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OM POTENSPRODUKTSUMMER

OVE J. MUNCH

1. Indledning. Det er en velkendt sag, at et vilkarligt polynomium af
. hojst n’te grad kan skrives som en linearkombination af n+1 linezrt
uafhengige polynomier af hgjst n’te grad. Et hyppigt benyttet system
af »basispolynomier« er [1, p. 168]

(o) G- ()

som f. eks. indgir i Newtons interpolationsformel.

Der er nzppe noget andet system, som har s mange anvendelses-
muligheder som dette; det forhindrer dog ikke, at der i specielle tilfzelde
findes andre systemer, som kan benyttes med fordel. Vi vil i det fglgende
benytte

() ()1,

At disse polynomier er linesrt uafheengige, ses let ved i identiteten

ani (x+i) -0

i=0 n
at indssette x=0, 1, ..., n efter hinanden; man far da
b,=byq1=...=by=0.

Vi nevner nogle grunde til, at vi velger det sidstnevnte system:
Hyvis to polynomier P(x) og P*(x) af n’te grad tilfredsstiller relationen

(2) P@—1) = (=1)"P*(-2),
og P(x) har fremstillingen

=0 n
si er .
T+
Pra) = 3o, (")
i=0 n

(5]
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Benytter vi nemlig omskrivningen

(x—-1+i) — (=1)n (—-x+n—i> ’

n n
finder vi
P(x'—'l) — )‘Yai <£L‘—1+Z) - (—1)”2(],1: (-—:U-I-’n—'l,)
i=0 n i=0 n
n _ .
= (=1 Ya (705,
i=0 n

der ved anvendelse af (2) forer til den anferte formel for P*(z).
Heraf — eller direkte af (2) — folger, at forbindelsen mellem P(x) og
P*(x) er gensidig. Hvis specielt

Pl@—1) = (-1)"P(-2),

s& har man en symmetri i koefficienterne a,, idet der pa grund af entydig-
heden af disse ma gelde a;,=a,,_;.

Vi viser yderligere, at dersom polynomiet P(x)= Y a, (x;{b—z) har de

=0
heltallige nulpunkter p, p—1,...,0, =1, ..., —q, sa gelder a,=a,=
cee =g =0y = ... =0, 3=0,=0.Thiindszttelse af =0 giver a,, =0,
hvorefter x=1 giver a,_; =0, osv. indtil z=p, der giver @y, =0. Tilsva-
rende finder manmed z= —1, —2, ..., —q, at Q=01 =0y=...=a, =0,

Man kan finde mere af interesse om denne interpolationsmetode, men
vi standser her, da vi har anfert tilstrekkeligt til vort formal.

2. Summation af potensprodukter. Lad p,, p,, ..., P, samt n vaere
hele positive tal. I udtrykket

2‘ k1P1k2P2 . kq:ﬂq
K

skal summationen forstis siledes:

K betegner en forskrift af typen klé)kz(g). . .(g)kq, hvor der mellem
hvert par pa hinanden fglgende k’er skal sti enten < eller < (men pa
samme plads i forskriften stadig det samme). Man skal da summere over
alle seet af hele tal &y, ks, ..., kg, som tilfredsstiller forskriften samt be-
tingelsen 1<k;<n. Dersom der i forskriften forekommer m rene ulig-
hedstegn, m& man, for at udtrykket skal have mening, antage n>m + 1.

Med en bestemt forskrift K afhenger den ovenstiende sum af p’erne
samt af n; da i det felgende ikke selve p’erne, men kun deres antal ¢ skal

variere, vil vi betegne den
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(3) A(n; q) =‘%1 REY NI L 8
g
Vi seetter 3 p;=p. Der gelder da folgende?
-1

SarNiNg 1. Udtrykket A(n; q) er et polynomium i n af graden p+q,
med hovedkoefficienten . ) »
yii (’V'i". Pi)
r=1 1=1

og med nulpunkter m, m—1, ..., m—q.

For at vise denne seetning benytter vi induktion efter ¢ og betragter
derfor forst tilfzeldet ¢ =1 (og altsd m=0). Vi vil her forudsette kendt,
at [2, p. 262], [4]

@) 8,n) = Aln; 1) = X kv
k=1

er et polynomium i n af graden p+ 1, med hovedkoefficienten 1/(p + 1) og
nulpunkter 0 og —1. For fuldstendigheds skyld er et bevis anfert i 3
under den nermere omtale af dette seertilfzelde.

Seetning 1 er altsd rigtig for ¢=1; lad da ¢ > 1. Vi antager forst, at der
i K gelder k, ; <k, Lad K, vere den summationsforskrift, der fremgér
af K, nar det sidste led (<k,) udelades. Ifglge vor induktionsforudseet-

ning er da
n

An; g—1) =3 kP kP2 ...k, Po?

Ky

et polynomium i n af graden p—p,+q—1, med hovedkoefficienten

q—1 v -1
yii (”‘*‘2 pi)
y=1 =1

og med nulpunkter m—1, m—2, ..., m—gq.

Af (3) ser man, at der for n>m+ 1 gelder ligningen
(8) An; ) —Am—1;9) = n1A(n-1;¢-1),
medens man for n=m+1 har
(5) Aim+1;q) = (m+1)72A(m;q-1),

hvor i den sidste formel hvert A kun indeholder eet led.

1 Nar vi skriver: »Udtrykket A(n; g) er et polynomium i n af graden p+g o.s. v.¢, er
dette en kort skrivemade for: »Udtrykket A(n; g) kan i sit definitionsomréade identificeres
med et polynomium i n af graden p+q o. s. v., og betegnelsen A(n; g) vil i det folgende
blive brugt ogsd om dette polynomium.«
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Under forudseetning af, at A(n; q) er et polynomium, vil vi bestemme
dettes form og egenskaber. Man ser, at (5) ma gzelde for alle . Indsattes
heri n=m+ 1, fas ved sammenligning med (5'), at A(m, ¢)=0. Indfores
derefter i (5) for n efterhdnden nulpunkterne m, m—1, ..., m—q+1 for
polynomiet A(n—1;¢q—1), ses det, at A(n;q) har nulpunkter m, m—1,
..., m—q. Det bemerkes, at blandt disse sidste findes altid 0 og —1.

Ved indsetning af veaerdierne 1,2, ..., % i (5) og addition af de frem-
komne ligninger finder man

(6) Amsq) = 3 kPA(—1;q—1).
=1

Ifglge induktionsforudsetningen har man

p—pgtg-1
Ak=1;9-1) = 3 bk
v=0
med hovedkoefficienten

g1
b

» -1
P—Dg+q—1 :H (”""%'pi) .
i—

v=1
Dermed bliver
P—pgtqg—-1 n p+q—1
(7) Am;q) = 3 Yok = 3 a,8,n),
v=0 k=1 v=pq
hvor a,=b, ,, specielt a, ., , =b,_p,+q-1- Med S-polynomiernes egenska-
ber i erindring ser man heraf, at A(n; ¢) m4 have graden p+q og den i
setning 1 nevnte hovedkoefficient.

Vi kan nu omvendt indse, at det ved (7) bestemte polynomium
A(n;q) virkelig tilfredsstiller (3) for alle hele n = m + 1. For disse n-veaerdier
kan man nemlig fra (7) over (6) slutte tilbage til (5') og (5) og derfra til
(3).

Hvad ovenfor er sagt, kan pa analog made gennemfgres, dersom K
slutter med k,_; <k,. Svarende til (5) og (5') far man her

(5a) An; q)—A(n—1;q) = nPeA(n; g—1)
og
(5'a) Am+1;5q) = (m+1)PeAm+1;9-1),

hvorefter fremgangsmaden er den samme som for. Beviset for setning 1
er dermed feerdigt.

Med K* betegnes den »komplementare« summationsforskrift til K,
d. v. s. den, som fremkommer af K ved gensidig ombytning af tegnene
< og =. Betegner altsi K f.eks. k <k,<k,, har K* betydningen
ky <k, < ky. Nar som foran det til K svarende polynomium kaldes A(n; q),
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betegner vi det til K* svarende polynomium A*(n, ¢). Indeholder K som
for m rene ulighedstegn, vil der i K* forekomme ¢—m—1 sadanne, og
vi har for nzqg—m:

(3a) A*(n; q) Ekmkm ke

Vi vil nu godtgere, at den her anvendte betydning af en stjerne er i
overensstemmelse med den i 1” benyttede. Der galder nemlig

SamTNING 2. Polynomierne A(n; q) og A*(n; q) er sammenknyttet ved rela-
tionen

(8) An—1;q) = (= 1)PHA*(~n;q) .

Beviset fores som for ved induktion. P4 dette sted forudsaettes kendt, at
polynomierne S,(n) = S;‘ (n) tilfredsstiller den til (8) svarende relation
(9) Sp(n—1) = (=1)PH8, (—n).

Et bevis herfor er medtaget i 3.

Seetning 2 er altsa rigtig for ¢ =1, og vi gar over til ¢ > 1. Vi kan uden
indskreenkning af bevisferelsen antage, at K slutter med k, ; <k » 0g K*
altsd med k,_; <k, Polynomierne A(n;q) tilfredsstiller da (5) og (5),
medens polynomierne A*(n, q) tilfredsstiller (5a) og (5'a).

I identiteten (5) indsattes for n efter hinanden veerdierne 1,2, ...,
n — 1, hvorefter man ved addition finder

(10) An—1;q) 215’79/1 —-1;9-1),

der ogsi fremgéar af (6), nar man erstatter n med n—1. Af (5a) fas pa
lignende méade for polynomierne A*(n; q), nar man for n indsetter veer-
dierne —1, —2, ..., —n+1:

—A¥(=n;q) = 2 kYeA*(—k;q—1),
d.v.s.
n—1
(11) AH(=n;q) = (= 1)P" Y EA*X(—k;q-1).
=1
Efter induktionsforudssetningen geelder
Ak—1;9—1) = (=1)P Pl A*(—k; g—1);

indferes dette i hajre side af (10), s& far man

n—1
Am—1;q) = (= 1P Petet 3 jpaf*(—k; q—1),
k=1
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der ifglge (11) kan skrives

An—1;9) = (-1pH94*(=n;q),
altsd formel (8).
Hertil vil vi endnu fgje

SETNING 3. m,m—1, ..., m—q er samtlige heltallige nulpunkter 1 A(n;q).

Vi har allerede set, at A(n; ¢) har de n®vnte nulpunkter. Pa grund af
(3) er A(n;q)>0 for alle hele n>m. Tilsvarende fas ved (8) og (3a),
at A(—mn;q)=(—1)P+A*(n—1;9)+0 for alle hele n>g—m, d.v.s.
—n <m—q. Sammenfattes dette, ses seetning 3.

Vi vil derefter udtrykke polynomierne A(n; q) og A*(n;q) ved hjelp
af systemet (1). Af det i 1 fundne i forbindelse med sztning 1 felger, at
vi pa entydig made kan udtrykke A(n; q) og A*(n; q) ved

p+g—m—1 n+1
12 A(mn; q) = A ( )
(12) ) = i\ pag
og
N, n+1
12 .
( a’) ’I’L Q) - %+ D+q—1 (p+q>

Raekken af koefficienter i (12a), leest fra hgjre mod venstre, er den samme
som koefficientraekken i (12), leest fra venstre mod hejre:

p+q—m—1 n-l—p+q—i
12b A*(n; q) = ) Ai( )
(12b) (n; q) ptq

i=g—m

Man bemsrker, at antallet af koefficienter altid er lig p.
Lad os slutte dette afsnit med at omtale et konkret eksempel: For
K: ky<ky<k,finder vi for p;=p,=p;=1:

aze)  Aws3) =4("5 ) +a("e ) 2 (")

her er
Ay = A(2;3) =4, 1y = A%(2;3) = 2.

