ON THE EXPANSION OF = IN A REGULAR
CONTINUED FRACTION

PEDER PEDERSEN

Let
1
T = Qg+ )
ayF—
g+
where a,, a,, a,, ... are positive integers, be an expansion of = in a
regular continued fraction. The unknown integers a,, a,, @,, ... can be

computed from a representation of # by a decimal fraction. In 1685
J. Wallis [1] computed the first 34 partial quotients of = from the 35
first decimals of . A century later Lambert [2] recomputed the partial
quotients of z, and found a sequence of quotients which agreed with the
one found by Wallis up to the 26th quotient only. There were, however,
indications that the partial quotients found by Wallis were correct
[3, p. 42, 62].

During the 19th century, no one attempted to settle whether Wallis’
or Lambert’s computation was correct. In 1938, however, the expansion
of = in a continued fraction was reconsidered by D. H. Lehmer in [4]
and [5]. In the first of these papers, Lehmer uses a decimal expansion
of # to 100 decimals and computes the partial quotients up to ag,. In
the second paper, the partial quotients are computed up to ;5. A
comparison shows that all the partial quotients given by Wallis were
correct except a,,, which Wallis found to be 1, whereas the correct value
is 99. :

An interesting feature in the first paper by Lehmer is a method by
which the labour involved in the Euclidean algorithm is considerably
reduced. The partial quotients are computed in 5 steps, each step in-
cluding about 20 quotients. The partial quotients in the first step can
be determined by using only the first decimals in the expansion of 7.
From the partial quotients in the first step, the corresponding con-
vergents are computed, and these are then used for determining two
numbers, of which the first digits are used in an Euclidean algorithm
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for the computation of partial quotients in the second step. We proceed
similarly from the second step to the third step, and so forth till we have
computed as many partial quotients as is possible from the chosen
number of decimals in z. The advantage of the method can be char-
acterized as follows: troublesome divisions by large numbers are partly
replaced by multiplications, which can be more easily carried out on a
calculating machine.

Without knowing Lehmer’s work, and prompted by a remark by
Perron [3, p. 42] about the discrepancy between the values of the partial
quotients found by Wallis and Lambert, the author in 1945 developed
7 in a regular continued fraction, starting with an approximation of 7z
to 100 decimals. Using the Euclidean algorithm, all partial quotients up
to ayg were computed ; ay; being the last quotient which can be determined
from the chosen value of 7. The result of the computation is given in [6].

Only recently my attention was called to the papers by Lehmer from
1938 and 1939. It can be added that there is complete agreement between
the values of the partial quotients found by Lehmer and myself.

The first paper by Lehmer deals exclusively with the computation of
the partial quotients in a continued fraction. The main part of the second
paper contains a computation of Khintchine’s constant. At the end of
this second paper, Lehmer gives the partial quotients ag, @gy, - - ., @19,
so that all the partial quotients in the continued fraction expansion of x
up to a4, are known. In an interesting manner, Lehmer then uses the
computed values for a computation related to Khintchine’s and Lévy’s
constants.

For the study of the constants mentioned above, it is thus of some
importance to know the partial quotients in such cases where they
behave rather irregularly, and I have therefore in the present paper
computed the partial quotients in the continued fraction expansion of x
up to aggq.

The Euclidean algorithm is the basis for the expansion in continued
fraction of a given number. The exposition given here follows in the main
the exposition of Lehmer.

Let x, and x; be two positive numbers. The Euclidean algorithm be-
longing to the number x,/x, is

Ty = Qg%y+ Ty
Xy = Qs+ Ty

.............
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. Here @, is the largest integer not exceeding x,/r,.,. Eliminating

%y, T3, ... from (1), we obtain the regular continued fraction for &,:
x
£y = = g+ ——— = [ag, ay, Gy, ...].
, 1
Ayt ...

Denoting the convergents by 4,/B,, we have

B—:=[a°’a1’ e @],

where 4, and B, can be computed from the recursion formulas

A = avAv—l—*—Av—:?.

v

Bv = a’va—1+Bv—-2 ’

starting with the initial values
A, =1 A4Ay=ay, B, =0, By=1.

By £, we denote a continued fraction formed from the partial quotients
which appear in the continued fraction expansion for &, having left out
the first » partial quotients. We then have

X
v
év = = [a’v’ a’v+l7 a’v+2? .. '] .
xv-ﬂ

The convergents in the continued fraction expansion of &, will be
denoted by 4, ,/B, ,, setting

n, v

e (T T B

Bn,v
Here 4, , and B, , can be computed from the recursion formulas

A  =a, A +4

N,y v+n

B = a’v+an—1,v + B

n,v

n—1,» n—2,v

n—2,v >
using

4,,=1 4,,=a, B,,=0, B,,=1

v —1,»

as initial values.
A formula which is important for the following computations can be

obtained by eliminating z,,,, x,., ..., %,,, ; from (1). As a result of
the elimination, we obtain

