NUMERICAL INTEGRATION
BY NON-EQUIDISTANT ORDINATES'

ERNST S. SELMER

1. Equidistant ordinates. An approximate formula for the area under
the curve y=f(z) from x=2z, to x=w, >x, is usually obtained in the
following manner: The n+1 points (z,, ¥;), given by

Xy < Xy < Ty < oo < Xp_g < X, Yy = fl2),
determine uniquely a curve y =g@(x), where ¢(x) is a polynomial of degree
n, which is easily integrated:

Zn Zn

1) (f@dr ~ \g@dr = @ -2 Koo+ Kt ..+ Kga) -

o
Zo Zo

The coefficients K, depend only on the ratios (x;—x,)/(x,—,), and
become particularly simple if the ordinates are equidistant. For n=2,
we then get the well known formula of Simpson:

¢ Lo =Xy
(12 \F@de ~ 222 ot 4y, +90)
E2)
For n =3, we get the so-called ‘“‘three-eighths rule’:
90.3
(1.3) Sf(x)dx Y

Zo

L3 — Ty

8

(Yo+3Y1+3Y2+Ys) -

For n=4, we get a formula which is sometimes named after Cotes:
g

d Xy—X
(1.4) S f@)de ~ ;‘-90—“ (Ty/o + 3245 + 12y + 3205+ 7y,) -

Zo

In connection with the error terms, the relative merits of these formulae
will be discussed in the next section. Further details can be found in

1 Pregented at the International Congress of Mathematicians, Edinburgh 1958.

NMT. Hefte 3, 1958. — 8 [97]
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any text-book on numerical analysis, see for instance Milne [3] or Scar-
borough [4].

2. Error terms. A different and useful approach to the numerical
integration problem is given by an expansion in series. We shall illus-
trate this for Simpson’s formula (1.2). For later use, however, we shall
state the problem more generally in terms of non-equidistant ordinates.
Without loss of generality, we may assume x,=0, and introduce the
notation z,=a, ry=a+b=c. We want to find the “best possible” ap-
proximation

(2.1) Sf(x)dx ~ A-f(0)+B-f(a)+C-fc) = S,
0

with indeterminate coefficients 4, B and C.
This can be obtained by a Taylor expansion of both sides. The number

of terms used will be found convenient later on:

f (C —_ t)3
3!

10 =50+ 5O+ 2@+ S0+ (L o,
0
and similarly for f(a). Integrating once, we get

[ ot = 20 S0 S0+ o | €0 poar

0 0
Substituting this, we find an expression for the error committed by
the approximation (2.1):
(2.2) 4 = §f(x)dx -8

0

CR<)

= nfO+ 27O+ 270 + 270+ | pro 0 ar,

oe

where p(t) consists of two polynomial arcs joined together continuously
at t=a, and where

(2.3) {ro =c¢—(4+B+0C), r, = }2—(Ba+Ce)

ry = 33— (Bat+Cc?), ry = ict—(Ba®+0c3).
If @ and ¢ are small intervals, we should clearly try to make as many

of these coefficients as possible vanish, beginning with r,.
Let us only consider the equidistant case c=2a. The equations
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ro=7,=7,=0 then give 4 =1%a, B=+4a, C=}a, or in other words Simp-
son’s formula (1.2) with z,—xz,=2¢. But we also get r;=0, and the
error (2.2) therefore reduces to the integral

2a

4 =\poso .

0

With the above values of B and C, it is easily seen that the function
p(t) will keep a constant sign (< 0) in the open interval {0, 2a). Assuming
that f®(¢) is continuous in the corresponding closed interval, the mean
value theorem gives

2a

(2.4) A = Ag =f<4)(§)-Sp(t)dt = - ggf(‘*)(f), 0<£< 2a,
0

since the last integral is easily calculated. This is the usual form of
the error term in Stmpson’s formula.

It should be noted that the expansions in series become simpler if
the interval for x is chosen to be symmeiric about the origin, from —a to
+a (assuming equidistant ordinates). Even more elegant is a method
described by Milne ([3], p. 115), whereby the coefficient of f® (&) in (2.4)
can be obtained directly from the error committed by applying Simpson’s
formula to f(x)=2x".

The error terms for higher order integration formulae can be found
similarly (cf. Milne, p. 123). We quote the results only for the 3-rule
(1.3) and Cotes’ formula (1.4):

3 5
(2.5) Ay = — %f@)(;) (%3 — 2z = 3a)
8 7
Qo= = TO®)  (@—u, = 4a).

The expression for 4, shows that Cotes’ formula is more accurate
than Simpson’s, with the same length of the intervals. On the other
hand, the coefficients of Simpson’s formula are simpler, and it is con-
sequently easier to use.

The error 4, has in fact a larger absolute value than Ag (although of
the same order of magnitude), and formula (1.3) is therefore seldom
used. Scarborough ([4], p. 155) even ‘relegates it to the category of use-
less things”, but Milne (p. 124) remarks that it may be useful, applied
once only, if there is an odd, given number of intervals.

8%
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3. Non-equidistant ordinates. With n=2, z,=x,+a, z,=2y+a+b,
the formula (1.1) takes the form

wo+a+b
a+b (2a—b (a+b)? 2b—a
3.1 dx ~ .
(31) xsof(x)w (e g 2 )

Because of @ and b in the denominators, this formula is less useful in
practical applications. To overcome this difficulty, a modified formula
was suggested by Viggo Brun [1] in the first volume of this journal:

zo+a+b

(3.2) Sf(w)dw Nﬁg—b(yw 4y1 +Ys) +¥(yz—yo)-

)
For a=»b, the last term vanishes, and we are left with Simpson’s formula
(1.2).

Brun’s deduction of (3.2) is purely geometrical, and of an “Archime-
dean’’ nature. He also gives (p. 14) an error term?!, but of a rather com-
plicated form. In particular, it bears very little resemblance to the error
term (2.4) in the case a =b.

The purpose of the present paper is to give two different, more ana-
lytical, deductions of Brun’s formula, and to find an error term which
reduces to (2.4) when a=0. Both deductions are also capable of gener-
alizations to higher order integration formulae, like (1.3-4).

It should perhaps be stressed that throughout this paper, the intervals
between the non-equidistant ordinates are supposed to be given in advance.
Hence, no attempt is made to increase the accuracy by varying the in-
tervals suitably, as is done in integration formulae of the Gaussian type.

4. Deduction by series. We can use the formulae (2.3), which were
deduced for non-equidistant ordinates. The coefficients 4, B and C are
uniquely determined by the three linear equations ry=r; =r,=0, but this
only leads to the formula (3.1), with @ and b in the denominator. We
therefore omit the equation r,=0, and demand instead that the coeffi-
cients shall satisfy the following three conditions:

1° The equations 74 =7, =0 hold.
(4.1) 2° A, B and C be linear combinations of a and b.
3° For a =5, we get Simpson’s formula.

1 In the last line of this term, the first coefficient should be 3n—3, not 3n—6.
A numerical error in Brun’s example 2 is pointed out by Heidam ([2], p. 110).
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We consequently substitute
B = az;+ bzx,, C = ay,+by,

in the equation r, =0, with c=a +b:

a(a@; + bay) + (@ +0)(ay, +by,) = H(a+0)>.
This is an identity in a and b only if

ity =% Ztyitye =1, Yy =13,
Further, the formulae (2.1) and (1.2) should coincide for @ =5, that is

T+, = 7, Yr1tys = %.

These five equations have the unique solution

IS

_ 2 — — _1 —
Ty =% Ty=3, Y1=—% Y2=1%,

which determines B and C, and finally 4 from r,=0. It is immediately
seen that this just gives Brun’s formula (3.2).

However, this method does not seem to yield a proper error term.
We have already mentioned that Brun’s own form (deduced by a
Taylor expansion in two variables) is unsatisfactory, and it seems im-
possible or at least very difficult to find a suitable error term in Brun’s
formula by the series method. (The conditions for applying the mean
value theorem, as in (2.4), can not be satisfied by all the integrals which
occur.)

5. Deduction by substitution. The case of three non-equidistant or-
dinates can be reduced to the equidistant case by a simple quadratic
substitution x = g(z), where g(z) is a polynomial of degree 2, determined by
(5.1)  g(0) =z, g(1) =, =x+a, ¢(2)=a,=2z+a+b.

This gives
(5.2) g9(z) = 3(b—a)z®+ 4(3a—b)z+2, ,
which should be substituted in the given integral:

Xy 2 p:

X9 0

F(2)dz ~ 2——_6—9 (F(0)+4F(1)+ F(2)} .

(=L S Y &)

We now have equidistant ordinates for F(z), and can consequently get
an approximation by Simpson’s formula (1.2). Here
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F(0) = f(@)g'(0) = $y,(3a—0)
F(1) = f(®)9'(1) = $y:(a+b)
F(2) = f(2)9'(2) = $y5(3b—a),

‘which immediately gives Brun’s formula (3.2).
The derivative g'(z) will keep a constant sign from z=0 to z=2 only if

(5.3) b <acx3b,

that is if none of the intervals exceeds three times the other one. If
this condition is not satisfied, the integral in z will, at least formally,
also refer to values of f(x) outside the given interval [z,, ,]. The sub-
stitution will still yield a correct result, but the argument shows that
Brun’s formula should be used with care when the intervals differ too
much. This fact is also observed by Brun himself.

The application of Simpson’s formula means that F(z)=f(g(z))g'(2) is
approximated by a quadratic polynomial ¢(z). The given function
y=f(x)= f(g(z)) is consequently replaced by the rational function
@(2)/9'(z). Together with x=g(z), this will usually determine a wuni-
cursal cubic curve.

We will, however, get the same result if we approximate y =f(x) =f(g(2))
itself by a quadratic polynomial ¢(z), and then integrate (exactly) the
cubic polynomial F,(z)=w(z)g'(z), which passes through the same three
points as F(z):

Fy(0) = F(0), Fy(1) = F(1), Fy(2) = F(2).

We must get the same result, since it is known that the approximating
quadratic polynomial of Simpson’s method can be replaced by an ar-
bitrary cubic polynomial through the given points. This, in turn, follows
from the fact that Simpson’s rule gives an exact result for any such cubic
polynomial (the error term (2.4) contains the fourth derivative).