A(n; 3) har hovedkoefficienten 1/2-4-6 =1/48; multiplikation af identite-
ten (12¢) med 6!="720 og sammenligning af koefficienterne til leddene af
hojeste grad giver Ay+A;+4,=15. Vi ma da have 13=19, hvormed

w27 0o (17) 15

og
A*(n; 3) = 4(’“&2) +9("§3> +2("J6r4) X
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Vi forlader her den almindelige teori og gar over til at betragte nogle
specielle tilfzelde. Forst skal S,(n)-polynomierne omtales, og da 2 hviler
pé nogle af disse polynomiers egenskaber, vil vi i 3 give en fremstilling,
der er logisk uafhengig af 2.

3. Potenssummerne S,(n). Man kender formlen
& n+1
sim = X'a = ("3,
a=1
og en simpel omskrivning af

Sum) = 3 a® = fa(n-+1)(2n+1)
a=1

n+1 n+2
Sz(n)—( 3 >+( 3 )
Vi vil finde tilsvarende formler for storre p.2

Lad i det folgende k% betegne talkoefficienter med i=1, 2, ..., p. Vi
betragter formelt

(13) 8,(n) =é‘kﬁ (ZL’)

giver

Vor forste opgave er da at vise, at skriveméaden (13) er mulig og entydig.
Af (13) fas

14) fkf("”)—f’kg("‘l“Li):nv.

= t\p+l) I p+1-
Da . . .
<n+¢) _ (n—- 1+@> _ <n—1+z>
p+1 p+1 ) p ’
giver (14)
(15) k? ("‘”“) —
i=1 P

indszttes heri efter hinanden verdiernen=1,2, .. ., p, fas ligningssystemet

)

P\p
p+1 P

asy | B(7,) () -

2p—1 2p—2 2p—3 P
kg( P )H#;H( P >+k£‘2( D )+"'+k€<p>=pp'

? Disse formler er forst angivet af Worpitzky [7]. De er ogsa bevist af Piza [6]. Andre
formler for potenssummerne er nylig angivet af J. Lohne i dette tidsskrift [3].
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Her er p ligninger med p ubekendte; koefficientdeterminantens veerdi
er 1, hvorfor ligningssystemet har netop eet st losninger. Dette viser,
at udtryksmaden (13) er entydig, ifald den er mulig. Lad derfor kP,
t=1,2, ..., p, 1 det folgende veaere de ved (15*) bestemte tal.

Ifglge (15%) geelder (15) for n=1, 2, ..., p; ved direkte indsstning ses
den ogsa at veere rigtig for n=0. Da begge sider af (15) er polynomier i
n af hgjst p’te grad, ma denne ligning derfor vere en identitet. Nu er (15)
ensbetydende med (14); endvidere forer addition af ligningerne (14) for
det benyttede n og alle mindre, hele positive veerdier tilbage til (13),
saledes at ogsé denne sidste ligning mé veere gyldig for alle hele, positive n.

Hermed er muligheden og entydigheden af (13) bevist. Tilbage star at
beregne koefficienterne; inden dette sker, vil vi dog vise to egenskaber
ved disse. .

Efter det netop sagte er begge sider af (15) polynomier i » af netop
p’te grad ; multiplikation af denne identitet med p! og sammenligning af
koefficienterne til leddene af hgjeste grad giver

v

(16) 2k = p!.
i=1

Endvidere geelder

(17) kY = Iy -

Efter det i 1 sagte er (17) en folge af den allerede nevnte relation

(9) N

p(n_l) = (—1)p+1Sp(—n) ’

som vi derfor vil bevise nu. Af (14) findes

Sy(n)—8,(n—1) = nP,

p
og denne ligning mé gelde for alle n. Sattes specielt n =1, fas §,(0)=0,

og n=0 giver derpé, at ogsd S,(—1)=0. Indsettes efter hinanden vser-
dierne —1, —2, ..., —n+1, og adderes de fremkomne ligninger, findes

-

" n—1

—8y(—n) = X (=R = (=1 X I = (—1pp8,(n—1),
k=1 k=1

der er ensbetydende med (9).

Da 8,,(n) > 0 for alle hele, positive n, si folger af (9), at S,(n) ikke kan
have andre heltallige nulpunkter end 0 og — 1, hvilket allerede er inde-
holdt som et specielt resultat i setning 3.

Vi vil nu bevise, at koefficienten kf bestemmes ved formlen

p+1

(18) 2 =j=zi’<—1>f—fjp(,._3) :
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Dette sker ved direkte indseettelse i systemet (15*). Den 4’te ligning i
dette system kan skrives

+i—1 +i—2 +1 )
k{’(pi_l )wg(p@.“z )+...+kf_1(p1 >+kg(2(’;>=w,

eller, pa kortere form: i1
STkP <p+7')=zp
e T r

r=0

Indferes her k¥, fra (18), fas

=T

-1 i—r
L +1 p+r .
5y () (7).
T=ZO' j=1 (=1 J t=r—=J r
Denne ligning skal altsd vises at veere rigtig. Ombytning af summa-
tionernes reekkefolge giver

(19) > v S (P ) (7F) = o

= t—j—r r
For at godtgere dette betragter vi identiteten
(1 +x)p+(142)?1 =1,

der (for |z| < 1) kan skrives

f(pzl)xq-é(—l)'(p:r)x’ ~1.

g=0

Sages her koefficienten til 2 pa begge sider af lighedstegnet, fas

Zn'(“l)r<p+1> <p+r> _ {Oforn >0

= n—r r 1forn =0.

Med benyttelse heraf er rigtigheden af (19) — og dermed ogsa af (18) —
klar.

Af (18) kan alle koefficienter k¥ beregnes. Specielt ses — med benyt-
telse af (17) —, at for alle p er K=k =1. For de gvrige veerdier af ¢
geelder relationen

(20) o= (p+1-0)k ]+, 212 p-1.

Dette indses, nar man for de to k’er pa hajre side indseetter de ved (18)
bestemte verdier og reducerer; man far da netop udtrykket (18) for k7.
Reduktionens detaljer forbigas her.

Det ses, at (20) medfarer, at alle koefficienterne k7 er positive. Det
bemaerkes igvrigt, at hvis vi definitionsmeessigt swetter A =iL"=0, s
geelder (20) ogsa for ¢=1 og 1=9p.
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Ved hjelp af (20) kan man angive en simplere beregningsmade for
koefficienterne k7, idet disse stilles op i et skema analogt med Pascals
trekant; tallene i enhver reekke svarer til en bestemt p-verdi, som er
anfert helt ude til hgjre. Det i’te tal i den p’te raekke er k7. Skemaet
betyder siledes for eksempel for p=5, at

i n+1 n+2 n+3 n+4 n+5
5
Ja _( : )+26< ! )+ee( ' )+26< : )+( : )

2 1/1\1 2

11

6 66 26 1
7 / 1 57 302 302 57 1
1

8 120 1191 2416 1191 120
1 247 4293 15619 15619 4293 247

Umiddelbart uden for selve koefficienttrekanten er til begge sider an-
bragt tal 1, 2, ...; disse tal skal veere koordinater for de sgjler, der udgé-
ende fra ethvert tal gar skrat nedad til hgjre, resp. venstre. Koordinaten
til en sidan sgjle er p-vaerdien for det ettal, der star gverst i sgjlen. Hvert
tal i skemaet fir derved to koordinater; tallet k? stir i den p’te rekke
som nr. ¢ fra venstre og far derfor koordinaterne (p+1—1, ¢). F. eks. har
k3 =120 (i skemaets venstre halvdel) koordinaterne (6,2), medens k=120
(i skemaets hgjre halvdel) har koordinaterne (2,6).

Formel (20) giver en simpel opbygningsregel for tabellen: hvert indre
k¥ kan findes ud fra de to nermeste tal i reekken ovenfor, idet hvert af
disse tal ganges med den felles koordinat til tallet selv og k%, hvorefter
de to produkter adderes. Til eks. er

W N U R W NS

kS = 15619 = 5.1191+4.2416 .

Metoden giver siledes ret nemt koefficienterne for selv forholdsvis store
veerdier af p.3

8 Ifelge [6] og [7] har allerede Euler betragtet de tal, der her er betegnet k?. Ifolge [5]
har prof. @ystein Ore foresldet betegnelsen »Kummer-tal¢ for disse koefficienter, fordi
Kummer har arbejdet en del med dem. Bade Worpitzky og Piza angiver den her gengivne
rekursionsformel (20).
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n
4. Polynomiet JJ (x+ k). Vi betragter polynomiet

k=1
Il (@+k) =3 Ly(n)a"—2;
k=1 q=0
da er for g1
n
(21) Ly(n) =%’ kyky ... kg,

hvor der i K kun forekommer rene ulighedstegn. Det fglger da af den
almindelige teori i 2, at L,(n) er et polynomium i n, og at dette poly-
nomium har graden 2¢ og hovedkoefficienten 1/(2¢)!!.4
Antallet m af ulighedstegn i summationsforskriften K er lig ¢—1; vi
ved da,at¢g—1,9—2, ..., 0, —1 er samtlige heltallige nulpunkter i L,(n).
Af den almindelige teori fglger endvidere, at der findes entydigt be-
stemte koefficienter A/, saledes at der galder identiteten

(22) Lyn) = ékg ("2;i> :

Indseettes nu efter hinanden verdierne ¢, ¢+1, ..., 2¢—1 for n i (22),
fremkommer folgende ligningssystem:

2q
m(50) - L)
2q+1 2q
q q o
(22%) kQ( 2 ) hi (Zq) Lolg+1)

3¢g—1 3qg—2 2q
g g g = _
hq( 2 )+hq—1( 2 >+...+h1 <2q> = L,(2¢-1).

Ved sammenligning af (22*) med ligningssystemet (15*) og dettes lgs-
ning ser man, at der ma gelde

g (2q+1 .
g . =M (=1)y- ("1 " ")L .
(23) e ; ;:0( ) ’( @_j) o(7+7)

Vi kan ogsa her skrive koefficienterne op i et skema analogt med
Pascals trekant; det ¢’te tal i den ¢’te reekke er .

4 Man har definitionsmeassigt (2r)!! =2-4-6-... (2n—2)-2n og (2n—1)!! =
1-3:5-...-(2n—3)(2n—1). (Se f. eks. I. P. Natanson: Konstruktive Funktionentheo-
rie, p. 9, Berlin 1955.)
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q

1 1

1 2 2

1 8 6 3

1 22 58 24 4

1 52 328 444 120 5

1 114 2436 4400 3708 720 6

1 240 8562 68360 58140 33976 5040 7

1 494 28806 376184 1042660 785256 341064 40320 8

Vi vil vise nogle egenskaber ved disse koefficienter. Af L (q)=q! folger
hi=q!; endvidere er h{=1 for alle ¢. For at vise dette sidste bemerker vi,
at ligningen (8), der her bliver
sammenholdt med (22) giver, i overensstemmelse med (12) og (12b),

. »
(222) Lym) = 3 i (’”22;’ ’) .

