V, mellom b og jord. Nar bryteren er apen blir V=0,
og nar bryteren er lukket blir V,=7V,. Vi definerer na en storrelse som
kalles transmisjonen péa folgende mate: '

Vi ser at 7'=0 nar bryteren er dpen og T'=1 nar bryteren er lukket.
T blir altsa en bineer variabel.

B, B,
/ /

[e] 0 (o) 0 (o} {e]
a b c

Fig. 2. Seriekobling av to brytere.

Har vi to brytere som pa fig. 2, kan hver av disse vare apen eller
lukket. Det gir i alt 4 kombinasjoner. Vi kan sette opp en tabell (tab. 2)

1 T litteraturen brukes ogsé den andre méaten.
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over alle mulighetene og ogsa ta med den resulterende forbindelsen a—c
som er en seriekobling av de to brytere. Betegner vi transmisjonen gjen-

Serie-

B, B, forb. Ty Ty l T
Apen Apen Apen 0 0|0
Apen  Lukket | Apen 0 1,0
Lukket Apen Apen 1 00
Lukket Lukket | Lukket 1 11

Tabell 2. Tabell 3.

nom B; med #,, gjennom B, med x,, og transmisjonen fra ¢ til ¢ med 7,
sd kan vi skrive tabellen som vist i tab. 3. Vi ser da at vi har

T = zyz, .

Da T avhenger bade av x;, og z,, sier man at 7 er en funksjon av z;
og Z,. Den siste relasjonen kan vi lett generalisere til & gjelde for % serie-
koblede brytere (eller andre binere elementer):

n
Ts=x...2, = [[ ;.
i=1

Altsa: transmisjonen gjennom 7 seriekoblede elementer kan skrives som
det logiske produkt av de enkelte elementers transmisjon.

B,
/

0 O

PR — B, 0 b
7

0 o}

Fig. 3. Parallellkobling av brytere.

Pé helt tilsvarende mate som ovenfor kan vi finne at transmisjonen

gjennom to parallellkoblede brytere kan skrives (med samme betegnel-
ser som tidligere):
T =2 +,.

Denne setningen kan utvides til n parallellkoblede elementer:
Ty =2 4+,+... 42, = z;.

Transmisjonen gjennom 7 parallellkoblede elementer finnes ved logisk
addisjon av de enkelte elementers transmisjon.
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N&a kan vi beskrive ethvert ledningsnett (topolsnett) som bare inne-
holder serie- og parallellkoblede brytere ved hjelp av de ovenfor brukte
symboler. Og omvendt kan vi representere enhver logisk formel som bare
inneholder de samme symboler med et slikt nettverk.

Eksempel 1: Finn transmisjonen mellom a og ¢ pa fig. 4.

oo oY o

a o——| ———0 C

ozo ozo

Fig. 4.

Her er istedenfor det tidligere anvendte symbol for en bryter brukt et
mer generelt symbol for en kontakt, som enten kan vere apen eller
lukket (prinsipielt det samme som en bryter).

Man far direkte
T = (z+2)(y+2),
som kan forenkles:

T =oxyt+yz+az+ezz = xy+z(y+z+1) = xy+z.

Nettverket kan derfor enklere realiseres slik som vist i fig. 5. Denne
forenklingen kunne man ogsd se direkte av fig. 4. Men ved mer kom-
pliserte koblinger gjores forenklingene sikrest ved regning.

oxo——— ‘Oy Oy

e 0 g 0 —

Fig. 5.

Bestemmelse av transmisjonsfunksjonen pa grunnlag av kombina-
sjonstabell. Vi tenker oss at vi har en transmisjonsfunksjon 7' som er en
funksjon av f. eks. tre bineere variable z, y og z. For hver

enkelt av de mulige kombinasjoner av z, yogzerdetfort = y 2z | T
opp hvilken verdi 7' skal ha. Spersméilet er da hvordan 000l o
funksjonen ser ut, og hvordan man kommer fram til den. 001! 1
Eksempel 2: Transmisjonsfunksjonen i tabell 4. 0100
Forst forsgker vi & fa verdiene 7'=1 oppfylt. Viserpa 0 1 1| 0
uttrykket T — o'’ " , 1001
=xYyztayz +axyz. 1011

Uttrykket blir 1 om noen av addendene er 1. En addend 1 1 0| 0
blir 1 om hver av de tre faktorene som inngérer 1.2’ sym- 1 1 1| 0

boliserer en variabel (kontakt) som er 0 (4pen) nar x er 1 Tabell 4.
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(lukket) og omvendt. Da ser vi at med det viste uttrykk far vi 7'=1 for
de tre tilfellene som er oppfort, og bare da. Det anforte uttrykk for 7' fas
ved at man tar de linjene i tabellen der 7'=1, skriver ned zyz for hver
slik linje, adderer, og foyer til en apostrof for hvert sted som svarer til en
null i tabellen.

Uttrykket for 7' kan forenkles:

T =y @z+az +az) = y' (22’ +2)+22') = y'(2+a2') = y'(x+2),

hvor den siste omforming bygger pa (10b).

N4& er sporsmalet om uttrykket for 7' er riktig for de tilfellene der 7'
skal bli null. Det kan vi naturligvis undersgke ved & preve oss fram.
Men vi vil heller forsgke ut fra de fem kombinasjonene som gir 7=0 &
bestemme en transmisjonsfunksjon som ihvertfall blir lik 0 for de fem
nevnte tilfeller.