The choice of the values z=0, 1, 2 was convenient but arbitrary. They
can be replaced by any other equidistant set by a linear transformation,
which does not influence the above reasoning. We have consequently
found the following result:

The approximation formula of Brun can be obtained by replacing the
given curve y=f(x) by a parabola

x = .22+ bz +cq, Y = ag2®+ bz +c,,

such that the given points (%, Yo), (%1, Y1) and (4, y,) correspond to equi-
distant values of z.
A closer examination shows that the axis of this parabola has the slope
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@y =y0—2?/1+92
@,  Xg— 20, + Ty

In particular, we get the ordinary parabola of Simpson’s method (ver-
tical axis) if the ordinates are equidistant, that is if xy— 2z; +2,=0.

It should be noted that Brun’s own method is built on a completely
different approximation, replacing y=f(x) by one parabola between the
points (2y, ¥,) and (z,, ¥;), and a different parabola between (z;, y;) and
(@4, ¥5), both parabolas having vertical axes.

6. Error term in Brun’s formula. Since the quadratic substitution
x=g(z) permitted the use of Simpson’s foriaula, we can obtain an error
term by the methods of Section 2:

2
AB==Spmﬁwnnm.
0

The function p(t) is the same as in (2.4) (with a=1), and F(¢) =f(g(¢ )g’ ()
where g¢(t) is given by (5.2). Differentiating four times, and usmg
g'"'(t)=0, we find

(6.1) F@(t) = 15f"(g)g'g"*+ 10f""(9)9"%" +[“(9)g"

From the general theory, we know the form of p(f), and also that p(¢)
will keep a constant sign in the interval (0, 2). Under the assumption
(5.3), the factor ¢'(¢) will have the same property (while g"'(¢) is a con-
stant), and the mean value theorem can be applied to each summand
of F®(t) separately, for instance

2

§p(t)f"( g2t = (o) | g’y 2t = —

0 0

(@+b)(b—a)?

180 7).

Here 0<7<2, and £=g(z) will therefore belong to the given interval
{xy, T4y for z if (5.3) is satisfied.

The remaining terms of (6.1) can be treated similarly (but with rather
laborious integrations). As a result, we find the following sharpened
version of Brun’s formula (3.2):

xo+z'1+b c d
\ @) = < @o+4y2+92) + 5 a—v0) + 4z
where o

8d?2 4 2c2d2 4+ (4
62) A= - eaprey+d( e+ 20 ) ey + (S 22l 0 pa,)
72 7 40 21
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Here
c=a+b, d=b—a; x,<§& <xzy+a+b, i=1,2,3,

and it is assumed that W<as<3b.

When d is small, so that the ordinates are approximately equidistant,
the terms with f'"/(£,), and particularly f’'(¢;), will nearly vanish. In
the equidistant case a=b, d=0, c=2a, the above expression for 4 p will
coincide with the error term (2.4) of Simpson’s formula.

The coefficient of f''(£,),

(6.3) —led® = —L(a+b)(b—a)?,

is the same as the coefficient of f"/(0) in Brun’s error term ([1], p. 14).
However, the coefficients of f'"/(£,) and f’”’(0) do not coincide.

One might conceivably modify and perhaps simplify the above re-
mainder term (6.2) by partial integration. We could, for instance, try to
get rid of the middle term by the following process (cf. (6.1), where g’
is a constant):

Sp(t Jg2-f""(g)g"dt = p(t)g"-f"(9) S f"9)p' 092+ 2p(t)g'g "}t .
——

u dv

It does, however, turn out that any such transfer between the terms
(completely or only in parts) is impossible. An elementary but compli-
cated analysis shows that the mean value theorem no longer applies to
the integrals resulting from such a transfer.

7. Generalization to the three-eighths rule. If a number of intervals,
say four, of varying length is given, it will hardly pay to modify Cotes’
formula (1.4) along similar lines. (But see Section 8 below.) It is much
simpler, and probably just as accurate, to use Brun’s formula twice.
However, when the given number of varying intervals is odd, it will be
necessary to apply (once only) a modified form of the ‘‘three-eighths rule”
(1.3), cf. the concluding remarks of Section 2.

We shall first generalize the series method of Sections 2 and 4, and
introduce

% =0, % =a, x=a+b x3=a+b+c.

We want to find the ‘“best possible” approximation

a+b+c

Sf(x)dx ~ A-f(0)+B-f(a)+C-f(a+b)+D-fla+b+c) =
0
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As before, we expand in a Taylor series:

a+b+e
(1.1) 4 = S F@)do—8 = 8of(0)+81f"(0)+82f"(0) +85f () + ... ,
0

where the coefficients s; are easily calculated. In analogy with (4.1), we
demand that

1° The equations s,=s;="0 hold.

2° A, B, C and D be linear combinations of a, b and c.

3° For a=b=c, we get the formula (1.3).

As in Section 4, we substitute

B = ax,+bxy+cxy, C = ay,+bys+cys, D = az +bzy+czg

in the equation s; =0, and also in the condition 3°. It turns out that we
then get only 8 independent equations between the 9 unknown coeffi-
cients; the complete solution therefore contains one parameter u. A con-
venient form of the parametric solution is given by

84 = 40+ (4—u)b+ (u—>5)c
8B = ua + ub + (9—2u)c
8C = (9—2u)a+ ub + UC
8D = (u—>5)a+(4—u)b+ 4c .

Among the possible values for u, two choices seem to be of particular
interest:

In analogy with Brun’s formula (3.2), we may want a correction term
involving only the first and the last ordinate. This means that we must
h

e B =0 = §@—w) = Yatb+o),

and so u=3. The modified form of (1.3) then becomes

zot+a+btc a+b+c 3(6—-—(1)
(12) {f@)de ~ L ot Byt Bty + g

Zo

(Y¥3—Yo) -

Probably the most accurate formula, however, results from the follow-
ing consideration: We have seen that the first coefficient (6.3) of the
error term in Brun’s formula, and so the coefficient r, of (2.2), is divisible
by the square of the difference b—a, and hence becomes very small
when the ordinates are nearly equidistant. In the case n=3, we can
similarly demand that the coefficient s, of (7.1) shall be of the second
degree in the differences b—a, c—a and ¢—b. A closer examination shows
that we must then choose u=-, which gives the approximation
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wo+a+b+c
(7.3) \ F(@)do ~ 35 {(8a b~y + 90+ D)y + 96+ c)y + (—a— b+ 8¢} s}
£
In analogy with (7.2), we could also have used the original formula
(1.3) with a correction term, but this term would be just as complicated
as the whole of the above expression.
For the formula (7.3), the coefficient s, of (7.1) takes the form

83 = —5{(@+b+ic)b—a)+(b+c+ta)c—b)2+(c+a+1b)(a—c)?}
= —5{9@+b0+ ) —(a+b+c)3).

Since (2.5) contains the fourth derivative, the corresponding coefficient
s3 will also vanish for a=b=c¢. It is, however, not of the second degree
in the differences.

8. Generalization to higher order formulae. As already mentioned, a
generalization to cases with # > 4 in (1.1) is hardly practical. It turns out,
however, that Brun’s formula (3.2) and the modified three-eighths rule
(7.2) are both special cases of a general formula, which may be worth
while mentioning. In fact, we can always get second degree accuracy
from a “correction term” with the factor y, —y,=f(x,) —f(@,).

Let (1.1) be the formula for equidistant ordinates, so that in particular

(8.1) Ky+K,+...+K, =1,
(8.2) Ky=K,, K, =K, ;, K=K, ,, ....
We introduce
Ty =0, % =0y, Ty = a14+0ay, ..., T, = a;+a+...+a,,
and want to find the “best possible”” approximation

ajtast. .. +ay

VF@do ~ @+ 0t 4 0,) K0+ Kyf @) + Kof @+ )+ ...

o

0

+ K, flag+as+ ... + )]+ (A0 + Agao+ . .+ A0, [flag+ag+ . .. +a,)—f(0)]

with indeterminate coefficients 4;, 4,, ..., 4,. We expand all terms in
Taylor series, and can then divide out by a,+ay+ . .. +a,=x,—x, In
what remains, the terms with f(0) on both sides will coincide, because
of (8.1). To make also the terms with £’(0) coincide, we must have

Hag+ap+ ... +a,) = Kia,+Ky(a,+a,)+ . ..
+ Ky +ag+ ... +a,)+Aa+ A0, + ... +4,0,,

2
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which should be an identity in a;, @, . . ., @,. This determines uniquely
the coefficients A4,, 4,, ..., 4,. Utilizing (8.1-2), we find

Al = _A'n = KO_%
Ay = —A,, = Ky+K,—}%
lA?, = -4, ,=Ki+K;+K,—}%

(8.3)

If in particular n=2m+1 is odd, then the middle coefficient A,.1=0.
Since A,+A,+ ...+ A,=0, the correction term vanishes in the equi-
distant case a;=a,= ... =ay.
The formulae (3.2) and (7.2) are immediate consequences of (8.3) with
n=2 and n=3 respectively. For n=4, we get the following modification
of Cotes’ formula (1.4):

zo+a+btetd
v

Sf(x)dx o~

o

a+b+c+d
-T (794 + 32y, + 12y, + 32y;5 + TY,)
19(d—a)+3(c—b
+( )+3(c—b)

45

(Ya—Yo) -

As was the case with Brun’s formula (cf. the concluding remarks of
Section 4), the series method does not lead to a suitable error term.
We could get such a term from the substitution method of Section 5,
but we shall see that this method leads to an unsatisfactory approxima-
tion formula for n > 2.

The substitution (5.1) is immediately generalized to arbitrary order n.
We put x=g(z), where g(z) is a polynomial of degree , determined by

gi) =z, 1=0,1,2,...,m.

If then (1.1) is the formula for equidistant ordinates (so that in partic-
ular the coefficients K, depend on n only), then the formula for non-
equidistant ordinates is given by

(8.4) S f@)de ~ n(koK o+ ki Kyyy+ - o o +EnKnln) -

2o

The factors k;=g'(i) are easily determined by the interpolation formula
of Lagrange:
1 n\ "t AN
(5.5) b=y () D0 (0) 2
’ fﬁgl—J LA J/v=)
However, it can be shown that, in the series expansion corresponding
to (2.2) or (7.1), the coefficient of f'(0) will not vanish for the approxima-
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tion (8.4-5) when n> 2. The substitution method, although valuable in
the case n=2, must therefore be considered inferior to the series method
by higher order integration formulae.

