ROTHS FUNDAMENTALA SATS*

HARALD BERGSTROM

1. Inledning. Som bekant utdelas vid de vart fjéirde 4r dterkommande
stora internationella matematikerkongresserna tva pris, vilka i regel
tillfalla yngre matematiker for speciella insatser. Vid 1958 ars kongress i
Edinburgh gick ett av dessa pris till en talteoretiker fran Storbritannien,
K. F. Roth. Jag vill hér redogora fér Roths prestation.

Ett omrade, som sérskilt fingslat matematikernas fantasi ar sambandet
mellan de rationella talen och de irrationella talen. De rationella talen
inneslutas i en delméngd av de algebraiska talen. Ett algebraiskt tal & ar
nollstélle till ett polynom, dvs. det satisfierar en ekvation

(L.1) "+, 19"+ .. +a, =0

med rationella koefficienter a,, »=0, 1, ..., n—1. Om polynomet i vin-
stra ledet av (1.1) ar irreducibelt séiges 9 ha graden n.

Utanfér méngden av de algebraiska talen ligga de s. k. transcendenta
talen, dvs. de irrationella tal, som ej &dro algebraiska. I en betydelse
ligga emellertid atminstone vissa transcendenta tal nirmare rationella
tal 4n algebraiska tal, ndmligen s& att Atminstone en del transcendenta
tal i en viss betydelse kunna approximeras »bittre« dn algebraiska tal
med rationella tal. Enligt en sats, som gar tillbaka till Dirichlet, finnes
oéndligt manga par (p, ) av naturliga relativt primiska tal fér vilka
olikheten

(1.2) [¢—plql < q*

ar satisfierad, da ¢ &r ett reellt positivt irrationellt tal. Fér beviset hin-
visas till larobocker i elementéir talteoril. — Emellertid kan for vissa
irrationella tal & olikheten

(1.3) [4—plql < q*

* NMT bringer her en artikkel som i vanskelighetsgrad ligger til dels betydelig over det
vanlige nivé. Nar redaksjonen likevel har funnet det riktig & ta inn artikkelen, skyldes det
at Roths bevis er en av de mest omtalte prestasjoner innen matematikken i den senere
tid.

1 Se t. ex. T. Nagell: Elementdir talteors, Uppsala 1950, s. 37.

NMT, Hefte 2, 1959. — 5 [57]
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ha oéindligt manga lsningar (p, ¢) &ven for » > 2. Ovre grinsen x, for alla
» for vilka (1.3) alltjimt har odndligt ménga losningar kan limpligen
betraktas som ett matt pd den noggrannhet varmed ¢ approximeras av
ett rationellt tal. P4 grund av Dirichlets sats ér »;=2 for varje reellt
irrationellt tal. Redan 1844 visade Liouville att »x, for ett algebraiskt
tal ej kan vara storre d4n dess grad n. Thue visade 1908 att %, < n+ 1.
Siegel sinkte (1921) denna gréins till min{s+n/(s+1)}(s=1,2, ...,n—1)
och Dyson sinkte den (1947) till }/2n. Siegel férmodade att x,=2 for
varje reellt algebraiskt tal av grad >1. Roth har nu visat att denna
férmodan dr riktig. Roths sats kan formuleras pa foljande satt:

For varje reellt positivt algebraiskt tal av graden >1 har (1.3) odndligt
mdnga losningar (p, q) med naturliga relativt primiska tal p och q, om
=2, men endast ett dndligt antal sidana losningar om » > 2.

Beviset for satsen dr indirekt, dvs. han antager att (1.3) har odndligt
manga 16sningar (p, q) for %> 2 och nagot algebraiskt tal ¢ och visar att
detta leder till en motségelse. Han kan dérvid utgéa fran att & ar ett s. k.
helt algebraiskt tal, dvs. att J satisfierar en ekvation (1.1), déra,, ..., ¢,
dro hela tal. Om niamligen ¢ satisfierar en ekvation (1.1), dir koefficien-
terna ha stOrsta gemensamma dividenden d, &r dd ett helt algebraiskt
tal — den ekvation, i vilken d¢ dr rot, framgar av (1.1), d4 denna multi-
pliceras med d® — och om (1.3) har odndligt manga lésningar (p, q) for

négot x> 2 ar
[dd—pdfq| < d-g" < g™

for odndligt manga (p, g¢) och ett tal »;, 2 <, <» (némligen for alla g,
for vilka d<q¢*7). Vi utgd silunda i fortsittningen fran att 4 ar ett
helt algebraiskt tal.

Roths bevis ar elementért i den betydelse, att det ej bygger pa analy-
tiska hjalpmedel. Emellertid &r det langt ifran enkelt. Det fordrar en
ganska stor apparatur. De hjélpmedel, som han anvénder, dro i stort sett
foljande: 1° elementédra diofantiska approximationer, 2° generaliserade
Wronskideterminanter (Wronskimatriser), 3° Gauss’ lemma om koeffi-
cienternas delbarhet i en produkt av polynom, 4° ett nytt begrepp, s. k.
index for polynom (detta bestimmer en s. k. véirdering).

Roths resultat ar av stor betydelse i olika sammanhang. Bl a.
generaliserar det en bekant sats av Siegel, vilken nu kan givas f6ljande
formulering :

Om f(x, y) dr ett homogent irreducibelt polynom av graden n med heltals-
koefficienter och g(x,y) dr et polynom (ej médvindigtvis homogent) av
graden =<mn—3 med heltalskoefficienter, sd har ekvationen
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f@9) = 9(@,9)
blott ett dndligt antal heltalslosningar.

Dysons uppskattning ger motsvarande sats for det fallet att graden av
g(z, y) 4r mindre &n n— V2n. Beviset av ovanndmnda sats foljer ganska
direkt av Roths sats?.

Det hir nedan givna beviset ansluter sig narmast till framstéllningen i
J. W.S. Cassels: An introduction to diophantine approximation, Cam-
bridge 1957, vilken dock i stort sett féljer Roths originalbevis i Mathe-
matika, Vol. 2, Part 1, No 3 (1955). Emellertid anvinder jag genom-
gaende vektorframstéillning. Uppskattningar som vi gora i det foljande
viljas endast med s8 stor precision att de éro tillréckliga f6r beviset av
Roths sats.

2. Beteckningar. For att n& en forenkling i uttrycksmedlen, infor jag
vektorer. En vektor betecknas med stor bokstav, t.ex. 4, och dess ko-
ordinater med motsvarande liten bokstav, som indiceras fér att angiva
koordinatens plats, alltsa

A= (a, 0 ...,0,).

0 betecknar O-vektorn. Smé bokstiver beteckna rationella tal, d& ej
nagot sirskilt forbehall gores. Med vektorer 4, B osv. rikna vi enligh
de vanliga vektorreglerna, alltsé

A=Boma,=0b;,1=12,...,m
A+B = (a;+by, ag+by, ..., a,+b,)
A = (lay, Ay, ..., Aay,) .

Vidare anvinda vi de speciella beteckningarna 4 < B, om a,; < b, for alla ¢,
A < B om a;<b, for alla ¢ och

A|B = (ay/by, ag/by, ..., a,[b,), |A] =_=217 la s

och for vektorer J, K med icke negativa heltalskoordinater:
c . J AYS] J
| = | | | — 1 2 m
JV =910 oo gl (K) (k1) <k2) (km),

A7 = aftafr ... aim.
For deriveringsoperatorn (observera att vi hiar endast behova betrakta
derivator i algebraisk mening) anvénda vi beteckningen

1 Jfr. t. ex. Nagell, loc. cit., s. 253-254.

5%
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P Jitiet. .. +im
J

- 1902 jm "
ox{*oxs? ... oxlm

D idr salunda den enda stora bokstav som inte betecknar en vektor.
Ett polynom av variablerna x;,%,, . . .,,, (variabeln X = (x;,2,, . . . 1))

med rationella koefficienter ¢;=c; ;,  ; kan da skrivas

(2.1) f&X) =2 e, X7,

J=R

varvid z, har graden hogst r,. Taylorutvecklingen for f(X) omkring
punkten 4 har i dessa beteckningar formen

XJ
(2.2) fA+X) =2WDJf(A).
Jj=r J!
Speciellt ar
R
X 2IRl = (1 IRl — T .
i (1+1) 0§K2§R <K)

Slutligen bor observeras att [a] betecknar det storsta heltal, som &r
mindre én eller lika med @ och att [a, b] for hela tal a och b betecknar
den storsta gemensamma divisorn till @ och b.

3. Elementira diofantiska approximationer.

Hsiresats 3.1. Eit system

lj(Z): 2 d_,,-kzk= 0, j= 1, 2,...,t, S >t
1=5k=s
av linjara ekvationer med heltalskoefficienter, som satisfiera olikheten
lajkl=b (b21), har diminstone en heltalslosning Z = (zy, 2, . . ., 25) %0,
dar o] < ¢ = [(sb)6-0], »=1,2 ...,5.
Brvis: Lat z, antaga véirdena 0,1, ...,¢c fér v=1, 2, ..., s. Vektorn
Z antager da (1 +c¢)® olika virden och vektorn

L(Z) = (I(2), y(2), ..., 1(Z))

antager lika manga vérden. Dirvid maste varje koordinat 1;(Z) tillhora
ett slutet intervall av lingden sbc omkring origo. Antalet heltalsvirden i
detta &r sbc+ 1. Vektorn L(Z) kan siledes hogst antaga (sbc+1)f olika
virden. Nu ar

sbc+1 = sb(c+1) < (c+1)s=c+1) = (c+1)%/¢,

varfor antalet vektorer Z ir storre #n antalet olika virden L(Z). Det
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finnes da &tminstone tva olika vektorer Z® och Z®, for vilka
L(Z(l))=L(Z(2>). D4 ar L(Z)=0 for Z=Z"V—Z®, dar

|20 — 2P| < max (2", 2?) < ¢.