Om vi skriver

T, = @+y+e)@+y +2)@+y +2)@ +y +2)(«" +y'+2),

blir 7', =0 om noen av faktorene =0. Og da ser vi at 7; blir 0 for de fem
tilfellene som er oppfert i tabellen. 7', dannes ved at man tar hver linje
i tabellen der funksjonen er 0, skriver ned x+y+2z for hver slik linje,
danner det logiske produkt og foyer til en apostrof for hvert sted som
svarer til en l-er i tabellen.

For & forenkle uttrykket for 7';, gjor vi bruk av felgende setning:

(11) f(xl’ Loy v vy xn) = xlf(ln Loy o vy xn)'*'xif(o’ Loy « v s xn) .
Her er f(z,, z,, ..., x,) generelt et uttrykk dannet av de binsre variable
Zy, Xy, . .., x, ved hjelp av operasjonene logisk addisjon og multiplika-

sjon samt komplementering. Setter man forst 2, =1, ;=0 og etterpa
2,=0, x;=1, vil i begge tilfeller ligningen reduseres til en identitet.
Anvender vi (11) pa uttrykket for 7';, far vi

Ty = 2y’ +2)(y" +2') +2'(y +2)(y +2)(y" +2') -
Vi anvender samme setning en gang til:

T, = ylaze' +2'22" )+ y' (x +2'72) .
Da z2"=0, blir T, =y (x+z'2) = y'(®+2).

Vi ser altsa at vi har fatt samme uttrykk for 7'; som for 7'. Det var
ingen tilfeldighet, det gjelder helt generelt. (Beviset tas ikke med her;
det finnes f. eks. i [3] s. 84.) Hvis det er forskjellig antall 0-er og 1-ere i
kolonnen for 7', velger man naturligvis den maten & sette opp uttrykket
for T' p4, som gir minst regnearbeid.
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Eksempel 3 (smlgn. [1]): Det elektriske lys i et rom enskes kontrollert
av tre brytere pa en slik mate at hvis lyset er slukket, skal man ved &
vri pd en vilkarlig bryter kunne tenne det, hvorpa det skal

kunne slukkes fra en vilkarlig bryter. zy =z |T
De tre brytere karakteriseres med z, y og 2, og den til- 0001l o0
stand at lyset er tent med 1. La oss fastsette at lyset skal 00111
veare slukket nar alle tre bryterne er i stilling »av¢. Kom- 0101
binasjonstabellen er vist i tab. 5. Etter det som er sagt 011! o0
ovenfor var det nok, for & sette opp uttrykket for 7', & ta 1001
med de linjene i tabellen der 7'=1, men for fullstendig- 101 0
hets skyld er hele tabellen tatt med. 110l 0
Vi far 1111
T = a'ye+a'ye’ +ay'2' +ayz = &' (y'z+y2) +a(yz+y'?') . Tabell 6.

Nettverket blir da som vist i fig. 6.

oY o 02’0
B —o x’o —
’
oY o 0% o
o o
oy’o oz’o
o X o E—
oyo ozZo
Fig. 6.

Det gnskede nettverk kan i dette eksempelet realiseres med noe fzerre
kontakter enn de som er vist i fig. 6, ved hjelp av en sikalt brokobling.
Men da vi ovenfor bare har behandlet serie- og parallellkobling, skal vi
ikke ga neermere inn pa det her.
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BOKMELDINGER

N. G. pE BruwN: Asymptotic methods in analysis. (Bibliotheca Mathe-
matica 4.) North-Holland Publishing Co., Amsterdam; P. Noordhoff
Litd., Groningen, 1958. 12+ 200 pp. Guilders 20.00.

(Innholdsfortegnelse i NMT 6 (1958), s. 170.)

Som eksempler pa asymptotiske relationer kan neevnes Stirlings formel
for gammafunktionen, samt den elementeere relation

@
e S ttetdt = x 1+ 2+ ... +(n—1) "+ O(x™1),
1

der ogsa skrives som en asymptotisk reekkeudvikling
x
e‘ws tleftdt ~ x 142423 +...,
1

hvor reekken er divergent for alle z. Bogen er et forsog pa en systematisk
fremstilling af de metoder, der anvendes ved udledelse af sidanne rela-
tioner, men det fremhseves samtidig steerkt, at problemstillingen er af en
sadan art, at matematisk erfaring og intuition ma spille en vaesentlig
rolle ved behandlingen.

Bogen forudsaetter kendskab til elementer kompleks funktionsteori
samt Poissons og Maclaurins summationsformler, men ellers forudsattes
kun kendskab til elementer matematisk analyse.

Den forste trediedel af bogen er meget let leeselig og behandler asym-
ptotiske vurderinger af implicit givne funktioner, samt summer og inte-
graler. Den midterste trediedel omtaler vurderinger af komplekse inte-
graler ved hjeelp af sadelpunktmetoden, som ferst beskrives grundigt
geometrisk og belyses ved simple eksempler, og som derefter anvendes
til vanskelige vurderinger. Bogens sidste trediedel behandler metoder,
der af forfatteren betegnes som indirekte. Herunder vises eksempler pa
Taubersetninger, iteration af funktioner og enkelte eksempler pd asym-
ptotisk vurdering af lgsninger til differentialligninger.