Addendum. Dr. C. B. Haselgrove has informed me that Brun’s for-
mula (3.2) is a consequence of the “Simpson-Stieltjes” integration for-
mula

h

VFOdgt) ~ 4(7(= 1)+ 470)-+7 @) gth) - 9(~1)

) + 3(f(R) = F(— ) (g(h) — 29(0) + g(~ 1)) ,

which was obtained by his wife in her thesis for a Ph. D. at Cambridge,
England. To get non-equidistant ordinates, we let the intervals
—h=<t<0 and zy<x=<x,+a correspond by one linear transformation,
and the intervals 0<¢{<h and z,+a<xz=<z,+a+b by another. This

“stretching” of the abscissae can be accomplished by putting g(t)=% ¢
b
in the former interval and g()= ﬁt in the latter. It is immediately seen

that this leads to Brun’s formula.
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OM INDFYRELSEN AF EKSPONENTIALFUNKTIONEN

W. FENCHEL

Ud fra eonsket om at finde frem til en behandling af eksponential- og
logaritmefunktionerne, der er egnet for den elementere undervisning,
iseer i gymnasiet, har man fra tid til anden taget forskellige definitions-
méader for disse funktioner op til nermere diskussion (jfr. de i litteratur-
fortegnelsen newevnte artikler af A.F. Andersen, B. Jessen, H. Bohr,
V. Jorgensen og H. Gask). Herved er den klassiske fremgangsméade med

Eulers relation
x n
lim (1 + —> = ¢*
n—> 00 n

som udgangspunkt tradt noget i baggrunden, formentlig fordi dens fuld-
steendige gennemfgrelse syntes formelt for indviklet for begyndere. For-
malet med den foreliggende lille note er at vise i alle enkeltheder, at den
lader sig forme ganske elementeert og saledes, at der kraeves et mindstemal
af forkundskaber (som er angivet nedenfor). Der udnyttes noget kraf-
tigere, end det seedvanligvis sker, Bernoullis ulighed samt den omsteendig-

hed, at man jo ogsa har
lim (1 - E) = €%,
n

n —» 00

Man har vel ogsa indvendt mod dette udgangspunkt, at det mé fore-
komme artificielt. Fra et rent matematisk synspunkt kan man jo nok
veere enig heri. Tages imidlertid eksponentialfunktionens mangfoldige
anvendelser i fysik, biologi og socialvidenskab til beskrivelse af storrel-

x n
sers voksen og aftagen i betragtning, mé udtrykket (1 + ——) anses for et
n

endog szerdeles nerliggende udgangspunkt. Man behgver blot at t@nke pa
dette udtryks interpretation som den slutkapital, som en kapital af ster-
relsen 1 vokser til i lobet af eet ar, nar den forrentes med 100z %, p.a. og
renten tilskrives hvert n-tedel ar.

[109]
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1. Forudsztninger. I de fglgende afsnit 2 og 3 benyttes: begrebet
greenseveerdi for en talfelge, de simple regneregler for sadanne graense-
veerdier, seetningen om, at en opad begrenset, aldrig aftagende talfolge
har en grenseverdi, og at denne er storre end eller lig med hvert af folgens
elementer, samt den tilsvarende setning for aldrig voksende falger.

Endvidere benyttes reglerne for potenser med heltallige eksponenter
og endelig Bernoullis ulighed :

For ethvert positivt helt tal n og ethvert reelt tal z= —1 geelder

(1+2)" = 1+nz.

Som bekendt vises dette sidste let ved induktion. For n =1 er uligheden
nemlig rigtig, og forudseettes den gyldig for et positivt helt tal n, fis ved
multiplikation med 1+220:

(I+2)"t =2 (1+ne)(1+2) = 1+(n+1)z+n22 2 1+(n+1)z,
altsa uligheden for n+ 1.

2. Eksponentialfunktionens definition. Lad = veere et vilkarligt, men
forelobig fast reelt tal. Med NV betegnes et fast helt tal stgrre end |z|, og

x
n gennemlgber verdierne N, N+1, N+2,.... Da er 1+ —>0, og tal-
n

folgen
x n
a,(x) = (1 + —)
n

har positive elementer. For at vise, at den er aldrig aftagende, betragtes

n+1
() - (+5)

Grundtallet i potensen pa hgjre side er positivt, da det er forholdet mel-
lem to positive tal. Bernoullis ulighed kan derfor anvendes, hvilket giver

e (1-22) (145) -1,

altsd a,(r) <a,.,(x), som pastietl. Anvendes dette med —x i stedet for
z, fas, at folgen

1) Det bemeerkes, at dette skridt kan forenkles yderligere ved, at man kun lader n
gennemlgbe verdierne N, 2N, 22N, ..., hvilket kan ske uden endring af de felgende
beviser. Man har da kun brug for a,,(z) = a,(r), hvilket fremgar af

_ . z\2 n_ . x 22 n> x\ "
Agp(@) = (( +2_n)) —( +;’+%) = (1+;) = a,(®) .
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b,(x) = 1 = (l——f)—n

n

er aldrig voksende.
For at sammenligne a,(x) og b,(x) betragtes

Gy (2)

b (%)

x2\"
= a,(x)a,(—x) = (1—— —) .
n2
Da 22 < N2 < n?, er hgjre side < 1. Man far altsd med benyttelse af de fore-

gaende resultater
ay(x) = a,(x) = by(x) = by(x),

hvoraf ses, at folgen a,(x) er opad og falgen b, (x) nedad begrenset. Begge
folger er altsd konvergente.
Anvendes Bernoullis ulighed pa ovenstaende udtryk for a,(x)/b, (), fas

@ (%) - a?
bole) ~  n’
altsé
2 2
n

Heraf sluttes, at b, (x) —a,(x) - 0 for n — oo, og dette medfarer, at fol-
gerne a,(x) og b,(x) har samme greenseveerdi, som betegnes med E(x).

Som grzenseverdi for en aldrig aftagende fglge med positive elementer
er E(x)> 0 for ethvert «. Specielt haves E(0)=1.

3. Funktionalligningen. Lad r og s vere vilkarlige, men i det folgende
faste reelle tal. Med IV betegnes nu et fast helt tal, for hvilket N > |r| + |s|,
altsa specielt N >|r| og N >|s|, og n skal igen gennemlgbe veerdierne

r s
N,N+1,N+2,....Daer 1+— og 1+— begge positive.
n n

Man betragter produktet
r+s8 rs\"
a,(r)a,(s) = (1 + —+ —2> .
n o n

For de benyttede verdier af n er grundtallet i potensen pa hgjre side
positivt.
Antages nu forst, at rs > 0, fas

a,(r)a,(s) = (1 + $)n= a,(r+s) .
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Erstattes heri » og s med —r og —s, fas a,(—7)a,(—s)Za,(—r—s), og
ved at ga over til de reciprokke tal b, (r)b,(s) < b,(r +s), altsd i alt

0n(r+8) S @,(r)an(s) S by(r)by(s) < bylr+s).

For n — oo konvergerer de to yderste folger mod HE(r+s) og de to mid-
terste mod E(r)E(s). Folgelig har man

E(r)E(s) = E(r+s).
Er derimod rs <0, fas

0nay) 5 (1475°) = ayrte
0g b, (1)b,(8) 2 b, (r + ), altsd

An(r)0g(8) £ By(r+8) = by(r+5) = by(r)ba(s) s

hvoraf man som fer slutter, at E(r) E(s) =E(r +s).

Indferes betegnelsen e=E(1), giver gentagen anvendelse af den fundne
funktionalligning, at KE(p)=e? for ethvert helt tal p=0 og, da
E(p)E(—p)=E(0)=1, at B(—p)=e?. Dette retferdiggor indferelsen af
betegnelsen e® for E(x).

4. Differentiabilitet. For hvert reelt tal x og N > |x| er

T N
o 2 1+—) > 142
(1+5

ifglge Bernoullis ulighed. Heraf sluttes, at ¢® — co for  — oo, og ved hjlp
af er=1/e=, at e — 0 for x - —oo. Erstattes i uligheden  med —u,
fas e*=1—z, altsd for x <1:

er L —0.
l—x

For hvert reelt tal 2 <1 har man fglgelig

1 h
1+hSEth—~—=1 _—,
=CE1 T T
altsa for A >0 resp. h<0
eh—1 1 eh—1 1
15 = og 1z ——2z—.
h 1-h h 1-h

Heraf fas (¢"—1)/h — 1 for b — 0 og derfor
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eT+h _ o eh—1
= ¢* e for h—0,

h h

d
hvormed differentiabiliteten af funktionen e* og formlend— ¢ =¢® er bevist.
x

Hermed har man de egenskaber ved funktionen e®, som tillader at
definere og undersegge den naturlige logaritme som dens omvendte funk-
tion og derefter at indfgre de andre eksponential- og logaritmefunktioner
pa velkendt made.
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TWO ELEMENTARY PROOFS CONCERNING
SIMPLE QUADRATIC FIELDS

VEIKKO ENNOLA

1. In this paper we consider a quadratic algebraic field k([/%), where
m is in absolute value a square-free natural number greater than 1. (We

disregard the simple field k(]/——_l)) We shall give two proofs of the follow-
ing well-known

TaEOREM. The field k(]/ﬁ) can be simplel only if |m| is a prime or a
product of two unequal primes neither of which is congruent to 1 (mod4).

Our first proof shows, moreover, that for m <0 |m| must be a prime not
congruent to 1 (mod4).

For m < 0 all the simple fields have been enumerated, except possibly
one. For m > 0 one can derive the theorem in many ways by considering

the classes of ideals of the field Ic(]/;n—) (cf. [2], footnote on p. 3). It is of
importance in the study of the existence of Euclid’s algorithm in real
quadratic fields. Since, namely, the existence of Euclid’s algorithm im-

plies the uniqueness of the factorization in k(]/m), the field can be Eu-
clidean only if m is of the form given in the theorem (as indicated first
by Behrbohm and Rédei [1]).

For m >0 Inkeri[2]has given a proof which is based on the elementary
theory of ideals. Our first proof is an improvement of this and shows
that the theory of ideals is not needed. Our second proof is a very short
one based on Dirichlet’s theorem concerning primes in an arithmetic
progression.

2. Let m=pm,, where p is an odd prime and m, a rational integer.
Suppose that the field k(}/m) is simple. Let « = }(a+ b)/m) be the highest

1 The term ‘‘simple algebraic field”” means that the fundamental theorem of arithmetic
is true in the field, i.e. the expression of an integer of the field (not zero or unit) as a pro-
duct of primes is unique, apart from the order of primes, the presence of units, and ambi-
guities between associated primes.

