F. BACHMANN’S AKSIOMATISKE OPBYGNING AF
GEOMETRIEN, I

P. O. NEERUP

Indledning.

Den elementzere geometri er opstaet ved betragtninger af visse figurer
fra den materielle verden og tilstreber at give en beskrivelse af sidanne.
For ikke at gere beskrivelsen for kompliceret foretager man dog visse
forenklinger, siledes at geometrien kommer til at omhandle genstande,
der ikke er virkelige, men t@nkte, og som kun med en vis tilnsermelse
kan realiseres.

At geometrien har denne abstrakte karakter, har man fuldt ud veret
Kklar over allerede i den graeske oldtid. »Euklids Elementer« (fra ca. 300 ar
for vor tidsregnings begyndelse) er ikke beskrivelse af genstande fra den
virkelige verden, men af de tenkte genstande, hvis egenskaber er sogt
preeciseret i Euklids »forudssetninger« eller »postulater«.

Medens man har nemt ved i princippet at anlegge dette synspunkt pa
geometrien, er det ikke s& lige til at fastholde det i alle detailler. Nar man
dyrker elementer plangeometri (og i det folgende vil vi kun betragte
plangeometri), vil man nedig undlade at tegne. Man mé naturligvis ogsé
gerne tegne, og det er fortsat tilradeligt at gore det, nir man blot opfatter
tegninger pa rette made, nemlig som anskuelige billeder, der tjener til at
fastholde tankegangen i et bevis, at std som symbol for en i ord formuleret
seetning eller at lede til formodning om, at en vis setning er gyldig.
Derimod kan man ikke godtage en tegning som et bevis for en s®tning.
Til trods for at greekerne i oldtiden — som navnt — var fuldt ud klare
herover og i beundringsveerdig grad anlagde dette synspunkt, er det dog
ikke lykkedes Euklid i alle tilfelde at gennemfore sin opbygning af geo-
metrien i overensstemmelse hermed.

En af de vaesentlige mangler i Euklids opbygning af geometrien knyt-
ter sig til leeren om kongruente figurer eller — som Euklid siger — »lige
store storrelser«. Blandt Euklids »almindelige begreber« finder man et,
som udsiger, at »sterrelser, som kan deekke hinanden, er indbyrdes lige
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store«, og det fremgér af Euklids beviser, at han hermed faktisk mener,
at »to sterrelser er lige store, nar og kun nar de kan dsekke hinandenc.
Erstatter man i denne s®tning udtrykkene sstorrelser« og »lige store« med
henholdsvis »figurer« og »kongruenteq, far man den sedvanligt anvendte
definition af kongruens. Sedvanligvis far man ikke at vide, ved hvilken
proces man skal undersgge, om en figur kan dekke en anden; det er heller
ikke tilfzldet hos Euklid, og det er en tydelig mangel i Euklids opbygning.
Af Euklids beviser fremgar, at den proces, han tenker Pa, er den saed-
vanlige, nemlig — idet man tenker sig de to figurer fremstillet af et
ustrekkeligt og ubgjeligt materiale — en materiel flytning af den ene
figur over pa den anden. Euklid erstatter altsd her sine tenkte figurer
med konkrete, hvilket er uforeneligt med hans fremstilling i gvrigt. I
overensstemmelse hermed anvender han kun nedigt flytningsbetragt-
ninger, siledes at forsta, at han i flere tilfelde foretrekker beviser ved
hjalp af tidligere (ved flytningsbetragtninger beviste) setninger frem for
beviser ved hjelp af direkte flytningsbetragtninger, selv om de sidste ville
veere simplere end de forste.

Nér Euklid her er omtalt s& meget, som tilfeeldet er, skyldes det, at den
traditionelle opbygning af elementaergeometrien stadig har den euklidiske
opbygning til forbillede. I skolegeometrien kan man ikke handhseve
geometriens abstrakte karakter. De geometriske genstande opfattes her
som virkelige (med visse modifikationer), og den anforte definition af
kongruens forekommer meget naturlig. Flytninger finder anvendelse her
ganske som hos Euklid, nemlig til opstilling af en rekke sakaldte kon-
gruenssetninger, og nar man ferst har disse sztninger, bruger man —
sd vidt muligt — dem i stedet for direkte flytningsbetragtninger. Hverken
her eller hos Euklid fgler man trang til nermere at praecisere egenskaber
ved flytninger, medens man dog preeciserer visse egenskaber ved andre
geometriske genstande sisom punkter og linier. Det henger sammen
med, at flytning ikke anvendes som en geometrisk genstand, men kun
som et middel til at definere relationen »kongruent med¢«; Euklid ville
have gjort sin fremstilling klarere ved at opstille sine ved hjeelp af flyt-
ninger beviste sztninger som ubeviste forudsstninger, og skolegeometrien
ville gore fremstillingen klarere ved aldrig at fore ybeviser« for de sakaldte
»kongruenssaetninger« (eller andre ved flytninger »sbeviste« s®tninger),
men simpelthen opstille dem som ubeviste setninger, der er motiveret
ved flytninger af virkelige, stive figurer.

D. Hilbert har med sin »Grundlagen der Geometrie« (1899) givet en
dybtgaende revision af den euklidiske opbygning af geometrien. Hermed
er diskussionen af den euklidiske opbygning, der har staet pa i et par
tusind ar, bragt til opher. Hilbert har som grundbegreber de geometriske
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genstande »punkt« og »linie« samt de geometriske relationer »incident
meds, »mellem« og vkongruent meds. Specielt bemeerkes, at Hilbert i lzeren
om kongruente figurer klarer sig ved hjzlp af relationen vkongruent medq
uden anvendelse af begrebet flytning og giver hermed et ngjagtigt udtryk
for, hvordan man — i uprzcis form — beerer sig ad hos Euklid og i skole-
geometrien.

Medens man efter Hilberts arbejder over geometriens grundlag er
blevet helt klar over, at Euklid har haft alt for fa »forudsaetningers, har
diskussionen om den euklidiske opbygning af geometrien tidligere for-
trinsvis drejet sig om, hvorvidt man kunne bevise nogle af Hilberts
»forudsetninger, specielt det beromte »parallelpostulate, udira de ovrige.
yParallelpostulatet«, som er ensbetydende med seetningen: »Til en given
linie ! og et givet punkt P findes der hgjst een linie gennem P, der ikke
har noget punkt felles med l¢, bliver en setning, der kan bevises, nar
man erstatter udtrykket »hajst een« med »mindst een«. Det var derfor
meget nzrliggende at forsgge at bevise det nevnte postulat, og det synes,
som om allerede Euklid var betenkelig ved at opstille det som forud-
seetning, idet han venter leenge med at benytte det. Som bekendt lykke-
des det ungareren J. Bolyai og russeren N. Lobatschefskij nogen-
lunde samtidigt (0. 1830) og uafhengigt af hinanden at bevise, at yparal-
lelpostulatet« ikke kan bevises, idet antagelsen om, at det ikke var gyl-
digt, i stedet for at fore til en modstrid, tvertimod ferte til en anden
geometriform, den sikaldte »ikke-euklidiske« eller shyperbolske« geometri.

Efter den betydningsfulde erkendelse af, at den euklidiske geometri
ikke var den eneste mulige (og »rigtige«), var vejen dbnet for andre for-
mer for geometri, og denne vej blev betridt af B. Riemann (o. 1850),
der forst angav den sakaldte »elliptiske« geometri, hvis aksiomsystem
kan fas af den euklidiske geometris aksiomsystem ved erstatning af
parallelpostulatet med et postulat om, at hvilkesomhelst to linier har et
fzelles punkt (og hvor ordningen af punkterne pa en linie mé beskrives
p4 en anden méde end ved relationen »mellemq).

Disse tre klassiske geometriformer kan alle fas som specielle tilfzelde af
den projektive geometri, som kan opbygges alene med de to geometriske
genstande ypunkt« og »linie« samt den ene geometriske relation »incident
med« (»punkt pa liniet, »linie gennem punkt«) som grundbegreber. Det
vil imidlertid ogsé veere naturligt at stile mere direkte mod den elemen-
teere geometri. I denne (hvortil vi her vil henregne alle de tre lige neevnte
former) spiller relationen »kongruent med« en dominerende rolle, og den
tanke er derfor narliggende at foretage en opbygning af geometrien, hvor
man supplerer det anferte projektivgeometriske grundlag med denne
relation, altsd medtager begrebet »flytning« som geometrisk genstand.

8%
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Herved viser det sig hensigtsmessigt ved flytning at teenke pa hele planen
og ikke blot pa figurer i denne.

Den nzvnte mulighed, at man opbygger geometrien ud fra de geo-
metriske genstande »punkts, slinieq, »flytning« og den geometriske relation
vincident meds, saledes at man leegger savel et projektivt som et flytnings-
geometrisk synspunkt til grund, er bl. a. realiseret af J. Hjelmslev
(0. 1910). Men man kan endda opbygge geometrien fra et rent flytnings-
geometrisk synspunkt, hvor man alene har stlytning« som grundbegreb.
En sidan opbygning er angivet af F. Bachmann (1952), og det er denne
opbygning af geometrien, der er det egentlige emne for det folgende.

Det er i god overensstemmelse med den om sig gribende algebraisering
inden for matematikken, at Bachmanns metoder vidtgaende algebraiserer
den syntetiske geometri. Derfor bliver forste afsnit en algebraisk for-
beredelse.

Nér man tager flytning (af hele planen) som grundbegreb, m& man finde
frem til visse egenskaber ved sadanne flytninger, som man vil legge til
grund. Derfor vil andet afsnit omhandle egenskaber ved flytninger, som
man udfra en primitiv anskuelig betragtning vil acceptere.

Endelig vil i tredie afsnit Bachmanns aksiomsystem blive gengivet og
hans opbygning af geometrien herudfra blive skitseretl.

A. Elementer af gruppeteori.

1. Ved en kompositionsregel o for en meengde M forstds en forskrift,
der til ethvert ordnet par a, b af elementer fra I tilordner netop eet
element ¢ fra 9%; dette betegnes c=aob. At et element @ tilhgrer m,
betegnes a € M.

2. Ved en gruppe @ forstas en meengde I forsynet med en komposi-
tionsregel o, for hvilken der geelder:

1° For a,b,c € M er (aob)oc=ao(boc).
2° Der findes et & € M saledes, at aoe=goa=a for ethvert a € IN.
3° Til ethvert a € M findes et z € W saledes, at aox=xoq=s¢.

Et element ¢ med den i 2° navnte egenskab kaldes et indifferent
element (eller enhedselement) i @. Hvis €1 0g &, betegner indifferente
elementer i @, fas ved hjelp af 2°:

1 Af tidligere artikler i NMT med aksiomatisk-geometrisk indhold nevnes:

R. Nevanlinna: Gauss och den icke-euklidiska geometrin. Bind 4 (1956), pp. 195-209.
J.0. Stubban: Aksiomatisk grunnlag for den euklidiske geometri. Bind 4 (1956), pp. 76-84.
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.

€1=81°82=82.

Vi ser altsd, at en gruppe har netop eet indifferent element.

Et element x med den i 3° nevnte egenskab kaldes et til a inverst
element. Hvis x; og z, betegner inverse elementer til a, fis ved hjelp af
1°, 2° og 3°:

Xy =20 =20(@0%y) = (B10Q) 0%y = 0Ty = Ty

Vi ser altsa, at der til a findes netop eet inverst element i IR ; det betegnes
a~l.

Specielt bemaerker vi, at (a~1)~1=a og (aob)1=>b"loa L.

Til a,b € M findes netop eet x € MM saledes, at acx=>. For et sddant
z geelder nemlig ifglge 1°, 2° og 3°:

alob=aglo(aox) = (aloa)ox =¢cox =2,

og at omvendt dette element a~1ob tilfredsstiller ligningen aox =>4, ses
ligeledes ved hjelp af 1°, 2° og 3°, idet

ao(@lobd) = (acal)eb=¢c0b="~.

Analogt ser man, at der til a,b € M findes netop eet y € M saledes, at
yoa=>b, nemlig y=boa=1.

3. En gruppe @ bestéende af en mengde M med kompositionsregel o
kaldes kommutativ (eller abelsk), nar den kommutative lov:

For abeI er acb =boa,
er opfyldt.
Hvis G er kommutativ, har for a,b € M ligningerne acx=> og yea=>

b
samme lgsning, nemlig a~lob=>boa~!; denne lgsning betegnes —.
a

4. Som neerliggende eksempler pa grupper kan nsevnes meengden af
alle hele (eller rationale eller reelle) tal
med + som kompositionsregel og meseng-
den af alle fra 0 forskellige rationale
(eller reelle) tal med - som kompositions-
regel. De her navnte grupper er alle
kommutative.

5. Ved en permutation af en meengde
M forstas en enentydig afbildning af M Fig. 1
pa sig selv. At en permutation a af N
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afbilder et element & af I pa elementet n af M, udtrykker vi ved at
gkrive n=a(§).

Ved sammensatningen af to permutationer a og b af M vil vi forsta
den permutation ¢ af M, vi far ved forst at udfere permutationen b og
dernwst permutationen a (fig. 1). Vi har altsd, at {=a(y) og 7=>0(¢)
medferer {=c(&). ‘

Vi betragter nu maengden P af alle permutationer af 9¢. I mengden P
er sammensa®tning en kompositionsregel, thi til to vilkarlige permuta-
tioner @ og b af I findes der netop een permutation ¢ af I, som er sam-
mensat af a og b; denne kompositionsregel betegner vi med det foran
indferte tegn o, og vi kan altsd skrive c=acb. For {=a(y) og n=0b(£)
har vi da:

(*) [a°b](§) = ¢ = a(n) = a(b(£)) .
Det er let at se, at meengden P med o som kompositionsregel er en
gruppe, nemlig saledes:
1) For a,b,c € B, &M har vi ifelge (*):
[laob]oc](€) = [aobl(c() = a(b(c(£))) ,
[ao[becl](€) = a([becl(&) = a(b(c(£))) »
altsa er for ethvert &£ e IN

[laeblec](§) = [ac[boc]](£),

og det betyder netop, at [acb]oc og ac[boc] er samme permutation af I,
altsd
[@obloc=ao[boc].