[176]
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Bogen har fiet et meget tiltalende serpreg gennem forfatterens grun-
dige motivering af valget af metode i hvert enkelt tilfzlde, og dette i
forbindelse med de udmserkede opgaver gor bogen serlig egnet til selv-
studium. Anmelderen vil p4 det varmeste anbefale bogen til alle zldre
studerende, samt til alle, som underviser i matematik eller forfatter

leerebgger i matematik.
H. Tornehave

STEN HENRYSSON: Elementir statistik for psykologer, pedagoger m. fl.
2:a upplagan. Almqvist & Wiksell, Stockholm, 1959. 118 s.

(Innholdsfortegnelse i NMT, denne &rgang, s. 89.)

Forfatteren sier i innledningen: »Denna bok &r avsedd att ge kunskap
om de elementira statistiska metoder, som vanligen kommer till an-
vindning inom sociala och biologiska vetenskaper. Boken &r skriven
speciellt med tanke pa de studerande, som inte &ar matematiskt inriktade
men indé behdver kinnedom om grundliggande begrepp och metoder
inom statistiken. For att kunna folja framstéllningen behover lidsaren
knappast pa nigon punkt mer matematiska kunskaper &n de varje
student bor ha inhdmtat, vilken gymnasielinje han &4n genomgétt.«

A gi en innfering i statistisk metode og tenkemate for studenter med
savidt mangelfulle matematiske kunnskaper er en vanskelig oppgave.
Denne boka er da heller ikke blitt vellykket. Fremstillingen er ofte uklar,
formuleringen uheldig, ja pa flere steder direkte gal. La meg bare for &
understotte denne pastand gi noen eksempler.

Pi side 69 forklares begrepet konfidensintervall pa folgende méte:
»Ofta vill man veta sannolikheten for att virdet ligger inom ett visst
intervall med grins uppat och nedit lika langt fran medelvérdet.
Ett sadant intervall kallas for konfidensintervall och motsvaras av en
viss sikerhetsnivéa i procent. Sannolikheten for att ett virde i en normal-
férdelning ligger t. ex. i intervallet mellan grinserna z= —2 och z= +2
(1 + 20) ar sdlunda 95,4%,. Detta procenttal finns i tabell II pa sid. 114,
som anger den procentuella andel av normalférdelningen, som ligger
mellan vissa konfidensgrinser uttryckta i standardpoéng.« Leseren mé
etter dette fa inntrykk av at det at en standardisert normalfordelt
variabel med 95,49, sannsynlighet ligger mellom —2 og +2, betyr at
intervallet (—2, +2) er et konfidensintervall. Na skal et konfidensinter-
vall pr. definisjon utsi noe om en parameter i vedkommende sannsyn-
lighetsfordeling, og ovenstdende »definisjon« er derfor meningsles. Videre
gis leseren inntrykk av at et konfidensintervall alltid er symmetrisk
(rundt parameteren). Det har endepunkter »uppat och nedat lika langt

NMT, Hefte 4, 1959. — 13
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fran medelvirdet«. Dette er ingen nedvendig egenskap for et konfidens-
intervall og i mange situasjoner ikke en gang hensiktsmessig. En slik
situasjon har en f. eks. nar en skal bestemme et konfidensintervall for
standardavviket ¢ i en normalfordeling. Det kan til og med veere hensikts-
messig med konfidensintervaller av typen (—oo, @) i noen situasjoner.
Nar det eksempel som skal illustrere grunnbegrepene er savidt mis-
visende, blir det selvsagt umulig for en leser 4 oppfatte hva et konfidens-
intervall for en parameter er, og kapitel 10 blir nesten uforstéelig.

Pa side 71 diskuteres estimering av »populationsmedelvérdet« (for-
ventningsverdien) i en normalfordeling (u, o), hvor ¢ er ukjent. Forfatte-
ren sier her: »Nar samplen ér smé foljer samplingférdelningen f6r medel-
virden den s. k. ¢-fordelningen i stéllet f6r normalférdelningen.« Siden
intet annet er sagt ma leseren med medelvirde forstd den aritmetiske
middelverdi X. Na er det som kjent ikke middeltallet X som er ¢-fordelt,
men observatoren (eng. »statistick)

B Sl B
XX
n(n—1)

og denne er ¢-fordelt hva enten n er stor eller liten. En helt annen sak er
det at ¢-fordelingen for store = tilnzrmet faller sammen med normal-
fordelingen (0, 1). Dette berettiger dog ikke den pastand at snormalfor-
delningen kan ses som ett specialfall av ¢-férdelningen gallande for stora
sampel« (!) (fotnote side 71).

Et eksempel pa uheldig formulering er felgende som finnes pa side 77:
». .. samplingférdelningen &r ¢-fordelad«. Det er selvsagt ikke fordelingen
som er t-fordelt, men den observator (7') som studeres.