Hiivpsats 3.2 Lat R vara en given m-dimensionell vektor, vars ko-
ordinater iro naturliga tal. Antalet vektorer J av dimensionen m med icke
negativa heltalskoordinater, for vilka

1° J <R, |JJR| < 3m—2), 4>0
dr dd hogst
2° 2m)AY(r + D) (ry+1) ... (rp+1) .

Beviset fores genom fullstindig induktion. Vi kunna antaga att
A> (2m)}, ty eljest finnes inget att bevisa. For m=1 ar da satsen sjilv-
klar. Betrakta m > 1. Enligt vart induktionsférfarande kunna vi antaga
att antalet 16sningar, som satisfiera 1° for fixt j,=j=<r,, hogst ar (4
ersittes med A — 1+ 2j/r,,, m med m—1)

(2m—2¥(A—1+42j[r, ) (ry+1) oL (rp—g+1).

Summera vi de virden, som detta uttryck antager f6rj=0, 1, ..., r,, och
observera vi relationen

rm 1 1(m 1 m 1
i T e e A e
?§1—1+2j/rm 2 /=0 A—142j/r,, ]§l+1—2]/rm
Tm A A
_2 2 ‘—é-“(m Dy
22— (1—2j/r,) 21
samt att

21 = 22(1—1/72) 2 23(1—1/m)t,

finna vi att antalet 16sningar till 1° ej kan vara storre &n det varde som
angives av 2°.

4. Ett bekant lemma av Gauss. Féljande bekanta lemma av Gauss
finner man i klassiska liarobocker i algebra?.

Om polynomen f(X) och g(X) ha rationella koefficienter och f(X)-g(X)
har heltalskoefficienter sd finnes ett rationellt tal v sd att v f(X) och y~1g(X)
ha heltalskoefficienter.

1 Denna hjilpsats har givits av H. Davenport.
2 Se t. ex. Perron: Algebra II, Berlin 1932, s. 184.
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5. Linjir oavhidngighet och generaliserade Wronskideterminanter
(Wronskimatriser). Polynomen f,(X), »=1,2,...,h, med rationella
koefficienter siiges vara linjirt avhiingiga, om det finnes rationella tal c,
som icke alla 4ro 0 for vilka

h

(5.1) UX) = X e, f(X) = 0.

v=1

Eljest séges de vara linjirt oavhiingiga. Man kan avgora om polynom &ro
linjart oavhingiga eller ej med hjilp av foljande

KrirertoM. Eit nodvindigt och tillrdckligt villkor for att polynomen

f(X),»=1,2, ..., h, dro linjirt oavhingiga dr att Wronskimatrisen
(5.2) {DIf(X)}, »=1,2,...,h |J|Sh-1,
har rangen h.

Observera att elementen i en rad 4ro derivatorna D7f,(X), for en
bestdmd deriveringsoperator D7, dar v=1,2, ..., h, och att matrisen
innehéller alla rader for vilka |J| <h—1.

Vi bevisa kriteriet fér rationella funktioner, for vilka det likaledes
giller (med samma oavhingighetsbegrepp).

Att villkoret ar tillrackligt foljer av en bekant sats om Iosning av
linjira homogena ekvationer!. Om nimligen (5.1) bestar, framgar dirav
relationen D7I(X)=0 och fér att minst » sidana relationer samtidigt
skola besta, fordras enligt nimnda sats, att tillhérande matris har en
rang som Ar mindre &n A.

Nédvindigheten av villkoret bevisa vi genom fullstindig induktion.
Vi antaga sdlunda att de rationella funktionerna éro linjirt oavhiingiga
och ha att visa att detta leder till att matrisen (5.2) har rangen h.

For h=1 &r pastéendet trivialt. Betrakta A>1. Om f(X) for v=
1,2, ..., h dro linjirt oavhéngiga, dro dven {f,(X)}-Yf(X),»=1,2,...,h,
linjért oavhingiga. Om vidare f,(X) ersittes av {f,(X)}-1f(X) i (5.2),
kan den matris som uppkommer vid substitutionen ej ha stérre rang in
matrisen (5.2), ty varje determinant av ordningen d till den substituerade
matrisen dr en summa av determinanter av ordningen d till (5.2) multi-
plicerade med produkter av derivator till {f,(X)}-1. Utan inskréankning

av allméngiltigheten kunna vi d4 antaga att redan f,(X)=1. D& méaste
ofn(X)

—, till f,(X) vara skild
0,

frén 0, ty f,(X) kan ej vara en (rationell) konstant samtidigt som f,(X). Av

nagon derivata av forsta ordningen, lat vara

1 Se t. ex. Perron, loc. cit., s. 101.
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of (X

Zy
siledes ocksa minst en och hgst  — 1 linjirt oavhéingiga. Av de rationella
of,(X)

derivatorna ) 4ro saledes minst en och hogst & — 1 skilda fran 0 och

funktionerna

,v=2,3, ..., h, utvilja vi ett maximalt antal, som
I, o . of (X)
iro linjart oavhingiga. Lat dessa vara .

1
De ovriga derivatorna &ro d linjart avhéngiga av de nyssndmnda oav-
héingiga derivatorna och kunna framstéllas som linjairkombinationer av
dem. Genom att addera limpliga linjirkombinationer av fi;(X), ...,
fu(X) till £(X) for»=1, 2, ..., k kunna vi g4 finna rationella funktioner
op,(X)

0%,

@, (X) for v=1,2, ...,k fa4 vi en ny matris, som tydligen icke kan ha
storre rang #n (5.2). Utan inskrdnkning av allmangiltigheten kunna vi

,v=k+1,...,h (0<k<h).

@,(X) for vilka

=0,v=1,2, ..., k. Om vi ersitta f,(X) i (5.2) med

darfor antaga att redan f(X) for »=1,2,..., k har egenskapen
of (X

LX)

0w,

Emedan f(X) for »=1,2, ...,k &ro linjért oavhingiga, kunna vi

enligt vart induktionsforfarande sluta, att det finnes en determinant
(5.3) DT (X)), v, A=1,2 ..,k |J]sk-1,
of (X)

L for v=Ek+1, ..., h dro linjart oav-
(41

héngiga, kunna vi analogt antaga att det finnes en determinant

som &r skild fran 0. Emedan

(5.4)

0
Dl{lé—fv(X)l, ’V,l=k+].,...,h, lKll éh_k_l’
(41

som &r skild fran 0. Vi bilda nu den determinant

(5.5) \D7H(X), v, Ah=1,2....h,

, 0
dir J;=J, fér 2=1,2, ..., k, J1=Kla—— for A=k+1, ..., h. Emedan
? Y1
é—f,,(X)=O for v=1,2, ...,k ar (5.5) produkten av (5.3) och (5.4).
1

Alltsa ar determinanten (5.5) skild fran 0. Den satisfierar vidare villkoret
|J;] £h—1. Darmed #r kriteriet bevisat.

Betrakta nu ett polynom f(X) av formen (2.1) med heltalskoefficienter.
Ett sadant kan pa olika sitt sonderliggas pé formen
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h
(5.6) f(X) ==21’ P (X)p,(X)

i polynom ¢,(X) och y,(X) med rationella koefficienter. (Man kan t. ex.
vilja ¢,(X) som potensen #).) Vi utga hir fran en sénderldggning (5.6)
som har féljande egenskaper:

1° Polynomen ¢/(X), v=1,2,...,h, bero endast av variablerna
xy, ..., &, och polynomen y,(X), v=1,2, ..., h, endast av variablerna
Lpy1s « ooy Lype

2° Polynomen ¢,(X),»=1, 2, ..., h, 4ro linjirt oavhiingiga och poly-
nomen y,(X), =1, 2, ..., h &ro likaledes linjirt oavhingiga.

Utgédende fran en godtycklig ssnderliggning (5.6) kunna vi alltid finna
en sddan, som uppfyller villkoret 2°. Aro nimligen polynomen ¢, (X),
v=1,2, ..., h, linjirt avhingiga, kunna vi utvilja ett maximalt antal
linjart oavhingiga polynom bland dessa och framstilla de andra poly-
nomen ¢,(X) som linjirkombinationer av de férstnimnda. Sa fa vi en
sonderlaggning (5.6) med firre termer én i den ursprungliga sonderligg-
ningen. Analogt forfar man med polynomen y,(X). Upprepas forfarandet
far man slutligen en sénderliggning (5.6) som satisfierar villkoret 2°.

Vi vilja nu vektorerna J och K (och motsvarande indicerade vektorer)
sé att de m — k sista koordinaterna i J och de k forsta koordinaterna i K
dro 0. Dessa vektorer skola f. . ha icke negativa heltalskoordinater.
Emedan vi da ha

DI+Ef(X) = ;’ D7¢,(X)-DEy,(X) ,
v=1

giller enligt regeln for determinantmultiplikation :
(5.7) |DTHEf (X)| = D7, (X)| - |DSrp, (X))

Indices 4, 4 och » tillordnas rader och kolumner pa limpligt sétt. Enligt
det nyssnimnda kriteriet kunna vi hir vilja determinanterna si att de
dro skilda fran 0 och s3 att |J,|<h—1, K, |<h—1.