2) Idet ¢ betegner den permutation af 9, der til ethvert element af N
tilordner elementet selv (denne permutation kaldes identiteten), har vi for

a e B, &M ifelge (*):
[a o €] (€) = a(s(§)) = a(§) = e(a() = [ec al(&),

altsi
aoe =¢goq =a.

3) ldet a betegner en vilkarlig permutation af 9t og  den permutation
af M, der til et vilkirligt element 5 af I tilordner det element & af Y,
for hvilket a(£)=7 (denne permutation kaldes den inverse til permuta-
tionen a), har vi ifglge (*):

[aoal(n) = a(z(y) = a(é) =
[@a](§) = v(a(&) = a(n)

aox =xroaq =¢.

&,

altsd
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Ma=ngden B med o som korﬁpositionsregel, altsd meengden af alle
permutationer af 9t med sammensatning som kompositionsregel, kaldes
permutationsgruppen over .

6. En permutation a af en mangde I siges at have et element ¢ som
fixzelement, nar a(p) = @.

Lad 9t veere en maengde (f. eks. med tre elementer) og a, b to permuta-
tioner af M saledes, at a har netop eet fixelement ¢, medens b ingen
fixelement har; for v =>b(¢) er altsd p =@ og a(y)+y. Vi har da:

[bal(@) = balp) = ble) = v,

[ao b](p) = a(b(p)) = aly) .
aob£boa,

altsa:

hvoraf ses, at permutationsgruppen over en meengde M ikke i alminde-
lighed er kommutativ.

7. Lad @ veere en gruppe bestaende af en mangde 9t med en komposi-
tionsregel o, og lad 9’ veere en delmzengde af M.

Hyvis o er en kompositionsregel ogsa for M’, og M’ med denne komposi-
tionsregel er en gruppe &, siges G’ at veere en undergruppe af G. Det er
tilfzeldet, nar og kun nar N’ opfylder folgende tre betingelser:

4° g.b e M’ medfgrer acd e PW'.
5° ee W'
6° a € M’ medforer a1 M'.

Er nemlig ¢ en undergruppe af &, mé 4° veere opfyldt, fordi o er en
kompositionsregel for M, medens 5° og 6° ma veere opfyldt, fordi lig-
ningen aox=>b for a,b € M’ har en lgsning i M’ (for b=a fas 5° og forb=e¢
fis dernast 6°). Og er omvendt 4°, 5° og 6° opfyldt, mé o veere en kom-
positionsregel for M’, som opfylder 1°, 2° og 3°.

8. Lad G vere en gruppe bestdende af en maengde M med komposi-
tionsregel o og G* en gruppe bestaende af en mengde IM* med komposi-
tionsregel .

Gruppen @ siges at vere isomorf med gruppen G*, nir felgende to
betingelser er opfyldt:

7° Der findes en enentydig afbildning af I pa M*.
8° Hvis ved denne afbildning a,b € M bliver afbildet pa henholdsvis
a*,b* € M*, da afbildes aob pa a* e b*.
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Enhver afbildning 7° med egenskaben 8° kaldes en wsomorfi fra @ til G*,
Hvis G* er den samme gruppe som @, kaldes en isomorfi fra G til G*
en automorfi i G.

9. Lad G vere en gruppe bestéende af en maengde I med komposi-
tionsregel  og a et vilkirligt, men fast element af 9t. Den forskrift, der
til € I tilordner
(%) ' 2*¥ = gomoqt,

er en permutation af ¢, thi

¥ =qgogoal xeM,
er ensbetydende med
x=alog*oq, x*cIN.

Den ved (**) bestemte permutation af It er yderligere en automorfi i
G, thi for z,y € M vil

@* =aoxoal, y* = aoyoal medfore x* o y* =ao(xoy)oal,

Den ved (**) givne automorfi i @ kaldes den til @ horende indre auto-
morfi i G.

10. Lad G vaere en gruppe bestdende af en maengde 9% med o som
kompositionsregel.

Mengden af alle indre automorfier i G er en undergruppe af permuta-
tionsgruppen over k. Mengden af alle indre automorfier i G er nemlig
en delm®ngde af maengden af alle permutationer af 9, og at den ud-
gor en undergruppe af permutationsgruppen, ses siledes:

4) En indre automorfi herende til a € M sammensat med en indre
automorfi horende til b € I giver igen en indre automortfi, nemlig den
indre automorfi hgrende til @ o5, thi

z=qaoyoa™l, y=>bogobhl
medfgrer
z=aocboxoblog™l = (gob)oxo(aob)l.

5) Identiteten er en indre automorfi, nemlig den indre automorfi
harende til ¢, thi 1

T =¢goxogl,

6) Den inverse permutation til en indre automorfi horende til @ € 9t er
igen en indre automorfi, nemlig den indre automorfi hgrende til a~1, thi

Yy =aczxoa medforer x = aloyoq = (@) oyo(at)L.
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11. Selv i en ikke kommutativ gruppe @ findes der et element, som er
ombytteligt med alle andre, nemlig &, thi for et vilkarligt element x i@
har vi jo

Zoe =X =¢€°%.

Huis en gruppe G kun indeholder eet element, som er ombyteligt med alle
andre elementer i G, er gruppen af indre automorfier i G isomorf med G.

Vi har nemlig, nar @ bestar af mengden 9% med kompositionsregel o:

7) To indre automorfier herende til henholdsvis a € M og beM er
den samme, nir og kun nar a=">, thi

goxoal=>boxob ! foralle xeM
er ensbetydende med

(broa)ox = xo (bloa) foralle xeM

og altsi — ifelge forudsetningen — med b~tea=¢ eller a=>b. Heraf
folger, at de indre automorfier hgrende til elementerne i M kan parres
med disse.

8) En indre automorfi herende til a € M sammensat med en indre
automorfi herende til b € M giver — som vist i 10 — den indre automorfi
hgrende til aob.

12. Lad G vere en gruppe bestiende af mengden Mt med komposi-
tionsregel o.
Et x € M kaldes et snvolutorisk element i G, nar

x F e xox = ¢,
hvilket er ensbetydende med

x e x=2al.

For a,b € M siges a at vare involutorisk med b i G, nar aob er et involuto-
risk element i G'; dette skrives alb.
Vi bemsrker, at a1b medferer bla, thi

aob +e aob=>b"1loa! medfgrer boa * &, boa =alobl,

og vi kan derfor sige, at a og b er indbyrdes involutoriske elementer i G.
Med skrivemaden alb,c vil vi mene alb og alc; betegnelser som
alb,c,d og a,blc,d har analog betydning.
Specielt gaelder det, at hvis  og y er involutoriske elementer i@, daer

xly, ndrogkunnr x + y, xoy =yox,
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med andre ord: To involutoriske elementer i G er indbyrdes involutoriske,
nar og kun nar de er forskellige og ombyttelige.

Endvidere gelder det, at hvis « er et involutorisk og a et vilkarligt
element i G, da er aoxca~! et involutorisk element i @, thi

goxoal e dax e,

og
agoxoal=(agoxoat)l dazxz =21,

13. Lad G vere en gruppe bestéende af en mangde 9t med en kompo-
sitionsregel o, og lad I’ veere en delmeengde af .

M’ kaldes et system af frembringere (generatorer) for @, nar et vilkar-
ligt x € M kan skrives:

T=01003° .0y, Gy Ay, e, By €M,
hvor n, er et naturligt tal afhengigt af .

I de folgende to afsnit vil der aldrig blive tale om mere end een kom-
positionsregel. Vi vil derfor fremtidig erstatte o med et almindeligt
multiplikationstegn og hyppigt udelade dette ligesom ved sedvanlig
multiplikation. Eksempelvis vil vi skrive ab-aba-c i stedet for
(@obd)o(acboa)oc.

B. Nogle egenskaber ved flytninger i planen.

Som bemeerket i indledningen vil vi i dette afsnit ud fra et passende
primitivt grundlag finde frem til visse i denne sammenhzang veesentlige
egenskaber ved flytninger. Vi vil gore dette saledes, at sivel rasonne-
menter som resultater er gyldige i alle de tre foran omtalte former for
elementer geometri. Disse egenskaber vil pa naturlig méade fore os til det
i nwste afsnit opstillede Bachmann’ske aksiomsystem.

1. Ved en flytning teenkes som tidligere nevnt pa en flytning af hele
planen.

Et punkt kaldes et fixpunkt ved en flytning, nar det ved flytningen
fores over i sig selv.

En linie kaldes en fizlinie ved en flytning, nar ethvert af dens punkter
ved flytningen fores over i et punkt af samme linie (men ikke ngdvendig-
vis over i sig selv).

2. En flytning er en permutation af mengden © af planens punkter,
nemlig den permutation af €, hvorved et vilkarligt punkt P i planen
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tilordnes det punkt P’, som P ved flytningen fores over i. Meengden af
alle flytninger er altsd en delmeengde af mengden af alle permutationer
af €, og endvidere gzlder: '

4) Sammenseetningen af to flytninger er igen en flytning.

5) Identiteten er en flytning.

6) Den inverse permutation til en flytning er igen en flytning.

Heraf folger, at mengden af alle flytninger er en undergruppe af
permutationsgruppen over mengden af planens punkter, specielt altsd
en gruppe. Denne gruppe kaldes flytningsgruppen; dens kompositions-
regel er sammensaetning.

3. Til en given linie a findes der netop een fra identiteten forskellig
flytning, der har ethvert punkt af a som fixpunkt; denne flytning kaldes
aksespejlingen med a som akse og betegnes d,.

Da aksen for en aksespejling er den eneste linie med lutter fixpunkter,
ma vi for to linier @ og b have, at

(o

, = 0, medforer a = b,

hvoraf folger, at aksespejlingerne kan parres med deres spejlingsakser.

Da en aksespejling ikke selv er identiteten, men sammensat med sig
selv giver identiteten, er en aksespejling et involutorisk element 1 flytnings-
gruppen; for en vilkarlig linie @ har vi altsi: o, ¢, 0,0, =¢ eller, ander-
ledes skrevet, o, ¢, 0,=0,7".

4. Til et givet punkt A findes der netop een fra identiteten forskellig
flytning, der har enhver linie gennem A som fixlinie; denne flytning vil
vi kalde punktspejlingen med A som centrum og betegne o 4. Den kan
sammensaettes af to aksespejlinger med to vilkarlige pa hinanden vinkel-
rette linier gennem A som spejlingsakser; for to vilkarlige sidanne
linier « og y har vi altsi:

04 = 040, = 004

Da centrum for en punktspejling er det eneste punkt med den egen-
skab, at alle linier gennem det er fixlinier, ma vi for to punkter 4 og B
have, at

o4 = op medfgrer 4 = B,

hvoraf folger, at punkispejlingerne kan parres med deres cenirer.

Da en punktspejling ikke selv er identiteten, men ved sammensatning
med sig selv giver identiteten, er en punktspejling et involutorisk element
i flytningsgruppen; for et vilkéarligt punkt 4 har vi altsd: 04+¢, 0,404=¢
eller, hvad der er det samme, o4%¢, 04= o,
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5. En vilkdrlig flytning ¢ kan sammensettes af (endda hejst tre) akse-
spejlinger.

Lad nemlig (fig. 2) en orienteret linie % gennem et punkt 4 ved ¢ blive
fort over i en orienteret linie A’
gennem et punkt 4’. Lad dernsest
l veere en spejlingsakse for A og
A'. Spejlingen ¢, forer A over i
A" og h i en orienteret linie h,
gennem A’. Lad endvidere m vere
en spejlingsakse for 4, og 4’. Spej-
lingen o,, lader da A4’ ligge fast
og fgrer h; over i A'. Hvis flyt-
ningen ¢ ikke hermed er fuldfert,
kan der kun mangle en spejling i
k', d. v.s. vi ma have

l

¢ = 0,0 eller ¢ = 0,,0,,0;.

6. Dersom « og ¢ betegner to
flytninger, siges flytningen @ =
xpa~! at veere flytningen ¢ transformeret med flytningen «.

Lad eksempelvis ¢ veere en aksespejling o,, medens « er en vilkarlig
flytning, og lad o’ veere den linie, som a fares over i ved flytningen «. Et
vilkéarligt punkt P pa o’ er da fixpunkt ved flytningen ¢’ = xo -1, thi ved
flytningen «-! fores P over i et punkt @ pa a, ved flytningen o, er Q
fixpunkt, og ved flytningen « fores @ tilbage i P. Da ¢, ikke er identite-
ten, kan ¢ heller ikke vzere identiteten, men s& ma vi have ¢’ =0, Altsa:

En aksespejling o, transformeret med en vilkdrlig flytning « er akse-
spejlingen o,,, hvor o’ er den linie, som a ved Sflytningen o fores over .

Lad dern®st ¢ vare en punktspejling o4, medens « stadig er en vil-
karlig flytning, og lad A’ vere det punkt, som A4 fores over i ved flytnin-
gen «. En vilkirlig linie I gennem A’ er da fixlinie ved flytningen
¢’ =0 a7t og da ¢ ikke kan veere identiteten, ma vi have ¢’ =0,
Altsa:

En punktspejling o, transformeret med en vilkarlig flytning « er punkt-
spejlingen o 4., hvor A’ er det punkt, som A ved flytningen « fores over i.