Pa side 82 star det: »Skillnaden M — u, berdknad i ett antal slumpvis
tagna sampel ur populationen skall 6verford till ¢-virden enligt nollhypo-
tesen fordela sig runt vérdet 0 med spridningen 1.« Dette méa bety at
forventning og varians i en ¢-fordeling er h.h.vis 0 og 1. Riktignok er for-
ventningsverdien 0, men variansen i en {-fordeling med » frihetsgrader er

—n—. Tar en f. eks. 9 observasjoner (n=8) fra en normalfordeling (0, 1)
n._

og betrakter observatoren

Nl

A

har denne varians §=1,33 og ikke 1.
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Pi side 95 star det: »Samplingfordelningen av y? for olika frihets-
grader borjar vid noll och 6kar i positiv riktning.« Hva som menes med
»okar i positiv riktning« er vanskelig & forsti. Er det den kumulative
fordelingsfunksjon forfatteren tenker pa, er utsagnet banalt; er det sann-
synlighetstettheten, er utsagnet galt. Hvis meningen er & uttrykke det
som star i den etterfelgende setning: »Ju storre frihetsgraden ér, ju stérre
y2-virden kan uppkomma pé ren slumpy, ja da er formuleringen mildest
talt uheldig, og uforstaelig for dem som leser dette som en innfering.

Det skulle veere unedvendig 4 ga i flere detaljer. Jeg kan med min
beste vilje ikke si at boken kan anbefales, hverken til selvstudium eller

som stottetekst for forelesninger. Arnljot Hoyland

A.V.PoeorELOV: Differential geometry. (Translated from the first Rus-
sian edition by Leo F. Boron.) P. Noordhoff, Groningen, 1959. 9+ 171 pp.
Paper cover § 3.90, cloth bound § 4.50.

(Innholdsfortegnelse i NMT, denne argang, s. 131.)

En russisk leerebok i differensialgeometri er sjelden kost hos oss. Det
er derfor med en viss nysgjerrig spenning at en gir seg til med lesningen.
Og en har heller ikke lest langt, for en er klar over at denne er atskillig
annerledes enn de lerebeker i differensialgeometri som vi ellers er vant
med.

Det stoff den behandler, er stort sett hva vi ville betegne som temmelig
elementeert. Her i Norge horer det vel i stor utstrekning til bifagspen-
sumet. Men det er i behandlingen av dette stoffet at forfatteren gnsker &
veere grundigere enn andre og har gitt oss noe nytt. Det blir lagt stor vekt
pé definisjon av kurve og flate, og i sin framstilling bygger forfatteren
da pa begreper og sammenhenger fra topologien. Derved far han gitt en
klar og bestemt definisjon av de grunnbegreper, kurve og flate osv., som
han gnsker & behandle i boka, mens andre forfattere, synes det meg, ofte
kjorer i veg med sine kurver og flater uten at noen bestemt definisjon av
disse begreper noen gang blir tydelig presisert. En kan derfor si at prof.
Pogorelov legger tyngden av sin framstilling forut for der hvor andre
pleier & begynne. Eller som han sier i innledningen: »The author’s aim is
to present a rigorous discussion of the fundamentals of differential
geometry and of the methods ...« En méa derfor si at denne boka ut-
fyller den tradisjonelle litteraturen vi har, og den kan slik absolutt
anbefales til alle som er interessert i dette faget. Jeg vet i alle fall ikke av
noe annet verk som egentlig kan erstatte den framstilling som her fore-
ligger. En ma ogsad nevne den behandling av singulsere punkter som for-
fatteren gjennomforer, et emne som ellers behandles noksa lettvint.

13*
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Men hvor langt gar han i sin »rigorgse diskusjon«? Det hender stadig
at han bryter av sin drefting med & si at en fullstendig utredning ville
fore oss alt for vidt. Boka er jo ment som en forholdsvis elementeer
leerebok. Forfatteren forutsetter ogsa som gitt den rette linje i form av
intervallet €0,1), og han forutsetter planet, uten & nevne med ett ord
(sdvidt jeg kan huske) at her kan ligge visse problemer, og at dette er
noe han uttrykkelig forutsetter som gitt. Nar han forst trekker inn topo-
logien, s& forutsetter det noe kjennskap til dette fag fra leserens side,
ellers kan man vanskelig ha fullt utbytte av lesningen. Og da er det et
sporsmil om ikke forfatteren kunne ha gjort enda mer ut av dette.
Nar det forst kjores opp med et abstrakt apparat, si& kunne det veere
morsomt om det kom noe mer ut av det enn bare de aller vanligste
anskuelige kurver og flater.

Jeg kan tenke meg at det fra pedagogisk side kan innvendes at en
student (i alle fall hos oss) vil fgle dette topologiske apparat som en
tyngsel, som hindrer tilegnelsen av differensialgeometriens tradisjonelle
stoff, s& mye mer som forfatteren — for at ikke boka skulle blir for stor —
har vert nedt til & skyte ut mye av det gamle stoffet, og bare har be-
handlet det i form av oppgaver ved slutten av hvert avsnitt. (Det for-
utsettes derfor mye oppgaveregning.) P4 den annen side vil en videre-
kommen helst hatt enda grundigere behandling av »the fundamentals«.
Men det er naturligvis vanskelig & veie disse hensyn mot hverandre.

Ordningen av stoffet er beundringsverdig klar og logisk. Ved behand-
lingen av flater f. eks., holdes akkurat den samme linje som ved kurver,
analoge definisjoner blir gjentatt i samme rekkefelge og med praktisk
talt de samme ord, osv. Tangent, tangentplan, oskulasjonsplan defineres
alle ved kontakt av ulik orden mellom punktmengder. Det blir pa den
méten en tydelig linje i det hele, som er lett & folge. Det er pedagogisk
godt oppbygd.