Da nu L;‘(l) =1, s findes A{ =1 ved indswxttelse af veerdien n =11 (22a).
Multiplikation af ligningen (22) med (29)! og sammenligning af koeffi-
cienterne til leddene af hgjeste grad giver

e

(24) B = (2¢—1)!1;

=1

den samme ligning (24) folger ogsd ved induktion ud fra den nedenfor
beviste, for 1 <1 <gq gyldige ligning

(25) B i = (q+9) i+ (g—0)RL] .

Ved hjelp af (25) kan man ogsa vise, at der galder A= 2k%, hvor kf er
den i 2 definerede koefficient.
I beviset for relationen (25) benytter vi, at dersom for 0 < EY

46) = @+ (7)) -0 (171,

idet specielt (2q—_1 ) regnes for at vere 0, si gelder for 0<j<i—1
AG) AG+1) (%+v

L Rl U = i

q+j q+j+1
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Dette kan godtgeres ved en direkte indswttelse og reduktion, som her
forbigas.
Af (23) fas

d 2g—1 )
et = 3 (=07 () Beata= 149

gt Sty (2471 g 14

q— _2("— ) ,':_l_j q—l(q_ +3)
J=0

hvor man i sidste ligning gerne kan summere helt til 5. Vi vil, ved at

benytte hgjresiderne af disse to ligninger, vise, at udtrykket

8 = (q+i)het, + (g — i)k}

q—w—-l q—

er lig hgjre side af (23). Vi finder straks

8 =23 (=) A(G) Lya(g—1+)) -
7=0
Da imidlertid . . . .
Lq+)) = Lyg+j—1) +(q+J) Lga(g+j—1)

og altsa )
Loalg+j-1) = E(Lq(qﬂ)—fiq(qﬂ— ),

s& bliver s

8 =23 (- )”

j=

(Lq(q +§)—Ly(g+j—1))

0
' (A(j>+A(j+ 1)
0

(= 1) ; -
,g g+j q+3+1

) Ly(q+)+ Lyfg +1)

i (2941
= 3 (- () g +i) =
j=0 =)

Hermed er ligningen (25) bevist; det tilfgjes, at dersom vi indferer
h§=hi,, =0, si geelder (25) ogsé for 1=1 og i =g¢q. Ligningen kan, nar man
gér ud fra h! =1, benyttes til beregning af koefficienterne. Man bemeerker,
at det af (25) folger, at alle koefficienter 4{ er positive.

Vi kan nu udtrykke polynomiet [f (z+k) ved
k=1
Il (@+k) = x”+(n;1)x"’—1
k=1
n+1 n+2\] . g q<n+i n—g |
+[( 4 >+2( 4 )]x +ooi+ DR 2 )x +...+n!,

=1

NMT. Hefte 1, 1959. — 2
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hvor koefficienterne h{ er tallene i den ¢’te rakke i den anforte koefficient-
trekant.’ '

5. Bernoullis tal. De foran anforte eksempler pé forskellige klasser af
polynomier kan suppleres med flere; jeg skal dog afstd derfra, da disse
eksempler, skont interessante i sig selv, i deres behandling ikke afviger
ret meget fra det allerede sagte.

Imidlertid kan de metoder, der er anvendt i det foregéende, ogsa be-
nyttes til at finde formler af helt andre typer. Man kan saledes finde ad-
skillige eksplicite formler for Bernoullis tal B, pa den made, at man ud-
trykker Bernoullis polynomium B,(n) ved et passende system af linesert
uafhengige polynomier, hvorefter det konstante led opsgges.

Vi vil her ngjes med at vise, hvorledes B, kan udtrykkes ved koefficien-
terne k}; med principielt samme metoder kan man imidlertid udtrykke
B, ved polynomierne Ly(n) eller ved tallene 7.

B,(n) er entydigt bestemt ved at skulle have graden v og tilfredsstille
betingelserne [1, p. 173]

B(x+1)-B,x) = »w"™, »=10,1,2, ...

8 Bl(x) = vB, ()

v

?v=192,“

B, defineres som det konstante led i B,(n).
Som felge af de opstillede betingelser for B,(n) ma der gzlde

B, (n+1) = v+ 1)8,(n) +B,,;
ved differentiation heraf finder man

B,(n+1) = v+1)8i(n),

hvoraf ,
(r+1)B,(0) = (v+1)8S,(-1),
d.v.s. ,
B, =8(-1).
Nu er p )
, d n+1
S = Y
) 1-‘3‘1 “dn <v+ 1>
og derfor
, Yoo (=1 (»+1—4)! . 1 ’ R
S(—-1) = k N L y — 1)yt 7
A1) = 2 (0 = g S

(:21)

5 Worpitzky har ogsa betragtet tallene h%; han angiver ikke rekursionsformlen for dem,
men siger blot, at en sddan kan findes.

eller, nar ¢ ombyttes med y+1—4:
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B, m@?(—l)’ (Z>

Indferes heri udtrykket (18) for &}, finder man

(v-l—l)
—1) NI/

2 2

1
+ i=1 j=1 (1)
)
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AN APPLICATION OF A “CARPENTER’S CURVE?”
TO SIMPSON FORMULAS!

VIGGO BRUN

1. In 1953 I gave in this journal [1] a Simpson-formula for three non-
equidistant ordinates y,, ¥, and y,:

a+b a—b
(1) FNT(yo+4y1+yz)+T(yo—.’!/2)-

Here a and b are the distances between the ordinates.

In 1958 Ernst Selmer [3] has given—also in this journal—a further
treatment of the same subject from other points of view. Of particular
interest is his Simpson-formula for four non-equidistant ordinates.

I shall show here how my method, which rested on the Archimedean
determination of the area of a segment of a parabola, can also be used to
deduce Selmer’s formula for four ordinates. But first I will reconsider
my former treatment of the formula (1), as the starting point was then a
little arbitrary.

As the method I used resembles the way in which a carpenter would
remove the corners from a wooden board, I will start by defining a
“carpenter’s curve”, a word which Werner Werenskiold once used to
explain my method to a non-mathematician who had not understood a
lecture I had given on this subject.

2. Suppose that we have given a polygon, for instance a quadrangle
PP,PyP,, and that a point M is given on each of the sides (fig. 1). We
wish to draw a curve through these points without discontinuities in the
direction. We also demand that the sides of the quadrangle shall be
tangents to the curve in the points M.

We will do it in a similar manner as a carpenter would have done if the
quadrangle had been a wooden board. He would have removed the cor-

! Presented at the International Congress of Mathematicians, Edinburgh 1958.

(20]
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ners to make the board less “edged”. He would probably begin with
bisecting the segments MP. At least we will do so.

P, M, P, M,
Py Py
M, M,
L M, M,
Py M, P, Py M, P,y
Fig. 1 Fig. 2

We then get an octagon (fig. 2), and can choose four points NV on the
new sides. In continuing this process, we get a polygon with sixteen sides,
and so on. I call the limit for these polygons a “carpenter’s curve”. As
the choice of the points N (and the following similar new points) is
arbitrary, we can get many different carpenter’s curves corresponding
to a given polygon with given tangent-points M. But they will all enclose
areas of the same size.

Suppose that the area of the given polygon is F and that of the in-
scribed polygon f. The area enclosed in the carpenter’s curve will then be

1 1 1
C=F- (Z+Z@+Zﬁ+ ) (F—f) = 3F+1f .

Let us use this method to deduce the formula I gave in 1953 for three
non-equidistant ordinates. As the choice of the broken line was then a
little arbitrary, I shall here deduce my formula in a new manner. Only
parts of the polygon will now be replaced by a carpenter’s curve, but
the formula for the area is still valid.

We draw a broken line (fig. 3) through the given points M,, M, and
M, and choose the abscissas }a and a+ b for the points P; and P,.
J The length of %, is chosen arbitrarily.
M Py The ordinate 7, will be a function of

2 74, and we get for the area (C) under
Py the carpenter’s curve:

' y, | My 1 b?
M, Mo 1 (2) O="[‘Wo+ (“‘f'%'l”;)?/l'*‘byz]

Y 3
Yo ’ 1 b?
+—{a-———] No »
a a+% a+b 3 a

Fig. 3 If this formula shall have the form

a
2



22 VIGGO BRUN

(3) C = (Bya+8,b)yo+ (Bya +85b)ys + (B3a +83b)y, ,
with numerical coefficients R and S, then 7, must have the form
N0 = Lyo+ My, + Ny, ,

where L, M and N are functions of o and b. If we demand that our
formula shall be exact for y=1 and for y==, we must have

L+M+N =1, aM+(a+bN = ia.
If M and N are expressed by L, we get

1 a?—b? 1 3 a? a+b a?2—-02
4) C=Zla+— L|lyg+=|2a+-b+——-""2. 277
) 3[“ a Jy"+3[ Rt % T a }yl

If formula (4) shall have the same form as (3), it will be seen that we can
determine all of the six quantities R and S except one of them. Our
formula will therefore contain one parameter 4, and can conveniently be
written as

(5) 0 = 1[(a+240)yo+ (1—22) (a+Db)y, + (2Aa +b)y,] .

If this formula shall correspond to Simpson’s formula when a =50, we
must choose 1= — §. We then obtain the formula (1) which I gave in 1953.

I remark that we get the same result if we choose arbitrary abscissas «
and a+p for the points P, and P, (fig. 3), and then demand that the
formula shall be linear in a, b, « and B, cf. (3).

3. The problem of giving a Simpson-formula for four non-equidistant
ordinates can be treated in the same way, and we get for the area under
the carpenter’s curve a formula with three parameters 1, u and »:

(6) C = 3{la+(1=2)b+pucly,+[Aa+ib+(1—pu—v)cly,
+[(A=A—p)a+vb+re]ys+[ua+(L—v)b+cly,} .
If this formula shall correspond to “Newton’s rule’’
C = 3a(yo+3y,+3ys+ys)
when a=b=c, we must choose A=» and A—u=35. We then get the for-
mula with one parameter given by Selmer ([3], § 7):
(7) O = §{[4a+ (4—4A)b+ (41— 5)c]yy+ [42a+ 4b+ (9 —8A)cly,
+[(9—81)a+4b + 4Aclyy+ [(4A —B)a+ (4 — 4A) b + 4c]ys} .
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I have only studied the special case A=1, which gives the formula
O = H{l4a—clyo+[4a+4b+cly; +[a+4b+ 4]y, + [ —a+delys) .

As an example of this formula, I will apply it to the area of a quadrant
of a circle with radius 5 (fig. 4), thereby obtaining an approximation for s.

; )
My formula gives 5 o 101154 17-4411-3)

and therefore

By
»—\
a
r
5 Yr+1
4
3
Yr
3 4 5 Ty Tr+1
Fig. 4 Fig. 5

4. The carpenter’s curve can also be used to give a supplement to
the trapezoid rule when the direction (y,) of the curve is given at the end-
points of the arc (cf. Heidam [2]).

The supplement to the area of the trapezoid will be (fig. 5)

_lah,

- H

3A

where Ay, = y,.,—¥,. We can also write

E (Ayr - y;Axr)(Ayr_ y;‘-HAxr)

S = ;
3 Ay,

where
Axr = Xpi1— gy Ayr =Yr+1—Yr -

The trapezoid rule for more than two ordinates will then be

n r gr
— ~1
21] Yrt+Yr1)A 321 1 ’ .