I (5.7) ersitta vi D74 med jl—'DJ * och DX# med El—’DK#. Observera vi
att hér 2 “

(J+K) = T, K,
fa vi av (5.7):

1 1
(5.8) D7 Eaf (X) I = ]ﬁ Dig,(X) I-IR—,DK"%(X) i
! A n

(/3 +K,)
housv=1,2, ..k, |JSh—1, |K,|<h—L.

Elementen i determinanten i vénstra ledet av (5.8) iro polynom med
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heltalskoefficienter. Detta framgar av Taylorutvecklingen (2.2), om vi dir
betrakta X och A som variabler. Enligt Gauss’ sats (§ 4) kan man da
multiplicera determinanterna i hogra ledet med rationella tal respektive
y och y~1 53 att dessa determinanter §vergd i heltalspolynom. Salunda 3
vi en sonderldggning av formen

(5.9) 8(X) = 8(X)-sy(X),

dir polynomen s;(X) och s,(X) ha heltalskoefficienter och s(X) &r poly-
nomet i vinstra ledet av (5.8).

. 6. Maximalkoefficienten fér polynom. Beloppet av den numeriskt
storsta koefficienten till ett polynom f(X) betecknar Roth med |f(X)].
Fér det foljande behova vi nigra uppskattningar av maximalkoefficien-
ten.

Lat R=(ry, 7y, ..., r,) vara en vektor med icke negativa heltalskoor-
dinater. Om f(X) &r givet genom (2.1), finna vi

J
__DK XJ-K |
n?IE = 2 (K ) “
Alltsa ar pa grund av (2.3):
K IR|
(6.1) ‘K,D 7(X)| < 22(7(X)]

Betrakta nu polynomet s(X), som #r givet genom determinanten i
vinstra ledet av (5.8). Denna innehéller A! produkter som vardera be-

1
star av & faktorer av formen 7{—'DKf (X). Da varje sidan faktor bestéar

av hogst (ry+1)(r;+1) ... (r,,+1) monom (detta &r maximalantalet
monom i f(X)) & vi pa grund av ovanstiende uppskattning:

[S(X)| < 2BR{(r; +1) ... (r,+1)f(X)}*h!,
eller om vi beakta att
h! < hh—1 < 2h(h—1), rv_{_l < ory

(6.2) [8(X)| < {22BIh-1 F(X)| 10,

7. Index. Polynom med sma index. Lat f(X) vara ett polynom och A
och § givna punkter med reella koordinater, S > 0. Det finnes di ett tal
y s& att D/f(A)=0 nar |J/S|<y medan DJf(4)=+0 for nigot J med
|J/S]|=7y. Detta tal y kallar Roth »index for f(X)« (i punkten 4 med av-
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seende pa ) och betecknar det med indf(X). For givna 4 och S gilla
foljande rakneregler, vilka man litt verifierar genom Taylorutvecklingen
(2.2):

(7.1) ind {f}(X) +fo(X)} = min {indf,(X), indfy(X)}
(7.2) indfy(X)f5(X) = indfy(X) +indfy(X)
(7.3) ind Df(X) = indf(X)—|J/S| .

Vi bevisa nu

Hyirpsats 7.1. Lit e< 1 vara ett positivt tal, m et naturligt tal, P, Q
och R vektorer av dimensionen m med heltalskoordinater respektive p,, q,
ochr, (u=1,2,...,m), p,20,4,>0,7,>0, [p,, ¢,]=1, vilka for

o = o(m,e) = 24-2-m(g[12)2""

satisfiera olikheterna
10 TI‘+1/TM g w(m5 6)’ qMTM g qlrly q]_w(m’ 2 g 23m

or 1< u=<m. Ldt vidare polynomet
)/

fX) =2 ¢, X7
J<R
ha heltalskoefficienter och satisfiera olikheten
2° T < grmom.
Dé indf(X) < ¢

1 punikten P[Q) med avseende pd R.

Bevis: Vi fora beviset genom fullstindig induktion med avseende pa
antalet m av variabler z, i X.
For m=1 ar indf(x,) i p;/q, med avseende pé r, lika med ¢/r; om

f(@) = (121 —p1)'9(2,)

med g(p,/q;) + 0. P4 grund av Gauss’ lemma (§ 4) har g(x,) heltalskoeffi-
cienter, ty [p;, ¢;]1=1. Men av ovannimnda relation och 2° féljer da

7' 2 |f(@) £ "0 = ¢,

tlry £ €.

dvs.

Betrakta nu fallet m > 1 och antag att satsen giller for polynom med
farre variabler #n m. Vi uppskatta indf(X) med hjalp av polynomet
8(X), dvs. determinanten i vinstra ledet av (5.8). Har lata vi y,(X)
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endast bero av x,, och ¢, (X) endast av x;, @, . . ., Ty (forv=1,2, ..., k).
Det ar klart att vi da ha

(7.4) h<r,+1.

Vidare &r for m > 1:

(7.5) 20(m, &) = w(m—1, &2[12), 2w(m,e) < £2[12.

Antagandet 1° medfor saledes att
(7.6) Ty < Tws 9y > 4y -

P4 grund av (6.2), 2° och den sista olikheten 1° &r da
(7.7) |3( ! < {23|R|q a(m, 5)7‘1}7,, < ¢ 2ry ha(m, D

Eftersom s,(X) och s,(X) definierade genom (5.9) bero av olika variabler,
f6ljer nu av (5.9), (7.5) och den andra olikheten 1°:

ls,(X)| £ g 2rihem o — g rihetn=1,&/12)
X < b < g i
Enligt vart induktionsférfarande och enligt det ovan behandlade fallet
=1t vida inds;(X) < £2/12, indsy(X) £ €212
i P/Q med avseende pa AR. Regeln (7.2) ger nu
(7.8) inds(X) < &2h[6

i P/Q med avseende pa R.
Det aterstar att uppskatta indf(X) med hjalp av inds(X). Vi sitta

indf(X) = ¢

och observera, att determinanten i vinstra ledet av (5.7) (som endast
skiljer sig fran s(X) med en konstant faktor) &r en summa av produkter,
som var och en bestar av A faktorer av formen D’#%uf(X) med

V) <h—1%<r, |[K|<h-1=mn,

Vidare genomléper K, de A talen 0,1, ..., h—1. Anvinda vi reglerna
(7.1), (7.2) och (7.3) finna vi

(7.9) inds(X) = min Y {o—|(J + K)/R|},

dar J = (51, 52> « - > Jm-1, 0)» K=(0,0, ...,0,k) och J+ K genomlSper h
vektorer med |J|<h—1=<r,, k=0,1,...,h—1. Markeringen (') pa

summatecknet utmirker att endast positiva termer skola medtagas
(index &r alltid icke negativt). Nu &r |J/R| < |J|[r,_; och siledes
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/B £ 1/t S 0(m, &) < 2/24 .
Av (7.8) och (7.9) fa vi da
(7.10) ehfd > 3 {o—klr,}.

0<k=h-1
Antingen &r hir o= (h—1)/r,, och da fa vi av (7.10):
&hj4 > ho—h(h—1)/2r, = ho/2,
dvs. g <e, eller ocksa ar ¢ < (h—1)/r,, och d& f& vi av (7.10):

ehld > X' {o—jlrn} = {o—[rm0l/2rn}{[rmol + 1} = o2h/4,

0=sj<rme

och vi {4 dven i detta fall o <e. Dirmed ér hjilpsatsen bevisad.

8. Index for ett polynom i en punkt 0 = &, ..., 9), & algebraiskt tal.

Hrivpsats 8.1. Ldt det reella positiva talet § satisfiera ekvationen (1.1),

dar koefficienterna a,,v=0,1, ..., n—1, dir hela rationella tal som satis-
fierar olikheten
1° la| =a, v=0,1,...,n—1.

Antag vidare att
2° m > 8n2-2,

diir ¢ dr ett positivt tal. Dd finnes ett heltalspolynom f(X) av Sformen (2.1)

(dimensionen av X lika med m, graden av x; hogst r;, BR=(ry, ..., 7,))
for vilket

v indf(X) > im(1—e)

t 0=(3, ..., 9) med avseende pd R, och

2 FX)| < HB med y = 4(a+1).

Bevis: Av (2.1) fa vi for 6=(9, ..., 9):

1

(8.1) DEf(g) = 3 (é)cJolJ—Kl.

K! K<J<R
Om 1’ skall vara uppfyllt maste vinstra ledet av (8.1) vara lika med 0 for-
(8.2) |K/R| £ im(1—¢).
Utgaende fran (1.1) visa vi litt att
(8.3) # = aP 9" 4 a®, 92y 4 a®

for k= n (och alltsd for alla &> 0), dar
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84) |a®| < (a+1)%, »=0,1,...,n—1, k=0,1,2, ....