Forfatteren har valgt 4 stanse med den Gaussiske og de Codazzi-
Mainardiske likninger, eller som han sier: Peterson—Codazzi (Peterson,
grunnlegger av diff.geom. i Russland). Det er jo en meget naturlig av-
slutning pa den elementeere flateteori & gi leseren dette beviset for at nar
de nevnte vilkar for integrasjon er oppfylt, si er en flate fullstendig
bestemt av 1. og 2. differensialform. Sa langt er sammenhengen klar og
nedvendig. Tilslutt kommer et lite kapitel om den indre geometri pa en
flate, men det virker noksa etterhengt, noksa isolert. Forfatteren har
nemlig ikke med ett ord egnsket & antyde at her ligger spiren til noe nytt:
at geometrien pa flaten sa & si kan srive seg lgs« fra det anskuelige og
leve sitt eget liv i det abstrakte, som Riemannsk geometri. Forfatteren
holder seg nemlig strengt til det 3-dimensjonale, anskuelige euklidske
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rom. Men nar den Riemannske geometri absolutt skal holdes utenfor, -
blir ikke den indre geometri p4 en flate sa elegant som den ellers kunne
ha blitt. Men forfatterens hensikt var jo en grundig og ensartet behand-

ling av begrenset og elementeert stoff.
Ottar Yirehus

I. I. Priwarow: Einfihrung in die Funktionentheorie, I. (Mathema-
tisch-naturwissenschaftliche Bibliothek 21.) B. G. Teubner Verlagsgesell-
schaft, Leipzig, 1958. 4+ 163 S., 71 Fig. DM 7.30.

(Innholdsfortegnelse i NMT, denne &rgang, s. 41-42.)

Ifplge en meddelelse fra forlaget pa sidste side af den foreliggende bog
er den det forste af tre bind, der tilsammen skal fore sa langt frem som
til en indferelse i analytisk fortseettelse, elliptiske funktioner og kon-
forme afbildninger.

Den egentlige fremstilling begynder med en indferelse af komplekse tal
som par af reelle tal og forlgber i forste og andet afsnit, som det ogsa
fremgar af indholdsfortegnelsen, i det store og hele ad de sedvanlige
baner; dog stetter den sig nok mere, end normalt er, til den klassiske
reelle funktionsteori. Det afsluttende tredie afsnit giver en temmelig
udferlig fremstilling af linesere transformationer og deres forbindelse med
den hyperbolske ikke-euklidiske geometri. Hvert afsnit sluttes med en
snes opgaver med lgsninger.

Forud for farste afsnit er anbragt en indledning, der giver nogle eksemp-
ler pa tilsyneladende paradoksale resultater, hovedsagelig hentet fra
den reelle funktionsteori, som forst finder deres forklaring, nir man
opererer i det komplekse talomrade, og forfatteren har i det hele bestraebt
sig p4, for han indferer nye begreber eller problemstillinger, at bane vejen
for dem ved heuristiske betragtninger. Han har derved opnaet, at frem-
stillingen har faet en sammenheeng og et naturligt fremadskridende for-
lob, der virker umiddelbart tiltalende.

Som det allerede er antydet, bygger fremstillingen i udstrakt grad pa
ikke helt elementere dele af den klassiske reelle funktionsteori. Eksem-
pelvis: Fra starten forudsattes kendskab til reelle potensrekker; flere
steder anvendes regneregler for limes superior, og ligeledes bruges funk-
tionaldeterminanter, forbindelsen mellem planintegral og dobbeltinte-
gral samt Greens formel. Men samtidig opereres der meget ofte, iseer i den
sidste del af bogen, med serdeles handfaste infinitesimalbetragtninger.
Overalt meder man pa afgerende steder i beviserne uendelig smé stor-
relser, summer af sddanne, infinitesimale trekanter o. s. v.; uendelig smé
leengdeelementer (udgéende til alle sider fra et punkt) udvider sig og
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treekker sig sammen, man opskriver ligningen for en uendelig lille cirkel
0. 8. V. 0. 8. v. Det star ikke klart, om forfatteren regner med, at leeseren
har lert de fra den reelle funktionsteori anvendte setninger at kende i en
fremstilling, der er lige s& lidet nojeregnende, eller i en, der omhyggeligt
har tillagt disse udtryksmader et sa preacist indhold, at man uden skade
tor bruge dem. Det foles derfor afgjort som en mangel, at der intetsteds
gores rede for, pa hvilket niveau leeseren forventes at sta. I hvert fald
kan det ikke benssgtes, at hvad enten forfatteren har teenkt sig at spare
leeseren for eller at overlade ham de vanskeligere punkter i beviserne, sa
slipper han ved den anvendte udtryksmade meget let til mange ting.

Hist og her finder man uoverensstemmelser mellem tekst og figur eller
mellem teksten to forskellige steder i bogen; et eksempel pa det sidste
fortjener at nevnes: En punktmeengde kaldes ifglge bogens definition
sammenhsengende, hvis to vilkarlige punkter af den kan forbindes ved
en helt i punktmeengden forlgbende brudt linie. Men senere i bogen er
man tilfreds med en kontinuert kurve uden dobbeltpunkter.

Igvrigt forekommer der en del trykfejl, ogsé i losningerne til opgaverne;
indices, numerisktegn, konjugationstegn, ulighedstegn, bogstaver og tal
er en gang imellem faldet ud (der tales f. eks. om cirklen z= 1 og om cirkel-
skiven z< 1, man finder 4 i stedet for Az o.s. v.); gloserne absolut og
ligelig konvergens ombyttes et enkelt sted og ligeledes euklidisk og ikke-
euklidisk afstand.