Lad nu ¢ vere en punktspejling o, og & en aksespejling ¢,. Nar A4
ligger pa a, er 0,0 40,=0 4, og da yderligere o, +0,, er 0 ,10,. Er omvendt
o4l0,, haves 0,0 0,=0,,d. v.s. 4 ligger pa a (eller ved elliptisk geome-
triia’s pol, men da er o, =0, i strid med ¢ 410,). Altsé: Bt punkt A og en
linie a er incidente, ndr og kun ndr o 410,

Lad endelig ¢ vzre en aksespejling o, og « en aksespejling o,. Vi har

Fig. 2

i




F. BACHMANN'’S AKSIOMATISKE OPBYGNING AF GEOMETRIEN 109

da 0,0,0,= 0y, hvor b’ er den linie, som b feres over i ved aksespejlingen
o, Da b'=b, nar og kun ndr b=a eller bla, far vi 0,0,0,=0; eller
altsd 0,0, = 0,04, D&r og kun nar b=a eller b L a. Folgelig er to linier a og b
vinkelrette pd hinanden, ndr og kun ndr o,10y,.

7. Lad (fig. 3) @ og b veere to orienterede linier gennem samme punkt
0. Vi betragter flytningen ¢ = 0,0,. Vi veel- 0
ger en positiv omlgbsretning i planen og
regner vinkler med fortegn efter denne.

Lad ! vere en vilkarlig orienteret linie
gennem O. Den fgres ved spejlingen o,
over i en orienteret linie I/, saledes, at
vinklerne (Ib) og (bl;) er lige store. End-
videre feres linien [, ved spejlingen ¢, over
i en orienteret linie !’ saledes, at vinklerne 7,
(l,@) og (al’) er lige store. Vi har da:

@) = (@) + Gl) = (1) + (b)) + (La) + (al’) —_
= 2(bly) +2(l,@) = 2(ba) , Fig. 3

hvoraf ses, at flytningen p= 0,0, er en drejning om O, og drejningsvinklen
er det dobbelte af vinklen (ba).

Lad dernwst (fig. 4) a, b og ¢ vare tre orienterede linier gennem samme
punkt O. Vi velger som for en positiv omlgbsretning i planen og regner
vinkler med fortegn efter denne. Idet d er en orienteret linie gennem O
saledes, at (cd)=(ba), er 0,0, 0g 040, den samme drejning om O, d.v.s.
0y0p = 040,
eller @ e

UaGbO'c = Ud .
Der findes altsd til tre linier a, b og ¢ gennem samme punkt O en linie d

sdledes, at:
0,040, = Oy -
0
a b d ¢

Fig. 4 Fig. 5
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Analogt finder man for to linier a og b, som er normaler til samme
orienterede linie [, at flytningen o,0y er en forskydning langs 1, og forskyd-
ningens storrelse er det dobbelte af afstanden fra b til a (mdlt med fortegn
pa l).

Endvidere far man (se fig. 5), at der &l tre linier a, b og ¢, som er nor-
maler til samme linie 1, findes en linie d, sdledes at 0,0,0,=0,4 (d er nemlig
en sadan normal til I, at afstandene fra b til @ og fra ¢ til d, malt pa I
efter samme positive gennemlgbsretning af denne, er lige store).

8. Lad ¢ vare en flytning, som er ombyttelig med enhver flytning.
For en vilkarlig aksespejling o, gelder da

PO, = 0.9,
hvoraf ¢ ¢

Popt = 0, .
Ved hjelp af B6 ser man heraf, at ¢ forer enhver linie over i sig selv,
men sa ma @ vere identiteten.
Ifglge A11 gewelder det altsa, at gruppen af alle indre automorfier 1
flytningsgruppen er isomorf med flytningsgruppen selv.

9. Det i dette afsnit fremforte er som foran nevnt gyldigt i alle de tre
former for elementeer geometri. Af hensyn til det folgende skal her ggres
opmeerksom péa et par forhold, hvor den ene af de tre geometrier adskiller
sig vaesentligt fra de to andre. I en elliptisk geometri er en aksespejling
samtidig en spejling i aksens pol og en punktspejling samtidig en spejling
i punktets polar. I en hyperbolsk geometri gir der gennem et givet
punkt, som ikke er incident med en given linie, uendelig mange linier,
som ikke har noget punkt feelles med den givne linie.

(H'ortsettes 1 neste hefte.)




MULTIPLICATION IN n DIMENSIONS

VILHJALMUR OGMUNDSSON

In the familiar representation of the complex numbers as points in a
plane, the arithmetic operations correspond to certain geometric con-
structions, and it is therefore natural to ask whether there are some kind
of algebraic systems which correspond to higher dimensional spaces.
This question was in fact raised by Hamilton over a century ago.

If we regard the points of an n-dimensional space as n-tuples of real
numbers, there is a natural way of introducing operations of addition
and subtraction by defining the sum and the difference of the points

€ = <§1’ &a ’§n> and Yy = <7]1’ N2> "':77n>

to be the points
x+y = Etny Eatne o En T

g—y = —n, Ea= N oo En M) -
We can also define the scalar product of a real number 4 and a point z to

be the point
A = (A&, A&y, .y AEL) .

With these operations the space is a vector space over the field of real
numbers. In addition we may define the norm or the length of a vector =
to be the real number

o] = VER+E+. .. +&.2,

and we obtain a normed vector space.

We could of course introduce a notion of multiplication into this
system in many different ways, but in order to be of interest, this opera-
tion should have some properties analogous to those of the complex
numbers. Among the properties which we might consider in this connec-
tion are the following (where z, y and z are arbitrary vectors, 4 is an
arbitrary real number and e is some fixed vector):

[111]
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(A) (x+y)z = 22+ yz
(B) x(y+2) = xy+az
(C) er = xe =

(D) ley| = ||yl

(E) (Ax)y = x(ly) = Mxy)
(F) x(yz) = (xy)z

(G) ry = yx .

It is known that in a vector space of dimension n>2 over the real
numbers, it is impossible to define a multiplication which satisfies all of
these conditions, and that for n=1 and n=2 the only possibilities are
the operations of multiplication for the real and the complex numbers.
If we drop the commutative law, G, we get one more system, Hamilton’s
quaternions with n =4, and if we also drop the associative law, F, a fourth
system is known to exist, the Cayley numbers with n=8. It was proved
by Hurwitz (Uber die Composition der quadratischen Formen von beliebig
vielen Variabeln, Nachrichten von der Konigl. Gesellschaft der Wissen-
schaften zu Gottingen, 1898, pp. 309-316), that these are the only systems
which satisfy the remaining five conditions A—E. The purpose of this note
is to give a new proof of this fact, which is simpler and more elementary
than any of the proofs that can be found in the literaturel.

We assume that V is a normed vector space over the real numbers.
By a unit vector is meant a vector whose norm is 1. Two vectors x and y
are said to be orthogonal, in symbols x | y, if

(*) o=yl = VieP+1y -
The vectors xy, @, ..., x; are said to form an orthogonal sequence, in
symbols (z, Xy, ..., %) L, if they are mutually orthogonal. If in addi-
tion each of the vectors z; is a unit vector, then they are said to form an
orthonormal sequence.

In addition to some more elementary properties of the norm and of the
relation of orthogonality, we shall make use of the following facts:

If |x+y|=|z|+]|y| and if 20, then y=Ax for some non-negative real
number A.

Ifx | yand z | 2, then x | (y+2).

If | y and 4 is a real number, then z | 1y.

1 The author wishes to express his thanks to Professor Bjarni Jénsson for valuable
help in giving this paper its final form.
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Tf U is a subspace of V, then every vector 2 can be written in the form
x=y+2, where y is in U and z is orthogonal to every vector in U.

Now assume that we have a multiplication defined in ¥ which satisfies
the conditions A—E. Observe that the identity element e must be a unit
vector, because for any vector z,

|z = lex| = lellx| .
We begin by proving two lemmas.

Lemma 1. For any unit vectors u, v and w:
@)  Ifw 1 e, then u?= —e.
i)  If (e, u, v) L, then uv= —ou.
(i)  If (e, w, v) L, then (e, w, v, wv) 1.
(iv) If (e, w, v) L, then (uwv)v= —wu.
v) If (e, u, v, w) 1, then (uv)w= — (vw)v.
(vi)  If (e, w, v, wv, w) 1, then u | vw.
(vil)  If (e, w, v, W, w) L, then (uwv)w= —u(vw).

Proor: (i). We have
u—e| = lu—ellute| =212 =2 = |[u?+]e|.

Therefore u2= —Je for some non-negative real number 1. Since
|u2| =|u|2=1 and | —Ae|=2le| =4, it follows that 1=1 and, consequently,
ul= —e.

(ii). Letting 1
w=—(u+v),

V2
we have |w|=1 and w | e. It follows by (i) that w?= —e. But
w? = Hu+v)? = J(u+uw+ou+0?) = Fuvtou)—e.

Therefore uv +vu =0, uv= —vu.
(iii). Using (i) we find that

luw—e| = lww+w| = |[u+o|v| = lu+v| = [/5
luv—u| = |[wv—ue| = |ullv—e| = |[v—e| = [/5
luv—v| = juv—ev| = [u—e|lv] = lu—e| = /2.

Therefore uv is orthogonal to each of the vectors e, u and v.
(iv). Observe that

2uv——(u+(uv)v) = (wv—u)(e—v) .
Therefore — -
|2uv — (u+ (wv)v)| = |uv—ulle—v| = V2)2 = 2.

NMT, Hefte 3, 1959. — 9
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But 2uw is orthogonal to each of the vectors u and (uv)v, and is therefore
orthogonal to their sum. Consequently,

I2uv——(u+(uv)v)] = V]2uv|2+[u+(2w)v]2 = Va+|u+ (uo)|?,

and we infer that u+ (uwv)v =0, (wv)v= —u.
(v). Since (e, u, v+w) | and |v+w| =V§, it follows from (iv) that

But (u(w+w)(v+w) = —2u.
(w(@+w)(v+w) = (wv+uw)(v+w)

= (w)v+ (uv)w + (vw)v + (uw)w = — 2u+ (wo)w + (uw)o .
Therefore (wv)w + (uw)v =0, (wo)w= — (uw)v.

(vi). It follows from (ii) and (iv) that

u—vw = —(u)r+wv = (w—uv)v .

Therefore _
lu—vw| = lw—uv| = ]/2,

so that w | vw.

(vii). By (ii), (v) and (vi),

(w)w = —(vu)w = (ow)u = —u(ow) .

LemMmaA 2. Suppose that ey, e,, ..., e,, where e;=e, is an orthonormal
sequence which spans a subspace of V closed under multiplication, and that
€nt1 18 @ wmit vector orthogonal to ey, ey, ..., e,. Let e, ,=e.e,., for
1=1,2, ..., n. Then e;, e,, ..., ey, is an orthonormal sequence which spans
a subspace of V closed under multiplication. Furthermore ege,, ;= (ej€5)€ni1
for i,5=1,2,...,n, and Cniilpij=6i€; for 1=1,2, ... n, j=2,83,...,n,
but for j=1, e, ,;6,,1= —e,.

Proor: Let U be the subspace of V spanned by ey, e,, ..., e,. Each of
the vectors e, ,; can be written in the form

Cpis = U+ v,

where % and v are unit vectors, u is in U, v is orthogonal to every vector
in U, and «%+ 2=1. Therefore, by (ii) and (iv) of Lemma 1,

bni1 = (€1€n41)€; = €156, = o(ue;)+ P(ve;) .

Now w | v, so that ue; | ve; by the definition (*). Also ue; | e, ., because
ue; is in U. Consequently we, is orthogonal to the vector

eni1—B(ve;) = a(uey) ,
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which implies that o =0 and hence that e, ;= fv. Thus e, is orthogonal
to each of the vectors e, e, ..., e,. Furthermore if ¢,j<n and i4j,
then -

Ien+1: - en+j| = Ieien+1 —¢; en+1| = ]ei - ejl = V2 )
so that e, ; | e,.;. The sequence e;, ¢, ..., ey, is therefore orthonormal.
The last statement of the lemma is now an easy consequence of Lemma 1,
and this in turn shows that the vector space spanned by e, e, ..., ey, is
closed under multiplication, since the product of two base vectors is
always in the space.

THEOREM. The dimension of V is either 1, 2, 4 or 8.

Proor: We see at once that the dimension of ¥ must be a power of 2,
for according to Lemma 2 every proper subspace U of V which is closed
under multiplication is contained in another subspace of V closed under
multiplication, whose dimension is twice the dimension of U. Starting
with the 1-dimensional vector space U, spanned by the vector e, we
obtain in this manner successively larger and larger spaces Uy, U,, Us, . ..
whose dimensions are 2, 4, 8, . . ., until the space V is exhausted. Lemma 2
also enables us to choose for each subspace U, a basis whose multiplica-
tion table is completely determined by the last statement in the lemma.
(Incidentally, this shows that for each dimension, the multiplication is
essentially unique if it exists.)

Assuming now that the dimension n of V is not one of the numbers
1, 2, 4, 8, we infer that n =16, and that V contains a 16-dimensional
subspace U, closed under multiplication. Furthermore, we can find an
orthonormal basis e=e¢,, €,, €3, . . ., €16 for U, such that

€ari = €;€3, €69 = (e;e,)ez for 4,5 = 1,2, and

€24i€ata = €€ €pii€py = —e; for ¢ =1,2;

ai; = €85 €64y = (e;e;)es for 4,5 = 1,2,3,4, and
€a1i€ary = €je; for © =1,2,3,4, 5 = 2,3,4, but ey ;¢4 = —¢;;
€gii = €;€9, €165y = (e;.)eq for 4,5 = 1,2,...,8, and
€gii€gy; = €j¢; for o =1,2,...,8,75=2,3,...,8, but eg 65, = —e;.
The proof will therefore be complete if we show (by means of a single
example) that the multiplication defined by these formulas does not

satisfy the condition D.
Consider the vectors

x = ey+e, and y = e;t+eq5.