[114]
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common divisor of the numbers p and [/E Then it follows from the unique-
ness of the factorization in k(]/m) that we can write

o = 51?'*‘521/% )

where &, and &, are algebraic integers of the field k(l/')Tz) Writing

& =3(2,+y1)/m) and &= 1(wy+y,)/m), we can establish that p|a, which
implies p|n(x). On the other hand, n(x)|p? and n(x)|m, so that n(x)=
+p, ie.

(1) a?—mb? = +4p.

Suppose for a while that m =3 (mod4). Denoting the highest common
divisor of the numbers 2 and 1+}/m by =c+d)/m, we have also

B =m-2+n,(1+)m),

where %, and 7, are algebraic integers of the field k(]/%) Writing

771=u1+1;1[/% and 172=u2+1)2]/77z, we see that c=d (mod2), whence
2|n(p). Since n(p)|4 and n(B)|(1 —m), we find that n(f)= + 2, i.e.

(2) E—md? = +2.

For each m we consider the quotient y =«/a’, where ' denotes the
algebraic conjugate of x. Since p|a, we can write a = pa,. Then (1) implies

N Pa2 T 2+a,b)/m

- 2
Now a=b (mod2) and, especially, a=b=0 (mod2) if m=2, 3 (mod4),
because « is an integer. But then the same conditions are also satisfied
by pa,*¥ 2 and a,b. Thus y is an integer, and, having the norm 1, it is a
unit of the field &()/m).

In the case m=3 (mod4) we take, in addition, the quotient 6=pg/8'.
By (2), we have _
2+ md2+2¢cd)/m
2 .

0= %

Since ¢2+md? is even, ¢ is an integer and hence also a unit of the field

Let first m < 0. If |m| is a composite number or a prime congruent to
1 (mod4), then |m|= 5 so that the only units of the field are + 1. In the
former case the number o corresponding to some odd rational prime
divisor p of m satisfies x = + «’, and thus a or b is zero. This is impossible,

g*
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by (1). In the latter case =+’ similarly, so that ¢ or d is zero, which
contradicts (2).
Suppose next that m=pm,>0 and m;> 1. Let ¢ be the fundamental

unit of k(l/ﬁ) Then y = + &, say. If now A is even, say 2k, we have

o' ,
%= 5= i’éﬁc_ X s
since & = +¢~1. Write xg= %—(ao—l-bo\/m), whence either a, or b, is zero.
But then the equality

a2 —mby? = dn(xg) = tdn(x) = +4p

is impossible. Thus % is odd and hence n(g)=1.

If, in particular, m=3 (mod4), we conclude, in the same way, that
6= + &, where ! is odd. Now, however, n(xf)= +2p and affo'p' = + &t
which is also impossible, since 7+ is even. Hence for m=3 (mod 4)
my =1 so that our theorem holds.

Suppose therefore that m=1, 2 (mod4). Let m = p,p,m,, Where p;, Py
are odd primes and m,> 1. Then there exist integers «; and «, such that

n(xy) = TP a = £y,

n(xg) = * Py ng = t&ay,
where %, and %, are odd. This implies that

X189

n(ogxg) = £P1Pe — -, = L€
Xy Ko

hit+he
)

which is a contradiction, since h; + hy is even. Thus the number m can
have at most two distinct rational prime divisors. If we can show,
furthermore, that n(¢)= —1 when k(]/a) is simple and all odd rational
prime divisors of m are congruent to 1 (mod4), our theorem will be
proved.

For such m we can write

m = x2+y?,

i.e.
3) a? = —(y*—m),
where « and y are rational integers, not both even. Suppose, for example,
that z is odd. Let ¢ be some rational prime divisor of z. If ¢ were prime
in L(Vﬁ), it follows from the uniqueness of the factorization that

ql (y + ]//y—n) or q| (y — ]/%), which is impossible. Hence g or —gq can be divided
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into two conjugate prime factors in k(l/ﬁ) For x we thus obtain a fac-
torization of the form

x = tmm mamy ... wam, .

Since the factorization of ¥ —}/m can be derived from that of y+)/m by
replacing each factor by its conjugate, it follows that (3) can be valid,
i.e. 22 and y%—m can differ in sign, only if there exists a unit in k([/;n)
which has the norm —1. Hence also n(e)= —1.

3. For the second proof, suppose that k(l/m) is simple and that, con-
trary to the assertion, m could be written in the form m =mm,, where
m, and |m,| are natural numbers greater than 1 and m;=1 (mod4). It
follows immediately from Dirichlet’s theorem concerning primes in an
arithmetic progression that there exists a rational prime p congruent to
5 (mod 8) such that Kronecker’s symbols

(2)-(2)- -
()= (29 (%) - (2) () -1

and there exists a rational integer ¢ such that p|(t2—m). If p were

prime in &(}/m), p[(t+]/n_z) or p](t—]/n?), which is impossible. Conse-
quently p is divisible, i.e.

Then

a+bm a—b)m
2 2

p=t

whence
a?—mb? = +4p.

(59 (2)- -
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BOKMELDINGER

Enzyklopddie der Elementarmathematik, I, 1I1. Redaktion: P. S. Alex-
androff — A.I. Markuschewitsch — A. J. Chintschin. Ubersetzung aus
dem Russischen. (Hochschulbiicher fiir Mathematik 7, 8.) Deutscher Ver-
lag der Wissenschaften, Berlin, 1954, 1956.

Band I: Arithmetik. 114403 S. DM 26.70.

. Band I1: Algebra. 9+405 S., 33 Fig. DM 27.30.

(Innholdsfortegnelse i NMT 5 (1957), s. 151.)

I forordet anges syftet med verket: »Den av Ryska akademin for peda-
gogiska vetenskaper utgivna encyklopedin 6ver elementarmatematik ar
dmnad att vara en handbok fér matematiklirare vid hégre skolor och
for studenter i fysikalisk-matematiska fakulteter vid pedagogiska insti-
tut .... Den skall ge en systematisk framstéllning av de vetenskapliga
grundvalarna for skolmatematiken . ..« Verket dr planerat pa sju band.

Forsta bandet ar dgnat at aritmetiken. Det inleds med en historik av
Baschmakowa och Juschkewitsch om uppkomsten av beteckningssyste-
men for talen. I nésta avsnitt, forfattat av Proskurjakow, géres lisaren
bekant med de grundliggande begreppen méngder, grupper, ringar och
kroppar, varefter foljer en noggrann introduktion av de reella och kom-
plexa talen. Dirpa foljer en uppsats av Chintschin om elementen i tal-
teorin sisom delbarhet, diofantiska approximationer, algebraiska och
transcendenta tal. Bandet avslutas med ett avsnitt om sifferriikning av
Bradis. Forfattaren beklagar, att detta omride behandlas styvmoderligh
i de ryska skolorna.

Andra bandet behandlar algebra. Dess forsta avsnitt, skrivet av Uskow,
ar dgnat at linjir algebra: determinanter, linjéra ekvationssystem, linjira
vektorrum och linjéra transformationer i planet och rymden. Tyvirr be-
handlas ej kvadratiska former. Sedan foljer ett langt avsnitt om polynom-
ringar och algebraiska ekvationer av Okunjew. Algebrans fundamental-
sats bevisas med minimum-principen, vilket ej passar riktigt bra in i
ramen for denna bok. Vidare behandlas frigan om 16sning av algebraiska,
ekvationer med radikaler, varvid ges en kort framstillning av grunderna
i Galoig’ska teorin. I det sista avsnittet, som &r skrivet av Domorjad,

[118]
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behandlas numeriska metoder f6r ekvationslésning. Man finner dér t. ex.
Sturms kedja, Horners metod, Lagranges kedjebraksmetod och Graeffes
metod, den sista under bendmningen Lobatschewskis metod.

Verket &r skrivet med temperament och utgor i stora delar en med-
ryckande ldsning. Framstéllningen &r klar och anlagd pa lattbegriplighet.
Mycket arbete maste ha nedlagts p4 samordningen av de olika avsnitten.
Dock finns det enstaka brister. Si t. ex. saknar man i Chintschins trevliga
artikel om talteori anknytning till f6regaende avsnitt, dir analoga fragor
behandlas. Okunjews artikel om polynomringar och algebraiska ekvatio-
ner ir ej lyckad. Den dr langrandig och delvis tunglést. Férekomsten av
illustrerande exempel i texten adr ojamn. Det finns inte ett enda genom-
riknat exempel i kapitlet om determinanter och linjéra ekvationssystem,
medan avsnittet om numerisk ekvationslosning dr vélforsett.

Man mérker 6verallt en strivan att framhéva ryska matematikers in-
satser. Det dr intressant att ta del av vad som sigs om matematikens
visen fran den dialektiska materialismens standpunkt (Bd. I, s. 63):

»Motsatt uppfattning framfores av den borgerlig-idealistiska sidan. En-
ligt denna uppfattning &r matematiken en produkt av den fritt skapande
miéinniskoanden och dess grundliggande begrepp dr & priori siregna for
vart forstand, d.v.s. f6re varje erfarenhet givna &4t ménniskan redan vid
fodseln. Felaktigheten i dylika é&sikter betréffande matematiken bevisas
millioner ganger genom var samlade praktiska verksamhet, da i tillamp-
ningarna matematiken alltid ger vad vi forvintade. Men detta &r blott
dérfor fallet, emedan de matematiska sanningarna &r en aterspegling av
naturens egen objektiva lagbundenhet.« Ulf Hellsten

C. F. Gauss Gedenkband anlésslich des 100. Todestages am 23. Februar
1955. Herausgegeben von Hans Reichardt. B. G. Teubner Verlagsgesell-
schaft, Leipzig, 1957. 251 S. Leinen DM 25.80.

(Innholdsfortegnelse i NMT 5 (1957), s. 198.)

Den foreliggende bog indeholder bidrag fra elleve forskellige forfattere
til belysning af C. F. Gauss’ videnskabelige arbejder, og den giver et
levende indtryk af, hvor dybtgaende hans indflydelse har veeret. Det er
betagende at folge gangen i hans undersogelser, der omfatter bade ma-
tematik, astronomi, geodeesi og fysik.

Gauss betegner talteorien som matematikens dronning, og han har
viet denne sine bedste krefter. Hans bergmte ungdomsarbejde »Disquisi-
tiones arithmeticae« og alle hans senere talteoretiske afhandlinger om-
tales indgdende. Bemerkelsesveerdigt er seerlig afsnittet om de sakaldte
Gauss’ske summer.
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I sin 1799 ved universitetet i Helmstedt forsvarede doktorafhandling
har Gauss givet det forste af ialt fire beviser for algebraens fundamental-
seetning, men forst i det 50 ar senere fremkomne fjerde bevis opererer
han uden betznkning med de komplekse tal, idet han henviser til, at
disse nu er blevet hver mands eje.