Endelig mé det naevnes, at det opstilles som et grundleggende princip,
at til en vilkarlig intervalindsneevring pa tallinien findes der et og kun
eet tal, der tilhgrer alle intervallerne; men det siges ikke, at intervallerne
skal veere lukkede, og den samme mangel findes i beviserne for Bolzano—
Weierstrass’ seetning og Borels overdeekningssetning samt endnu et par
steder; begrebet interval defineres ikke.

Som et kuriosum kan det til sidst anferes, at tegnet ~ ikke ved en
definition tilleegges et pracist indhold; men det anvendes to steder i
vidt forskellige betydninger, nemlig til at betegne kongruens modulo 27
og til at betegne tilnsermelsesvis lighed, ogsd mellem den numeriske

veerdi af en tilveekst og et buedifferential.
Torkil Heiede




OPPGAVER TIL LOSNING

Losninger av oppgavene 180-184 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte ma, for & komme
med i neste hefte, vaere sendt innen 10. februar 1960. Til samme dato forlenges
fristen for oppgavene 176 og 177 i forrrige hefte.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

180. La a,, a,, ..., a, vere positive tall > 1. Vis at

n

(14+a)(l+ag) ... (1+a,) = 7m(l—(~al—{—czz—}-...-i-abn) .

Viggo Brun

181. For hvilke @ og b har baade 22+ ax+b=0 og 2*+bx+a=0
1) rationale Lgsninger ?

2) hele Lgsninger ? Helge Twermoes

182. Visa, att talen c,, i uppgift 161 satisfierar formeln

r s—1
J0r,s [ (n71—j0) = n7.
s=1 J=1

Hirled hirav for ¢ =1 potenssummeformeln

2”" kr = ‘ ?fw—._l’_f . @_1—121

= S st ()

(Jfr. Johs. Lohne: Potenssummer av de naturlige tall, NMT 6 (1958),

side 155.)
Qerhard Arfwedson

183. La ry7, ... 7, veere en permutasjon av tallene 1,2, ...,7 og la
sgn(ry7y ... r,) veere +1 dersom permutasjonen er jamn (like) og —1
dersom den er odde (ulike). Vis at for 0<¢<n er

SN (117« .. 1) = (= 1)Hret - T gom (g L) 8GO (P Tirg - e ) o
R. Tambs Lyche
[183]
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184. La 7y, 7y, ..., 7, veere k av tallene 1, 2, ..., n, ordnet etter stor-
relsen, og sy, Sy, ..., 8§ (k+1=n) de gvrige, ogsa ordnet etter stgrrelsen.
Sett

2 k-1
1ryr2...m
1 7y 792 rok-1
2 o' ... Ty
Vir,re, ooy ) = , V() =1.
2 k-1
17, 1, T

Vis riktigheten av fglgende likning:

V(ry, rey oo oy 1) =
(n—1)1
S=D! (=D ... (=D (n—s)! (n=8y)! ... (n—g)!

< V(81,89 .- -»81)>

idet m!!'=112!...m!, 0ll=1.
6!!

. ) -
Eksempel: V(1, 2, 3, 5, 7) TEY 1!V(AJ:, 6) .
R. Tambs Lyche
LOSNINGER
175. Serien
o mta)r e
,é; n! (ze™)" = 1-z

konvergerar inom tvenne genom punkten z=1 skilda omraden. Visa, att
formeln giller inom det omrade, som omsluter origo. Talet a &r godtyck-

ligt.
GQerhard Arfwedson

Losning: Med ze—?=t blir den givna serien av formen 2'b,¢". Man far
lim %b_n|=e med hjilp av Stirlings formel. Serien konvergerar saledes
Nn—>00
om |ze~?| < e, divergerar om den omvinda olikheten géller. D4 z=1 &r
b,t*=0(n"?) och positivt, dvs. serien divergerar. Uppgiftens forsta del
foljer hirav. (Om a dr komplext d&ndras resonemanget fér z=1, man ut-
nyttjer att e=2}/nb,t» har positivt grinsvirde, da n — co.)

For att visa den uppgivna likhetens giltighet i det konvergensomrade
G, som innehéaller origo, betraktar vi en liten omgivning C, kring origo.
Giltighet i O utstrécks till giltighet i G' med analytisk fortsittning.
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Vi insétter
= zre® = zn ' (k1)1 (nz)k
k=0
och gér i O en (tilliten, som litt inses) omordning av den givna serien
till 2’4, (a)z". Det giller att
nt+a)yr m—1)(n—1+a)"1 (n—2)%n—2+a)-2

Anla) = =7~ (n—1)! T oyt

- [(n+a)ﬂ—<n—1)(’}) (= 1kap-ti =2 ) (n=2+ay-2—. ]
= () 3B, ok,
k=0
dar

o= (1 (123) () rs (22) (v

vilket omformas med (n—v) (n) = (n) (k> till
k—v) \v k) \v

()2 ()imrromm =2

eftersom k:te differensen till ett polynom av grad k med koefficienten 1

for hogstagradstermen ar k!. Saledes erhalles 4, (a)= ' a’(v!)~1, vilket

v=0
ocksa erhalles som koefficient for 2» om serierna for e* och (z—1)~!