9%
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Calculating the product

XY = €y€3t+e€gei5+ey4€3+e14€55,

we find that
€re3 = €,
€15 = €a€gi7 = (€7€5)e9 = —(€a€7)€9 = — (€2€415)ey
= “((6362)55)69 = ((3233)65)69 = (ege5)ey = egey = €54
€14€3 = —€3€1y = —egeg.5 = —(€5e3)e9 = (€3€6)ey

= (e3€440)e9 = ((6263)‘35)69 = (eg€5)ey = €3y = €4
€14€15 = €g16C€g47 = €7€g = €4,3€4,9 = €363 = €4,
and so xy = 2e,+ 2e¢;4. Consequently,

ley| = 2|eg+e54] = 21/5
On the other hand,

2|y = |ea+emlles+es] = V2)/2 = 2.

The condition D therefore fails, as was to be shown.




EN STUDIE AV HASTIGHETSANPASSNING
VID KORSNING MELLAN VAG OCH JARNVAG

B. J. ANDERSSON

1 samband med arbete inom Svenska matematikersamfundets kon-
taktnamnd har férfattaren till dessa rader bl. a. haft anledning att gora
matematiska studier av vissa trafikproblem. Hér behandlas problemet
om den limpliga hastighetsanpassningen vid passage av en jirnvigs-
korsning. Syftet ar dels att ge led-
ning vid juridisk beddmning av
trafikmal och dels att ge objektiva
grunder for omkonstruktion av
»farliga« jarnvigskorsningar samt
placering av hastighetskontroller.

I fig. 1 anger O korsningen mellan
en Vvdg, som representeras av -
axeln, och en jirnvég. For enkel-
hets skull har vigen och jarnvigen
ritats med rdta linjer, som skér Fig. 1
varandra under ridt vinkel. Den i
det féljande redovisade analysen giller emellertid allmént for krokiga
vigar, som skiir varandra under godtycklig vinkel. Vi definiera da
xz-koordinaten som avstandet fran O, métt utmed vigen.

En bilférare, som nirmar sig O, antas kunna se korsningen, da
0<x < L. Fér x> L dr korsningen skymd av kurvor, backkron eller lik-
nande.

Fran en punkt z, 0 <z < L, ser bilisten en stricka y,(x) av jairnvigen
pa hoger hand och en stricka y,(z) pa vinster hand, riknat fran O.Vi
beteckna vidare

y(x) = det minsta av y,(x) och y,(x) .

Ett tag, som framfores pa jirnvigen, antas halla en konstant hastighet
u. Taget forutsittes vara mycket langt. Detta innebér, att en bilist, som
ej hinner passera korsningen fore téget, skall kunna stanna sin bil fére

[117]
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korsningen. Bilisten tillates alltsd ej forlita sig pa att ett eventuellt
uppdykande tag har begrinsad lingd.

Antag, att bilisten observerar det uppdykande tiget pa avstandet x
fran O. Bilens hastighet &r d& v,. Om bilisten fortsitter med bibehéllen
hastighet, si skulle han passera O efter tiden x/v,. Taget passerar kors-
ningen efter tiden y(x)/u, och ingen kollision intriffar, om /v, < y(x)/u,

dvs.
x

(1) Vo > U—r.

*7 Ty
Kvoten z/y(x) kan bestdimmas for olika x genom métningar pa den ak-
tuella platsen. I allménhet 6kar y(x), da = avtar mot noll.

Antag nu att
x

v e
(2) 0o < uy(x)’
dvs. med bibehéllen hastighet hinner inte bilfsraren &ver korsningen fére
taget. Det finnes di tvd alternativ (vi utgd fran att taget ej bromsar
infér uppdykande bilar annat &n i yttersta nodfall, varvid bilisten tagit
en otillaten risk):

A. bilen bromsas till stillastaende f6re korsningen,

B. bilen okar farten och hinner pé si sitt fore taget.

Vi observera, att fallet B ej helt utesluter fallet A. Om korsningen
ligger pa ett slittlandskap, s& kan det intriffa, att bilens hastighet kan
Okas avsevirt, men att bilen i alla fall kan stannas fére korsningen.
Genom en hastighetsokning kan i s& fall villkoret (1) bli uppfyllt utan att
man eftersitter villkoret att bilen skall kunna stannas fére korsningen,
ifall bilisten skulle konstatera, att han 6kat farten alldeles i onodan.

Vi studera nu fallet A. I diskussionen antas, att en bilist ej tillites att
helt f& forlita sig p& en hastighetsokning infér jirnvigskorsningar, utan
hastighetsokning tillaites endast i de fall en bibehallen konstant fart ger
riskfri passage av korsningen.

I fig. 2 har inritats kurvorna

v z
“y@ @ )

v=14 — samt v=vg(x), dir vg(x)

I y(@)
; dr den maximala hastighet en bil

vp(Z) X oo
‘ i antas f4 ha, om den med rimliga
| 1I antaganden om retardation och re-
| aktionstid kan stannas pé strickan
i z . Omretardationen ar r meter/sek?
To och reaktionstiden 7' sekunder, s&
Fig. 2 blir
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(3) vg(x) = V2m: + 7272 — T meter/sek.
Det ar rimligt att anta att 0 <7 < 1. Vidare betyder
r = 2.5 meter/sek? latt inbromsning

r=2>5 - hard inbromsning
r="15 - mycket hard inbromsning,

och virdet r=17.5 forutsitter mycket goda friktionsegenskaper hos vigen
och hog kvalitet hos bilen och framfor allt dess bromssystem och déck.

x
Vi antar nu, att « ﬁ=vB(x) for x=x,, 0<xy<L. Om y(x) ar en av-
y(x

tagande funktion av x, si giller

X x f 0
U ——-< U or < T < X
y(x) Yl 0
x

U > U for xy <.
y@)  y(@)

I intervallet 0 <z < 2, ligger alltsa kurvan v=u Tx—) under den réta linjen
y(x

V=1 och for x>z, ligger kurvan 6ver samma rita linje (se fig. 3).

(o)
Héarav foljer att det finnes hogst en skidrningspunkt x =2z,> 0 mellan de
tva studerade kurvorna.

v

>
Ty z, T,

Fig. 3 Fig. 4

Om olikheten (2) giller, s& ligger punkten (z,v,) under kurvan

v=u ——. D4 kan intriffa tvé fall (se fig. 2):
y(@)

I) vy=vg(x). Bilen kan ej stannas genom rimlig inbromsning infor
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tadget, och bilistens enda chans &r en hastighetsokning (eller inbromsning
av tiget).

IT) vy <wvp(x). Da kan bilen stannas fére korsningen.

For x 2 z, bor alltsé v, vara <wvg(x), darest bilisten i fallet A skall vara
garderad infor ett uppdykande tag. Om bilisten passerar punkten ,
med en hastighet v, <vp(%,), s kan han hélla denna hastighet oférmin-
skad och antingen hinna 6ver korsningen eller bromsa fére korsningen,
dérest ett tag skulle dyka upp (se fig. 4).

Ifall taget blir synligt, d& bilen befinner sig pa ett avstind z <, fran

korsningen, varvid vy < u —(x-), s kan och bor bilen stannas (fall 1, fig. 4).
y(
Om vy>u (i) (fall 2), sa hinner bilen fére taget, ifall den ej bromsas.
y(x

Om vy >vp(x) (fall 3), gar det ej att bromsa bilen.
Nar bilforaren &r siker pa att han passerat den punkt x=w, dir

x
Vo= ~(—, sé& kan han som en sikerhetsatgird oka farten fore passagen
y(x
av korsningen.
x
Om w —— <wvy(x) for alla < L, s& kan man sitta z,=L (fig. 5). Det

y(x)
farliga fallet I kan d& ej intriffa.

v
v
w-Z
y(x)
vg()
> vp(T)
u —
y(x)
x
L -2
Fig. 5 Fig. 6

Om u ;%—>03(x) for alla < L (fig. 6) s& har man en ur trafiksiker-
hetssynpunkt helt forkastlig korsning, dir man antingen skall inféra
stopplikt for bilarna och bilisterna skall genom skylt rekommenderas att
lyssna efter tag, och/eller tagen skall aliggas fartreducering vid kors-
ningen. Det ar angeliget att alla dylika korsningar elimineras genom
vigomlaggning eller bortréjning av sikthindrande féremal.
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Paur H. Davs — Wittiam M. WayBUrN: Introduction to mathe-
mathical analysis. With applications to problems of economics. Addison-
Wesley Publ. Co., Reading (Mass.), 1958. 8+ 244 pp., 114 fig. $ 6.50.

(Innholdsfortegnelse i NMT 7 (1959), s. 40.)

Med visse forventninger ipner man en ny lerebok i matematikk for
sosialgkonomer, denne gang skrevet for amerikanske ybusiness students«
av to professorer i matematikk. I en viss utstrekning er boken mer
matematisk stringent enn mange forgjengere, men dessverre — dette blir
mer enn oppveiet av lettvinthet i bruken av gkonomiske, statistiske og
dels ogsd matematiske begreper. Boken behandler et meget begrenset
omrade, den gir innfering i derivasjon og integrasjon i en variabel, par-
tiell derivasjon i to variable, implisitt derivasjon, samt det enkleste av
teorien for ekstremalverdier av funksjoner i en og to variable. Funk-
sjoner av flere variable blir overhodet ikke nevnt. Av spesielle funksjoner
forekommer bare polynomer, de fleste av 1. eller 2. grad, samt logaritme-
og eksponensialfunksjoner. Det forutsettes at leseren har en viss bak-
grunn i algebra (ut over vart artiumspensum), f. eks. de to forfatteres
egen bok. I kap. 2 behandles grense- og kontinuitetsbegreper pa en mate-
matisk forsvarlig méate, men si pass kortfattet og kommentarlost at de
trerreste studenter vil 4 tak i pointet ved disse grunnleggende begrepene.
Eksempler med uendelige desimalbroker appelerer neppe seerlig til gko-
nomistudenten. Og gjengangeren »Limit of an independent variable«
(p. 38) kan bare tjene til & festne hans inntrykk av at matematikk er
umulig & forstd. Derivasjon er mer utforlig behandlet. Differensialsym-
bolet blir brukt, men ikke forklart for i kap. 4, og da ikke godt. Ekstre-
mal- og vendepunkter er bra forklart, med behandling av den ngdvendige
og den tilstrekkelige betingelse (annenordensbetingelsen) hver for seg,
men pé. s. 164 blir forste- og annenordensbetingelsen omtalt som »The
necessary and sufficient conditions«.

Den vesentlige del av boken opptas av tallrike eksempler og gvelses-
oppgaver (med lgsninger) hentet fra det gkonomiske omrade, og de ser
bra ut si langt de gir, men hovedvekten er lagt pa tallregning. Generelle
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konklusjoner, spersmal om eksistensen av lgsninger, o. 1., kommer ikke
frem. Behandlingen av eksemplene, og spesielt forste kapitel, »Applica-
tions of graphical analysis« samt siste kapitel, »Introduction to curve
fitting«, er egnet til 4 gi en fersk student en helt skjev oppfatning av
bruken av matematikk og statistikk som hjelpemidler i gkonomisk teori.
Han vil tro det hele gar ut pa & tegne noen pene kurver, og regne smé
regnestykker med forste- eller annengradspolynomer. Selvsagt mé eks-
empler og ovelser til for & innarbeide regneregler og illustrere sammen-
henger, men de mé vere slik at de understreker og ikke drukner det
vesentlige: & vise hvordan matematikken bygges opp og hvordan den
kan tas til hjelp ved formuleringen av problemene gjennom oppstilling av
modeller og lgsning ved matematiske metoder. Dette er ikke gjort bare
ved & fortelle at en »normalc ettersperselskurve skal veere fallende og en
tilbudskurve stigende, og slett ikke ved & ty til »okonomiske resonne-
menter« utenfor den matematiske modellen, som i avsnitt 1.4 om marke-
dets likevektspunkt (selv om eksemplet nesten er »klassisk«). Kap. 7 ber
man helst unnga.

Det er synd at en sa velskrevet og omhyggelig utarbeidet bok med bra
oppsetning, trykk og papir — og ikke fler trykkfeil enn det m& ventes i
en forsteutgave — ikke kan anbefales hverken som oppslags- eller lere-
bok.

Henvisningene til andre elementare lzerebgker, dels gkonomisk-mate-
matiske og dels ren-matematiske, er ganske omfattende.

Herdis Thorén Amundsen

LroxuARD EULER: Vollstindige Anleitung zur Algebra. Unter Mit-
wirkung von Joh. Niessner in revidierter Fassung neu herausgegeben von
Jos. E. Hofmann. Reclam-Verlag, Stuttgart, 1959. 571 S. Ganzl. DM 18.50.

(Innholdsfortegnelse i NMT 7 (1959), s. 88.)