Ved hjelp af det aritmetisk-geometriske middeltal var Gauss i stand
til at beregne de elliptiske integraler, og studiet af lemniskatfunktionen
forte ham til at opbygge en teori for de dobbeltperiodiske funktioner.
Det er interessant at folge, hvor langt han her var niet et kvart drhun-
drede for Abel og Jacobi. Men Gauss’ undersggelser desangéende blev
ikke tilendefort, og de blev forst publiceret mange ar efter hans ded.
Det var derfor Abel og Jacobi, som hestede @ren for at have grundlagt
de elliptiske funktioners teori. Blandt Gauss’ bidrag til funktionsteoriens
udvikling ma endvidere neevnes hans klassiske undersggelser over de
hypergeometriske funktioner, der tillige indeholder en videreforelse af
Eulers teori for gammafunktionen.

Hvor omfattende Gauss’ matematiske undersggelser end var, si har
han dog ofret mest tid pa sine astronomiske og geodatiske arbejder. Som
direktor for observatoriet i Gottingen og leder af den hannoveranske
gradmaling har han med en aldrig svigtende tdlmodighed malt koordi-
nater for stjerner og kirketarne. Den 1. januar 1801 fandt den italienske
astronom Piazzi den lille planet Ceres, som han observerede i 41 dage,
hvor den beveaegede sig over en bue pa 9°. Man var nu stillet over for
den opgave at bestemme banen. Dette problem lgste Gauss, og hans
navn blev derved med ét slag kendt i vide kredse. I det i 1809 udgivne
verk »Theoria motus corporum coelestium« har Gauss givet en elegant
fremstilling af de dengang aktuelle problemer vedrerende banebestem-
melser samt en begrundelse for de mindste kvadraters metode.

Da H. Chr. Schumacher i 1815 var blevet professor i astronomi ved
Kgbenhavns universitet og det folgende ar direktor for Den Danske Grad-
maling, fik han det hverv at male en meridianbue langs Jyllands estkyst
ned til Altona. Den af Gauss ledede hannoveranske gradméling er en
direkte fortsaettelse af den danske, og det nzre venskab mellem Gauss
og Schumacher forte til et intimt samarbejde, hvorom den udgivne brev-
veksling barer vidnesbyrd. I en halv snes ar drog Gauss sommer efter
sommer ud i marken for at foretage geodewetiske malinger. Han konstru-
erede et nyt instrument, heliotropen, der har vist sig meget nyttigt, men
endnu stgrre betydning fik hans undersggelser vedrerende den teoretiske
geodzsi, der forte denne videnskab ind pa nye baner, og som tillige vir-
kede befrugtende pa hans geometriske arbejder. Den hannoveranske grad-
maling gav som resultat en liste over koordinater for omtrent 3000 punk-
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ter. Det har veeret et kreevende arbejde at udregne disse ved mindste
kvadraters metode, og Gauss anslar selv, at hans geodeetiske beregninger
har omfattet mere end en million tal. Bessel har bebrejdet ham, at han
ikke lod sig aflaste for en del af dette arbejde, som dog kunne veere ud-
fort af ringere kraefter. Men Gauss afviser skarpt denne tanke, og det er
nok rigtigt, at hans dybe indtreengen i vidt forskellige omriader af de
eksakte videnskaber har veeret en veaesentlig forudssetning for hans per-

sonligheds udvikling. N. B Norlund
. E. Norlu
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tialrechnung 259-282 # Integralrechnung: Unbestimmte Integrale 283-330 * Be-
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stimmte Integrale 330-354 * Kurvenintegrale, mehrfache Integrale und Ober-
flichenintegrale 354-374 * Differentialgleichungen: Gewohnliche Differentialglei-
chungen 375-404 * Partielle Differentialgleichungen 405-423 * Ergdnzende Kaprtel
der Analysis: Komplexe Zahlen und Funktionen einer komplexen Verdnderlichen
424-446 * Vektorrechnung: Vektoralgebra; die Vektorfunktion eines Skalars 447—
455 * Feldtheorie 455-472 * Fourierreihen (harmonische Analyse) 473—-482 * Varia-
tionsrechnung 483-506 * Auswertung von Beobachtungsergebnissen: Grundziige der
Wahrscheinlichkeitsrechnung und der Theorie der Beobachtungsfehler 507-514 *
Empirische Formeln und Interpolation 515-527 * Literatur 528-531 * Sachregister
532-548,

Richard Hubert Bruck: A survey of binary systems. (Ergebnisse der
Mathematik, neue Folge, 20.) Springer-Verlag, Berlin, Gottingen, Heidel-
berg, 1958. 8--185 S. DM 36.00.

Note on the bibliography 8 * Note on symbols 8 * Systems and their generation
1-23 * The associative law 23-55 * Isotopy 56—60 * Homomorphism theory of
loops 60-92 * Lagrange’s theorem for loops 92-94 * Nilpotency of loops 94-110 *
Moufang loops 110-130 * Commutative Moufang loops 130-163 * Bibliography:
A. Books 163-164 * B. Selected papers 164 * C. The main bibliography 164-178
* D. Supplement 178-181 * Index 182-185.

Calculus of variations and its applications. Volume VIII: Proceedings
of the eighth symposium in applied mathematics of the American Mathe-
matical Society. Edited by Lawrence M. Graves. Mc Graw-Hill Book Co.,
New York, Toronto, London, 1958. 54153 pp. sh. 58/-.

Editor’s preface 5 * Eric Reissner: On variational principles in elasticity 1-6 *
D. C. Drucker: Variational principles in the mathematical theory of plasticity 7-22
* P. G. Hodge, Jr.: Discussion of D. C. Drucker’s paper “Variational principles in
the mathematical theory of plasticity” 23-26 * Joseph B. Keller: A geometrical
theory of diffraction 27-52 * J. B. Diaz: Upper and lower bounds for eigenvalues
53-78 * J. L. Synge: Stationary principles for forced vibrations in elasticity and
electromagnetism 79-88 * H.F. Weinberger: A variational computation method
for forced-vibration problems 89-91 % M. M. Schiffer: Applications of variational
methods in the theory of conformal mapping 93-113 * Richard Bellman: Dynamic
programming and its application to variational problems in mathematical economics
115-138 * S. Chandrasekhar: Variational methods in hydrodynamics 139-141 =*
E. H. Rothe: Some applications of functional analysis to the calculus of variations
143-151 * Index 153.

Mahlon M. Day: Normed linear spaces. (Ergebnisse der Mathematik,
neue Folge, 21. Reihe Reelle Funktionen.) Springer-Verlag, Berlin, Got-
tingen, Heidelberg, 1958. 139 S. DM 28.00.

Linear spaces 1-23 * Normed linear spaces 2444 * Completeness, compactness,

and reflexivity 44-58 * Unconditional convergence and bases 58-77 * Compact
convex sets and continuous function spaces 77-96 * Norm and order 96-110 *
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Metric geometry in normed spaces 110-121 * Reader’s guide 121-124 * Biblio-
graphy 124-131 * Index of symbols 132-134 * Index 135-139.

Paul B. Fischer: Arithmetik. Dritte Auflage. (Sammlung Goschen 47.)
Walter de Gruyter & Co., Berlin, 1958. 152 S., 19 Fig. DM 2.40.

Zshlen und Zahlen 5-17 % Der Bereich der natiirlichen Zahlen 18-55 * Der
Bereich der ganzen Zahlen 55-67 * Der Bereich der rationalen Zahlen 68-90 * Der
Bereich der reellen Zahlen 90-129 * Der Bereich der komplexen Zahlen 129-137 *
Arithmetische und geometrische Reihen 138-141 * Zinseszins- und Rentenrechnung
141-143 * Kombinatorik 143-147 * Der binomische Lehrsatz 147-149 * Literatur
150 *» Namenverzeichnis 150 * Sachverzeichnis 151-152.

Werner Graeub: Lineare Algebra. (Die Grundlehren der mathemati-
schen Wissenschaften 97.) Springer-Verlag, Berlin, Gottingen, Heidel-
berg, 1958. 114219 8., 7 Fig. DM 35.70, Ganzl. DM 39.00.

Lineare Rédume 1-19 * Lineare Abbildungen und Gleichungssysteme 19-42 *
Determinanten 42-64 * Orientierte lineare Rédume 65-72 * Multilineare Algebra
73-113 * Der Euklidische Raum 113-132 * Lineare Abbildungen Euklidischer
Rédume 133-150 * Symmetrische Bilinearfunktionen 150-168 * Flichen zweiter
Ordnung 168-183 * Unitére Réume 183-191 * Invariante Unterrdume 192-216 *
Literaturverzeichnis 216 * Sachverzeichnis 217-219.

George Green: An Essay on the Application of Mathematical Analysis
to the Theories of Electricity and Magnetism. T-+72 pp. 4to. Nottingham
1828.

A facsimile edition of 1000 copies, printed in 1958 by Wezita-Melins
AB, Goteborg, Sweden for Stig Ekelof, Chalmers University of Technol-
ogy. Half cloth binding. Price: U.S. § 5.00.

The book will be sent postage paid to any country on remittance of
U.S. § 5.00 or the equivalent in Swedish kronor to Institute for Theoret-
ical Electricity, Chalmers University of Technology, Géteborg S, Sweden.

Introductory observations 1-22 * Application of the preceding results to the
theory of electricity 22-50 * Application of the preliminary results to the theory of
magnetism 50-72.

Karl Peter Grotemeyer: Analytische Geometrie. (Sammlung Goschen
65/65a.) Walter de Gruyter & Co., Berlin, 1958. 202 8., 73 Fig. DM 4.80.

Literaturverzeichnis 6 * Einleitung 7 * Die Vektoralgebra 7-26 * Das Koordina-
tensystem 26-31 * Geraden und Ebenen 32-52 * Kugeln 52-60 * Der Matrizen-
kalkiil 60-74 * Abbildungen 74-85 * Bewegungen 85-98 * Ahnliche (dquiforme)
Abbildungen 98-99 * Die Flichen 2. Ordnung 100-155 * Einfithrung in die projek-
tive Geometrie des Raumes 155-176 * Behandlung der Quadriken im Rahmen der
projektiven Geometrie 177-199 * Namen- und Sachverzeichnis 200-202.
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Wolfgang Haack: Darstellende Geometrie, 1. Die wichtigsten Darstel-
lungsmethoden, Grund und Aufriss ebenflichiger Korper. Zweite Auf-
lage. (Sammlung Goschen 142.) Walter de Gruyter & Co., Berlin, 1958,
113 8., 120 Fig. DM 2.40.