1
2

5. Our definition of a carpenter’s curve can be extended to a “car-
penter’s surface”. If a carpenter was given a wooden polyhedron and
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was asked to make a block of it without edges, he would probably begin
with bisecting the sides. If the polyhedron is a cube, this can be done in
the manner which is seen in fig. 6, where at first eight corners are removed.
Of the twelve new corners which are to be removed afterwards, we have
only drawn one. The method can be continued, assuming that we always
are bisecting the sides.

Fig. 6 Fig. 7

The limit for the surfaces of these polyhedrons may be called the
“carpenter’s surface resulting from a cube”. The volumes of the succes-
sive polyhedrons will here be 1 (for the cube), 1 —} (for the semi-regular
Archimedean polyhedron), and 1—}— 1 for the next one.

It is a little astonishing that the shape of a regular tetrahedron’s
carpenter’s surface will be the same as that of a cube (fig. 7).

If the corners of a regular tetrahedron are removed, we get a regular
octahedron, and if the corners of this octahedron are removed, we get
the Archimedean semi-regular polyhedron which was the first step in
the removing of corners from the cube.

If therefore two stones, one being a cube and the other a regular tetra-
hedron, should roll for some millions of years in the wells at the coast,
their shape would probably be more and more equal.
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A NOTE ON THE PRECEDING PAPER BY V. BRUN

ERNST 8. SELMER

In the preceding paper [1], Viggo Brun has deduced approximate inte-
gration formulae for three and four non-equidistant ordinates, under the
following assumptions:

1° The formulae shall be exact for the functions y=1 and y=2.

92° The coefficients of the ordinates y; shall be linear combinations of
the intervals.

He then gets his formulae (5) and (6), containing a certain number of
parameters. This number is reduced by imposing a third condition:

3° For equidistant ordinates, the formulae shall coincide with Simp-
son’s formula and with the 3-rule (“Newton’s rule”) respectively.

For three ordinates, Brun then gets another deduction of his earlier
formula (1). With four ordinates, he gets a formula (7) which I have
earlier [2] deduced by a more analytical method.

The purpose of this note is only to point out the following two facts:

1) The conditions 1°-3° are exactly those conditions which were also
used in my paper (Sections 4 and 7).—We only need to note that condi-
tion 1° above is equivalent to the vanishing of the first two terms of the
Taylor expansion for the error.

2) Using only conditions 1° and 2°, Brun’s formulae (5) and (6) are
immediate consequences of my method.—I shall indicate this in the case
of three ordinates:

With the notation of [2], Section 4, we now only get the equations

@ty =% Ltyitya =L 2= 1,
which have the parametric solution
=y =3%-Ab y1=2% Y= %.

This determines the coefficients B=awx,+bx, and C=ay,+by,, and
finally A from ry=a+b— (4 +B+C)=0. The resulting approximation,

[25]
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Ayy+ By, + Oy, = $[(a+22D)y,+ (1—22)(@+ D)y, + (24a +b)y,] ,

is just the formula (5) in Brun’s paper.
Similar considerations, involving slightly more calculations, lead to
Brun’s formula (6) in the case of four non-equidistant ordinates.
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OM LINEZART-MONOTONE ELEMENTARKURVER

FR. FABRICIUS-BJERRE

1. Vi betragter i det folgende en plan kontinuert kurve AB, der er
givet ved en parameterfremstilling (z, y) = (f(?), 9(t)), hvor parameteren
t gennemlober et lukket interval. Idet parameteren gennemlgber inter-
vallet gennem voksende veerdier af ¢, er punkternes reekkefelge pa kur-
ven bestemt, dvs. kurven er orienteret.

En ret linie I antages at have punkter felles med kurven AB, der i
reekkefolge pa kurven betegnes Py, P, ..., P,. Dersom det nu for en-
hver ret linie ! gelder, at punkterne Py, Py, ..., P, ogsd pi linien l
ligger i den nzvnte rekkefolge, altsd (ogsd) pa linien danner en monoton
folge, siges kurven AB at vere linecrt-monoton. For n=2 er den opstil-
lede betingelse altid opfyldt. De konvekse buer kan derfor siges at veere
indeholdt i samlingen af linesert-monotone kurver.

Dersom en linie har punkter P, @ og R fwlles med kurven, og @ pa
kurven ligger mellem P og R, skal det samme gelde pé linien. Er om-
vendt denne betingelse opfyldt for samtlige grupper af 3 punkter, der er
tzelles for en given kurve og en vilkarlig ret linie, vil kurven vaere linezert-
monoton. Det er iovrigt tilstreekkeligt at betragte samtlige grupper af 3
punkter, der folger umiddelbart efter hinanden pé kurven.

Man kan give ovenstaende definition en anden formulering, idet man
—

bemeerker, at samtlige vektorer P,P;, hvor P; kommer for P; pa kurven
AB, vil vere ensrettede, nar og kun nar kurven er linegert-monoton. En
linesert-monoton kurve kan siledes siges at fastlegge en bestemt
orientering pé de linier i planen, der har to eller flere punkter feelles med
kurven, og denne egenskab er karakteristisk for denne klasse kurver.
Orienteringen af en linie vil i almindelighed variere kontinuert med li-
nien, men, som vi nedenfor skal se, kan der ved visse stillinger af linien
opstéa diskontinuitet.

I det folgende vil vi ikke betragte helt vilkarlige kontinuerte kurver,
men ngjes med at se pd de sakaldte elementarkurver, dvs. kurver, der er
sammensat af et endeligt antal konvekse buer. Videre antages kurverne

[27]
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ikke at indeholde knek, hvilket medfgrer, at der i hvert punkt findes en
tangent, der varierer kontinuert med punktet.

Hvor to konvekse buer mgdes, kan der opstd et nyt ordineert (kon-
vekst) punkt eller et singuleert punkt, dvs. et vendepunkt eller en spids
af 1. eller 2. art (tornspids eller snabelspids). En linesert-monoton ele-
mentarkurve 4B betegnes i det folgende kort som en Im-kurve.

Vi skal nedenfor finde en rekke egenskaber ved Im-kurver, af hvilke
vi serlig navner, at en elementarkurve da og kun da er en Im-kurve,
dersom der gennem hvert ordinsert punkt af kurven kan legges en fra,
tangenten forskellig linie, der kun har dette punkt felles med kurven.
Herved etableres en meget ner forbindelse mellem Im-kurverne og de af
M. Barner [1] indforte strengt-konvekse kurver.

2. Af definitionen fremgér umiddelbart
S&ETNING 2.1. En Im-kurve har intet dobbeltpunkt.

Specielt ser man, at en Im-kurve ilkke kan veere lukket, da punkterne 4
og B ikke kan falde sammen. Videre viser vi

SAETNING 2.2. En lm-kurve indeholder ingen spidser af 2. art.

Lad P vere en spids af 2. art, og lad en linie gennem P skeere de to fra

P udgdende konvekse buer i punkter @ og R. P& kurven vil P ligge

mellem @ og R, mens P pé linien vil ligge

Q1 Q uden for liniestykket QR. Der findes da ingen
spidser af 2. art.

Derimod kan en Im-kurve godt indeholde spid-

Py |P ser af 1. art. For tangenten i en spids af 1. art

geelder

SmTNING 2.3. Tangenten i en spids af 1. art
kan ikke skere gennem kurven i et nyt punkt.

Lad os antage, at tangenten p i spidsen

P P skerer gennem kurven i et punkt Q. Lad os
Fig. 1 videre antage, at @ ligger p& halvtangenten

i P, og at kurven gennemlgbes saledes, at Q

kommer for P (fig. 1)!. Gennem P og et punkt R af den fra P fremad-
gaende konvekse bue kan der, nir p skeerer gennem kurven i punktet Q,

! Til orientering for lesere, som ikke métte vere fortrolige med mere abstrakt geometri
som den her fremstillede, bemerkes, at figurerne kun tjener til at fastholde tanken, og at
alle rasonnementer er af almengyldig art og ganske uafhengige af den tilfzldige figur.

Yderligere gores opmerksom Pé, at kurverne p4 fig. 1-3 er knyttet til indirekte beviser

og derfor ikke linesert-monotone. Derimod viser fig. 4-6 eksempler pa Im-kurver.
Red.
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lsegges en linie p; neer p, der har et punkt @ ner @ fzlles med kurven.
Ps kurven ligger P mellem @, og R, men pa linien p, ligger P uden for
liniestykket @,R. Pa tilsvarende made vises s@tningen, dersom ¢ ligger
pa den modsatte halvlinie.

Mens spidstangenten siledes ikke kan skzere gennem kurven i et nyt
punkt, kan den godt have et eller flere punkter faelles med kurven, hvor
kurven i omegnen af hvert punkt ligger helt pa den ene side af linien.
Spidstangenten er da stottelinie til kurven i disse punkter.

3. Lad et punkt P gennemlobe en Im-kurve 4B fra A mod B. Vi kan
da vise

SaTNING 3.1. Den positive halvtangent 1 et ordincert punkt P af en Im-
kurve AB har ikke punkter felles med den gennemlobne bue AP.

Lad P vere et ordingert (konvekst) punkt af kurven 4B, og @) det farste
punkt af buen PA, regnet fra P, i
hvilket den positive halvtangent p+ i
punktet P mgder denne bue (fig. 2).
Gennem @ og et punkt R neer P af
buen QP kan der legges en linie, der +
indeholder et punkt R; ner P af
buen PB. Pi kurven ligger R mellem
@ og R,, men pa linien vil R ligge
uden for liniestykket QR,, idet ret-
ningen fra R til R, er den samme som
retningen fra R til @, da begge ret-
ninger nermer sig retningen af halv-
tangenten p+. Heraf folger s@tningen.

For den negative halvtangent i P gelder naturligvis tilsvarende, at den
ikke har punkter felles med buen PB.

Dersom der er vendepunkt i P, kan halvtangenten p+ have punktet ¢
fzelles med buen AP, men linien kan ikke skere gennem kurven. Thi i s&
fald ville en positiv halvtangent i et punkt af buen QP nwr P have et
punkt felles med buen AQ. Der gelder altsé

Fig. 2

SETNING 3.2. Den positive halvtangent © et vendepunkt P af en Im-kurve
AB vil enten ikke have punkter felles med den gennemlobne bue AP eller
veere stottelinie 1 et eller flere punkter af denne bue.

Hyvis buen QP, som pa fig. 2, kun indeholder ordinzre punkter, er den
en konveks bue og dbenbart den »storste« bue med lutter ordineere punk-
ter, der kan veere del af en Im-kurve, idet en forlengelse af buen ud over P
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eller @ vil medfgre, at kurvens lineaere monotonitet forsvinder. Hermed
er da vist

S&ETNING 3.3. Enhver bue, der pd en Im-kurve forbinder to pa hinanden
folgende singulere punkter, er konveks.

En Im-kurve indeholder saledes ikke spiraler.

I swtningerne 3.1 og 3.2 har vi udelukkende udtalt os om den positive
halvtangent i et punkt P i forbindelse med buen AP. Med hensyn til den
ikke gennemlgbne bue BP gelder, at den positive halvtangent i P i al-
mindelighed vil skzre denne bue i en raekke punkter, hvad enten P er et
ordinaert punkt eller et vendepunkt. Tilsvarende gwlder for den negative
halvtangent i P i forbindelse med buen AP (sml. fig. 4).