Ersitta vi potenserna #V-Kl i hogra ledet av (8.1) med uttrycken i
hogra ledet av (8.3) och sitta vi sedan koefficienterna for 99, 41, ..., 9n-1
i det polynom, som dirvid erhélles, lika med 0, f& vi linjira ekvationer

(8.5) P <J)a§jJ—Kl>cJ=0, k=0,1,...,n—1.
K<J<R

Antalet obekanta koefficienter ¢, ar
8= (ry+1)(ry+1) ... (r,+1) < 218,

Enligt hjalpsats 3.2 (med A=me) ir antalet K som satisfiera olikheten
(82) hOgSt (27’)’1/)%(77’1;6)_15 .
Betecknar ¢ antalet linjéra ekvationer (8.5) for vilka K satisfierar (8.2),

ar saledes £ < ne(2m)i(me)ts |

och enligt 2° 4r da < is.

P4 grund av (8.4) satisfierar koefficienten for c; i (8.5) olikheten

(@4

Vi kunna nu tillimpa hjilpsats 3.1 och finna enligt denna att ekvatio-
nerna (8.5) for K, som satisfiera (8.2), ha en losning, dér icke alla c; dro
0 och dar

< 21Bl(g 4+ 1)1Bl = (204 2)IBl = b,

leg] S (sb)H(s= < (da+4)1Bl = pIEI,

9. Det slutliga beviset fér Roths sats. Vi utgd fran ett reellt positivt
helt algebraiskt tal ¢ och antaga att olikheten (1.3) har oindligt manga
18sningar (p,, q,) for ett reellt tal x=2+4, 6>0. Hir skola p, och g,
vara naturliga tal med [p,, ¢,]=1. Tydligen kunna vi antaga att d < .
Vi anvénda nu hjalpsatserna 7.1 och 8.1 fér att bevisa att ovannimnda
antagande leder till en motsigelse.

Valj for det forsta e > 0 si litet att

(9.1) e < 0/12,
och sedan det naturliga talet m s& stort att
(9.2) m > 8n2e-2,

dar n ar graden av polynomet i vinstra ledet av (1.1). Vilj sedan 16s-
ningen (p;, ¢;) s& att
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(9.3) qem 9 5 g3m
(9.4) @™o > ™y = 4a+1)
(9.5) g1 > 32(a+1) max (1, ¥) = 8y max(l, &),

dir w(m, ) och a har samma betydelse som i §§ 7, 8. Vilj dérefter 16s-
ningarna (p,, q,) (genom limplig numrering) fér u=1,2, ..., m si att

(9.6) tw(m, €) logg,,, > logg, ,
och de naturliga talen r, s8 att

(9.7) ery logg, = logg,,
och

(9.8) 7w = [r1loggflogg,]+1

for 2 < u<m. Som tidigare sitta vi

P = (P1s covs Pm)s Q= (94, v n), B = (74, cees ) s
0=@,...,9).

Av villkoren (9.6), (9.7) och (9.8) féljer (obs att w(m, &) <1) q,.,,>q,,
och
(9.9)  rilogg, = r,logg, < rlogg; +logg, < (1+¢)r, logg,
(9.10) w(m, e)r, > 2r,logg,[logg,,, = 2r, logg/logg,.,

2 2(1+e)tr,y >,

Pa grund av (9.2) kunna vi enligt hjalpsats 8.1 bestimma ett polynom
f(X) av formen (2.1) for vilket
(9.11) indf(X) > im(l—e)

i 6 med avseende pa R, och

(9.12) FX)| < i,

Av (9.12) och (9.4) foljer att detta polynom satisfierar villkoret 2° i
hjélpsats 7.1 och pa grund av (9.9), (9.10) och (9.3) satisfierar polynomet
dven villkoren 1° i samma hjilpsats. Av denna féljer da

(9.13) indf(X) < e

1 P/Q med avseende pa R. Vi visa att (9.11) och (9.13) aro oforenliga och
t4 silunda den motsiigelse, som bevisar Roths sats. I sjalva verket visa
vi att (9.11) medfér olikheten

(9.14) indf(X) = ém/12
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i P/Q med avseende pa R, vilket strider mot (9.13) eftersom
£<8/12 < dm/[12.
Betrakta D7f(P/Q) for

(9.15) \J|R| < 6m[12 .

Satta vi PIQ = 04T

och utveckla enligt Taylors formel, fa vi

1

(9.16) LDUEI) = X EDI+Ef(9)

ossiksrJ K|
Nu innehéaller D7+Ef(X) hogst
(ry+1) ... (r,+1) £ 218
termer och da enligt (9.10) r,,, <7, foljer av (9.9):
¢ = g S e .. g = QF.
Alltsa fa vi pa grund av (6.1) och (9.5):

1 1
(®-17) . sk IO i B (J;r{K) lm D 6) '

< (Ilﬁ)zzlmylm{max(l, )Rl < (g) 2-IRI(QR).

Pa grund av (9.11) férsvinna emellertid de termer i hogra ledet av (9.16)
for vilka (J+K)/R| < bm(1—¢).

D4 vi endast betrakta sadana J for vilka (9.15) ar uppfyllt och da
£<0/12 behova vi i (9.16) endast medtaga de termer for vilka

|K/R| > im(1—¢)—om[12 > Im(1—5/4) .

P4 grund av de gjorda forutsittningarna att (p,, ¢,) dro 16sningar till (1.3)
med ovannimnda egenskaper &r for de K som satisfiera den sistnidmnda
olikheten:

m
—2+Ok, —2+6)r1|K/R
(9.18) |I'E| < JT ;@ < gy @OmIKIE|
=1
I < qI(1+6/2)nm(1—6/4) < (QR)—(1+5/2)(1_3/4)(1+e)—1 .

Av (9.16), (9.17) och (9.18) f& vi om vi utnyttja (2.3):

< (QR)—(1+5/2) (1-6/4) A+~ 1+1+e A

(0.19) Qr . Df(PIQ)
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Har &r pa grund av (9.1):
(L+6/2)(1—6/4) = 1+ (1-¢/2)0/4 > 1+ 3e(1—6/2)
2 1+2e+20e—30e/2 > (1+¢)2,

och hogra ledet av (9.19) 4r d4 ett tal mellan 0 och 1. Men vinstra ledet
av (9.19) méaste tydligen vara ett helt tal och detta tal ar alltsa 0. Saledes

ar indf(X) = om/12

i P/Q med avseende pa R i motsigelse till (9.13).
Déarmed &r Roths sats bevisad.




DIXON’S SERIES EXPRESSED AS A CONVOLUTION

H.W. GOULD

An examination of the literature shows that many papers have been
written concerning the evaluation of Dixon’s series [1]

2n 2n 8 (3’)’&)'
- E (o,

ké; (=1FL (=1) ()
and it is our purpose here to demonstrate the following result:

s 2n
M) 3y = <1y ()8,

E=0

where

4 <n+k> (2n+2k>
7\ n n+k )’
In order to accomplish this, we use two different expressions for the
Legendre polynomials

1 dn 1 dn
[(@2—1)"] =

P - il
n(®@) 27! dgn 2np ) dan

[(@—1)*(@+1)"].

Differentiating the two forms, we get (cf. [2]):

(2) P,(x) = Qi [:2/9](—1) (k) (2n;2k> pn—2k
o e YR

We now make the following definition:

+1
) Q@ = @=1yP, (21).
From this definition and the expression (3), it follows easily that

0w =3 (3) =

k=0

NMT. Hefte 2, 1959. — 6 [73]
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We see at once that the coefficient of #2" in the polynomial

(x—1)2"Qy, (%)
2n . 2n 3
2= (1)

is equal to
which is Dixon’s series.
On the other hand, by combining the definition (4) with the expression
(2), we find
1 » _
(5) (=1 Qule) = 7z 3 (=10 () (75 2) Gt 1t - 1,

92n &

The coefficient of 2/ in (x + 1)2n~2k(x — 1)27+2k g equal to
J  (2n+2k\ [2n—2k
(T ()
z‘:z; (= v J—t

Upon substituting this expression in (5), we find that the coefficient of
% in (x —1)*Q),, () is equal to

o o) (") S (),

which is therefore another form of Dixon’s series.
To reduce this further, call the inner summation in (6) K,, and note
the binomial identity

<2n+2k> <2n 2k> (6n)! <2in> (zik>

i 2n—i )~ (2n))} <4n—2k ( 6n \
2n ) 4n—2k>

Also we note the known formula

(D)) =)

which is obtained by equating coefficients in the identity

(7)

(I—-2)(l+z)™ = (1—a)™

As an application of this, we have

(®) ;:c (=17 <2zn) (f;k) - j:zjk(_l)i <zin2k> (2:)
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Substituting (7) and (8) in the expression for K, we find

(6m)! ) <n2—nk)
((2n)!)? <4n—2k>< 6n )

2n 4n — 2k

T S AN M

K, = (=1t

3

and therefore expression (6) becomes

© o SO () ()

which is still another way of expressing Dixon’s series.
To finally obtain our proposed relation (1), we note the binomial
identity

(2) () (anon)

_(en)pm)? <n+k> (2n+2k> <2n—k) <4n—2k)’

(6n)! ) n+k n 2n—k

which when applied to the expression (9) yields
20\ & (n+k\ (204 2\ [2n—k\ [4n—2k
—1)n2-2n 7 .
e ()00 G () (550
This is equivalent to (1), which is therefore proved. Our formula ex-
presses Dixon’s sum in terms of a series of all positive terms.