Die wichtigsten Darstellungsmethoden 10-30 * Punkte, Geraden, Ebenen 30-61
* Schnittkonstruktionen von Ebenen und Geraden 61-78 * Ebenflichige Kérper
78-95 * Affinitat 96-113.

G. H. Hardy — E. M. Wright: Einfihrung in die Zahlentheorie. Nach
der 3. Auflage des englischen Originalwerks iibersetzt von H. Ruoff.
Verlag R. Oldenbourg, Miinchen, 1958. 164480 S., 11 Fig. DM 74.00.

Die Folge der Primzahlen (1) 1-12 % Die Folge der Primzahlen (2) 13-24 *
Fargyreihen und ein Satz von MINKOWSKI 25-40 * Irrationalzahlen 41-51 * Kon-
gruenzen und Reste 52-69 * Der FErmaTsche Satz und Folgerungen 70-91 = All-
gemeine Eigenschaften von Kongruenzen 92-105 * Kongruenzen nach zusammen-
gesetzten Moduln 106-120 * Die Darstellung von Zahlen durch Dezimalbriiche
121-146 * Kettenbriiche 147-174 * Approximation von Irrationalzahlen durch
Rationalzahlen 175-201 * Der Fundamentalsatz der Arithmetik in (1), k(z) und
k(o) 202-215 = Einige Diophantische Gleichungen 216-231 * Quadratische Zahl-
kérper (1) 232-248 x Quadratische Zahlkorper (2) 249-265 * Die zahlentheoreti-
schen Funktionen ¢(n), u(n), d(n), o(r), r(n) 266-277 * Erzeugende Funktionen
von zahlentheoretischen Funktionen 278-295 * Die Gréssenordnung zahlentheore-
tischer Funktionen 296-309 * Zerfillungen 310-336 * Die Darstellung einer Zahl
durch zwei oder vier Quadrate 337-360 * Darstellung durch Kuben und héhere
Potenzen 361-386 * Die Folge der Primzahlen (3) 387-421 * Der Satz von Kro-
NECKER 422-442 * Geometrie der Zahlen 443-465 * Anhang. Uber Primzahlpaare
466-468 * Literatur 469-471 x Bemerkungen zu den verwendeten Bezeichnungen
472 * Verzeichnis besonderer Symbole 473-474 * Namenverzeichnis 475-477 *
Sachverzeichnis 478-480.

Lothar Heffter: Grundlagen und analytischer Aufbaw der projektiven,
EBuklidischen, nichteuklidischen Geometrie. Dritte, iiberarbeitete Auflage.
B. G. Teubner Verlagsgesellschaft, Stuttgart, 1958. 192 S., 66 Fig. DM
16.80.

A. Grundlagen der Geometrie 9-50 * B. Projektive (Gleometrie: Projektive Geo-
metrie in den Grundgebilden I. Stufe (Reelle Punktreihe) 51-58 * Projektive
Geometrie in den Grundgebilden II. Stufe (Reelle Ebene) 5§9-74 * Projektive Geo-
metrie im Raum 74-88 % C. Parallelgeometrie: Elemente der Parallelgeometrie
89-99 * Parallelgeometrie der Gebilde II. Grades 99-106 * D. Orthogonalgeometrie:
Elemente der Orthogonalgeometrie 107-131 * Orthogonalgeometrie der Gebilde
I1. Grades 131-134 * E. Nichteuklidische (Cayley—Kleinsche) Geometrie: Absolutes
Gebilde. Parallelititen und Orthogonalititen. Bewegungen 135-153 * Cayley—
Kleinsche Grossenlehre 153—-177 * Abgeiinderte Darstellungsgebiete der hyperboli-
schen und der elliptischen Geometrie 177-189 * Sachregister 190-192.
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Guido Hoheisel: Aufgabensammlung zw den gewchnlichen und partiellen
Differentialgleichungen. Dritte, verbesserte Auflage. (Sammlung Goschen
1059.) Walter de Gruyter & Co., Berlin, 1958. 124 S. DM 2.40.

Differentialgleichungen erster Ordnung 5-50 * Differentialgleichungen héherer
Ordnung 50-112 * Aufgaben zu den partiellen Differentialgleichungen 113-124.

James A. Jenkins: Univalent functions and conformal mapping. (Er-
gebnisse der Mathematik, neue Folge, 18.) Springer-Verlag, Berlin, Go6t-
tingen, Heidelberg, 1958. 8169 S., 6 Fig. DM 34.00.

Introduction 1-13 * Modules and extremal lengths 13-27 * Quadratic differen-
tials 27-48 * The general coefficient theorem 48-71 * Canonical conformal mappings
71-85 * Applications of the general coefficient theorem. Univalent functions 85-122
* Applications of the general coefficient theorem. Families of univalent functions
122-130 * Symmetrization. Multivalent functions 130-160 = Bibliography 160-167
* Author index 168 * Subject index 169.

Bengt Lohmander and Stig Rittsten: Table of the function y=

x

e~ \ e’ dt. (Lund University, Dept. of Numerical Analysis. Table No. 4.)
0
CWK Gleerup, Lund, 1958. 8 s.

Ph. Lotzbeyer: Vierstellige Tafeln zum praktischen Rechnen tn Unter-
richt und Beruf. 17. Auflage. Walter de Gruyter & Co., Berlin, 1958.
44 S. DM 3.00.

Zahlentafeln 2-20 * Logarithmentafeln 21-28 * Beurteilung der Genauigkeit
29-32 * Graphisches Rechnen 33-34  Zusammenstellung wichtiger Formeln 35-44
* Umrechnungstafeln 3. Umschlagseite.

Oystein Ore: Niels Henrik Abel, mathematician extraordinary. Univers-
ity of Minnesota Press, Minneapolis, 1957. 277 pp. $ 5.75.
Family and childhood 5-46 * At the university 49-79 * Journey to the Continent

83-163 * The return 167-225 * Epilogue 229-270 * Bibliography 273 * Index of
names 274-277.

Herbert E. Salzer — Charles H. Richard — Isabelle Arsham: Table
for the solution of cubic equations. McGraw-Hill Book Co., New York,
Toronto, London, 1958. 154161 pp. sh. 58/-.

T. Severi: Il teorema di Riemann-Roch per curve-superficie e varieta
questioni collegate. (Ergebnisse der Mathematik, neue Folge, 17.) Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1958. 8+ 131 S. DM 23.60.

Introduzione. Sistemi lineari di ipersuperficie sopra una varieta 1-16 * Il
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teorema di Riemann-Roch sopra una curva 16-21 * Il teorema sopra una superficie
21-44 * Richiami sulle nozioni generali di equivalenza algebrica sopra una varieta.
Il teorema di Riemann-Roch pei sistemi d’equivalenza sopra una superficie 44—57
* Il teorema di Riemann-Roch (di specie » — 1) sopra una varieta algebrica V,
57-95 * Il teorema di Riemann-Roch nei riguardi dell’equivalenza algebrica e
razionale 95-117 * Bibliografia 117-125 * Indice dei nomi 126127 * Indice analitico
128-131.

Karl Strubecker: Differentialgeometrie, I1. Theorie der Flichenmetrik.
(Sammlung Goschen 1179/1179a.) Walter de Gruyter & Co., Berlin,
1958. 195 S., 14 Fig. DM 4.80.

Literaturverzeichnis 5-6 * Flachenmetrik 7-86 * Vektoranalysis auf Flichen
87-113 * Theorie der Abbildung von Fldchen 114-150 * Geodétische Kriimmung.
Geodétische Linien. Absoluter Parallelismus 151-187 * Namen- und Sachverzeich-
nis 188-195.

Siegfried Valentiner: Vektoren und Matrizen. (Sammlung Goschen
354/354a.) Achte, erweiterte Auflage. Walter de Gruyter & Co., Berlin,
1958. 202 S., 35 Fig. DM 4.80.

Rechnungsregeln der Vektoranalysis 11-75 x Anwendung in einigen physikali-
schen Gebieten 75-77 * Einige Sétze der Potentialtheorie 77-86 * Einige Sétze der
Hydrodynamik 86-99 * Einiges aus der Theorie der Elektrizitit 99-103 * Lineare
Vektorfunktionen, Matrizen, Dyaden 103-161 * Aufgaben zur Vektorrechnung
162-198 * Zusammenstellung einiger wichtiger Formeln 199-202.

Rudolf Zurmiihl: Matrizen. Eine Darstellung fiir Ingenieure. Zweite,
neubearbeitete und erweiterte Auflage. Springer-Verlag, Berlin, Gottin-
gen, Heidelberg, 1958. 15467 S. Ganzl. DM 33.00.

Der Matrizenkalkiil: Grundbegriffe und einfache Rechenregeln 1-15 * Das
Matrizenprodukt 15-31 * Die Kehrmatrix 32-39 * Komplexe Matrizen 39-47
Lineare Abbildungen und Koordinatentransformationen 47-61 * Lineare Gleichun-
gen: Der Gauss’sche Algorithmus 62-83 * Lineare Abhéingigkeit und Rang 83-96 *
Allgemeine lineare Gleichungssysteme 97-105 * Orthogonalsysteme 105-119
Polynommatrizen und ganzzahlige Matrizen 119-128 * Quadratische Formen nebst
Anwendungen : Quadratische Formen 129-140 * Einige Anwendungen des Matrizen-
kalkiils 141-149 * Das Eigenwertproblem : Eigenwerte und Eigenvektoren 150-164 x
Diagonaldhnliche Matrizen 165-181 * Symmetrische Matrizen 182-194 * Normale
Matrizen. Die Matrix %'%. Abschétzungen 194-210 * Eigenwerte spezieller Matrizen
210-228 = Struictur der Matriz: Minimumgleichung, Charakteristik und Klassifika-
tion 228-239 * Die Normalform. Hauptvektoren und Hauptvektorketten 239-256
* Matrizenfunktionen und Matrizengleichungen 256-272 * Numerische Verfahren:
Eigenwertaufgabe: Iterative Verfahren 273-303 * Eigenwertaufgabe: Direkte
Verfahren 303-320 * Iterative Behandlung linearer Gleichungssysteme 320-343 *
Anwendungen: Matrizen in der Elektrotechnik 344-364 * Anwendungen in der
Statik 364-382 * Ubertragungsmatrizen zur Behandlung elastomechanischer Auf-
gaben 382-423 * Matrizen in der Schwingungstechnik 424-441 * Systeme linearer
Differentialgleichungen 441-461 * Sachverzeichnis 462-467.