Vi har i 1 navnt, at en Im-kurve frembringer en orientering p4 de af
planens linier, der har to eller flere punkter falles med kurven, og at
denne orientering i almindelighed varierer kontinuert med linien. Det
kan bemeerkes, at der vil opstd en diskontinuitet i de tilfeelde, hvor den
positive halvtangent i et vendepunkt P er stottelinie for buen AP, eller
hvor tangenten i en spids tillige er stottelinie for kurven.

4. Vi vender os nu til, hvad man kan betegne som hovedswetningen
vedrgrende linezrt-monotone kurver, nemlig

SETNING 4.1. En elementarkurve AB er da og kun da linecert-monoton,
dersom der gennem hvert af kurvens ordincre punkter kan legges en fra
tangenten forskellig linie, der kun har dette punkt felles med kurven.

Vi viser forst, at betingelsen er tilstraekkelig. Lad en vilkarlig linie [
have 3 punkter P, @ og R felles med kurven, saledes, at punkterne pa
kurven fglger umiddelbart efter hinanden.
Buerne P og QR har da kun endepunkterne
feelles med I og danner med liniestykkerne
PQ, henholdsvis @R lukkede kontinuerte kur-
ver uden dobbeltpunkt. Dersom nu rekkefgl-
gen af de 3 punkter P, @ og R ikke er den
samme pé linien som pé& kurven, vil f. eks.
punktet R pa linien ligge mellem P og Q
(fig. 3).

Lad nu 8 vezre et ordinert punkt ps buen QR. En fra tangenten i
8 forskellig ret linie vil enten have et punkt faelles med liniestykket QR
og dermed med buen PQ eller (mindst) et punkt foruden S faelles med buen
QR. Néar den givne betingelse er opfyldt, kan R altsa ikke ligge mellem
P og Q. Analogt kan heller ikke P ligge mellem R og @, dvs. pa kurven
som pé linien ligger @ mellem P og R. Kurven er da linesert-monoton.

Fig. 3
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Lad derefter (fig. 4) P veere et ordinsert punkt pé en Im-kurve AB. Vi
vil vise, at der gennem P kan laegges en linie s, der kun har P fxlles med
kurven. Kurven 4B antages i omegnen af P at ligge over tangenten p.

ay & by

ay

Fig. 4

Udgéende fra P legges alle de halvlinier, der foruden P har (mindst)
et punkt felles med buen AP. Disse halvlinier udfylder et omrade «,
der ikke kan indeholde to modsat rettede halvlinier. Thi findes der pa
hver af de modsat rettede halvlinier et punkt af buen 4P, vil punktet
P ligge mellem disse punkter pa linien, men ikke p& kurven.

Omradet « vil da enten veere en halvplan (hvor hgjst den ene begren-
sende halvlinie hgrer med) eller udfylde en konveks vinkel. Vi vil vise, at
den forste mulighed ikke kan indtreeffe.

Da kurven AB i omegnen af P ligger over tangenten p, vil der i «
findes halvlinier over p. Den »gvre« begrensningshalvlinie for disse halv-
linier betegnes a,. Denne linie vil indeholde mindst et punkt af buen AP
og kan da ifglge seetning 3.1 ikke falde sammen med den positive halv-
tangent p+ i P. Den anden (nedre) begransningshalvlinie a, for omradet
vil ligge under tangenten p eller falde i den negative halvtangent p-,
eftersom buen 4P har punkter under p eller ikke. I forste tilfaelde kan
a, ikke veere modsat rettet a;, da a, indeholder et punkt af buen AP og
dermed tilhorer omradet «, og i andet tilfeelde kan a, heller ikke vere
modsat rettet a,, da a, ikke kan falde i p*. Buen AP vil derfor altid veere
indesluttet i en konveks vinkel (a,, a,).

Pa tilsvarende made vil alle de halvlinier udgaende fra P, der foruden
P har (mindst) et punkt felles med buen BP, udfylde et omrade 8, der




32 FR. FABRICIUS-BJERRE

begraenses af halvlinier b, og b,, hvor b, ligger over p, mens b, ligger under
p eller falder i p+. Buen BP er saledes indesluttet i den konvekse vinkel
(by, by).

De to omrader « og B kan ikke have nogen halvlinie fzlles. Thi i s&
fald ville denne indeholde et punkt af buen AP og et punkt af buen
BP, hvor P ligger mellem de to punkter pa kurven, men ikke pé linien.
Heraf folger, at halvlinierne a, og b, ikke kan falde sammen. Tillige ses,
at ogsi a, og b, er forskellige halvlinier. Thi de kan ikke falde sammen pé
en linie forskellig fra p, og pa grund af konveksiteten af omraderne « og
B kan a, ikke falde i p* eller b, i p~. De 4 forskellige begraensningshalv-
linier ligger da i reekkefolgen a,, ay, by, by, hvor (ay, as) og (by, by) er kon-
vekse vinkler.

Det er herefter let at se, at man gennem P kan legge en linie s, der
kun har punktet P felles med kurven AB. En af de vinkler, somhalv-
linierne a, og b, danner, vil veere <. Lad det veere den vinkel, der inde-
holder halvlinien b,. Buerne AP og BP ligger da pa hver sin side af den
linie, der indeholder a,, siledes at buen AP har (mindst) et punkt fwlles
med halvlinien a,, mens buen BP muligvis har punkter felles med den
modsatte halvlinie.

Der vil da findes en linie s gennem P neer a,, der ligger i vinkelrummene
(a, b;) og (ag by), og som kun har P falles med kurven 4B. Hermed er
setning 4.1 bevist.

I den nsevnte afhandling har M. Barner kaldt en kurve strengt-konveks
i et punkt P, dersom der gennem P kan lagges en linie, forskellig fra
tangenten i P, der kun har punktet P fwlles med kurven. Med anvendelse
af dette udtryk kan setning 4.1 gives den kortere formulering:

SaETNING 4.1a. En elementarkurve AB er da og kun da linecert-mono-
ton, dersom den i hvert ordineert punkt er strengt-konveks.

Vi bemserker, at en Im-kurve ikke behgver
at veere strengt-konveks i et vendepunkt. Be-
tragter vi siledes en kurve AB (fig. 5) be-

c B stdende af en konveks bue AC, hvor tangen-
A ten i C gar gennem A, og den symmetriske
bue BC med hensyn til C, vil denne kurve
abenbart veere linezrt-monoton. Men der kan
ikke gennem vendepunktet C legges nogen
ret linie, der kun har punktet C felles med
kurven. For den forelagte kurve AB vil den positive halvtangent i C
g4 gennem punktet 4 og den negative gennem punktet B. Man kan vise,
at dersom det for et vendepunkt P pi en Im-kurve AB gelder, at den

Fig. 5
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positive, henholdsvis negative halvtangent i P ikke indeholder punkter
af buen AP, henholdsvis BP, vil kurven ogsi veere strengt-konveks i
dette punkt.

En kurve, der fremstilles ved ligningen y = F(), hvor F(z) er en kon-
tinuert funktion af z, der er defineret i et lukket interval, er linesert-
monoton. Den er tillige strengt-konveks overalt, idet man gennem hvert
punkt P af kurven kan legge en linie s, nemlig linien parallel med y-ak-
sen, der kun har punktet P fzlles med kurven. De her betragtede linesert-
monotone kurver kan da anses som generalisationer af de grafiske bille-
der af kontinuerte funktioner, hvor den linezre monotonitet er bevaret,
og hvor ogsa den strenge konveksitet i almindelighed er opretholdt, idet
linierne s dog ikke bevarer deres retning, nar P gennemlgber kurven.

5. Med anvendelse af setning 4.1 beviser vi derefter

SAETNING 5.1. Dersom en linie gennem et ordincert punkt P af en lm-kurve
uden spidser skeerer kurven 1 n punkter, gir der fra. P mindst n— 2 tangenter
til kurven.

Lad linie ! skeere kurven 4 B i n punkter, hvoraf det ene er det ordinzre
punkt P, og lad s vere en linie gennem P, der kun har punktet P feelles
med kurven. Drejer man en linie gennem P fra stillingen [ til stillingen s
gennem et af vinkelrummene (I, s), mistes n— 1 feelles punkter med kur-
ven. Det samme antal mistes, dersom man drejer gennem det komple-
menteere vinkelrum. Af de 2n— 2 punkter vil de to vaere endepunkterne
A og B, og de resterende 2n — 4 punkter vil mistes parvis, derved at den
variable linie passerer en tangent gennem P. Der gir da mindst n—2
tangenter fra P til kurven. Fra et passende valgt punkt uden for kurven
ner P gar der yderligere to tangenter (ner tangenten i P) til kurven,
saledes at der fra dette punkt kan legges mindst n tangenter til kurven.

Vi viser derefter

SmTNING 5.2. Dersom en linie skeerer en lm-kurve uden spidser i n
punkter, indeholder kurven mindst n— 2 vendepunikter.

Lad linien ! skeere kurven AB i punkterne Py, P,, ..., P, (fig. 6). L et
punkt M, pa buen P, P,, hvor afstanden til linien  er storst, vil tangenten
til kurven veere parallel med 7; vi vil vise, at den positive halvtangent i

—
M, er ensrettet med vektoren PP, I modsat fald ville nemlig buen
M,P, g ind i det omrade, der begrenses af buen P,;M; og de halv-

linier, udgaende fra P, og M, der er modsat rettede PP, Punktet P,
ligger uden for dette omrade, og buen M,P, matte da enten skere de
nzevnte halvlinier eller buen P, M, hvilket er udelukket.

NMT. Hefte 1, 1959. — 3
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M,
P P, nl \p
\_ B
A
M,
Fig. 6

Tilsvarende vil den positive halvtangent i et punkt /. o af buen P,P,,
—
hvor afstanden til [ er storst, veere ensrettet med vektoren P,P, og dermed

med P:TP2 og med den positive halvtangent i M,. Gennemlgbes nu kurven
AB fra P, til Py, vil den ligge pa modsatte sider af tangenterne i punk-
terne M, og M,. Buen M, M, kan derfor ikke indeholde lutter ordinsre
punkter, dvs. der findes mindst et vendepunkt pa buen M 1M,. Da
der pd de n—1 buer P,P, P,P,, ..., P, ,P, findes n—1 punkter
My, My, ..., M,_,, fremkommer ialt mindst n—2 vendepunkter pé
kurven.

Swtningerne 5.1 og 5.2 sivel som setning 3.3 er for kurver, der er
strengt-konvekse i ethvert punkt, fremsat i en note af O. Haupt [2], der
tillige omtaler tilsvarende s@tninger for kurver i rum af 3 eller flere di-
mensioner.

Det bemeerkes, at man ved beviset for swtning 5.2 ikke har udnyttet, at
kurven er linesrt-monoton, men kun, at linien ! har punkter felles med
kurven, der ligger i samme rekkefolge pa kurven og pa linien (altsa
linezer monotonitet for linien I alene). De enkelte buer PP, P,P,, ...
behgver ikke at vere lineert-monotone, men ma blot ikke indeholde dob-
beltpunkter. Der gelder derfor den mere almindelige

S&ETNING 5.3. Dersom en elementarkurve uden spidser og dobbeltpunlkter
skeeres af en ret linie @ n punkter, hvis rakkefolge er den samme pd kurven
som pd linien, vil kurven indeholde mindst n — 2 vendepunkter.