To show that the convolution obtained leads to an easy evaluation of
Dixon’s series, we have only to note the identity

_(n+k 2n+2k\ cour (20 [(—m—%
A"—( n ><n+k>*(“1)‘ <n>< k )

from which we have

i 2n\2 [ —n—%\[/—n—%
— (— 1) 922n 7 2 2
Sndn= () 2 () (U5F)

2/ _ 9y om\ 2
(B () o (2 ().
n n n n
When substituted in (1), this gives

s= 3 (Y=o () (3 - (~1p &

6*
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From this point of view, Dixon’s series depends on an easy application
of Vandermonde’s convolution which we used above.
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ETT MYNTFORDELNINGSPROBLEM

OLOF HANNER

Foljande problem utgdr en omformulering av ett problem som fram-
kommit vid vissa undersékningar av konvexa polyedrar:

Problem: Tre personer ville dela en samling mynt. Varje mynt var
véart mindre én de 6vriga mynten tillsammans. Man ville dela mynten sé
att varje person fick ett belopp som var mindre &n vad de bada dvriga
fingo tillsammans. Det gick inte. Ett av mynten var en 25-6ring. Vilka
voro mynten ?

Innan vi loser problemet 14t oss papeka att vi vid losandet inte far
forutsitta, att det blott finns en enda losning. I sjilva verket ligger den
svarare delen av problemet i att visa, att 16sningen ér entydig.

Lat oss siga, att en samling mynt har egenskaperna E, respektive X,
om:

E,: Varje mynt dr virt mindre &n de 6vriga mynten tillsammans.

E,: Man kan uppdela mynten pé tre personer si att varje person far
mindre dn de bada 6vriga tillsammans.

Vi dr alltsa intresserade av myntsamlingar med egenskapen K, men
utan egenskapen K,. Lat oss for att bestémma dessa soka fordela mynt
nagorlunda rittvist. Vi kommer att anvinda féljande metod: Vi delar
ut mynten ett och ett, borjar med det storsta myntet och fortsitter med
allt mindre mynt, och ger varje mynt till den person (eller en av de per-
soner) som under utdelningen erhallit minst.

Lt oss rikna alla belopp i dre. Antag att vi har » mynt. Vi ordnar

dem i fallande storleksordning. Lat mynten vara virda a,, a, ..., @,.
Vi har d&

(1) a4 2 Ay = ... Za, >0,

Satt

a=0;+0+...+a,,

dar a dr det totala virdet av mynten i samlingen. Vart villkor £, kan d&
skrivas
(2) a; < 3a, 1=1,2,...,n.

H

For att detta skall kunna vara uppfyllt méaste vi ha minst tre mynt.
De tre personerna kallar vi 4,, 4, och A;. Vi borjar myntutdelningen
med att ge forsta myntet, virt a,, till ndgon av de tre personerna, dér-

[77]

c

Ay .rm- Qﬁ“ i

A
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efter det andra myntet, virt a,, till ndgon av de bada 6vriga personerna
och si det tredje myntet, virt as, till den Aterstiende personen. Om det
finns ytterligare mynt, utdelar vi dem ett och ett, och vi ger det i-te
myntet, virt a;, till den (eller en av dem), som under utdelningen av de
foregaende mynten erhallit det minsta beloppet. De belopp, som 4, 4,
och 4 fatt, d& utdelningen ér fiirdig, betecknar vi med respektive b,

b, och b,. Vi har
a = by +by+b;.
Villkoret F, kan skrivas

b, < }a, k=1,2,3.

Om detta inte skall vara uppfyllt fér alla &, maste nigon av personerna
erhdllit > }a. Lat oss vilja numreringen av personerna s att detta in-
traffat for 4,, sd att vi alltss har

(3) by 2 ta,
eller, vilket #r detsamma,
(4) by = by+b,.

Ur (2) och (3) inser vi att 4, fatt minst 2 mynt. Lat oss betrakta den
tidpunkt under utdelningen da A, far sitt sista mynt, vilket vi antager
vara det p-te myntet, virt a,. Innan 4, tilldelas detta mynt, var hans
tilldelning b, —a,, och 4, och A, var tilldelade minst detta belopp
(annars skulle ndgon av dem fitt det p-te myntet). Hirur far vi dels att

(5) bi—a, = a,,

eftersom b, —a,, skall innehélla A4, :s forsta mynt, vilket &r ett av de tre
storsta mynten och dérfor =a, enligt (1), och dels att

(6) by =z by—a, och b, = by—a,,

eftersom b, och b; méste vara minst lika med vad 4, respektive A4, redan
erhéllit da det p-te myntet utdelas.
Lat oss kombinera (4), (5) och (6). Vi far

by 2 bytby 2 (by—a,)+(by—a,) 2 a,+(b,—a,) = b, .

Da forsta ledet hiir verensstimmer med sista ledet, maste likhetstecknen
gélla, och detta innebér, att vi maste ha likhetstecken i olikheterna (4),
(5) och (6). Alltsa ur (5):

(7) by = 2a
och dérefter ur (6):

(8) by =a, och b;=a,.
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Men d& vi har a, = a, > ay 2 a,, och di varje person erhaller ett av de tre
forsta mynten, inser vi att (8) endast kan vara uppfyllt om 4, och A,
far vardera endast ett mynt, virt a,, och att (7) endast kan vara upp-
fyllt, om A, férutom det p-te myntet, virt ay,, far ytterligare ett mynt,
ocksd vért a,. Vi har alltsd 4 lika mynt: p=n= 4.

Lat oss sammanfatta vad vi gjort: Vi har lyckats finna en metod att
tordela myntsamlingar med egenskapen F;, en metod som visar att alla
samlingar, som inte bestar av 4 lika mynt, har egenskapen K,. A andra
sidan inser vi litt, att en samling med 4 lika mynt dels har egenskapen
E,, dels inte kan férdelas pa tre personer utan att nigon far minst tva
mynt, d. v. s. minst s& mycket som de bada andra tillsammans, s att
alltsé en sidan samling saknar egenskapen H,.

Vi kan nu besvara frigan i vart problem. Vi vet att mynten hade
egenskapen K, men inte egenskapen Hp. Alltss var det 4 lika mynt. D4
vi dessutom vet att ett av mynten var en 25-Gring, &r det fullstandiga
svaret: Enda mojligheten &r att mynten voro 4 stycken 25-0ringar.

I den ovanstaende losningen av problemet har vi aldrig utnyttjat att
talen a, egentligen maste vara vissa speciella heltal, namligen véardena
pi de olika myntslagen. Darfér kommer allt vad som sagts om mynt-
fordelningsproblemet att gélla dven om dessa tal a; ar godtyckliga posi-
tiva tal, d. v. s. om vi kan ténka oss mynt av godtyckliga valdrer.

I det problem om konvexa polyedrar som lett fram till ovanstaende
myntproblem motsvaras den slutliga 16sningen, 4 lika mynt, av en regul-
jar oktaeder.

For att beskriva oktaedern tar vi ett ritvinkligt koordinatsystem
(x, y, z) och later oktaederns horn vara punkterna

(£1,0,0), (0, +1,0), (0,0, £1).
Da blir de 8 sidoytorna givna genom

rx—y—2z= +1
—x+y—2= x1
—z—y+z = t1

z+y+z = *1
Kallar vi vinstra ledet i dessa ekvationer for respektive fy, tp, I3, b
(d.v.s. =2x—y—2z 0.8.V.), s& ser vi att varje punkt i rummet ger
bestimda virden &t dessa t-storheter, varvid man alltid har

ty+lytlg+t, = 0.
En punkt tillhér oktaedern om de motsvarande ¢-storheterna uppfyller
—1st, <1, i=123+4.

AT s e

AT
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Lat oss nu ta 4 positiva tal a;, a,, a,, a, och i stillet studera den polye-
der som ges av olikheterna,

(9) —aiétiéai, i=1’2’334'

Vi far dé en klass av polyedrar som alla éir symmetriska med avseende
pé origo.

Geometriskt innebér varje par av olikheter i (9) att punkterna i
polyedern skall ligga i bandet mellan tva parallella plan. Polyedern &r
den gemensamma delen av dessa 4 band. Vi kan alltsd viinta oss att
polyedern har 8 sidor. Men om ett av talen a;, exempelvis a,, ir =
summan av de dvriga, bidrar inte olikheterna —a, <t, <a, till definitio-
nen av polyedern. Ty eftersom ¢, +t,+t,4+1,=0 ar da —a,<t,<a, en
konsekvens av olikheterna —a,<t,<a, fér 1=1, 2, 3. Bandet mellan de
béda planen t,= + a, innehaller alltsa redan skirningen mellan de ovriga
3 banden och polyedern har endast 6 sidor och &r en parallellepiped.

Vi vill undvika detta fall och kriver darfor att vart och ett av talen a;
skall vara < summan av de 6vriga. Om dérfor talen a,; uppfattas som
mynt skall dessa ha egenskapen E,. For var oktaeder r alla a;=1 vilket
ju just svarar mot 4 lika mynt.

Vi vill nu utan bevis formulera den egenskap for polyedrar som svarar
mot att motsvarande myntsamling saknar egenskapen E,, en egenskap
alltsd som oktaedern har men alla vriga av vara polyedrar saknar:

Néar man gor 3 parallellférskjutningar av polyedern och de si erhillna
polyedrarna parvis rékar varandra si finns det alltid en punkt som ligger
i alla tre.

I sjalva verket svarar de 3 personerna i myntfordelningsproblemet
mot de 3 parallelliforskjutningarna. Om man kan uppdela mynten s att
varje person far < de bada Gvriga tillsammans si kan man med hjilp
av vetskapen om vilka mynt var och en av de 3 personerna far, kon-
struera 3 parallellforskjutningar si att de erhéllna polyedrarna parvis
rikas men saknar gemensam punkt.