OPPGAVER TIL LYUSNING

Logsninger av oppgavene 148-151 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte m& vezre sendt
innen 1. november 1958.

De ovrige oppgaver i dette hefte er enklere, og lesninger af dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

148. La n veere et naturlig tall. Vis at Bernoullis ulikhet
(1+2z)" =z 1+nx

gjelder for x> —2. (Smlgn. Fenchels artikkel i dette hefte av NMT.)

Ernst S. Selmer

149. Bevisa, att hela tal (utom de triviella fallen x= +1, y=0; x=0,
y= —1) ej satisfiera ekvationen

t—y3 =1. )
A. V. Peljo

150. Rekken
6, 10, 15, 20, 21, 28, 35, ...

bestar af samtlige tal m, for hvilke der findes positive tal a og b, med
a<m, saledes at m= (g)

Lad ¢(z) veere antallet af tal <« i den anforte reekke. Bevis

x
im P9 1,
z—>o00 |/ 22 Ove J. Munch
151. Vis at R " 0
n n\" . _ ,(n (.m—s _1)s
S0 =20 ) e

0. Kolberg
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152. Reducer hver af summerne

A GE) o v ()

til een binomialkoefficient.
Ove J. Munch

153. En godtycklig polyeder &r omskriven kring en sfir. Bevisa, att
forhallanden mellan kropparnas arealer och volymer ar lika stora.

A. V. Peljo

154. I en ligebenet trekant A BC med toppunkt i A er hgjden h,=m
og halveringslinien vz =2m, hvor m er et givet liniestykke.
Vis, at trekanten er entydig bestemt ved de opgivne liniestykker, og

at den ¢kke kan konstrueres med passer og lineal.
Fr. Fabricius-Bjerre

LOSNINGER

141. La n vere et naturlig tall og P,, () Legendres polynom av orden
2n + 1. Beregn integralet

1
S‘ Py iq(x)
Jx

1 x 2n+§
(1+2) W. Ljunggren

Losning: P,(x) definieras genom

(I-2rz 473+ = 2P, (x)r (= o).
Bilda
tlo(@)—o(—a)] = $[(1 —2rz+r2)~F — (1 + 2rx +r%) 7]

= 2P ()= X P, (x)(—7)"] = X Py pq(x)r2ntt.
Vi sétter

Py ()

_— 1 r 2n+1
=y AN emir
(@) Z’sts(l +x)2“+27 r(l+2x) 2P (@) (1 +x>

= st 17 (4 T - (H)H '

Héirav, med transformationen z=¢-1:
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1 [e<]
Ss(x)dx - %S{[(l +r?)a?+2(1-r)a+1—2r]H
0 1 —[(1 47?22+ 2(1+r)2+ 1 +2r]Hde

vilket med vanliga evalueringsmetoder ger

L 247441422 4n) _ In(r+)/1+0%)
e n peesesu— = ——
21412 2—r+r2+)/14+12(2-7) 2)/1 41
= f(r) = Zag ¥+

Man ser att f(r) uppfyller i fry=4—r i [7f(r)], eller
dr dr

2 +)a; 20 = §—2ia,_ 2.

Identifiering ger .
3 1+1
a, = 3, A = - —4d,,
1 1+2 i+2 T

alltsd den givna integralen

1 2:4 ... 2n

I = Q. = _ln____.“,————.
2n+1 a1 = (—1) 2 3:5...(2n+1)

M. J. Ottoson

143. Lad ¢(x) betegne antallet af naturlige tal <x med given tver-
sum ¢. Bevis at

lim ﬂ)—t — (1)1,
z—>c0 (10819%) Ove J. Munch

Losning: Antalet siffror i z dr [log,ox]+1=N+1. Da blir

(f) < g@) < (Nt”> :

Ovre grinsen ar antalet 16sningar i naturliga tal till
y0+y1+-.. +yN = t.
@(x) dr antalet 16sningar for vilka alla y, <10 och
Yo+ ¥y 10+ ... +yy 10V <z,

Undre grinsen 4r antalet 16sningar med yy =0 och 6vriga y;=0 eller 1.
Dividera med (log;,)! och 1t z — co:

X
lim % _ )
z— oo (logo2)* Bernt Lindstrom

Ogsd lest av S. Eriksson og Helge Tverberg.

NMT. Hefte 3, 1958. — 10




EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen véren 1958 pa de
matematiske gymnasielinjer i de nordiske land.

DANMARK
Matematik I.
1. Les ligningssystemet
3z + 3y — by 1+ 222+ 242
xy+a2?+y? = 2—5x—5y.

2. En omdrejningskegle, hvis toppunktsvinkel er ret, og hvis hejde er %, stér
pé en vandret plan. P& denne plan hviler ogsé en kugle med diameter k, og begge
legemer er omgivet af vand op til hojden x over planen (z < k). Rumfanget af den
del af kuglen, der er under vand, er £ af ramfanget af den del af keglen, der er under
vand.

Beregn «, og udregn dernzest forholdet mellem den torre del af kuglens overflade
og den torre del af keglens overflade.

3. Der er givet en vinkel v og tre linjestykker I, p og g.

Konstruer en trekant ABC af siden A4C =1 og vinkel AMB=wv, hvor M er
midtpunktet af siden BC, nar det tillige forlanges, at BC: AB=p:q. Diskussion
kraeves.

Beregn vinklerne og de ubekendte sider i trekanten, nér »=30°, I=6,032,
p=28 og g=>5.

Matematik 11.

1. T et retvinklet koordinatsystem er givet punkterne A(—5, —1) og D(2, 0).
Gennem A tegnes to rette linjer med haeldningskoefficienterne (retningskoeffi-
cienterne) & og x4 f (f+ 0) og gennem D en ret linje med heeldningskoefficienten
o —f. Den sidste linje skaerer de to ferste i henholdsvis B og C.

Find koordinaterne til B og C udtrykt ved « og f.

Find g udtrykt ved «, nér det forlanges, at punktet C skal ligge p& y-aksen,
og bestem derefter det geometriske sted for punktet B, nir « varierer.

2. Underseg og tegn kurven

i intervallet 0 <z < 7.

[130]
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Den lukkede figur, der begrenses af kurven, z-aksen og linjen z=4sm, drejes
360° om z-aksen.
Beregn rumfanget af det herved fremkomne omdrejningslegeme.

3. Der er givet et kvadrat ABCD, hvori diagonalen AC = 8. I punktet C oprejses
normalen til kvadratets plan; P er et punkt p4 denne normal séledes beliggende,
at CP=S8.

Gennem et punkt pa diagonalen AC legges en plan « vinkelret pd AC; « skeerer
kvadratets sider i punkterne M og N samt linjen AP i punktet 7'.

Idet afstanden mellem planen & og punktet C kaldes x, skal man finde arealet
af trekant MNT udtrykt ved x og bestemme dette areals storsteveerdi.

FINLAND

Lingre kursen.

1. Ett tdg anvinder pd resan fran A till B till uppehéll pd mellanstationerna
p% av resetiden, d. &. tiden mellan avgangen fran A och ankomsten till B. Denna
resetid 6nskar man férkorta med g %. Med hur ménga procent bor tagets hastighet
6kas, d& uppehéllstiderna inte kunna foérkortas ?

2. Kvoten i en odndlig geometrisk serie &r i/; Hur ménga termer béra medtagas
fran bérjan av serien, fér att deras summa skall bli lika stor som £ av hela seriens
summa ?

2x+a

T 2a2 blir = 1. Upprita
x a

3. Bestdm a sé, att maximivardet av funktionen y =
den mot det stérre viardet pd a svarande kurvan.

4. Bestdm m sé, att arean av den triangel, som begrdnsas av linjerna y=max,
z+1=0 och 4 — 3y —4=0 blir 3 ytenheter. Rita figur.

5. Visa, att lutningsvinkeln mellan en rdt linje och ett plan ér den minsta av
alla vinklar, som linjen bildar med rita linjer i planet, dragna genom. skérnings-
punkten.

6. P4 sidorna AC och BC i triangeln ABC som hypotenusor uppritas de likbenta
riatvinkliga trianglarna ACM och OBN, bada utat. Triangeln M NO uppritas, dér
O #ér AB:s mittpunkt. Visa att triangeln MNO é&r likbent och ratvinklig.

7. En cirkel skir det ena benet av en 60° vinkel, vars spets S faller utanfor
cirkeln, i punkterna A och B, det andra i punkterna C och D. Berékna cirkelns
radie, d4 S4A=4 cm, SB=6 cm och SC =3 cm.

8. I en sfidr med radien r &r inskriven en reguljér tetraeder, i denna en sfir,
i den igen en reguljir tetraeder o. s. v. i oéndlighet. Berékna summan av sfdrernas
volymer, likasd av tetraedrarnas samt férhallandet mellan dessa summor. (Exakt
virde och ndrmevirde med 3 decimaler.)

9. Basen i en triangel dr 4.687 km och basvinklarna 34°16’50” och 103°25°15".
Berdakna triangelns hojd.

10. Hérled ekvationerna for de fran punkten (— 1, — 2) till parabeln y=2%41
dragna tangenterna. Rita figur.

10%
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ISLAND

I.

1. Til ellipsen 224 3y%?=2 traekkes en tangent, der regrer ellipsen i et punkt i
forste kvadrant og danner en vinkel pad 150° med z-aksen. Bestem vinklen mellem
braendstralerne til reringspunktet. Bestem ogsa arealet af den trekant, der begrenses
af tangenten og koordinatakserne.

Pévis, at ingen anden trekant, der begranses af akserne og en tangent til ellipsen,
har mindre areal.

2. Givet ligningen a b c

cosx+sinx cosx—sinx  cos2z

Hvilken betingelse mé koefficienterne a, b og ¢ vere underkastet, for at denne
ligning kan have en lgsning?

Bestem den fuldstendige lesning til ligningen, nar a=0,4235, b=0,3456 og
¢=0,5678.