Det kan vises, at dersom den linie 7, der optraeder i setningerne 5.1, 5.2
og 5.3, bergrer kurven i et eller flere af de falles punkter, vil det angivne
minimale tal n — 2 ikke blive formindsket, men i almindelighed vokse.

6. P4 forskellig made kan man generalisere de her foretagne under-
sogelser over linezrt-monotone elementarkurver i den sedvanlige (affine)
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plan. Man kan indfgre linesert-monotone kurver i den projektive plan, og
man kan betragte kurver i rum af 3 eller flere dimensioner. I det szd-
vanlige tredimensionale rum skal en kurve kaldes linezert-monoton, der-
som det for en vilkarlig plan gelder, at nar planen har en reekke punkter
feelles med kurven, og disse tages i reekkefolge pa kurven, skal punkterne
i samme rakkefslge danne en monoton folge i planen, dvs. kunne vere
vinkelspidser i en konveks polygon.

Svarende til setning 4.1 for plane Im-kurver gwlder for en linesert-
monoton rumkurve, at man i almindelighed gennem to vilkarlige af dens
punkter kan leegge en plan, der kun har disse punkter felles med kurven
(streng konveksitet i rummet), ligesom omvendt en kurve, der har denne
egenskab, vil veere linesert-monoton.

Ved senere lejlighed skal vi g neermere ind pa de her naevnte generalisa-
tioner.
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ArNorLD BAUR — HaNS LobE — ARNO ALBRECHT: Anschauliche
Mathematik. 1. Teil: Geometrie. Ferdinand Hirt in Kiel, 1958. 256 S.,
178 Fig. DM 14.80.

(Innholdsfortegnelse i NMT 6 (1958), s. 170.)

Preesidenten for den internationale Matematikundervisningskommis-
sion H. Behnke introducerer denne bog med at hilse den velkommen som
et bidrag til anleggelse af nye synspunkter indenfor matematikunder-
visningen. I et forord af udgiveren, dr. K. M. Hoffmann, betegnes bogen
som en ny vej for matematikundervisningen i gymnasier. I forordet siges
endvidere, at man bevidst har viet denne forste del af serien til geome-
trien, fordi man anser den for den vigtigste del af matematikundervis-
ningen og som en modvaegt mod den om sig gribende algebra og analyse.

Bogens emner er dog traditionelle. Den er inddelt i tre afsnit: Affine
afbildninger, Differentialgeometri, Det apolloniske problem og indforelse
i ikke-euklidisk geometri. Det er abenbart i miden at behandle disse
emner, man skal sgge de nye synspunkter.

I ferste afsnit tages udgangspunkt i de almene begreber afbildning,
invarians og gruppe i overensstemmelse med Kleins Erlangerprogram.
Udfra dette synspunkt behandles gruppen af flytninger med undergrup-
per, gruppen af ligedannethedstransformationer og gruppen af affine af-
bildninger, dels i planen, dels i rummet. Flytningsgruppen omtales ud-
forligere end sedvanligt. Der anvendes konsekvent vektorregning (som
forudsattes bekendt). Desuden legges der veegt pa anskuelighed, og tek-
sten ledsages af figurer, der fremheever det veesentlige. Saledes fas en
affin afbildning med fast akse som gransetilfzlde af en parallelprojek-
tion mellem to planer, hvis vinkel gar mod 0° eller 180°. Affine egen-
skaber ved ellipse og ellipsoide er medtaget. Under udartede affine af-
bildninger bevises Pohlkes s@tning.

I andet afsnit behandles i samme stil den seedvanlige teori for kurver i
planen og i rummet (herunder hastighed og acceleration) til Frenets
formler; i dette afsnit findes mange opgaver.

[36]
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I tredie afsnit loses det apolloniske problem ved et stykke ren cirkel-
geometri (med mange konstruktionsopgaver). Losningerne tydes simplere
som konstruktioner i cirkelmodeller af en euklidisk, en hyperbolsk eller
en elliptisk geometri, og herved indfgres de to sidstnevnte geometri-
former.

Bogen tenkes senere suppleret med projektive afbildninger og flade-
teori. En kommende anden del vil omhandle algebra og analyse, en tredie

del analytik (analytisk kurvegeometri). Poul Neerup

HenNrr LEBESGUE: Notices d’histoire des mathématiques. (Monographies
de I’Enseignement Mathématique, No. 4.) Institut de Mathématiques,
Université, Genéve, 1958. 116 pp. Fr. suisses 16.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 41.)

I 1920 hadde jeg den store glede & hgre en del forelesninger av Henri
Lebesgue i Paris. Han talte om Poncelets geometri. Jeg tror neppe jeg
har hert mere spirituelle forelesninger. Hans levende interesse for den
historiske side av matematikken var apenbar.

Det far man ogsa et sterkt inntrykk av nar man leser dette heftet.
Formen er den samme spirituelle som gjor det til en sann forngyelse &
lese heftet fra ende til annen.

I et brev til utgiveren, Mlle Félix, har han gitt uttrykk for sin histori-
ske interesse: »Mais les mathématiques en tant que résultats m’intéres-
sent de moins en moins; ce qui me passionne, c’est le travail de pensée
humaine qu’exige une recherche mathématique.« Og et annet sted skriver
han: »Det gjelder & erkjenne det nare slektskap som forener undersekel-
ser utfort med mere enn tyve arhundrers avstand.«

Lesbesgue skyr ikke & fortelle anekdoter og han gar ngye inn p& fami-
lieforhold.

Det storste kapitel er viet Camille Jordan. Vi far hegre at han var en
nevg av den beromte maler Puvis de Chavannes. Jordan far en meget
rosende omtale. Lebesgue har bare en liten innvending & gjere. Han
synes han gar litt for vidt nir det gjelder omsorgen for tallregninger, som
om de algebraiske bestemmelser han behandler i sin Traité des substitu-
tions hadde noen praktisk betydning! Jordan oppteller siledes opplase-
lige grupper inntil graden en million, og han gjor unnskyldning for at ut-
regningen blir noe penibel nar det tall man opererer med har mere enn
en milliard sifre!

I kapitlet om Vandermonde, som var medlem av Jakobinerklubben,
nevner Lebesgue at han er blitt mest beromt for den determinant som
beerer hans navn, »qui n’est pas de lui«! Det skyldes en misforstéelse av
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Vandermondes betegnelse at determinantsetningen er blitt tillagt ham.
Men forgvrig er Vandermonde i hoy grad blitt miskjent, hevder Lebesgue.
Seerlig bebreider han Gauss at han ikke har sitert Vandermonde. Lebesgue
mener det kommer av at den setning det gjelder ikke var bevist av
Vandermonde. Lebesgue knytter folgende bemerkning til dette: »Aldri
har en oppdagelse veert gjort i matematikken ved en utfoldelse av deduk-
tiv logikk; den skyldes et skapende arbeid av fantasien som oppbygger
det som den tror & vare sannheten, noen ganger stottet av analogier,
noen ganger ved en ideell estetikk, men som slett ikke bygger p4 en lo-
gisk grunnvoll.

Et stort kapitel er viet G. Humbert som var Lebesgues forgjenger
ved Collége de France. Han blir hyldet som representant for geometrien,
»den mest artistiske av de matematiske vitenskaper.

Om Roberval (Lebesgues scompatriote de 1'Oise«!) far vi hgre en mor-
som anekdote: man fortalte ham en tragisk begivenhet, hvortil han
svarte »qu’est-ce que cela prouve % Lebesgue tilfoyer at denne setning —
som kanskje aldri har vert uttalt — har veert gjenfortalt om igjen og
om igjen.

Om Ramus far vi hore at han hadde det enestdende mot — i en tid
hvor Aristoteles var den store profet — & utforme tesen »alt som Aristo-
teles har sagt er galt«. Om Niels Nielsens bok Géométres francais sous la
Révolution (yun livre trés curieux«) skriver Lebesgue: »Malgré tout ce
qu’on peut dire contre ce livre, il reste prodigieusement captivant, & mon
avis, si, au lieu de le lire, on réve & son sujet.«

Foruten de allerede nevnte biografier inneholder heftet kortere noti-
ser om Vieta, R.-L. Baire og A.-M. Ampére og noen f4 brev fra Lebesgue.

Viggo Brun

Pavr LorenzeN: Formale Logik. (Sammlung Goschen 1176/1176a.)
Walter de Gruyter & Co., Berlin, 1958. 165 S. DM 4.80.

(Innholdsfortegnelse i NMT 6 (1958), s. 171.)

Dette er en kort, konsis — ikke alltid lettlest — innfering i den mate-
matiske logikk. Den vil gi rik belonning til den nybegynner som arbeider
seg gjennom boken, for i motsetning til lzerebgker flest, som brer triviali-
teter utover hundrevis av sider, er dette en bok som pa vel halvannet
hundre leder frem til s& fundamentale resultater som Godels fullstendig-
hetsteorem og Churchs uavgjorbarhetssats for fersteordens predikat-
kalkyl.

Den systematiske oppbygning begynner med tredje kapitel, »Kalkiile
der Junktorenlogik« (som tyskere har for vane, innforer Lorenzen nye
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navn og skrivemater, hvor det syns mulig: Junktorenlogik star for ut-
sagnskalkylen). Sentralt er her avsnittet om »Kalkiilisierung¢, hvor for-
fatterens »operative« oppfatning legges til grunn. Her skal ikke diskuteres
pro et con operativistens credo, men det bor ikke unnlates & peke pa at
kalkyliseringen, hvis formal det er & befri den formale logikk fra den til-
synelatende sirkelgang at logikkens formalisering forutsetter logikk, bare
forer vanskelighetene over pi et annet omréade, kalkylenes anvendelse
som logikkfragmenter innen det sprak vi bruker og det dermed herende
relevansproblem av de formale manipulasjoner for de intuitive gitte
problem.

Det synes veere fa trykkfeil: formlene (5.2) og (5.3) pa sidene 45-46
kan rettes av en nybegynner, pa side 109, linje 12 star en eksistens-
kvantor i stedet for en allkvantor, og p4 side 129 er referensene G3 og
G4 byttet om.

Som innfering er boken & anbefale, den viser bl. a. at matematisk
logikk er noe mer enn akkurat det & konstruere sannhetsverditabeller!

Jens Erik Fenstad

MOTTATTE BOKER

Ewald Burger: Einfihrung in die Theorie der Spiele. (Mit Anwendungs-
beispielen, insbesondere aus Wirtschaftslehre und Soziologie.) Walter de
Gruyter & Co., Berlin, 1959. 169 8. Ganzl. DM 28.00.

Vorwort 5-6 * Der allgemeine Spielbegriff 9-28 * Nicht-kooperative Theorie
allgemeiner Spiele 29-57 * Zweipersonen-Nullsummen-Spiele 58-128 * Kooperative
Theorie allgemeiner Spiele 129-161 * Anhang 162-165 * Literaturverzeichnis
166-167 * Sachverzeichnis 168-169.

E. U. Condon — Hugh Odishaw: Handbook of physics. McGraw-Hill
Book Co., New York, Toronto, London, 1958. 26+ 1469 pp. sh. 194/-.
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10-21 * John Todd: Analysis 22-58 * Olga Taussky: Ordinary differential equa-
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OPPGAVER TIL LOSNING

Losninger av oppgavene 166-171 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte ma vere sendt
innen 15.mai 1959.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen losning.

166. Fibonaccifglgen a,, a,, a, . .. defineres ved

ag=1,a,=1;0a, =, 1+ 5 n=2,3,....