I 1770 kom den forste utgaven av denne kjente boken av Euler. P
denne tid var Euler pa det nermeste blind og en skreddersvenn nedskrev
manuskriptet etter Eulers diktat. Kanskje har dette medvirket til at
Euler swrlig har lagt an pa at boken skulle kunne leses av folk med
minimale forkunnskaper i matematikk. Man kan forbause seg over at
Euler, som aldri hadde hatt noen forelesningsplikt, har maktet & skrive
en sd pedagogisk god fremstilling. Begynnelsen er meget elementer.
Han begynner med de fire forste regningsarter. Men han driver det etter
hvert ganske langt, for eksempel til 4 behandle tredje- og fjerdegrads-
ligninger. Av serlig interesse her er hans innferelse av imagineere tall:
»Es ist klar, dass die Quadratwurzeln von Negativzahlen nicht einmal
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zu den moglichen Zahlen gerechnet werden konnen. Folglich miissen wir
sagen, dass sie unmégliche Zahlen sind ..., die bloss in der Einbildung
vorhanden sind.« Ogsa hans syn p& muligheten av & lgse ligninger av
hoyere grad enn fjerde er av interesse: »Alle Bemiihungen jedoch, die
Gleichungen hoherer Grade auf gleiche Art aufzuldsen oder diese wenig-
stens auf Gleichungen der niedrigsten Grade zuriickzufithren, sind fruchtlos
gewesen, so dass man nicht imstande ist, allgemeine Regeln zu geben,
durch die die Wurzeln von hoheren Gleichungen ausfindig gemacht
werden konnen.« Det er lett & tenke seg hvordan en slik bemerkning ma
ha virket ansporende pa unge matematikere. Man kan vel g& ut fra at
Abel ogsd har lest denne boken. Han gjentar iallfall i sine notisbgker
fra skolearene Eulers utsagn:

1=1-1+1-14+1—...
og lignende.
Eulers historiske opplysninger om lgsningen av tredje- og fjerdegrads-
ligninger er mangelfulle. Hans pastand om at ligningen

y2—ax? =1

var lgst av en »leerd englender ved navn Pell« skal ogsé veare helt uriktig.
J. Hofmann sier i sitt »Nachwort« at W. Brouncker skulle ha veert nevnt
istedenfor Pell og han tilfgyer: »Eulers Autoritéit hat dann dazu gefiihrt,
dass diese Gleichung in der nachfolgenden mathematischen Literatur als
die Pellsche bezeichnet wird, obwohl sie einzig und allein mit Fermats
Namen zu Recht in Verbindung gebracht werden kionnte.«

Det forekommer meg at den eneste riktige betegnelse pa ligningen bor
veere den »indiske ligning« eller »Bhaskaras ligninge, da hans behandling
av ligningen (fra ellevehundretallet e. Kr.) er pi det nermeste fullstendig
og hoyst beundringsverdig.

Euler utferer skrittvis losningen av

y:—ax? =1

i hele tall z og y for a =2, 3, 5, 6, 7 og 8 og han tilfoyer: »Bisweilen gelangt
man bald zum Ziele, bisweilen aber sind dazu viele Operationen nétig,
je nach Beschaffenheit der Zahl @, von der man doch keine gewissen
Kennzeichen angeben kann . ... Daher ist es dienlich, die Arbeit anderer
zu benutzen und eine Tabelle beizufiigen, in der zu allen Zahlen a bis auf
100 die Werte der Buchstaben 2 und y angegeben werden, damit man in
vorkommenden Fillen daraus fiir jede Zahl a die zugehorigen Buchstaben
2 und y entnehmen kann.«

Det kan vel tenkes at det er denne bemerkningen som har inspirert
C. F. Degen til & utarbeide sin Canon Pellianus (1817).
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J. Hofmann har foruten et »Nachwort« skrevet en »Einleitung« med
mange interessante opplysninger om Euler og hans samtid.

Viggo Brun

D. Hserr — W. ACKERMANN: Grundziige der theoretischen Logik.
Vierte Auflage. (Grundlehren der mathematischen Wissenschaften 27.)
Springer-Verlag, Berlin, Gottingen, Heidelberg, 1959. 8+188 S. DM
33.00, Ganzl. DM 36.60.

(Innholdsfortegnelse i NMT 7 (1959), s. 40.)

Bogen er neppe egnet som det forste mgde med matematisk logik.
Men den, der — efter mere eller mindre omfattende lesning af oriente-
rende art om matematisk grundlagsforskning — fgler et behov for en
systematisk fremstilling af det vigtige hjzlpemiddel, logikkalkylen er,
ham kan bogen anbefales.

Den foreliggende 4. udgave adskiller sig gennemgribende fra de fore-
gdende. Afsnittet om klassekalkylen, der var mindre heldigt, er siledes
ikke til at kende igen; det preeg af mystik, der her kunne veere for den
uindviede, er forsvundet; den helt forandrede symbolik er mere over-
skuelig. For udsagnskalkylen og den snaevrere praedikatkalkyle benyttes
nu axiomsystemer af Gentzens type; afledningsreglerne er her formuleret
siledes, at kan en formel overhovedet bevises, s kan man ogs4 finde et
bevis.

I sin nuvarende form giver bogen en gennemarbejdet, klar og fuldt
moderne fremstilling af den matematiske logik. Frem til den snszvrere
pradikatkalkyles Entscheidungsproblem mgder man en fuldt gennemfort
behandling; bogens sidste tredjedel er mere refererende, men giver et
godt indblik i videregdende problemstillinger.

Om anvendelser i den matematiske grundlagsforskning ma man lzese

andetsteds; de falder uden for bogens ramme.
Tage Gutmann Madsen

HerBERT Lucowskl — HaNNs JoacHiMm WEINERT: Grundzige der
Algebra, I. (Mathematisch-naturwissenschaftliche Bibliothek 9.) B. G.
Teubner Verlagsgesellschaft, Leipzig, 1957. 4+ 234 8., 15 Fig. DM 10.00.

(Innholdsfortegnelse i NMT 6 (1958), s. 42.)

Denne boka er den forste i en serie pd tre sma bind som behandler
elementene av den abstrakte algebra. Bekene har fatt folgende titler:

1. Allgemeine Gruppentheorie.

2. Allgemeine Ring- und Kérpertheorie.

3. Auflosungstheorie algebraischer Gleichungen.
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Hvert avsnitt er rikelig forsynt med oppgaver og gjennomarbeidete
eksempler, og boka egner seg saledes godt for selvstudium. Definisjoner
av abstrakte algebraiske begreper er gjerne gitt en konkret motivering.
Boka er selvforsynt, men enkelte belysende eksempler har fatt en litt
knapp formulering. Eventuelle lesere vil for eksempel ha glede av litt
kjennskap til lineser algebra. Fremstillingen er delt i fire hovedpunkter:
I. Grundbegriffe der Gruppentheorie.

II. Permutations- und Transformationsgruppen.

I1I. Homomorphe Abbildungen.

IV. Einige wichtige Strukturaussagen iiber Gruppen.
Kapitel IV omhandler begreper som serlig skal anvendes i bind 3, slik
som enkle grupper, normalrekker og komposisjonsrekker og lgsbare
grupper. Kapitlet kulminerer med satsene til Schreier og J ordan-Holder.

P. Holm

E. A. MaxwerL: Fallacies in mathematics. Cambridge University
Press, Cambridge, 1959. 95 pp. sh. 13/6.

(Innholdsfortegnelse i NMT 7 (1959), s. 90.)

Dette er en samling matematiske feilresonnementer og »beviser« for
apenbart gale satser. Feilene er stort sett gamle og velkjente (divisjon
med null, falske fortegn for kvadratrgtter, geometriske bevis ut fra vill-
ledende figurer, og bruk av divergente rekker og integraler), men de er
fikst kamuflert, og gir »beviser« som ser hoyst troverdige ut.

Kommentarene som er knyttet til hver enkelt »fallacy«, er meget gode.
De paviser klart og greit hvor feilen ligger, og inneholder ofte en del
interessante tilleggsbemerkninger, som i et par tilfelle er meget dypt-
gaende og utforlige.

Boken inneholder ogsa noen meget morsomme eksempler pa det for-
fatteren kaller vhowlers¢, det vil si dpenbart vanvittige resonnementer
som gir riktig resultat.

Samlingen vil sikkert falle vanskelig for gymnasiaster, men det for-
hindrer ikke at mye av stoffet ma kunne anvendes med fordel i undervis-

ningen, bade i gymnasier og mer videregiende kurser. )
Bent Birkeland

M. MirLER: Variationsrechnung. (Mathematisch-naturwissenschaftliche
Bibliothek 24.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1959. 133 8.,
23 Fig. DM 8.10.

(Innholdsfortegnelse i NMT, dette hefte, s. 131.)
Med sitt beskjedne omfang er den foreliggende bok meget innholds-



126 LITTERATUR

rik, kanskje noe for innholdsrik, idet mange av de behandlede emner er
tatt temmelig summarisk. Verdifull er den rikholdige samling av eksemp-
ler som ledsager teksten. Enkelte av disse eksempler er kanskje behand-
let med unedig bredde; eksempelvis er det ofret atskillig plass pa det
noksa banale problem & bestemme den korteste forbindelseslinje fra et
gitt punkt til en gitt rett linje.

En alvorlig innvending ma nevnes: til innledende orientering omtaler
forfatteren problemet om ekstremalverdier av en gitt funksjon. Her
kommer han i skade for & formulere den &penbart uriktige setning:
»... so sind fiir das Eintreten eines relativen Extremums die folgenden
Bedingungen notwendig und hinreichend :

o @ ) _ o @i Y)

=0
ox oy
Of @s Ym)  Of @y Ym)
0x? 0xoy
> 0.«
Of @s Ym)  Of @y Ym)
oxdy oy>

I betraktning av de spesielle problemer som i variasjonsregningen knyt-
ter seg til medvendige« og »tilstrekkelige« vilkar, er det sveert uheldig at
en slik sammenblanding forekommer i den orienterende innledning.

Den nettopp siterte setning gir ogsé et eksempel pa en noksd klosset
typografisk oppstilling, noe som gar igjen i hele boka, og gjor lesningen
temmelig anstrengende.

Alt i alt kan undertegnede, trass i bokas mange gode sider, ikke ube-

tinget anbefale den.
R. Tambs Lyche




MOTTATTE BUOKER

Annales de Uinstitut Fourier. Tome VIII. Année 1958. Université de
Grenoble. Chartres, Imprimerie Durand 1958. 290 pp. Fr. 6500.

L.Schwartz: Théorie des distributions & valeursvectorielles (II)1-209 * C. Chamfy :
Fonctions méromorphes dans le cercle-unité et leurs séries de Taylor 211-261 *
R. E. Edwards: La théorie du balayage de Cartan pour les surfaces de Riemann
hyperboliques 263-272 * J. P. Kahane: Sur la totalité des suites d’exponentielles
imaginaires 273-275 * W. Hayman: Sur 'interpolation par des fonctions bornées
277-290.

E. Asmus: Einfihrung in die hohere Mathematik. Dritte Auflage. Walter
de Gruyter & Co, Berlin, 1959. 11 +410 S.

Allgemeines iiber Funktionen und ihre Darstellung 3-20 * Die wichtigsten Funk-
tionstypen 21-92 * Die Logarithmusfunktion 92-118 * Die Exponentialfunktion
118-159 * Die Kreisfunktionen 160-166 * Néherungsverfahren zur Auflésung von
Gleichungen 167-178 * Reihendarstellung von Funktionen 179-198 * Unbestimmte
Ausdriicke 199-207 * Allgemeines iiber Differentialgleichungen 211-238 * Integra-
tionsmethoden 239-286 * Graphische, numerische und mechanische Integralaus-
wertung 287-307 * Darstellung von Funktionen zweier Verdnderlichen 311-340 *
Differentiation 341-364 * Integration 365-384 * Aufgaben 385-391 * Losungen 391—
399 * Namen- und Sachregister 401-410.

Friedrich Bachmann: Aufbau der Geometrie aus dem Spiegelungsbegriff.
(Grundlehren der mathematischen Wissenschaften 96.) Springer-Verlag,
Berlin, Go6ttingen, Heidelberg, 1959. 13 + 311 8., 160 Fig. Ganzl. DM 49.80.

Spiegelungen in der euklidischen Ebene 1-19 * Der Begriff der metrischen Ebene
19-31 * Das Axiomensystem der metrischen (absoluten) Geometrie 32-56 * Sitze
der metrischen Geometrie 56-75 * Projektive und projektiv-metrische Ebenen
76-93 * Begriindung der metrischen Geometrie 93—-124 * Uber das Transitivitits-
gesetz fiir beliebige involutorische Elemente 127-141 * Projektiv-metrische Koordi-
natenebenen und metrische Vektorrdume 141-157 * Orthogonale Gruppen 157-169 *
Darstellung metrischer Vektorrdume und ihrer orthogonalen Gruppen mit Hilfe
hyperkomplexer Systeme 170-186 * Die Bewegungsgruppen der hyperbolischen
projektiv-metrischen Ebenen als abstrakte, aus ihren involutorischen Elementen
erzeugte Gruppen (H-Gruppen) 186-199 * Der Satz von Pappus-Pascal in der
euklidischen Geometrie 201-210 * Algebraische Darstellung der euklidischen Be-
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wegungsgruppen 210-218 * Hyperbolische Bewegungsgruppen 219-230 * Darstel-
lung der hyperbolischen Bewegungsgruppen durch binére lineare Gruppen 231-238 *
Begriindung der elliptischen Geometrie 239-244 * Der Gruppenraum einer ellipti-
schen Bewegungsgruppe 244-275 * Uber die metrischen Bewegungsgruppen 275—
285 * Metrisch-euklidische Ebenen 286-296 * Literatur 297-303 * Zusammenstellung
besonderer Zeichen 303 * Axiomentafel 304 ¥ Namen- und Sachverzeichnis 305-311.

Ross H. Bardell — Abraham Spitzbart: Intermediate algebra. (Addison~-
Wesley series in mathematics.) Addison-Wesley Publ. Co., Reading
(Mass.), 1959. 9+ 274 pp. $ 4.75.