Att myntfordelningsproblemet saknar l6sningar om antalet mynt &r
>4 betyder att vissa polyedrar i rum av hogra dimensioner alla saknar
den ovan beskrivna egenskapen hos oktaedern.

Vi har hér endast betraktat vissa speciella polyedrar. Salunda skall
ju t. ex. i det 3-dimensionella rummet antalet sidoytor vara 8. Férutom
oktaedern har ocksa kuben den ovan beskrivna egenskapen. Men forutom
dessa bada och deras affina motsvarigheter, parallellepipeder och sneda
oktaedrar, finns inga andra 3-dimensionella polyedrar med denna egen-
skap. For beviset av detta hanvisar vi till Math. Scand. 4 (1956), sid.
65-87.



ON THE DIOPHANTINE EQUATION 2% +11¥ =57

A. MAKOWSKI

The purpose of the present note is to prove the following

THEOREM. The only solutions in mnon-negative integers x,y,z of the
equation
(1) 2T+ 11 =5°

are given by x=2,y=0,z=1 and x=y=2, 2=3.

Proor. It is evident that x=1. For z=1 we obtain the equation
2+11¥=5% Since z=1 and 11¥=1 (mod 5), we have 24+1=0 (mod 5)
which is impossible. For =2 we obtain the equation 4 +11¥ =5, hence
(—1)?=1 (mod 4) and 2|y. After the substitution 11} = X we obtain the
equation 4+ X2=15° Nagell has proved ([1], theorem 27) that the equa-
tion 4+&2=9" has no solution with n> 3, thus z<3. We find the two
solutions of (1) given above.

If 23, then (—5)¥=11¥=5% (mod 8). Hence y and z are both even:
y=2u, 2=2v. The equation (1) may now be written in the form

22 = (50— 11%) (5 + 11%).
This yields
@) 9% = 50— 11%

9% = v 4 11,

hence 2% (1 4 2°72%) =2+ 5%, and 50 & = 1. As (2) has no solution, the equation
(1) has no solution with x> 3. This proves our theorem.

The equation 2%+ 5Y =117, similar to (1), has no solution because the
congruence 2%+ 5Y=11?=(—1)? (mod 12) holds only for odd == 3, but
224+ 5Y=11?=1 (mod 5) is fulfilled only if x is divisible by 4.

REFERENCE

[1] T. Nagell: Contributions to the theory of a category of diophantine equations of the second
degree with two unknowns. Nova Acta Reg. Soc. Scient. Upsaliensis (4), 16 (1954), no. 2.
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Lupwic BAUMGARTNER: Gruppentheorie. Dritte, vollstindig neubear-
beitete Auflage. (Sammlung Goschen 837.) Walter de Gruyter & Co.,
Berlin, 1958. 110 S. DM 2.40.

(Innholdsfortegnelse i NMT 6 (1958), s. 170.)

Bogen behandler Gruppeteorien fra Grunden, forudseetter uden for den
kun saadanne Kundskaber, som enhver Matematiker har eller let kan
forskaffe sig, og omtaler efter et skensomt Udvalg de Emner, som er vig-
tige for et videre gruppeteoretisk Studium; dog kunde man maaske
gnske lidt mere om de abelske Grupper og den »principale« Undergruppe
(Gennemsnit af alle storste Undergrupper) og endelig en Tilfgjelse om
Kommutatorgruppen, nemlig, at den er Gennemsnittet af Normaldelerne
med abelsk Faktorgruppe. Bogen er helt igennem overskuelig og inde-
holder et Stikordsregister og Henvisninger til nyere gruppeteoretisk
Literatur.

Med enkelte Undtagelser er Emnerne preecist behandlet og Beviserne
nemme, og Bogen maa utvivlsomt betegnes som letleselig, instruktiv og
af stor didaktisk Verdi. Selv saa forholdsvis indviklede Ting som Seet-
ningerne af Zassenhaus, Schreier og Jordan-Hdélder bliver letfattelige,
og overalt illustreres Definitioner og Seetninger ved talrige Eksempler,
der er alsidige nok til, at Leeseren leerer en hel Del saavel endelige som
uendelige Gruppetyper at kende samtidig med, at enkelte af dem gentages
ofte og studeres nermere i 3 indklebede Skemaer; i denne Forbindelse
vilde jeg dog mene, at man savner Omtale af Begrebet en Graf eller
Situationsplan over Undergrupperne af en given Gruppe. Foruden Eks-
emplerne er der ikke mindre end 94 Opgaver (med Lgsningsliste) til
Kontrol af Forstaaelsen; skont disse ogsaa nermest har Karakter af
Eksempler og kun stiller smaa Fordringer til Leeserens Fantasi og Op-
findsomhed, giver de dog en Del Indsigt, og samlet kan man sige, at den
Laeser, som har studeret Bogen med Eksempler og Opgaver, har tilegnet
sig et godt gruppeteoretisk Grundlag. Helge Toermoes
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I. N. Bro~NsTEIN — K. A. SEMENDIATEW : T'aschenbuch der Mathematik
fiir Ingenieure und Studenten der Technischen Hochschulen. (Aus dem
Russischen iibersetzt.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1958.
124548 8., 427 Fig. In Plastikfolie DM 22.50.

(Innholdsfortegnelse i NMT 6 (1958), s. 121-122.)

Forfatterne til denne boken sier i et forord bl. a.: »Die Aufgabe, in
einem Taschenbuch geringen Umfanges diejenigen Kenntnisse aus der
Mathematik zu vermitteln, die von Ingenieuren und Studenten der Tech-
nischen Hochschulen sowohl beim Studium als auch in der praktischen
Arbeit bendtigt werden, war keineswegs einfach.« Med sine 548 sider er
boken s& langt fra blitt noen »Taschenbuche, snarere heller en oppslags-
bok eller handbok i matematikk beregnet pé folk for hvem matematikken
er et hjelpemiddel. P4 disse 548 sider har forfatterne klart & presse inn mye
stoff. A gi en oversikt over dette, tror jeg er vanskelig. Her finner man
tabeller over savel elementeere funksjoner som mer spesielle funksjoner
(f. eks. elliptiske funksjoner), en kort innfering i elementeermatematik-
ken, differensialgeometri og grunntrekkene av analysen. I et kapitel for
seg behandles komplekse funksjoner, vektorregning, fourierrekker og
variasjonsregning. Boken avslutter med litt om sannsynlighetsregning og
utvikling av empiriske formler.

Denne summariske oppregning kan ikke pa noen som helst méte gi
noe inntrykk av hvordan forfatterne har behandlet stoffet. Jeg skal i det
folgende forsgke & formidle mitt inntrykk av dette.

Boken er selvsagt ikke ment & veere noen lmrebok, men ikke desto
mindre kan den i sin grundighet svert ofte minne om en slik. Det kunne
nevnes en mengde eksempler p4 dette, men jeg skal bare ta med et par.
P4 side 398 behandles linewxre differensiallikninger av 2. orden. Forst
far vi en almen lgsningsmetode. I et utregnet eksempel viser s boken
metoden i bruk. Eller pa side 235 finner vi det almene konvergensprin-
sippet (i boken: Konvergenzkriterium von Cauchy). Forst fortelles uten
bruk av andre symboler enn funksjonssymbolet hva som er nedvendig
og tilstrekkelig betingelse for at en funksjon skal ha en grenseverdi for
= a. Umiddelbart etter gir forfatterne oss hva de kaller en eksakt for-
mulering og som er beregnet pid en noe mer matematisk interessert
bruker av boken. En slik behandling av stoffet virker pedagogisk over-
bevisende, og gjor sikkert boken lettere & bruke for dem som har behov
for & sld opp en slik definisjon.

Figurene, 427 i alt, er meget gode og klare selv om de er smé. Et eksem-
pel vil vise det fortreffelige samspill mellom tekst og figurer. P4 side 208
behandles singulzere punkter. Ved hjelp av 10 smé figurer blir forskjellige
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typer av singulere punkter vist. I den etterfolgende tekst forklares (uten
bevis) hvordan man bestemmer disse punktene og tilslutt gis noen eks-
empler.

Men boken forsgmmer heller ikke sin oppgave & vere formelsamling
ogsé. Vi kan nevne at her finnes en liste over 53 funksjoner utviklet i
rekker og samtidig er konvergensomradet angitt. Kanskje mest impone-
rende er listen over integraler. Den er pa 515 ubestemte og 45 bestemte
integraler. Dessuten blir det gjort rede for bruken av residuregningen til
beregning av bestemte integraler.

Jeg synes det er en vellykket oppslagsbok selv om det er enkelte
emner man leter forgjeves etter. Den store stoffmengden som er presset
inn pé 548 sider har fort til at boken er satt med meget sma typer. I tek-
sten henvises det sveert ofte til spesiallitteratur og bak i boken finner man
en fyldig litteraturliste. Boken avsluttes med et solid sakregister.

Ragnar Johs. Solvang

Avmar Nzass: Leerebok i hoyere matematikk. Grendahl & Sen, Oslo,
1958. 455 s. N. kr. 70.00.

(Innholdsfortegnelse i NMT 6 (1958), s. 171.)