Vis, at N
1 1 4
D Arctg — + Arctg — =-,N=1,23, ,
n=1 QAon, Aoy 4
og
e 1 7
M Arctg — = -.
n=1 Qan 4

(Sml. V. Bruns artikel i NMT 5 (1957), s. 170-71.) Asmus L. Schmidt

167. Visa, att talen c,, i uppgift 161 f6r ¢ =1 satisfiera formeln

n
2:(n~—1) ... (n—s+1)c,, =n",
8=

dir n #r godtyckligt. Harav foljer, att ¢y, .. ., ¢,, &r delbara med r+1,

om detta dr primtal. Gerhard Arfwedson

168. Talen c,, i uppgift 161 ha for konstant » ett maximum c,,,. For
q=0 giller att loge,,, ~ rlog2,
varmed menas att kvoten gar mot 1. Bevisa i fallet ¢ > 0 att

loge,,, ~ qrlogr.
Gerhard Arfwedson

[43]
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169. Nar m er et naturlig tall, skal »(m) veere eksponenten for den haye-
ste potens av 2 som gar opp i m. Vis at rekken

X y(m)+1 |
Z—Lsm(m-%m:)
m=1 m

konvergerer for alle reelle x. R. Tambs Lyche

170. Lat z vara ett komplext tal och z dess reella del. Visa, att

Gerhard Arfwedson

171. Vis at

n 1
lim 2—2n H (x'l' 27‘)1/27’:—1‘ =,
r=1 4

n—>00

uavhengig av . R. Tambs Lyche

LOSNINGER

155. Der er givet en oval (lukket konveks kurve) k og en variabel
trekant PQR, hvis sider har faste retninger, og for hvilken vinkelspid-
serne P og @ ligger pa ovalen k. Idet P (og dermed @) gennemlgber £,
vil vinkelspidsen R frembringe en lukket kurve k'.

Vis, at dersom £’ er en ellipse, vil den givne oval k selv vare en ellipse.

Fr. Fabricius-Bjerre

Losning: Er § det punktet pa k' som R ville befinne seg i om P og @
byttet plass, blir PRQS et parallellogram av bestemt form og retning.
Er k&’ en ellipse, faller det felles midtpunktet av PQ og RS pa en dia-
meter i &', altsd pa en rett linje. Dermed blir mengden av korder PQ ik
en affin avbildning av mengden av korder RS i k', og av dette faolger at k

er en ellipse. H. Killingbergtro

Ogsé lost av Gerhard Arfwedson, Johs. Lohne og K. V. Rask.

156. Lad a_y, ay, a4, ..., @,, ... vere Fibonacci’s talfolge:

a,=a=1 og a,,=a,+a,, for n=0.
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Bevis for n =0, at

(*) Op1 = Qpi1— 0p Zn’ ( " )

B ny \—M
n[2]

Lad derefter p veere et naturligt tal. Vi definerer talfolgen b_p, .. ., by,

by, «vs by, ... ved
b,=1 for n<0 og b,=0b,p, 1+b,, for n>0.
Generaliser da formlen (*), saledes at man far b,.,—b,, 720, udtrykt
som en sum af hojst P] - [-—n—] +1 binomialkoefficienter.
p] lp+1
Ove J. Munch

Losning: Satt o

f(Z) = 2 a"n—lzn H
n=0

varav f—zf—2¥f=a_j+ag—a_z=1,

1 (o] r pe
— = /V’ y r+8
T = 10Ty ,:0;:0<s>z

I allménna fallet sittes ¢, =b,;—b, ,
Cn = Cp—p-1FCpp> ® > 0;

¢, =0o0ommn < 0;¢ =1.

Satt oo
f(Z) = 2 cn—pzn )
varav n=0

fmPf—2PHlf = c_,+C_pa24 ... FO PR —C 2P = 2P,

zp (o] r r
2) = ————— = 2P ()z"“s,
UGl s AT
d.v.s ,
w=2 (1),
Tp+S=mn §
s=r

vilken summa innehaller hégst [q - [—n«] + 1 termer.
pl lp+l

S. Eriksson
Ogsé lost av H. Killingbergtre og Johs. Lohne.




46 OPPGAVER

157. Lad B, veere en bue med leengden 2« pa enhedscirklen. Vi saetter
P(z)eH,, hvis P(z) er et n-tegradspolynomium med hovedkoefficient 1.

Idet .
© E, , = min max|P(z)|,
PeHy zeBy
skal man bevise
o
E, ., < 2sin"—.
’ 2

Det formodes, at der endvidere gelder

L
E > sm"a

nya =

for alle n. Dette onskes om muligt bekraeftet.
Ove J. Munch

Losning: For n+1—-k'=k=1,2, ..., n og r=4(1—cosx) settes

2k—1

,c 7, COSQ, = cosx+r(l—cosf,),

2, = COS@y+1ising,, 2z, = cosp,—ising,,

Pyz) = [] (z—2), F(0) = JJ 2r|cos—cosb,] .
k=1 k=1
Er cosp=cosx+r(1 —cos0) og z=cosg+1 sing, blir

. @ . ¢+
|z =2l |z —2p| = 4 sm%ﬂ"-smw = 2 |cosp—cosg,

= 2r|cosf —cos0,| ,
eller, idet z gjennomleper B, nar 6 gjennomlgper tallinjen,

max |P,(z)| = max VW .

zeBy
2j7 7 .
Setter en 6= — +4, |4| £ -, og omordner faktorene i F(6), far en
n n
n . A4—0, . A+06 n
F0) = JJ 4r|sin k. sin ¥l = 117 2r(cos4—cosb,,) .
E=1 B=1

Dette viser at alle maksimalverdiene av F(6) er like store og faes for

A=0, slik at
n 0 n
max F(0) = J[ 4r sin? % = 4 = ¢ (sin2§> .
B=1 2 2
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Da E, ,<max|P(z)| for ethvert polynom P(z)eH,, er ogsi
z2eBy
. &
E, . £ max|P,z)| = 2sin"—
’ zeBy 2

H. Killingbergtro

Oppgaven er ogsd lest av Magnus Tideman, som ogsé beviser oppgavens antakelse
om nedre skranke. Losningen er s vidt lang at den vanskelig far plass pa dette sted.

158. Bevisa identiteten

Y (atry—vrr 2 b>”
T =2
v=0 v=0 Gerhard Arfwedson
Losning : n
(a+vy—v)* 2 (a+by
P, (a,b) = -
n(a ) ,é)‘ p! (n — ’V) | ,é; !

ar ett polynom i @ och b av n:te graden i var och en av dessa variabler.

For att visa, att detta polynom &r identiskt = 0, visar jag, att polynomet

och dess samtliga derivator av ordningarna 1 t.o.m. 2n &r =0 for
=b=0.

a=b Jag har op, 0P,

2a  0b

P, _(a,b).

P, och samtliga derivator dr for e =b=0 av formen

P, (0, 0) =i‘n’ (=™ 1
Nu ir me 50 v (m—)! '
oYl Kol NG S Y
o= vi(m—w)! dam =5 vl(m—v)!|,_, m! [da™ 20
varmed pastaendet dr bevisat. Arne Pleijel

159. F(x) och G(x) aro konkava, icke negativa funktioner, definierade
for —1<x<1. Vidare ar
+1 +1
Sﬂm%:SWMM=1
] -1
Bestim bista mojliga ovre grins for integralen
+.1
Sﬂmm@m

-1 Bengt Andersson
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Losning: Da

+1 +1 +1
SFde <3 S Frda+} S Gde
—1 —1 —1

ricker det att ge en ovre grins for (7] F2dx. Lat S vara omradet
—12251,y20, y< F(x) med ytan 1. Enligt Guldins regel for rotations-
volym giller det saledes att soka en ovre griins for tyngdpunktens i S
y-koordinat I. Om I(¢) ar lingden av den del av linjen y =¢ som ligger i S,
ges I av {3t 1(t)dt. De () som kommer i fraga dr konkava och monotont
avtagande nar [(f) +0, har 1(0)=2 och {3’ I(t)dt=1.
Krives icke strikt konkavitet existerar maximum I* av I och ges av
I¥(t)=1—t+|1—t|, vilket svarar mot F =}(z+1) (t. ex.), med
+1
2
Sdex =—.
-1 3

Lat I(t) vara en konkurrensfunktion till I*(t). Foér ¢=0, £, och 1, dar
0<t,<1, ar g(¢)=0*—1=0 liksom for t>1. Om 0<é<t, &r g<0 och om
to<t<1érg=0samt {3 g(f)dt=0. Man har

to 1 to 1 1.
5—1 = \ + Stg(t)dt . t’Sgdt—i—t”Sgdt < tOSgdt=O,
0 0 t 0
ty o<ty <t

Magnus Tideman

Ogséd lest av H. Killingbergtre og Goran Kjellberg.

160. Tallene 1, 2, ..., 2n skal opstilles i to reekker med » i hver:
Oy Agy - - oy Ay
v by, by, .oy by s
saledes at

1) rekken af a’er er voksende,
2) raekken af b’er er voksende,
3) hvert b er storre end det lige over stiende a. Vis, at antallet af

1 (2n
1\n ) )
Losning: Betrakta strickor av lingd ]/5, numrerade 1,2, ..., 2n.

Med start i origo ldgger vi ut dem i nummerordning till ett polygondrag.

Sidorna skall ha vinkelkoefficient 1 eller —1 och mittpunkternas y-ko-
ordinater skall vara vixande (strikt). De nummer, som svarar mot vinkel-

sadanne opstillinger er

Holger Busk-Jensen
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koefficient 1 hanfor vi till a-serien i tur och ordning, de &vriga till b-se-
rien. For att vardera foljden skall ha n element maste polygondraget
sluta i (0, 2n). For att b,>a, skall galla maste forloppet ske helt i 1:a
kvadranten, dock tilldtas hérn pd y-axeln. Man inser att det finns en
en-entydig korrespondens mellan uppgiftens foljder och vigar enligt
ovan.

Vrider vi pa figuren far vi foljande realisering i ett vu-plan: Fran
(0, 0) liggas monotont vixande trappor med trappstegets storlek =1
till (n, n) forlépande helt i u=». Lat P,, vara antalet trappor som leder
til (v, #) med heltalskoordinater. Man finner rekursionsformeln

pP,=P,, ,+P

y—1, n v, u~1

med randvillkoren Py, =1, P, , ,=0. Egenskapen (Z) + (bf 1> = (a; 1)
hos binomialkoefficienter visar att

NS AN AR _’:_F‘_JT_{(V+#)
g P ()-CE) =500

ar en 16sning och man inser att ingen annan finns, dvs. (1) 16ser problemet

om y =y =n insittes. Magnus Tideman

Ogsé lost av Allan Christiansen og F. P. Dalkild.

161. En danner seg en talltrekant i analogi med Pascals:

med c¢,;=c, ,;;=1, og slik at ¢,, dannes av de to ovenfor stiende tall
etter formelen c,,; ;=c, ;1 +8%C,.
Utled felgende formel for c,.,:

8 8
Cpe = 2107 J]' (19—j9)1,
=1 j=1

der merket etter produkttegnet betyr at j=1. (Jfr. Johs. Lohnes artikkel
i bind 6, hefte 4.)
Undersgk om en far binomialkoeffisientene som grensetilfelle nar ¢ — 0.