The real number system and fundamental operations 1-25 * Special products
and factoring 26-44 * Fractions 45-62 * Functions and graphical representation
63—78 * Linear equations and systems of linear equations 79-102 * Quadratic equa-
tions and the quadratic function 103—125* Systems of equations involving quadrat-
ics 126-140 * Exponents and radicals 141-163 * Exponential and logarithmic func-
tions 164—184 * Polynomials of higher degree 185-203 * The binomial formula and
mathematical induction 204218 * Progressions 219-232 * Answers to odd-numbered
exercises 233-261 * Tables 265-267 * Index 269-274.

Robert M. Exner — Myron F. Rosskopf: Logic in elementary mathe-
matics. MeGraw-Hill Book Co., New York, Toronto, London, 1959. 9+
274 pp. sh. 52/6.

Glossary of special symbols and abbreviations ix * Mathematics, formal logic,
and names 1-16 * The statement calculus 17-56 * Proof and demonstration 57-99 *
Abstract mathematical systems 100-125 * The restricted predicate calculus 126
181 * Applications of logic in mathematics 182-242 * Appendix: Symbolic treatment
of the miniature geometry 243-270 * Index 271-274.

Loo-Keng Hua: Additive Primzahltheorie. (Aus dem Chinesischen iiber-
setzt von Wictor Ziegler.) B. G.Teubner Verlagsgesellschaft, Leipzig,
1959. 6+ 174 S. Kunstleder DM 20.50.

Erlduterungen 1 * Trigonometrische Summen 2-11 * Abschitzung von Summen,
die die Teilerfunktion enthalten 12-18 * Sitze iiber den Mittelwert einiger trigono-
metrischen Summen (I) 19-25 * Der Vinogradovsche Mittelwertsatz und seine Folge-
rungen 26-39 * Sétze iiber den Mittelwert einiger trigonometrischen Summen (IT)
40-64 * Trigonometrische Summen, die Primzahlen enthalten 65-76 * Asympto-
tische Formel fiir die Anzahl der Lésungen des Waring—Goldbachschen Problems
77-98 * Singuliire Reihen 99-106 * Weitere Untersuchung des Waring—Goldbach-
schen Problems 107-120 * Systeme diophantischer Gleichungen mit Primzahlen als
Unbekannten 121-152 * Weitere Untersuchungen zum Problem des zehnten Kapi-
tels 153-169 * Einzelergebnisse 170-174.

Marc Kac: Probability and related topics in physical sciences. (Proceedings
of the Summer Seminar, Boulder, Colorado 1957. — Lectures in applied
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mathematics, Vol. I.) Interscience Publ., New York, London, 1959. 13 +
266 pp. § 5.60.

Nature of probabilistic reasoning 1-24 * Some tools and techniques of probability
theory 25-57 * Probability in some problems of classical statistical mechanics 59—
159 * Integration in function spaces and some applications 161-182 * G. E. Uhlen-
beck: The Boltzmann equation 183-203 * A. R. Hibbs: Quantum mechanics 205—
221 * Balth. van der Pol: Smoothing and ‘““‘unsmoothing” 223-235 * Balth. van der
Pol: The finite difference analogy of the periodic wave equation and the potential
equation 237-257 * Bibliography 259-264 * Index 265-266.

L. V. Kantorovich — V. I. Krylov: Approximate methods of higher ana-
lysis. (Translated from the Russian fourth edition by Curtis D. Benster.)
P. Noordhoff, Groningen, 1959. 12+ 681 pp. $ 17.00.

Fourier’s method 1-19 * Infinite systems of equations 20-44 * The solution of
boundary-value problems by means of nonorthogonal series 44—-68 * The application
of double series to the solution of boundary-value problems 68-77 * The improve-
ment of the convergence of series 77-96 * The replacement of an integral equation
by a system of linear equations 97-110 * The method of successive approximations
and analytic continuation 110-119 * The application of integral equations to the
solution of the Dirichlet problem 119-141 * The solution of integral equations by
replacing an arbitrary kernel by a degenerate one 141-161 * Expressions for the
derivatives in terms of difference ratios. Relations between the values of a function
at the nodes of a net and the harmonic and biharmonic operators 162-191 * Differen-
tial equations and the finite-difference equations that correspond to them 191-217 *
The solution of finite-difference equations 217-241 * Variational problems connected
with the most important differential equations 241-258 * Ritz’s method and the
method of B. G. Galerkin 258-303 * Reduction to ordinary differential equations
304-327 * Estimate of the error in variational methods and their order of con-
vergence 327-357 * Introduction 358-365 * The property of minimum area in the
transformation of a region into a circle 365-376 * The property of minimum contour
length in the transformation of a region into a circle 376-381 * Orthogonal polyno-
mials and conformal transformation 381-390 * Expansion in a series of the powers
of a small parameter in the case of the transformation of a region into & circle 390-
414 * Expansion in a series of the powers of a small parameter in the case of the
transformation of a circle into a region 414—451 * Melentiev’s method of approximate
conformal transformation 451-478 * Green’s functions and the conformal transfor-
mation of regions 478-500 * The application of integral equations to conformal
transformation 501-520 * Mapping a polygon on a half plane 521-542 * Principles of
the application of conformal transformation to the solution of the fundamental
problems for canonical regions. Introduction 543-561 * The Dirichlet problem 561—
575 * The Neumann problem 575-582 * The general boundary-value problem for
harmonic functions 582-595 * The fundamental problems for biharmonic functions
595-615 * Schwarz’s method for the solution of the Dirichlet problem for the sum of
two regions 616-639 * The Schwarz—Neumann method for the solution of the
Dirichlet problem for the intersection of two regions 640-659 * An example of the
application of Schwarz’s method 659-670 * Bibliography 671-681.

NMT, Hefte 3, 1959. — 10
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Konrad Knopp: Aufgabensammlung zur Funktionentheorie, II. Auf-
gaben zur hoheren Funktionentheorie. Fiinfte Auflage. (Sammlung G&-
schen 878.) Walter de Gruyter & Co., Berlin, 1959. 151 S. DM 3.60.

Vorbemerkungen 4 * Weitere Aufgaben zu I, Kap. 1-5 5-13 * Singuldre Stellen
13-20 * Ganze und meromorphe Funktionen 20-29 * Periodische Funktionen 29-32 *
Analytische Fortsetzung 32-38 * Mehrdeutige Funktionen und Riemannsche Fli-
chen 38-41 * Konforme Abbildung 41-151.

Werner von Koppenfels — Friedemann Stallmann : Praxis der konformen
Abbildung. (Grundlehren der mathematischen Wissenschaften 100.) Sprin-
ger-Verlag, Berlin, Géttingen, Heidelberg, 1959. 13+375 S., 251 Fig.
Ganzl. DM 69.00.

Komplexe Zahlen 1-6 * Komplexe Funktionen 7-22 * Beispiele zur Lésung phy-
sikalisch-technischer Probleme mit Hilfe der konformen Abbildung 22-35 * Kon-
forme Abbildung gekriimmter Flichen 35-44 * Der Logarithmus 44-48 * Die all-
gemeine Potenz 48-59 * Die linearen Funktionen 59-84 * Der Mittelwertsatz 84—99 *
Abbildungsséitze 99-109 * Das Schwarzsche Spiegelungsprinzip 109-114 * Abbildung
von Kreisbogenpolygonen 114-141 * Polygone in Isothermennetzen 142-171 *
Zweifach zusammenhéngende Polygone 171-181 * Die eigentlichen N#herungsver-
fahren 181-188 * Die Integralgleichungsverfahren 188-203 * Zweiecke 203-207 *
Geraden-Dreiecke 207-216 * Kreisbogen-Dreiecke 216-234 * Einteilige Geraden-
Vierecke 234-258 * Zweiteilige Geraden-Vierecke 258-299 * Andere Polygone, deren
Abbildungsfunktion vollstéindig angegeben werden kann 299-314 * Polygone, die
von Kegelschnittbégen berandet sind 3156-336 * Zweifach zusammenhingende Poly-
gone 336-365 * Verzeichnis der Abbildungen 366-370 * Literatur 371 * Namen- und
Sachverzeichnis 372-375.

Woligang Krull: Elementare und klassische Algebra, II. (Sammlung
Goschen 933.) Walter de Gruyter & Co., Berlin, 1959. 132 S. DM 3.60.

Literatur 4 * Vorbemerkungen 5-6 * Gruppentheorie, insbesondere Theorie der
Abbildungsgruppen 7-36 * Galoissche Theorie. Reintranszendente Korper 37—64 *
Berechnungsprobleme und Homomorphieséitze 64-82 * Affine und projektive Dar-
stellungen. Gleichungen 5. und 6. Grades 82-111 * Bizyklische Gruppen und reelle
Radikalkérper 111-130 * Sachverzeichnis 131-132.

Paul Lorenz: Anschauungsunterricht in mathematischer Statistik. Bd.
II/1: Der Schluss vom Teil aufs Ganze. S. Hirzel Verlag, Leipzig, 1959.
114213 S., 27 Fig. Ganzl. DM 18.60.

Der statistische Begriff der Wahrscheinlichkeit und Folgerungen daraus 1-14 *
Die binomische Verteilung 15-45 * Empirische Verteilungen und die Gaussverteilung
46-58 * Die Verteilungen von Stichproben und ihre Charakteristiken 59—70 * Nihe-
rungen fiir die Verteilungen der Mittelwerte, der Varianzen und der Quotienten

M-—-M
r="""" yon Stichproben méssigen und kleinen Umfangs 71-99 * Be-
o
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stimmung von Mutungsgrenzen fiir oy und My. Irrtumswahrscheinlichkeiten.
Theorie 100-114 * Die praktische Durchfithrung des Schlusses vom Teil aufs Ganze;
Lexissche Zahl 115-135 * Tabellen 139-201 * Anhang 202-207 * Literatur 208 * Ver-
zeichnis der Bilder 209 * Namenverzeichnis 210 * Sachregister 211-213.

K. O.May: Elements of modern mathematics. Addison-Wesley Publ.
Co., Reading (Mass.), 1959. 16+ 607 pp. § 7.50.

Preface ix—xii * Note to the student xiii—xiv * Note to the teacher xv—xvi * Ele-
mentary algebra 1-69 * Elementary logic 70-133 * Elementary theory of sets 134—
172 * Plane analytic geometry 173-243 * Relations and functions 244-320 * Num-
bers 321-376 * Calculus 377-484 * Probability 485-528 * Statistical inference 529—
547 * Abstract mathematical theories 548—583 * Tables 586-592 * Table of special
symbols 593-597 * Index 599-607.

M. Miller: Variationsrechnung. (Mathematisch-naturwissenschaftliche
Bibliothek 24.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1959. 133 S.,
23 Fig. DM 8.10.

(Anmeldt i NMT, dette hefte, s. 125-126.)

Die Problemstellung der Variationsrechnung 1-7 * Die Eulersche Differential-
gleichung der Variationsrechnung 8-88 * Isoperimetrische Probleme der Variations-
rechnung 88-112 * Direkte Methoden zur Loésung von Variationsproblemen 112—
122 * Rand- und Eigenwertprobleme 123-133.

Fritz Neiss: Determinanten und Matrizen. Fiinfte Auflage. Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1959. 6+ 111 S., 1 Fig. DM 6.60.

Allgemeine Vorbemerkungen 1-5 * Kombinatorik 5-13 * Determinanten 13-42 *
Matrizen 42-74 * Systeme linearer Gleichungen 74-93 * Orthogonalisierung 93-100 *
Quadratische Formen 100-109 * Sachverzeichnis 110-111.

A. V. Pogorelov: Differential geometry. (Translated from the first Rus-
sian edition by Leo F. Boron.) P. Noordhoff, Groningen, 1959. 9+ 171pp.
Paper cover $ 3.90, cloth bound § 4.50.

Introduction viii * The concept of curve 1-21 * Concepts for curves which are
related to the concept of contact 22—-41 * Fundamental concepts for curves which
are related to the concepts of curvature and torsion 42-66 * Concept of surface
67-79 * Fundamental concepts for surfaces which are related to the concept of
contact 80-99 * First quadratic form of a surface and concepts related to it 100-115*
Second quadratic form of a surface and questions about surface theory related to it
116-141 * Fundamental equations of the theory of surfaces 142-152 * Intrinsic
geometry of surfaces 153-167 * Bibliography 168 * Index 169-171.

D. E. Richmond: Introductory calculus. Addison-Wesley Publ. Co.,
Reading (Mass.), 1959. 154207 pp. $ 5.50.
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Functions and graphs 1-33 * Derivatives 34-89 * The area under a curve 90—119 *
Exponentials and logarithms 120-144 * Complex numbers and trigonometry 145—
186 * Appendix on real numbers 187-194 * Answers to odd-numbered exercises
197-202 * Index 203-207.

Israel H. Rose: A modern introduction to college mathematics. John
Wiley & Sons, New York, London, 1959. 21530 pp. $ 6.50.

Sets 3-17 * Functions, operations and relations 18-52 * Reason and irrationality
53-69 * The real number systems 70-104 * Algebraic equations and inequalities 105—
136 * Introduction to analytic geometry 137-186* Introduction to trigonometry 187—
222 * Trigonometry continued 223-278 * Graphs 279-299 * Graphs of second degree
equations 300-345 * Exponential and logarithmic functions 346—366 * Parametric
equations 367-375 * Polar coordinates 376-387 * Introduction to the calculus 389—
427 * Statistics and probability 428-493 * Tables 494-500 * Answers 501-518 *
Index 519-530.

Hanno Rund: The differential geometry of Finsler spaces. (Grundlehren
der mathematischen Wissenschaften 101.) Springer-Verlag, Berlin, Got-
tingen, Heidelberg, 1959. 13284 S. Ganzl. DM 59.60.