Nerverende lerebog er pa opfordring af Norges Ingenior- og Tekniker-
organisasjon udarbejdet som en indferelse i den hgjere matematik med
direkte sigte pa teknikkens behov. Organisationens introducerende ord
udtrykker yderligere, at man har gnsket en omfattende og fuldsteendig
fremstilling med mange gvelser og eksempler, samt at bogen skulle egne
sig for selvstudium. Pa titelbladet er der af forfatteren, og maske inspire-
ret af ovenstaende, indfgjet ordene »Til Selvstudiume.

Inden anmelderen gar over til en mere detailleret omtale af bogen,
kunne det vere fristende at citere enkelte korte stykker af forfatterens
eget forord. Forfatteren skriver bl. a.: »Skal en fremstilling av matema-
tikk veare et verktgy, f. eks. for teknikken, s& vil dette ha innflytelse pa
valg av stoff som behandles og til en viss grad hvordan dette stoff legges
frem. Men selve logikken og deduksjonene ma veare like stringente som i
en analyse i matematikk som bare soker sitt mal i seg selv. Det er derfor
lagt vekt pa at bokens karakter som lerebok i ren matematikk skal bli
bevart.« »Det helt grunnleggende i hgyere matematikk er innferingen av
differensialene, de sakalte uendelig smé storrelser, det er bare ved disse
at man kan uttrykke kontinuitet.« Og senere: »Det er ogsa ved eksempler
forsgkt vist at ved utregning av visse naturprosesser mé differensialene
i ligningene ombyttes med (meget) sm& konkrete tall. Dvs.: Den deri-
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verte bevarer sin brgkkarakter. Den blir kvotienten mellom to (meget)
smé tall og ikke en grenseverdi.«

Leeseren af disse linier vil nu, efter de mange indledende ord, nysger-
rigt sparge om, hvad resultatet af disse anstrengelser s& er blevet? Har
vi faet en ny lerebog i matematisk analyse, der pa stringent méde ind-
forer sin leser i de grundleggende begreber, eller giver bogen blot en
summarisk fremstilling af disse begreber med tydelig omtale af forbi-
gaede ting og klar pavisning af, hvad der er bevist i bogen og hvad der
med vilje er udeladt som for vanskeligt stof ? Svaret méa fra anmelderen
blive et klart: desveerre ingen af delene! Fremstillingen er pa si godt som
alle veesentlige punkter springende og usikker. Definitioner og begreber
svirrer i luften, ofte er de som et ekstra krydderi forsynet med fine frem-
medartede betegnelser. Lose slutninger og halvbeviste s®tninger kom-
menteres og endevendes, uden at man rigtig er klar over, hvorom det i
grunden drejer sig. Hvorledes en stakkels leser ved selvstudium af
denne bog skal kunne lere sig de grundleeggende matematiske begreber,
er anmelderen komplet uforstaeligt. Selv i en kyndig og erfaren padagogs
hand vil bogen vewere vanskelig at anvende som grundlag for undervis-
ningen.

Desveerre er det jo i en anmeldelse som denne umuligt udferligt at om-
tale og kommentere hele bogen, men enkelte eksempler, tilfeeldigt udvalgt
blandt mange, vil forhdbentlig give en fornemmelse af sandheden i det
ovenfor sagte. Safremt dette ikke bliver tilfzeldet, henvises laeseren til
selv at granske bogen, eller til at lade bemeerkningerne std pa anmelde-
Tens ansvar.

Ret tidligt under lesningen star det klart, at forfatteren ikke tillegger
begreberne ngdvendig og tilstreekkelig seerlig veegt, mere kraftigt kan det
siges, at de pa sine steder direkte forveksles. Specielt kan det n®vnes, at
muligheden af indferelse af falske lasninger ved kvadrering ikke direkte
omtales, saledes f. eks. ved udledelse af keglesnitsligningerne i den analy-
tiske geometri.

Kurveteorien indledes med en »tangentdefinition«. En ret linie antages
at skeere en kurve i to punkter 4 og B, derefter parallelforskydes linien,
séledes at disse punkter rykker tettere sammen. Og nu med forfatterens
egne ord : »I den stilling da den er blitt tangent har 4 og B falt sammen til
ett. Derfor: En tangent er en rett linje som skjerer en kurve i to sam-
menfallende punkter. Man sier ogsd, at nar [ er blitt tangent, er avstanden
mellom A og B blitt uendelig liten (forsvinnende). At den er blitt uende-
lig liten inneberer at den ikke kan iakttas eller méiles med noe hjelpe-
middel til radighet. Men en avstand som ikke kan konstateres eksisterer
ikke.« Man sporger undrende sig selv, hvorledes denne halve og igvrigt
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bagvendte definition kan anvendes i det felgende (men det lykkes!!).
Ligeledes efter mange ord og behandlingen af et specialtilfeelde nir man
frem til definitionen af en asymptote: »En asymptot til en kurve er en
rett linje, som tangerer kurven i dens uendelig fjerne punkt¢, uden at de
1 denne definition indgiende begreber kan siges i forvejen at have faet
nogen preecis betydning.

Intetsteds finder man preecise definitioner pa greenseveerdi af en funk-
tion. Fra afsnittet om uendelig store og uendelig sma sterrelser er det
derimod fristende atter at citere med forfatterens egne ord: »Vi bruker
symbolet co for & uttrykke at et tall er blitt storre enn ethvert tall vi
kan oppskrive, eller pa annen mate uttrykke (tenke oss). P& den annen
side blir 0 (null) ogs& symbol for ethvert tall som er s& lite at dets stor-
relse ikke kan oppskrives eller pa annen méte direkte uttrykkes.« Videre:
»Null brukes i to noe forskjellige betydninger. Det vanlige i matematikk
er at null er uttrykk for absolutt mangel pa storrelse. Nar vi fra noe (en
storrelse) tar absolutt alt vekk, blir intet igjen.«

Man er efter dette spendt pa definitionen af en kontinuert funktion.
Den lyder: »En kurve, funksjon, er kontinuerlig nar en (uendelig) liten
forandring i x frembringer en (uendelig) liten forandring i y.« Med til-
fojelsen »Da blir funksjonsbhildet en sammenhengende kurve.« Den sidste
pastand synes at fremtrede som en selviglge. S4 let slipper forfatteren
over en af analysens vigtigste seetninger, man kan vist roligt tilfgje: det
er dog for let!

Et langt afsnit beskeeftiger sig med determinanter og ligningssystemer.
Folgende citat er egnet til at vise fremstillingsformen: »Vi merker oss:
betingelsen for at ligningene kan loses er at determinanten av koeffisien-
tene ikke er null. For en brgk med nevner null har ikke mening. Er deter-
minanten av koeffisientene null, sier vi at ligningssystemet har forsvin-
nende determinant. Da skjelner vi mellom to tilfelle: a) Tellerne i rgttene
er ikke null. Da har systemet ingen (endelig) losning. b) Tellerne er ogsa

null. Da er lgsningen ubestemt. # og y blir da av formen % og kan ha

uendelig mange verdier.«

Definitionen af differentialkvotient er ingenlunde fyldestgorende. Den
springer mellem det ene gjeblik at vaere grenseveerdien af differenskvo-
tienten til det neeste simpelthen at veere forholdet mellem to (ikke vel-
definerede) differentialer. Den folgende udledelse (eller méske rettere
omtale) af differentiationsreglerne hviler derfor pa et meget lost grund-
lag. Differentialregningens middelveerdiseetning dukker slet ikke op i
fremstillingen, men overalt betragtes dens konsekvenser som indlysende,
siledes ved behandlingen af maksimum og minimum. Den for elever
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typiske misforstaelse, at y’ =0 medfgrer maksimum, minimum eller
vendepunkt, gar igen i bogen. Ligeledes den fejlagtige tro pé, at differen-
tialkvotienten er positiv til venstre og negativ til hgjre for et maksimums-
punkt.

Ved differentiation af de trigonometriske funktioner klarer forfatteren
sig med pastanden: »Nar en vinkel er (tilstrekkelig) liten, blir den lik sin
sinus.« Senere i bogen findes greenseveerdien af sin x/x ved differentiation af
teeller og naevner, selvom dette greenseforhold allerede tidligere er »an-
vendt« ved udledelsen af differentialkvotienten af sinz.

Integralregningens teknik er ganske udferligt beskrevet. Der findes
ikke bevis for setningen om den brudne rationale funktions spaltning i
partialbroker (hvilket efter anm.’s mening er helt naturligt), men den for
forfatterens stil karakteristiske bemeerkning »At spaltningen i partial-
broker er mulig, fremgar derav at vi i hvert enkelt tilfelle kan finne
konstantene« ber dog citeres.

Da begrebet »uendelig« hos forfatteren har en umatematisk lidt ud-
flydende filosofisk betydning, bliver ogsd indledningen til raekkelzren
vanskelig forstaelig og ikke eksakt i vor tids forstand. Endvidere mé det
tilfgjes, at da Taylors formel ikke er udledt i bogen, bliver laeren om
potensrakkerne (spec. Taylors og Maclaurins raekkeudviklinger for de
elementaere funktioner) smuglet ind p4 en utilfredsstillende made (ledvis
differentiation af potensraekker). Ligeledes er anvendelsen af Taylors
reekke ved losning af ekstremumsproblemer fejlagtig og misvisende.