multipliceras. ,
Magnus Tideman

178. Bevisa identiteten
j, (a+r> <b— r) _ <a+b+ 1)
=\ n—r n )
Gerhard Arfwedson
Losning: Vi betrakter rekken

(0 G N ) PO ) RO

og dens p* differensrekke

() () (575 (0
n 3 n-——l )! n_z 3 "t O b k) 3 v
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Av den siste kan vi lett bygge opp igjen forste rekke. F. eks. er
()= ()= .27)
= +
n n 1 n—1
p+1\ [N—p—2 p+n—1 (N—p—n
S (O ] e PO Ch s I G

I denne identitet velger vi N=a+b+1 og p=a+1 og far pastanden i

(0] aven.
PPg Johs. Lohne

Ogsé lest av F. P. Dahlkild og Erik Petterssen.
179. Vis at rekken
I+3—3+3+d+d+d—d+h+hth+htatatsta—6+..
som er framkommet av den alternerende harmoniske rekke ved omord-

ning av leddene, er divergent.
R. Tambs Lyche

Losning: Leddene med fortegn + forekommer i grupper, hvis antal er
2,4,8,16, .... Summen af disse grupper kan vurderes saledes:

1+% > 2
3+ +E > 4

W= Bl o
[ [
s

Da rekken
B St R S ST L
divergerer mod + oo, er det samme derfor tilfzeldet med den opgivne

rekke. )
Henrik Meyer

Ogs4 lest av F. P. Dahlkild, Ragnar Dybvik, Poul Einar Hansen, Johs. Lohne,
Erik Petterssen og Arne Strem.

RETTELSE

I forrige hefte var det en feil i gjengivelsen av de islandske oppgaver til
studenteksamen. Ligningen i 2.linje s. 141 skal ha konstantleddet + 15i, ikke + 3¢.




PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1960, arrangert av Norsk Matematisk Forening.

Den beste samling besvarelser vil bli tildelt H. K. H. Kronprins Haralds premie
pa 200 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster veere med. Oppgavene faller inn under reallinjens pensum.
Jo enklere og mer elementeare lgsningsmater en kan finne, dess bedre. Oppgavene
bor droftes og greies ut s& fullstendig som rad er. Det er ikke ngdvendig & ha svart
pa alle 6 oppgavene. Ingen kan vinne hovedpremien mer enn én gang.

En sender lgsninger til rektor Kay Piene, Skjerstadvn. 2 A, Smestad, Oslo, innen
1.5.1960, ledsaget av en erklering om at oppgavene er selvstendig lest. Oppgi
skole og klasse.

1. Grunnflaten til et hus er et rektangel med sider a og b. Taket er
dannet av fire plan som alle danner en vinkel lik » med horisontalplanet.
Finn lengden av ryggen pa taket. Finn volumet av loftet, dvs. rommet
under skratakene, og arealet av skratakene.

Lag figur.

2. Nar kan et naturlig tall N skrives som en sum av n naturlige tall
slik at disse n tallene danner en aritmetisk tallfglge (rekke)? Dreft antall
lgsninger.

3. I et plant rettvinklet koordinatsystem er lagt inn tre punkter, som
danner hjgrnene i en trekant. Koordinatene kalles # og y med indeks.
Alle ordinater y; er positive eller null, og trekanten skal veere en egentlig
trekant.

Trekanten roterer en hel omdreining om z-aksen. Finn volumet av
omdreiningslegemet som framkommer, uttrykt ved punktenes koordi-
nater. Dann s& produktet av trekantens flateinnhold og lengden av den
sirkellinjen som medianenes skjeeringspunkt har beskrevet ved omdrei-
ningen.. Vis at dette produktet er identisk med uttrykket for volumet av
omdreiningslegemet.

4. Et talls desimalsiffer inndeles fra hoyre i grupper pa tre. Dersom
summen av de tall som framkommer er delelig med 37, s& er tallet selv

[187]
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ogsd delelig med 37. Eks.: Tallet er 25197. En far 222:37=6 og
25197=37-681.
Bevis! Er betingelsen bade nedvendig og tilstrekkelig ?

5. En hver definisjon av et sikalt »geometrisk sted« inneholder i
virkeligheten to krav. Forklar dette.

La det veere gitt to punkter 4 og B i planet. Finn rent geometrisk og
analytisk det geometriske sted for de punkter P som har den egenskapen
at forholdet mellom avstandene AP og BP har et konstant forhold %.

6. I AABC er gitt £C=60°.

. sin 4 + sin B+ sinC .
a) Bevis at har en konstant verdi.
cos 4 +cos B+ cosC

b) Hva er den storste og hva er den minste verdi som sin 4 cos B kan
ha, og for hvilke verdier av 4 og B blir disse ekstremalverdier oppnddd ?

¢) Hvor store er vinklene 4 og B nar hgyden fra C er halvdelen av
siden AB?

d) Gjelder setningen i a) dersom ZC har en annen konstant verdi enn
60°1?

PRISTAVLING FOR SVENSKA GYMNASISTER

Liksom féregdende ar anordnar Nordisk Matematisk Tidskrift en pristdvling for
svenska gymnasister. Var och en av de tre utgivande svenska féreningarna har
stillt 50 kr. till disposition, varigenom ett forsta pris om 100 kr. och ett andra pris
om 50 kr. kan utdelas.