Calculus of variations. Minkowskian spaces 1-43 * Geodesics: Covariant differen-
tiation 44-64 * The “Euclidean connection” of E. Cartan 65-93 * The theory of
curvature 94-149 * The theory of subspaces 150-214 * Miscellaneous topics 215—
262 * Bibliographical references to related topics 262—265 * Bibliography 266 -280 *
Index 281-283 * Symbols 284.

SYVENDE BIND AV SOPHUS LIE’S SAMLEDE AVHANDLINGER

De seks ferste bind av Sophus Lie’s samlede verker er forlengst utkommet.
Det sist trykte bind ble utsendt i 1937. Samtlige bind ble utgitt av Norsk Mate-
matisk Forening ved bevilgning fra Statens Forskningsfond av 1919 og med under-
stottelse av Videnskapsakademiet i Oslo og Videnskapernes Akademi i Leipzig.
Utgivere var Friedrich Engel og Poul Heegaard. Bindene utkom p& B. G. Teub-
ners forlag i Leipzig og H. Aschehougs forlag i Oslo.

Fer sin ded hadde F. Engel gjort helt trykkferdig et syvende og siste bind
som skulle inneholde en del etterlatte arbeider av Sophus Lie. Det Saksiske
Videnskapsakademi i Leipzig og Norsk Matematisk Forening har n& besluttet &
utgi dette syvende bind. Ansvarlig for korrekt gjengivelse av Engels manuskript
blir herrene K. Faber og W. Neumer.

Subskripsjonsprisen pé dette syvende bind vil for nordiske abonnenter dreie
seg om 70-80 norske kroner. H. Aschehougs forlag i Oslo (Sehestedsgt. 3) tar imot
subskripsjonsanmeldelser fra de nordiske land. Teubner i Leipzig mottar subskrip-
sjonsanmeldelser fra ikke-nordiske land. Bindet vil utkomme i nser fremtid.




OPPGAVER TIL LOSNING

Losninger av oppgavene 176-179 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Losninger av oppgaver i dette hefte ma, for & komme
med i neste hefte, veere sendt innen 1. november 1959. Til samme dato forlenges
fristen for oppgavene 174 og 175 i forrige hefte.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredaktgren, helst sammen med forslagsstillerens egen lgsning.

176. Hérled foljande summationsformel f6r alternerande potenser av
de naturliga talen:

" | 1—(=1)»
_’(_l)n—kkp =_2 (p) ai%p_i-i- _Lwla
]

. )
k=1 i=0 2
dir talen @, r givna genom formeln fér n=1, p=1,2, ..., a,=1.
GQerhard Arfwedson

177. La n og r betegne naturlige tall, og

k=1 k=1
Vis at
2 ¢ 6 30, 0,2—bc
1 1, 01 2
8§ =01, S =———= 0 8y = —— —— -t
’ ne n € nd n? 2n

Angi en metode til & finne en tilsvarende formel for s,. )
W. Ljunggren

178. Bevisa identiteten

o(a+r\ [b—7r a+b+1
()62 -0
r=0
Qerhard Arfwedson
[133]
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179. Vis at rekken
IL+i—d+3+3+d+f—t+S+G+athtatatastai—3+...,

som er framkommet av den alternerende harmoniske rekke ved omord-

ning av leddene, er divergent.
R. Tambs Lyche

LOSNINGER

172. En Fibonacci-serie definieras genom a,.,=a, +a,_;, dir a, och
a, r givna heltal. Visa, att

Qpyopt+ ( - l)nar = knar+n

dir k, bildar en speciell Fibonacci-serie. Angiv de forsta termerna i

denna serie. Carl-Erik Froberg

Oppgavestillerens losning: Lat E vara forskjutningsoperatorn Ka, =
@y 41, 58 finner man latt k, =E"+ (— 1)"E-", varav verifieras att k, ;=
k,+k,_,, eftersom E2=E+1. For n=0 fas ky=2; n=1 ger k,=
E—E-YE?*—E)=1. Serien alltsa: 2, 1, 3,4, 7, 11, ....

Lost av Gerhard Arfwedson, F. P. Dahlkild, Sverker Eriksson og Erik Pettersson.

173. For x>0 er gitt en kontinuerlig funksjon ¢(z), der
0< g <.

Vis at dersom det eksisterer minst en funksjon f(x) som tilfredsstiller det
ene av kravene

() lim
x—>0+

— > lim f(z) = 0

x—>0+

f @) —f(p(x)
X

lim (@) > lim f(z) = 0,
a—0+f (%) ““f(‘P(x)) 20+

s eksisterer det ikke noen funksjon som tilfredsstiller det andre.

(8)

H. Killingbergiro

Losning: Antag, at der findes en funktion f(z), der tilfredsstiller (x),
og en funktion f,(x), der tilfredsstiller (5). Enhver funktion f(x) = kf,(z),
hvor k er en arbitreer konstant, tilfredsstiller da ogsa (8), og breken til-
venstre i (§) er uafhengig af k.

Lad a, veere et positivt tal, og lad x gennemlgbe folgen a, =¢"1(a,),
der er aftagende og nedadtil begrenset af 0. Der gwlder lima, =0; thi

n—>o0
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lima,=p>0 ville, da ¢(zx) er kontinuert, medfere ¢(p)=lime(x)=
n—>o00 T—>p

lim¢(a,)=lima, =p, hvilket er udelukket.

n—>00 7—>00
Den indledende antagelse medferer

lim J1(ay) = f1(@p 1)

(1) a > hmfl(an) =0,
og
2) Wfl) i ey =0

n—soo fo(@n) = fo(@p11)  nsoo

For tilstreekkelig store verdier af n, n = Ny, folger af (1):

(3) fl(an) > fl(an+1) > 0
og af (2):
(4) fo(@y) > fo(@pi1) > 0.

Ad (91 fo(@n)/(fa(@n) = fo(@ps1)) > O tillader ogsd fy(@,) <fo(@ni1) <O og
Ja(@y) fo@p1q) < 0; men i forste fald kan funktionen — f,(x) veelges i stedet
for fy(x), og sidste mulighed mé& forkastes, da den medforer

fZ(an)
f?..(an) - fz(a"n+1)

<1
i strid med (2).
Nu medfarer (1), at
anfl(an)

m —————— = ’
n—>oof1(an) '_'fl(an-f—l)

og med (2) sikrer dette, at der eksisterer et tal Ny = N,, s& der for n= N,
geelder

an fl(a’n) < an f2(a/n)
J1(@) = [1(@n1)  Sfal@n) = fo(@niq) '

Med benyttelse af (3) og (4) udledes heraf

J1(@n41) < Jo (@n41)
fl (a’n) fz (an) .

Det kan ved passende valg af f,(x) (en sendring af f,(x) ved multiplika-
tion med en positiv konstant er uden indflydelse i ovenstiende punkter)

sikres, at fi(ay,) =fa(ay,), og ved induktion fas da af (5), gwzldende for
n=N,:

(6) fal@n) —fila,) > 0.

()




136 OPPGAVER

Videre medferer (2), at

lim fz(“n) '“fz(an+1) -0,

n—>00 (42%

og med (1) sikrer dette, at der eksisterer et tal Ny = N,, sa der for n= N,
gelder
Ja(@n) = fo(@y11) < Ji(@n) = f1(@n41)

an an
eller
(7) Jo(@ni1) = f1(@n 1) > folan) —fi(an) -
Af (1) og (2) udledes lim (fy(a,) — f1(@,)) = 0; men dette er i strid med, at

(6) og (7) geelder for alle n =V, hvor IV er det storste af tallene N, og V.

Den indledende antagelse ma derfor forkastes.
F. P. Dahlkild

INTERNORDISK PRISOPPGAVE

NMT bringer her den tredje felles prisoppgave for gymnasiaster 1 alle nordiske land.
Oppgaveteksten er gitt bade pa norsk og svensk, med en dansk forklaring til noen
gloser i den norske tekst. Besvarelser kan selvsagt innsendes pa dansk, norsk eller
svensk. Det kreves lgsning p4 minst 5 av oppgavene.

Det vil bli delt ut en 1. premie pa 150 og en 2. premie p& 75 n. kr., eller tilsvarende
belop i vinnerens egen valuta.

Besvarelsene vil bli bedemt av en komité innen NMT’s redaksjon. Et utvalg av
de beste oppgavelesninger blir offentliggjort i tidsskriftet.

Fristen for innlevering av besvarelser er 15. februar 1960. Oppgi navn, klasse og
skole. Losninger sendes til redaksjonssekreteren, professor E. Selmer, Mat. Inst.,
Nygardsgt. 114, Bergen, Norge, ledsaget av en erklering om at besvarelsen er selv-
stendig arbeid.

V4 henstiller til de nordiske gymnasieleerere & gjore flinke elever oppmerksom pd
prisoppgaven.

Norsk tekst:

1 11 1
1. Gitt ligningen —+—+—=———— Bevis at for ethvert positivt ulike
a b ¢ a+b+c

(odde) helt tall n gjelder ligningen
1 1 1 1

——— .
am bn cn an+bn+cn
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2. Et rektangulert skjema av reelle tall med n horisontalrader! og
p vertikalrader? er gitt. Horisontalradene nummereres 1, 2, ..., 4, ..., n,
og vertikalradene 1,2, ..., k, ..., p. I horisontalrad nr. ¢ er det minste
tall m,, og i vertikalrad nr. k er det sterste tall M. Det storste av de
n tall m,; kalles m, og det minste av de p tall M, kalles M. Bevis at
m= M.

3. Det er gitt en kule med radius R og et plan « som ikke har noe
punkt felles med kulen. La § vere et punkt i «. S er toppunktet i en
omdreiningskjegleflate som kulen er innskrevet i. Hva er det geometriske
sted for sentrum i kulens reringssirkel med kjegleflaten, nir S beveger
seg fritt i planet «?

4. Tre linjestykker A4,, BB, og CC; har alle samme lengde 2k, er
parvis vinkelrette pd hverandre og har felles midtpunkt 0. Med 4 som
toppunkt og forlengelsen av OA4 ut over 4 som akse er anbrakt en om-
dreiningskjegleflate som vender bort fra O. Likesd for de fem andre
punktene A4,, B, By, C og C;. De seks kjegleflatene har samme halve
toppunktsvinkel ». For hvilke verdier av v bestemmer kjegleflatene et
lukket omrade som inneholder O?

Idet v antar en av de herved fastlagte verdier, skal man finne den
storste avstand fra O til noe punkt pa det lukkede omrades overflate.

5. I et plan ligger det » punkter. To og to av dem er forbundet med
et orientert linjestykke (altsd et linjestykke med en bestemt positiv ret-
ning). Idet man bare kan bevege seg pa disse linjestykkene og det i
positiv retning, skal man vise at det finnes et av de gitte punkter slik at
en kan n4 fra dette til alle de andre punktene, enten direkte eller gjennom
bare ett ekstra punkt.

6. Finn storste verdi av uttrykket w= —5x+ 8y+ 3z, idet
20+5y—2 =1, —3r—8y+22 £ 4, —20x—12y+32 = 9

samb z20,y=20,22=20.

Svensk text:

1 1 1 1
1. Relationen — +—+~=————— #r given. Visa att for alla udda posi-
¢ b ¢ a+b+c

tiva tal n géller
1 1 1 1

— ==,
a™ b'n cr an+bn+cn

Dansk: ! vandrette reekker; 2 lodrette raekker (sojler).
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2. Ett rektangulért schema av reella tal med n rader och p kolon-
ner &r givet. Raderna numreras 1,2,...,4,...,%n och kolonnerna
1,2, ...,k ..., p. I rad nr. s betecknas det minsta talet med m;, och
i kolonn nr. k& betecknas det stérsta talet med M ,. Det storsta av de
n talen m; kallas m och det minsta av de p talen M, kallas M. Visa att
m=M.

3. En sfér med radien R samt ett plan «, som inte har nigon punkt
gemensam med sféren, dr givna. Lat S vara en punkt i «. § &r toppunkt
i en rotationskon, i vilken sféiren &r inskriven. Bestim geometriska orten
f6r medelpunkten i sfirens tangeringscirkel med konen, da S rér sig fritt
i planet o.

4. Tre strickor A4,, BB, och CC, har alla samma lingd 2k, ir parvis
vinkelrita mot varandra och har gemensam mittpunkt 0. Med 4 som
toppunkt och OA:s férlingning som axel anbringas en rotationskon vind
bort frén O. Analogt forfares med de fem andra punkterna 4,, B, B,, C
och (. De sex konerna har samma halva toppvinkel v. Fér vilka virden
pé v bestimmer konerna ett slutet omrade, som innehaller O ?

Lat sedan v antaga ett av de salunda fastlagda virdena och bestim
det storsta avstindet fran O till ndgon punkt pa det slutna omradets yta.

5. I ett plan &r givet n punkter, och varje punktpar &r férbundet
med en orienterad linje. I det man endast far forflytta sig ps dessa
stréickor och i deras positiva riktning skall bevisas, att bland de givna
punkterna finns en, fran vilken man kan na till alla de andra, antingen
direkt eller genom hogst en extra punkt.

6. Stk det storsta virdet av uttrycket w= —5x+ 8y + 3z da:
22+5y—2z =1, —3vx—8y+22 < 4, —20—12y+32 £ 9

och dessutom




EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen varen 1959 pa de
matematiske gymnasielinjer i de nordiske land.

DANMARK
Matematik 1.
1. Los og diskuter ligningssystemet
z+y—1=20
2?24+ (l—a)ry—ay?*—axr+a*y+1—a = 0.

2. Find ligningen for den cirkel, der har radius 1 og centrum i ferste kvadrant,
og som rgrer begge linierne

3y = 4w og 4y = 3.

Find reringspunkternes koordinater.
Find ligningerne for tangenterne til cirklen fra punktet (3, 6).