Anmelderen har i ovenstaende beskeaftiget sig med bogen efter dens
titel: Leerebok i hoyere matematikk, og har ikke omtalt anvendelsen pa
tekniske problemer. Disse er mangeartede og fylder store dele af bogen.
Men anmelderen er af den bestemte opfattelse, at uden et solidt og vel-
funderet matematisk grundlag vil selv en meget habil tekniker ikke selv-
steendigt kunne klare nye problemer fra den tekniske problemkreds.

Kai Rander Buch

MOTTATTE BOKER

Lamberto Cesari: Asymptotic behavior and stability problems in ordinary
differential equations. (Ergebnisse der Mathematik, neue Folge, 16.)
Springer-Verlag, Berlin, Gottingen, Heidelberg, 1959. 74271 S., 37 Fig.
DM 68.00.

Preface V * Some remarks on the concept of stability 1-14 * Linear systems with

constant coefficients 14-33 * Linear systems with variable coefficients 34-55 *
Linear systems with periodic coefficients 55-80 * The second order linear differen-
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OPPGAVER TIL LYSNING

Losninger av oppgavene 172-175 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste

lesning av hver oppgave. Lesninger av oppgaver i dette hefte mé veere sendt
innen 20. august 1959.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredaktoren, helst sammen med forslagsstillerens egen lgsning.

172. En Fibonacci-serie definieras genom @, .,=a, +a,_,, dir a, och
a, ar givna heltal. Visa, att
@piont+(—1)", = knar+n
dir k, bildar en speciell Fibonacci-serie. Angiv de forsta termerna i

denna serie. Carl-Erik Fréberg

173. For x>0 er gitt en kontinuerlig funksjon ¢(zx), der
0 < gpx) < .

Vis at dersom det eksisterer minst en funksjon f(z) som tilfredsstiller det
ene av kravene

() lim [M@ > lim f(x) = 0
—>0+ x 20+
)] lim —M——M— > lim f(x) = 0,

:v—>0+f(x) _f(‘p(x)) x>0+

s eksisterer det ikke noen funksjon som tilfredsstiller det andre.
H. Killingbergtro

174. Talen k% (Ove J.Munch: Om potensproduktsummer, NMT 7
(1959), s. 14) har for konstant p ett maximum M,,. Bevisa

M, ~pPe? /12
Gerhard Arfwedson

175. Serien
09' (7’L + a)n eaz

" [91]
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konvergerar inom tvenne genom punkten z =1 skilda omraden. Visa, att
formeln giller inom det omrade, som omsluter origo. Talet a ir godtyck-

ligs. Gerhard Arfwedson

LOSNINGER

166. Fibonaccifelgen a,, a;, a,, ... defineres ved

a =10, =1;0, =0, 1+a, , n=23 ....

Vis, at
N 1 1 7
> Arctg— + Aretg—— ==, N =1,2,3, ...,
n=1 Qon AaN+1
og
e 1
> Arctg — = z
n=1 Aoy, 4

(Sml. V. Bruns artikel i NMT 5 (1957), s. 170-71.) Asmus L. Schmids

Losning: Genom induktion kan man visa, att Fibonaccifcljden satis-
fierar
2 . 7
U™ = g1y = ('_ l)m .

Med hjalp hédrav finner man

1 1
U Up+1 _ 1
1— ( - l)m -1 '
amamﬁ-l

Séledes blir fér m =2n

1 1
arctg — +aretg —— = arctg

b
Ao, Qop+1 Qopn—1

varav uppgiftens formel f6ljer genom summation fran 1 till N.
[For m=2n+1 erhalles

1 1 1
artghyp —— + artghyp —— = artghyp —.
a

2n+1 2n+2 2n

Summation fran 1 till N ger

¥ 1 log3
D artghyp + artghyp —— = A_? ,
n=1 2n+1 BoN+o 2
varav
vy Goni1t 1

1t g
21 Ugpyy—1
n=1 Won 1 Gerhard Airfwedson
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Ogsé lest av Gustaf Borenius, Lars-Olof Hjalmar, H. Killingbergtrs, Lennart
Lindskog, Henrik Meyer, Arne Pleijel, K. V. Rask, Rolv Rasmussen, Ragnar Johs.

Solvang og Hans-Olav Zetterstrom.
167. Visa, att talen ¢, i uppgift 161 f6r ¢ =1 satisfiera formeln

D m=1)... (n—s+1)c,, = n",

dér n ar godtyckligt. Harav foljer, att ¢,g, .. ., ¢,, dr delbara med r+1,
om detta 4r primtal. Gerhard Arfuwedson

-

Losning: Jag skriver pastaendet pa formen

n
M u(n—1) ... (n—s+1)c,s = n'L.
§=1
Jag far
n
dlan—=1) ... (n—s+1)C,y ¢
$=1
d "
="nn-1)... m—s+1)c, 1+ X nn—1) ... (n—s+1)sc,g
§=2 s=1
n—1 n
=X nmn—-1) ... (n—=8)C,+ X' n(n—1) ... (n—s+1)sc,,
=1 s=1

I

=Y n*n—-1)... (n—s+1)c,+n32(n—1) ... lc,,

S=

I
—

n
=n nn—1)... (n—s+1)c,.
s=1

D4 pastdendet dr riktigt for »=1, giller det for alla ». Det andra péasté-
endets riktighet framgér, om man anviinder Fermats sats pa uttrycket

forn=2,3, ..., Arne Pleijel

Ogsé lost av Gustaf Borenius og H. Kyhl.

169. Nar m er et naturlig tall, skal »(m) veere eksponenten for den hgye-
ste potens av 2 som gar opp i m. Vis at rekken

X ym)+1 |
21' o sin (m+ 27x)
-

konvergerer for alle reelle x. B. Tambs Lyche
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Losning: For m=2"(2n+ 1) settes

X ) y+1
Uy, () = ol sin{(2n+ 1)272"z}, v,(x) = 7?%,1;(“3) ,
p p
Ry(x) = max| >'v,(x)|, Sy, (@) =max| X u, ().
p=M | m=M p=N | n=N

Da v,,(x) er det m-te leddet i den gitte rekken, skal en vise at Ry (z)— 0
nar M — oo. En har

1
(1) <2”+ Sepa(®)

M+2v—1
27+1

der indekset (v)= [ } Da Z %, ,(x) konvergerer for alle x og »,

kan en til et vilkarlig positivt ¢ fmne to tall N, og N, slik at

v+2
> S, (x) <e for n=0 og v

v

Ny

og 8,.(x) <e for m =N, og 0 v < N,

nar z har en fast verdi. Tar en M > 2V%(2N, + 1), blir etter (1)

No-ly 4] g1 2N
Ry (x) £ ¥V &+ . —¢ < B¢,
M( ) 1é6 2v v%\zz 2” N2+2

H. Killingbergtro

170. Lat z vara ett komplext tal och x dess reella del. Visa, att

le?—1 er—1
— | =

| 2z x

Qerhard Arfwedson

Losning: Ved f(z)=e? blir en rett linje gjennom origo avbildet i en
ekte eller degenerert logaritmespiral, der

le?—1| £ [z|(e®—1)[x
er en ulikhet mellom korde- og buelengden fra f(0) til f(z)
H. Killingbergtre

Ogsé lost av Gustaf Borenius, F. P. Dahlkild, P. W. Karlsson, Tord Martinson,
Henrik Meyer, K. J. Overholt, Arne Pleijel, K. V. Rask og Rolv Rasmussen.




OPPGAVER 95

171. Vis at
" 1
lim 2-2n H (x+ 27)1/271——1- =z,
n—>00 r=1 4
uavhengig av x. R. Tambs Lyche
Losning: En logaritmering ger
no1
r=1
1 noor rol x
= —2nlog2+log2 3 - n_r+227310g (1 +§?)
r=1 r=1

n

log 2 ro1
—2nlog2+— r-2"+0<x ——)
2n r=1 r=1 2n

I

2 nx
—2n log2+log2 <2n—2+2—n>+0 (?’)

2l0g2+0 (—
- Og2+' <§E>’
varur pastiendets riktighet framgar. Arne Pleijel

Ogsd lost av Gerhard Arfwedson, H. Killingbergtre, Lennart Lindskog, Rolv
Rasmussen og Ragnar Johs. Solvang.
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SUMMARY IN ENGLISH

Hararp BerastrOM: The fundamental theorem of Roth. (Swedish.)

An expository article, following generally the lines of Roth’s original paper.
A simplification of the presentation is obtained by a systematic use of vectors.

H. W. Gourbp: Dixon’s series expressed as a convolution. (English.)

o k) (n)?

be the well known Dixon’s series. It is shown that

n
2 AkAn—k —_ (_ 1)”227: (2’/1/) S ,
k=0 n

A, = n—+k\ [ 2n+ 2k
E= n n+k )

where

Oror HANNER: A problem of coin distribution. (Swedish.)

We seek a collection of coins with the following properties: 1° Each coin is
smaller than the sum of the remaining coins. 2° It is impossible to distribute
the coins between three persons in such a way that each person gets less than
the two other persons together.—Clearly a collection of 4 equal coins satisfies
the conditions, and it is shown that this is the only type of collection with the
given properties. The coin problem is closely related to an intersection problem
for convex polyhedra, treated by the author in Math. Scand. 4 (1956), pp. 65—87.

A. MAROWSKI: On the diophantine equation 2%+ 11Y =157, (English.)

It is shown that the equation of the title has the only solutions (z, y, 2) =
(2, 0, 1) and (2, 2, 3) in non-negative integers.

[96]