R. Tambs Lyche
Losning: Vi sitter
Jo(@) =2 CpsT, fl(x) = (1-2)7.
- r=8—1

NMT. Hefte 1, 1959. — 4
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Serien konvergerar for fixt s och sma z, ty om c,, &r maximum av c,;
for 1 < s, s& ger rekursionsformeln

Crs S Cprg (1489 < ..o < (1+897.
Med hjalp av rekursionsformeln finner man for s=2:

(@1 =59 fo(®@) = fsa(2)

1@ = = [T (1—jow) .
j=1
Uppdelning i partialbrak ger

1@ = 3 (1=iom)t [ (11=o)
i= J=1

varav c,, framgar som koefficient for .

D4 ¢ — 0 far man binomialkoefficienterna, ty c,, framkommer genom
att tillimpa rekursionsformeln ett &ndligt antal ganger och man har da
riatt att i denna sitta ¢=0.

varav

Gerhard Arfwedson
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tetet og om den faglige utdannelse av vordende matematikkleerere.
K. Friis: Matematikken pd engelsklinjen.
S. Hilding, Stockholm: Matematiken pd enhetsskolans hogstadium.
E. Einarsen: Realskolens matematikk som grunnlag for yrkesskolene for hdnd-
verk og industri.
P. Rand: Sporsmdlet om studiet av matematikk fremmer generell tenkeevne.
A. Gjelsvik: Nemningsverket ¢ matematikk.
A. Kullerud: Realskolens matematikk.
J. Vaage: Eksamensoppgaver © matematikk.
B. Rudberg: Har studentene tilstrekkelig grunnlag i matematikk ?



KRONIKK 53

14.10 M. K. Rosskopf, New York: Reforms in American mathematics teaching.
(Oslo.)

SVENSKA MATEMATIKERSAMFUNDET.

22.3 Moéte i Stockholm:

J. Peetre: Ndgra tillimpningar av en sats av Mihlin.

M. Essén: Om sjdlvortogonala funktioner.

S. R. Nordqvist: Vdgars och gators kapacitet.

L. Hérmander: Division av distributioner med polynom.

N. Nilsson: Vésentligt sjilvadjungerade Hamilton-operatorer.

H. O. Kreiss: Om ewistensen av stabila differensapprozimationer till partiella
differentialekvationer och konsekvenser ddrav.

7.6 Méte i Djursholm:

G. Kjellberg: Om konvergensen hos ndgra iterativa metoder for lésning av
linjdra ekvationssystem.

L. E. Zachrisson: Asymptotiska felet vid digital berdkning av den dtererade
integralen av en stochastisk tidsfunktion.

L. Hulthén: Bidrag till teorien for observans.

B. Kjellberg: Forskningsrddens kommitté for trafiksckerhetsforskning, problem
och resultat. Visning av bilder.

29-30.11 Méte i Goteborg:

Y. Domar: Om slutna priméira ideal i en algebra av Fouriertransformer.

S. Lyttkens: En generalisering av Wieners Taubersats.

T. Ganelius: Om Fouriermetoder vid Tauberska restiermssatser.

L. Hérmander: Ndgra Taubersatser av Levitan.

G. Hossjer: En anmdrkning om Laurentseriens randvdrden.

E. Akutowicz, Boston: On the extrapolation of positive definite functions from
a finite interval.

G. Wahde: Ett elementdrt bevis for huvudsatsen inom teorin for kvasianalytiska
Jfunktioner.

T. Herlestam: Ndgra med Borels ewponentialmetod besliktade summations-
metoder.

H. Bergstrom: Om konvergens av odndliga produlkter i abstrakta halvgrupper.

J. Odhnoff: Om generaliserade egenfunktionsutvecklingar.

G. Bergendal: Om egenfunktionsutvecklingar vid elliptiska differentialopera-
torer.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Lunp.

20.4 Arsmote med fysikaliska demonstrationer samt féredrag av U. Dahllof:
Yrkeslivets krav pd skolans matematikundervisning. Diskussion.
15-16.11 Fysikaliska demonstrationer. Féredrag:
C.-E. Sjostedt: Ndgra aktuella frdgor rorande matematikundervisningen %
skolan. Diskussion.
Stringenskravet vid skolans matematikundervisning. Inledningsforedrag av
C.-E. Sjostedt, A. Pleijel och F. Ehrnst. Diskussion.
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FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 STOCKHOLM.

7-8.1 Arsmote. Se referat i NMT, Bind 6, s. 53.

FORENINGSNYTT

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

Forbundets lokala klubbar har arbetat sdsom hittills. Férbundets styrelse har
bedrivit en rdtt livlig upplysningsverksamhet angdende de matematisk-natur-
vetenskapliga &mnenas alltfor svaga stillning inom véra ldroverk, med press-
konferens for Helsingforstidningarna mars 1958. Anvisningar om linjevalet i
gymnasiet — en stroskrift som utdelats till eleverna i mellanskolans hogsta klass.

Mag. Jarmo Nystrom, Puistokaari 1, Helsinki, skéter numera ensam sekre-
terarens aligganden.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

héll drsméte den 7-8 januari 1959. Till ordférande resp. vice ordférande omvaldes
lektorerna Ernst Knave och Fredrik Ehrnst samt till sekreterare resp. skatt-
mistare omvaldes fil. mag. Jan O. Unenge och Jacob Isander.

Under arsmotet holls f6ljande féredrag och demonstrationer:

M. Helde: Stralrisker och strdlskydd.

S. Lindholm: Demonstration av strdlningsforsik.

O. Jonsson: Plast — stor materialgrupp under expansion.

C.-E. Sjoéstedt: Aktuella fragor inom matematikundervisningen. Diskussion.

P. Hiaggmark, E. Knave, B. Englund: Matematiken, Sfysiken och kemien pd
den allminna linjen. Diskussion.

Utflykt anordnades till Nyn#shamn, didr Nynis-Petroleums och Teverkets
anlidggningar demonstrerades.

UTNEVNELSER

Til professor i matematik ved Kebenhavns Universitet: Professor ved Danmarks
tekniske Hajskole, dr. phil. H. Tornehave.

Til professor i matematik ved Danmarks Lererhojskole: Amanuensis P. O.
Neerup.

Til docent i matematik ved Kebenhavns Universitet: Dr. phil. O. Schmidt.

Till bitrddande professor i matematik vid Helsingfors Universitet: Fil. dr.
P. Kustaanheimo.

Till laborator i matematik vid Uppsala Universitet: Fil. dr. E. Y. Domar.

Til rektor ved Neestved Gymnasium, Danmark: Lektor E. Gjede.

Til rektor ved Soro Akademi, Danmark: Rektor ved Nykobing Katedralskole
Arne Ostergaard.
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ETT NORDISKT SYMPOSIUM

over anvindningen av matematikmaskiner (operationsanalys, databehandling, tek-
niska problem) med huvudvikt pé siffermaskiner anordnas i Karlskrona av
Matematikmaskinndmnden och Kungl. Orlogsmannasillskapet den 14-15 maj 1959.
Ett antal foreldsare har inbjudits att halla foéredrag av oversiktskaraktér. Sym-
posiet omfattar dven en avdelning féredrag inriktade pé speciella problem.

I samband med symposiet arrangeras en utstéllning av utrustning pd matematik-
maskinomrédet. Utfarder samt sirskilt damprogram kommer ocksd att anordnas.
Program med anmilningsblankett utsdndes omkring den 10 mars. Ndrmare informa-
tioner limnas av byrachef G. Hévermark, Matematikmaskinndmnden, Box 6131,
Stockholm 6, tel. 23 55 90, eller kommendérkapten Y. Rollof, Orlogsvarvet, Karls-
krona, tel. 19440.

INTERNATIONELLA MATEMATIKERKONGRESSEN 1962

Svenska Nationalkommitten for matematik och Svenska Matematikersamfundet
har utsént detta upprop:

To mathematicians of all countries.

The Swedish National Committee of Mathematics and the Swedish Mathe-
matical Society have the honour of inviting you to the next international congress
of mathematicians, to be held in Stockholm during the summer of 1962.

We will do our best to make the congress scientifically successful and enjoyable,
hoping that it will stimulate the interaction between mathematicians in different
fields and countries.

SUMMARY IN ENGLISH

Ove J. Muxcu: Sums of products of powers. (Danish.)

The author considers sums of the form

n
A(n; q) '-:%'7517)11527)2 v kgw, Prt+pet ...+, =D,

where always 1<k;<n, and where K denotes a rule of summation of the type
by ( Syke (S - - - (S)k, including m pure inequalities. Tt is shown that A(n; ¢) is a
polynomial in »n of degree p+ ¢, with zeros m, m —1, ..., m—gq (and only these
integer zeros), and with the leading coefficient

q 17)1 -1
17 ("’ +2 Z’i) .
pe=1 T=1

If K* denotes the rule of summation resulting from K by interchanging the signs
< and <, and if A*(n; q) is the corresponding sum, then

An—1;q) = (—1)PTA*(—n;q) .
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The two sums can be represented in terms of binomial coefficients:
p+g—m—1 n+14 ptm n+1
An;q) = Y l-( ) A*m;q) = 3 2 _'( )’
i=g—m ‘ p+q i=m+1 e P+q

where each sum contains p terms.
As applications of the general theory, the author gives new proofs of some results
of Worpitzky concerning the sums

2 4 n+14 i 7 n+1<
Syn) = Jk? = lcz’( ), Ln) = 3kiky... k =2h‘1< ),
? k=1 z£ ‘\p+1 p z ST\ 2
where K contains only pure inequalities. The coefficients satisfy the following
relations:

By =k sk =k =1; k) = (p+ 11—k} 4k, 2 <4< p—1
M =1, k]l = q!; R, = = (g+)r{=i 1 @—ORiT;, 2 LiZg-1.
The recurrence formulas give rise to a simple calculation of the coefficients, in

analogy with Pascal’s triangle.
It is finally shown that the Bernoulli numbers B, can be expressed as

+1
i’( 1Y) ,,(1;—]) )

= ()

Viceo BrRuN: An application of a “carpenter’s curve” to Simpson for-
mulas. (English.)

B =

¥

ll\ﬂe

1
+

A “carpenter’s curve” is defined by cutting off corners of a polygon in a suitable
manner, cf. figs. 1-2 p. 21. A simple formula for the area enclosed in such a curve
is derived. The result is used for approximate integration by three and four non-
equidistant ordinates, leading to new proofs of formulas given earlier by the author
and by Selmer.—A “‘carpenter’s surface’ resulting from a polyhedron is also defined.

Ernst 8. SELMER: 4 note on the preceding paper by V. Brun. (English.)

It is shown that two of Brun’s approximate integration formulas are immediate
consequences of another method which has earlier been used by the author.

Fr. FABRICIUS-BJERRE: On linearly-monotone elementary curves.
(Danish.)

Given an oriented plane curve AB and a line I, which have the points
Py, Py, ..., P, in common. The curve 4B is called linearly-monotone if, for every
line I, the points Py, P,, ..., P, are placed in the same order on the curve as on
the line. A linearly-monotone curve has no double point but there may be inflec-
tional and cuspidal points. No part of the curve may be a spiral.

M. Barner has called a curve strongly-convex at a point P if there exists a line
through P, different from the tangent, which has no other point than P in common
with the curve.

The main theorem of the article says that a curve which is composed of a finite
number of convex arcs (an elementary curve), is linearly-monotone if and only if
the curve is strongly-convex at every ordinary point.