For deltagande i tdvlingen fordras, att losningar inséindas till minst fyra av
nedanstéaende uppgifter. Gymnasister fran 6vriga nordiska lénder kunna deltaga
utom tévlan.

Losningar, atfoljda av en férsikran att de dro sjalvstéindigt utarbetade, insindas
senast den 1 april 1960 till: Nordisk Matematisk Tidskrift, Matematiska Institu-
tionen, Lund. Bifoga uppgift om namn, klass och liroverk.

1. Visa att polynomet

P(x) = nxnt— (1 +ap)a®+ (p—Dat+(p—1)a"2+ ... +(p—1)x+p
dr jamnt delbart med p(x)=22— (p+ 1)x+ p.

2. En talféljd a, bestimmes genom a,=1, a,=1 samt rekursionsfor-
meln o, =a,_; —a,_,. Visa likheten

u’ﬂ —_ vn

a, = ——

n . ’
u—7

dér w, v dr rotter till ekvationen 22—z +1=0.
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3. Funktionen y=f(x) har bestdmda férsta och andra derivator samt
f"(0)=%0. Funktionskurvan gir genom origo och tangerar dir z-axeln.
Normalen till kurvan i en godtycklig punkt P skér y-axeln i punkten N.
Bestdm grinsliget av tyngdpunkten i triangeln OPN, da P obegrinsat
nérmar sig origo.

4. y= xz—:-cz ar given. Vilket villkor skall vara uppfyllt for att kur-
x

van skall ha tre inflexionspunkter? Visa, att dessa da ligger i rét linje.

5. Bevisa, att den stridcka, som férenar en godtycklig vinkelspets i en
triangel med hojdernas skdrningspunkt dr tva ginger sa stor som nor-
malen fran den omskrivna cirkelns medelpunkt till den sida, som star
emot ifragavarande vinkels spets.

6. P, och P, dr tva punkter pa en parabel, ¢ &dr skérningspunkten
mellan tangenterna i dessa punkter och F brannpunkten. Visa att man

har
0P QP
P, F  P,F
Finns det ett liknande teorem for ellipsen och hyperbeln ?

RESULTAT AV PRISOPPGAVER FOR NORSKE GYMNASELEVER
(Oppgavene i NMT 6 (1958), s. 178-180.)

I konkurransen var det 14 deltakere. Best var Arne Strom, elev av 4. gym.,
Holtet h. skole. Dernest kom Ola Kai Ledang, elev av 5. gym., Namsos h. skole.
Da Arne Strem ifjor vant H. K. H. Kronprinsens premie, og denne bare kan vinnes
en gang, er premien tildelt Ola Kai Ledang.

SUMMARY IN ENGLISH

P. O.NeErUP: The axiomatic foundation of geometry by F. Bachmann, I1.
(Danish.)

Based on the introductory sections A and B of part I, the present article is
dealing with:

C. First Bachmann’s system of axioms for his so called absolute geometry (in-
cluding Euclidean, hyperbolic and elliptic geometry) is set up. The axioms are
formed as properties of a group @ with a system & of involutoric generators and a
system 9 of involutoric products of two generators. From these axioms, Bachmann
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has defined a geometry with the elements of 8 as lines, the elements of B as points
and the inner automorphisms of G as deplacements.

To show how such a geometry works, some theorems from elementary geometry
are formulated and proved within the absolute geometry.

TFinally is indicated the imbedding of the absolute geometry in a projective
(Pascalean) plane and the specialization by additional axioms of the absolute
geometry to a geometry of Euclidean type.

Asmus L. ScamipT: Simple proofs of an approximation theorem of
Hurwitz. (Danish.)

For irrational £, there is an infinity of irreducible fractions p/q satisfying

(1)

1
5 "—'1_)\ < _é >
q cq
when 0<c= ]/5 A very simple proof of this famous theorem is given. From an

approximation p/g satisfying (1) with ¢=1 but not with c= VE (obtained by
Dirichlet’s pigeon-hole principle), it is always possible to deduce another approxi-

mation p,/q, with ¢= V5, if we choose pg; —gqp,= 1.
The article also sketches Le Veque’s recent proof by means of Farey series.

It is well known that the value c= Vg can not be further increased. The article

also contains Perron’s simple proof of this fact, for & =5(14+ Vg)

CarL-ErRTE FROBERG: Numerical determination of arcs. (Swedish.)

If the function y=y(x) is tabulated for x= ..., @y —h, @, x,=xy+h, ..., the
arc of the corresponding curve between x, and z, is approximately given by

12 (8%y)?
= s (14— .
s = 8 < + PP )
Here s,2=h2+ k2, k=1y, — Yo 0% =%(0%,+ 0*1), where as usual
Y = Yir— Wit Yiga -

The result is obtained from a transformation of the Everett interpolation formula.

PepER PEDERSEN: On the expansion of & in a regular continued fraction,
I1. (English.)

In an earlier paper in NMT (Vol. 6 (1958), pp. 57-68), the author computed the
partial quotients ay in the continued fraction for 7z up t0 @y In the present paper,
the computation is continued to a@y,. The earlier verification of Khintchine’s and
Lévy’s constants is also extended.

Opprerv Houre: Elements of switching algebra. (Norwegian.)

The ,,Boolean algebra” is illustrated by the postulates and some theorems.
Serial and parallel contacts are then introduced, and the algebra is applied to a few
simple switching circuits.
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