3. For hvilke veerdier af x er udtrykket
-1
defineret ? Vo—3-2
For hvilke veerdier af x er uligheden
5/z—1

l/x—3—2

opfyldt ?
II.

4
1. Underseg kurven y? = og tegn den i hovedtrak.
g z—1 g teg

Gor rede for definitionsomrade, asymptoter, symmetri samt maxima og minima,
om sddanne findes.

Beregn arealet af det omrade, der begrenses af kurven og linierne x =2 og x = 5.
Beregn endvidere volumenet af det omdrejningslegeme, som fremkommer, nar
dette areal drejes om x-aksen.

Bestem den mindste afstand fra begyndelsespunktet til et punkt pad kurven.

Opskriv ligningen for kurvetangenten i (5, 1), og beregn koordinaterne for det
punkt, hvor den skerer kurven igen.

2. a) I Brailles skrift for blinde bestar hvert lydtegn af seks felter, som billedet
viser:

I et eller flere af felterne er der anbragt et enkelt rundt ophevet punkt.
Hvor mange forskellige lydtegn kan der dannes pid denne méde?
b) Find n af ligningen

30K3n,n+3'P2n, n+1 = Kzn,n+1'P3n,n+3 .
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3. En retstdende cirkuler kegle med 60° topvinkel skeeres af en plan, som gér
igennem hgjdens midtpunkt og er vinkelret pd en frembringer pd keglen. Hvor
stor del af keglens volumen udger den overste af de to dele, hvori planen deler
keglen ?

NORGE

Reallinjen.

1. a) Hva mener vi med en geometrisk rekke ?

I tallrekken a,, a,, as, ..., a, er hvert tall 10 prosent sterre enn det foregdende
tall. Vis at rekken er geometrisk, og finn a, uttrykt ved a, og n.

b) I en familie vil foreldrene sikre barna sine gkonomisk hjelp til utdanning
pé den méten at de vil sette en pengesum i bank. De vil gjore summen s& stor
at det siden kan tas ut kr. 2 000 hvert 4r i 15 4r. Regn ut hvor stor sum de ma sette
i banken, nér forste uttaket skal gjores 1 ar etter innskuddet, og de andre uttak
kommer med 1 &rs mellomrom. Rente blir regnet etter 3% p. a. Sett opp og fer
inn den rekken du bruker.

Foreldrene runder av summen og setter kr. 24 000 i banken. Men de fastsetter
nd en annen uttaksordning, som de mener vil passe bedre. Etter den nye ordningen
skal det hvert &r med 1 ars mellomrom tas ut et belop som er 10 prosent sterre
enn det belop som ble tatt ut ett ar for. Forste uttak skal gjores 1 ar etter inn-
skuddet, og siste uttak 10 &r etter innskuddet. Regn ut hvor stort belep det kan
bli tatt ut ferste gangen. Du skal da fere inn den rekken du har brukt i utregningen,
og vise serskilt at denne rekken er geometrisk. Rente blir regnet etter 39, p. a.

2. Det er gitt en halvkule med radius r. Gjennom et punkt P i periferien pa den
storsirkelen som avgrenser halvkula, er det lagt en tangent til sirkelen. Gjennom
tangenten er det lagt et plan som danner vinkelen # med storsirkelplanet, og som
skjerer halvkula i en mindre sirkel (en smasirkel). Finn radien i denne smésirkelen
uttrykt ved r og x. Finn ogsé, uttrykt ved r og z, arealet av den del av kuleflaten
som ligger mellom de to plan.

Vinkelrett pd smésirkelplanet, parallelt med tangenten, er det lagt et tredje
plan. Dette planet skjeerer storsirkelen i A og B, smasirkelen i C og D. La avstanden
fra P til AB veere $r. Vis at arealet av trapeset ABDC da er

F = %7‘2]/5 sinz (1 + cosx).

Arealet er en funksjon av x nér r er konstant. Finn den deriverte av denne
funksjonen uttrykt ved cosz. Gjer s greie for hvordan arealet varierer nir x
varierer mellom 0° og 90°. Gjer serlig greie for hvordan det gér med selve trapeset
nar x nermer seg 90° som grense.

3. En ellipse har likningen 42%— 16x+ y*=0. Finn akser, sentrum og brenn-
punkter i ellipsen. Tegn ellipsen p& millimeterpapiret med 1 em til enhet.

En diameter i ellipsen har vinkelkoeffisient k. Hva blir likningen for diameteren
og likningen for den konjugerte diameteren ?

Diameteren med vinkelkoeffisient k skjerer linjen # = 4 i et punkt som vi kaller P.
Finn likningen for normalen fra P p& den konjugerte diameteren. Vis at denne
normalen skjarer z-aksen i et fast punkt 4 uten hensyn til hvor P ligger p4 linjen
r=4.

Kall skjeringspunktet mellom normalen og den konjugerte diameter for S.
Finn ved regning likningen for den kurven S felger nér k varierer. Hvordan kan
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vi rent geometrisk se hva for en kurve det ma bli? Hvorfor ma sentrum i ellipsen
vaere et punkt pd kurven?

Projeksjonstegning. Horisontal- og vertikaltrasen (horisontal- og vertikalsporet)
til et plan danner begge en vinkel pa 45° med grunnlinjen. Begge vinkeldpningene
er mot hayre.

Et regulert, trekantet prisme stdr med grunnflaten ABC p& dette planet.
Hjornet A ligger i horisontaltrasen til planet, 7 cm fra skjeringspunktet mellom
trasene. Hjornet C ligger i vertikaltrasen, 8 cm fra skjmringspunktet mellom
trasene. Prismet har sidekanter 4a, Bb og Cc som er 7 cm lange.

Prismet skjeres av et plan som gdr gjennom @ og midtpunktet av AB. Hori-
sontaltrasen til planet danner en vinkel p& 45° med grunnlinjen; vinkeldpning mot
venstre.

Tegn horisontal- og vertikalprojeksjonen av prismet med snitt, trasene til de to
nevnte plan og skjeringslinjen mellom disse plan. Begge plan er tenkt ugjennoms-
siktige. (Legg grunnlinjen parallell med langsiden p& tegnearket, 12 cm fra ovre
kant, og la det skriplanet som er nevnt forst i oppgaven, skjwere grunnlinjen 20 em
fra venstre kanten pd tegnearket.)

SVERIGE

Matematiska grenen.

1. Beriikna ytan av det slutna omréde, som begrinsas av parablerna yi=4x
och 2?=4y.

2. Funktionerna »sinus hyperbolicus f6r z« (sinhx) och »cosinus hyperbolicus
for a« (cosha) definieras pa foljande sdtt:

sinhe = }(e*—e™?), cosha = L(e"+e77).

Bevisa formlerna
cosh?x —sinh?z = 1;
sinh2x = 2 sinhz cosha;

cosh 2x = cosh?x + sinh?x .

3. O ér medelpunkten i en cirkel, och P #r en punkt, beligen p& ett avstand
frén O, som ér 1} génger cirkelns radie. Frén P ir en sekant dragen, som skir
cirkeln i punkterna 4 och B. Vinkeln OPA #r tredjedelen av vinkeln A0B. Be-
rakna vinkeln OPA.

4. En kropp begrinsas av tvé koncentriska sfiriska ytor, den yttre med den
konstanta radien R, den inre med den variabla radien z. Ett tangentplan till den
inre sféren delar den nidmnda kroppen i tva delar. Bestdm =z, s& att volymen av
den stérre av delarna blir s& stor som méjligt.

ax?
5. Bestdm konstanten a, s& att funktionen ] far ett maximum = —4.

x—

6. En hyperbel ér liksidig, dvs. transversalaxeln dr lika med konjugataxeln.
Den ena grenen tangerar i vertex y-axeln i ett riatvinkligt koordinatsystem. Samma,
gren gir genom punkten (— 3; 0). S6k och konstruera orten fér vertex pé hyper-
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belns andra gren. Dirvid skall undersékas, om orten bestdr av hela den mot den
erhallna ekvationen svarande kurvan.

a2

dy
7. Bestdm limy och lim d for funktionen y = —
-0 750 0% sin 2z

betraktas som en fortjinst, att utseendet av den mot funktionen svarande kurvan
skisseras for —n <z <.

. — Det erfordras inte men

8. Tvé punkter, Py och P,, pd parabeln 2= 4ay har z-koordinaterna w, respek-
tive x;. Bestéim koordinaterna f6r skirningspunkten R, mellan kurvans normaler
i Py och P;. Nér punkten P; obegrénsat nirmar sig punkten P, dvs. nir z, — Lo,
niirmar sig R, obegrinsat en punkt R,. Ange dennas koordinater som funktioner
av x,. Bestim direfter ekvationen for orten fér Ry, nir Py genomléper parabeln.
— Det erfordras inte men betraktas som en fortjinst, att ortkurvan konstrueras
i stora drag.




SUMMARY IN ENGLISH

Erxst 8. SELMER: Numerical integration by non-equidistant ordinates.
(English.)

In the first volume of this journal, Viggo Brun suggested the following modi-
fication of Simpson’s formula when the points (z,, ¥,), (%, + @, ¥;) and (2, +a + b, y,)
are given:

Fotetd a+b b—a
V7@de == ot )+ =)

To

Brun’s own deduction was purely geometrical. In the present paper, two analytical
deductions are given, one by a Taylor expansion and the other by a quadratic
substitution on the independent variable and using the equidistant case. The
latter method also gives an error term ((6.2) p. 103) in Brun’s formula. The former
method is generalized to the ‘“‘three-eighths rule”. Two alternative formulae are
given, one ((7.2) p. 105) very simple, another ((7.3) p. 106) more accurate.

W. FENCHEL: On the introduction of the exponential function. (Danish.)

x n
In the classical introduction of e* by e*= lim <1+ —> the binomial theorem
n—>00 n
is usually applied, which leads to rather complicated expressions. The author shows

how this can be avoided, using instead the Bernoulli inequality (1+2)"=1+4nz
forz= —1 and a positive integral exponent n. The functional equation and the
differentiability of the function e are easily obtained on the basis of this way
of introducing it.

Veikko ENNovra: Two elementary proofs concerning simple quadratic
fields. (English.)

Two elementary proofs are given of the well-known fact that the quadratic field

k(ﬁ) can be simple only if |m| is a prime or a product of two unequal primes
neither of which is congruent to 1 (mnod4). The first proof also shows that for m < 0
|m| must be a prime not congruent to 1 (mod4). The second, very short proof is
based on Dirichlet’s theorem concerning primes in an arithmetic progression.
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