3. Et konvekst polyeder er sammensat af to tresidede pyramider D—ABC og
E—ABC, hvis felles grundflade er den ligesidede trekant ABC med siden a.
Liniestykket DM, hvor M er midtpunktet af AC, er lig med la Vs, og kanten BE
er lig med an. DM og BE star begge vinkelret pa trekant 4BC’s plan.

Find polyedrets toplansvinkler langs AB, BC og CA.

Igennem midtpunktet af kanten AB legges en plan « parallel med sidefladen
ACD. Find vinkler og sider i den polygon, hvori « skeerer polyedret.

Matematik II.

1. I et retvinklet koordinatsystem er givet punkterne 4(3, 0) og B(—1, 3) samt
linien ! med ligningen z=29.

Find ligningen for det geometriske sted for de punkter, hvis afstande fra 4 og I
har et konstant forhold, nar det forlanges, at det geometriske sted skal indeholde
punktet B.

Angiv koordinaterne til den fundne kurves brandpunkter.

2. Konstruer en trekant ABC af siden AC og heojden h, p& siden AB, idet des-
uden afstandene fra AB og AC til midtpunktet M af siden BC skal have forholdet
p:¢q, hvor p og g er givne liniestykker. — Diskussion kraves.

Beregn trekantens vinkler og ubekendte sider samt AM, nar AC=4,574,
h,=2,902, p=1 og g=1.

[139]
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3. Beregn arealet af den lukkede figur, der begraenses af abscisseaksen, kurven
y=Inz og den kurvetangent, hvis reringspunkt har ordinaten 1. (Inz betegner
den naturlige logaritme af x).

Den nzvnte figur drejes 360° om ordinataksen. Beregn rumfanget af det derved
fremkomne omdrejningslegeme.

FINLAND

Lingre kursen.

1. Denna var (1959) dro av abiturienterna 44,379, gossar. Fran 1929 har antalet
abiturienter vuxit med 229,6% och antalet gossar med 167,8%. Huru manga %
av 1929 érs abiturienter utgjorde flickorna och med huru manga % har flickornas
antal sedan dess okats?

2. Visa, att en aritmetisk serie finnes i vilken summan av de n foérsta termerna
for varje virde pd n dr =3n? -+ 2n. Bestim scriens tre férsta termer.

3. Visa, att 2+ 228 — 22% for intet reellt virde P& x ar storre én 1.

4. Vilken punkt ps parabeln z=gy? #ir nirmast linjen y =2+ 1? Berikna detta
kortaste avstand. Rita figur.

5. Ett lan om K mk, p4 vilket beriknas p 9, rinta, amorteras P& ¢ &r genom
inbetalning av en (arlig) annuitet p& ¢ mk i slutet av varje ar. Hérled den mellan
K, a, p och t gillande formeln.

6. Punkten P ér beligen pa férlingningen av strickan 4B. Utmed linjen AB
avsittas, utgdende fran P, i motsatta riktningar strickorna PC = PD = medel-
proportionalen till PA och PB. Visa, att punkterna O och D dela strickan AB i
samma férhallande, den ena in-, den andra utvindigt.

7. I triangeln ABC &r sidan AB =12 cm. Vinkeln A :s bissektris avskir av BC
strickan CD=9 cm och B:s bissektris av AC strickan AE=8 cm. Berikna
triangeln ABC':s perimeter.

8. Bestdm bland de i en sfir med radien 7 inskrivna rdta konerna den, vars
mantelyta &r storst.

9. Los fullstéindigt ekvationen
tg 2z tgz

tg x _tg 2

10. Bestdm, utan bruk av logaritmtabeller, vilketdera av talen log, 3 och
log, 6 &r storst.

ISLAND

1.
1. Undersog og tegn kurven
Yy = 4sin2z — 3tgw
i intervallet mellem 0 og 2.
Beregn arealet af det omrade, der begranses af kurven, x-aksen og linien = }x
i intervallet 0 <z < 1a.
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2. Lgs ligningen
228 — (9—62)x2+ (9—19)x+3¢ = O,

nar den vides at have en reel rod.

3. Fra punktet P(0, £), hvor ¢>0, er der trukket de to tangenter til hyperblen

22 y2

a? b?

1) Bevis, at reringspunkterne S og S; har koordinaterne
b2
(i 5; Vor 22, —7) .

2) Find et udtryk for arealet 4 af trekanten SPS;, og bestem A’s mindste-
veerdi, ndr P beveger sig pa y-aksen.

3) Find et udtryk for radius R i trekanten SPS,’s omskrevne cirkel samt mind-
steveerdi for R.

4) Angiv betingelsen for, at de to mindsteveardier for henholdsvis 4 og R svarer
til samme veerdi af .

II.
1. Konstruer trekanten ABC af vinklen A, radien r i trekantens indskrevne
b
cirkel, samt forholdet —=£, hvor p og g er givne liniestykker.
c q

Beregn trekantens sider og vinkler, nar £ A4 =65,58°, r=2,5 cm og

ol
N W

2. Tre punkter 4, B og C p& parablen y?=px har ordinaterne henholdsvis
Y1 Yo 02 q (Y3>y;>0). AC er parablens normal i 4 og BC dens normal i B.
Bevis, at 2y,y,=p* og y1+y:= —4¢.

3. Grundfladen ABC i tetraedret O—ABC har siderne a=3, b=7 og c=5.

1) Beregn vinklen B i trekanten ABC samt dennes areal.

2) Endvidere er der givet, at i hjernet B—ACO er siden OBC=90° og siden
OBA =60°. Beregn toplansvinklen ved kanten AB.

3) Yderligere opgives kanten BO=4. Beregn tetraedrets rumfang.

NORGE

Reallinjen.
1. T likningssettet

. v+ Y o
X S — COS — =
g TY 8y

U+ P
x cos—-+ y sin— = 2sin
2 2

N

er v en vinkel i omrédet 0° <v < 360°. Droft losningen av dette likningssettet, og
finn @ og y nar v har slike verdier at likningssettet lar seg lose. Skriv svarene med
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funksjoner av vinkelen v i stedet for funksjoner av }v. Avgjer sd hva for verdier v
kan ha nar x og y skal 1) begge vaere positive, 2) begge vere negative, 3) ha motsatt
fortegn.

Bruk de funne verdier av « og ¥ til & finne hva v ma veere om vi skal f& y = 2z.
Hva for verdier far x og y da?

2. I en reguleer, firkantet pyramide er grunnflatesiden a og heyden &. I pyra-
miden er det innskrevet en terning slik at terningen har en sideflate liggende i
pyramidegrunnflaten og de fire hjernene i den motsatte sideflaten liggende ett pa
hver sidekant i pyramiden.

Konstruer et plant snitt gjennom pyramiden og terningen, nér snittet er lagt
gjennom pyramidehgyden og parallelt med to grunnflatesider i pyramiden. Velg
a=8 cm og A=10 cm nar du konstruerer, og forklar konstruksjonen kort.

Finn volumet av pyramiden og volumet av terningen uttrykt ved a og h. Sett

h
—=2 og vis at forholdet mellom volumet av terningen og volumet av hele pyra-
a
miden er 32
flo) = =,
(x+1)

Denne funksjonen skal undersgkes for alle reelle verdier av x (positive, null og
negative) uten tanke pa pyramiden og terningen. Finn da de verdier av x som
gjor f(x) positiv, null og negativ. Finn de omrader av z der f(x) vokser og der
f(z) minker nar x vokser, og finn de maksimal- og minimalverdier som f(x) har.
Hva er forholdet mellom terningsiden og pyramideheyden nar f (x) har sin maksimal-
verdi ?

3. Parabelen y?=4x og den rette linjen L med likning z=a er gitt. La P vare
et punkt pa L, og la § vare skjeringspunktet mellom polaren til P med hensyn
til parabelen og den rette linjen fra P til origo.

Néar P flytter seg langs L, folger punktet S en kurve, og polaren til P dreier seg
om et fast punkt. Finn det faste punktet, og forklar hvorfor det er felles for alle
polarene vi far nar P flytter seg. Vis at kurven som S felger, har likningen

22% —ay?*+2ax = 0.

Droft den geometriske tydning av denne likningen for fritt valte, endelige verdier
av a. Finn spesielt sentrum og akser nir kurven er en ellipse og nar den er en
hyperbel. Lag en tegning nar a=6 og nar a= — 6. Velg 1 cm til enhet, og tegn
begge kurvene og den gitte parabelen i samme aksesystem p& millimeterpapiret.

Vis, at nar den funne kurven er en hyperbel, s& er asymptotene tangenter til
den gitte parabelen.

SVERIGE

Matematiska grenen.

1. Den rita linjen =+ 2y =15 dr normal till kurvan y=a(1 + 22). Bestim virdet
pa konstanten a.

2. I en regelbunden tresidig pyramid &r vinkeln vid spetsen i en sidoyta lika
stor som vinkeln mellan en sidokant och basytan. Bestidm denna vinkel.
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3. I den vid 4 rétvinkliga triangeln ABC dr sidan BC parallell med y-axeln i ett
rétvinkligt koordinatsystem. Hoérnet 4 ligger i punkten (0;1) och hérnet B pa
kurvan y=2?. Bestdm geometriska orten fér hérnet C, nir B genomléper den
angivna kurvan, och konstruera orten i dess huvuddrag med angivande av even-
tuella maximi- och minimipunkter samt asymptoter.

4. En likbent triangel med toppvinkeln 20° &r inskriven i en cirkel. En trans-
versal genom cirkelns medelpunkt delar en av triangelns lika stora sidor i for-
hallandet 3:1 fran spetsen rdknat. I vilket forhallande delar transversalen den
andra av de lika stora sidorna ?

5. Undersok funktionen y =sin 3z + sinz med avseende p& maxima och minima,
samt upprita motsvarande kurva i dess huvuddrag. Berikna dérefter ytan av det
omréide, som begrinsas av z-axeln och kurvan fér 0sx=in.

)

6. Funktionen I = F(T') definieras genom ekvationen I =aT?-e 2'_', dér a och b
ér konstanter och a>0. Genom sambanden

10t
xr = -&T’ Yy = 1010g1—2 . 1°logT
inféres variablerna z och y i stéllet f6r 7' och I. Den pa detta siitt erhalina funk-
tionen y=f(x) representeras grafiskt av en rit linje. Beridkna dennas riktnings-

koefficient, om a=60,2 och F(2000)=0,0010.

7. Ekvationen 22(1 —a)+y*(1+a)—1=0, dir a dr ett reellt tal, som kan anta
olika virden, betyder ett kiigelsnitt i ett riatvinkligt koordinatsystem. Undersok,
hur kigelsnittets art och dess symmetriaxlars ligen beror av a. Dirvid skall for
en ellips anges liget av storaxeln och fér en hyperbel laget av transversalaxeln.
Slutligen skall genom schematiskt uppritade diagram limnas en 6versikt av hur
kégelsnittet varierar, nidr a genomloper alla reella virden.

8. Undersok utseendet av kurvan y = 2?4+ ax + b fér olika reella virden pé kon-
stanterna a och b. Bevisa dérefter med ledning av denna undersékning, att om
ekvationen x® 4+ ax + b = 0 har tre olika reella rétter, sa géller olikheten 4a3 4+ 27b% < 0.
— Det erfordras inte men betraktas som en fértjénst, att man bevisar omvindningen
av foregdende sats, dvs. om 4a3-+ 2762 <0, s& har ekvationen 3 +axr+b=0 tre
olika reella rétter.

RESULTAT AV PRISTAVLINGEN FOR SVENSKA GYMNASISTER

(Uppgifterna i NMT 6 (1958), s. 180-181.)

Losningar insindes frén sammanlagt 19 deltagare. Forsta pris, 100 kr., till-
delades Elon Ekman, Blackebergs kommunala gymnasium, Bromma, medan andra
pris, 50 kr., tillf6ll Per Martin-Lof, Ostra Realldroverket, Stockholm.



SUMMARY IN ENGLISH

P. 0. Nerue: The axiomatic foundation of geometry by F. Backmann, I.
(Danish.)

In his recent book: ‘“Aufbau der Geometrie aus dem Spiegelungsbegriff’’,
F. Bachmann has given a purely algebraic foundation of plane geometry based
on the group of deplacements.

After an introduction, the present article is divided in three sections, two of
which are published in this issue. These are dealing with:

A. Elements of group theory.

B. Group-theoretical properties of deplacements in the Euclidean, hyperbolic
and elliptic plane from an intuitive point of view, leading to the axioms of
Bachmann.

The third section will follow in the next issue.

Viwasirmor Oemunpsson: Multiplication in n dimensions. (English.)

Given a normed vector space of dimension n over the field of real numbers,
it was first shown by Hurwitz that a multiplication satisfying the five conditions
A-E p. 112 is only possible for n=1, 2, 4, 8. The article contains an elementary
and very simple proof of this fact. The central result is Lemma 2 p. 114, which
shows that n» must be a power of 2, and that the multiplication is essentially
unique if it exists.

B. J. AxpErssoN: A study of speed adjustment by railway crossings.
(Swedish.)

Let y(z) =min {yh(ac), y,,(x)} be the length of visible railroad from a car at a
distance x from the crossing O (fig. 1 p. 117), and let vp(x) (formula (3) p. 119)
be the maximal speed from which the car can stop after a distance x. The (con-
stant) speed of the train is denoted by . The possibilities are discussed for the
car to stop, to accelerate or to continue at constant speed v, after the train is
detected. Three typical cases are illustrated in fig. 4 p. 119: 1° Stop. 2° Continue
(preferably accelerate) or stop. 3° Continue.

The traffic study was made by the author under a contract with the ‘‘public
relation” committee of the Swedish Mathematical Society (Svenska matematiker-
samfundets kontaktndmnd).
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