(2) xv—wz = (_ l)n{Bn—Z,vx _An—2,vxv+1} .
5%
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. In particular, we obtain for »=0 a formula which expresses z, by
%, and x,:
(3) Ty = (—1){B,_ g%~ Ap_o%1} -
We finally mention the two formulas which establish a relation be-
tween the convergents in the continued fraction expansions for &, and &,:

Apyy = 4,4 +4, B

( 4) n—1,v n—1,v
Bn+r——1 = Bv—lAn—-l,v"_ Bv—2Bn—1,v .
As a basis for the computation of the partial quotients agy,@gg, - - . , @99,

we use the denominators By and Bys which were found earlier [6], and
a value of & to 220 decimal places. A preliminary estimate shows that
this number of decimals will suffice, and this is confirmed by the actual
computation.

The first step consists of finding the equation in the Euclidean al-
gorithm (1), from which a4, is to be determined. This equation has the
form

Ty = Qgy%gg + Loy -
From this equation it appears that z,, and x4 must be calculated in
order that a4, can be found. But from (3) we get for n=97 and 98:

Tgy = — Bysy+ A5y

Tgg =  Bogy— Aoy -

. ‘' Let 7,9, be an approximation to & to 220 decimals. The fraction x/z,
being equal to 7y, We can put x;=1, hence x,=myy. The expressions
for zy; and x4 then become

Tgy = — Bygtagg +Ags

Tgg =  BygTapg— Ay -

The numbers Ags, Bys, Agg and Bys, which appear in the above ex-

pressions, are of the order of magnitude 105°. On the other hand, zy,
and w4, are of the order of magnitude 10-50. From this fact it follows
in the first place that Ay is the largest integer less than Bggmyy,, and
secondly that in the number Bygm,yy, about the first 50 digits after the
decimal point are all equal to 0, and after these 0’s begin the digits
which determine the value of wy.
‘Something similar holds for the product Bysmsyy. The largest integer
less than Bygtag is Ags—1, and in the number Bymy,, about the first
50 digits after the decimal point are all equal to 9, and after these 9’s
begin the digits which determine the value of ;.
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Thus it appears that the values of Ag; and Ay are not needed for the
computation of xy; and Zg.

The difficulty in finding #,; and x4 lies in computing the two products
Bogtae and Bygitas. Each of the numbers By; and Byg contains 50 digits,
and 7y, contains 221 digits. The labour involved in carrying out the
multiplication can be shortened considerably, since it is not necessary
to compute the digits before the decimal point, nor is it necessary to
compute the first 50 digits after the decimal point, since these digits
are either 0 or 9. Altogether we can disregard about 100 digits in the
product. The calculations can therefore be arranged in such a way that
only the significant decimals in 2y, and x,g are found. It may still be of
advantage to let the computation overlap some of the 0’s or 9’s and in
this way obtain a valuable check.

As a result of the computation, we find

gy = 0.00000. ..00001 58223. ..
2gg = 0.00000...00000 82722. .. ,

where @, contains 49 zeros and w,, contains 50 zeros after the decimal
point. The total number of decimals in each of the two numbers is 170.

The Euclidean algorithm belonging to z,/#, can now be continued by
using @y, and z. as initial values. But instead of working with all sig-
nificant digits in x4, and x4 (121 and 120 digits respectively), we shall,
following the method given by Lehmer, proceed in a sequence of small
steps. In the first step we work with the integers

[zg7] = 1 58223 36281 52479 34447
[zgs] = 82722 03146 50186 85067 ,

that is, we use the first 21 significant digits in 4, and the first 20 sig-
nificant digits in 2.

From the Euclidean algorithm based on these numbers, we can find
the 20 partial quotients from ag, up to a;;4. These quotients are

1,1,10,2,5,4,1,2,2,8,1,5,2,2,26,1,4,1, 1, 8.

From this sequence of partial quotients we determine a sequence of
convergents belonging to the continued fraction

&y =[1,1,10, ...].
Thus we find

Aig g = 7337 17748, Byg 4 = 3836 00889
= 62701 74397, By = 32781 60409 .

N
=
©
©
<

|
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This marks the end of the first step in the computation of the partial
quotients.

As an introduction to the next step we must compute z;y; and ;4.
From equation (2), with »=97 and n=20 and 21, we obtain

AN

& 0 1 2 | 3 | 4 | 5 | 6| 7| 8|9
ol 3| 7 | 15 1 |22 1 1 | 1| 2 | 1
1l s |1 el 211 2| 2| 2| 9
2 | 1 [ s¢ | 2 | 1|1 | 15| 3 |138| 1 | 4

7 2 2 3 1 2 4 4 16 1 161

8 45 1 22 1 2 2 1 4 1 2
9 24 1 2 1 3 1 2 1 1 10
10 2 5 4 1 2 2 8 1 5 2

11 2 26 1 4 1 1 8 2 42 2

12 1 7 3 3 1 1 7 2 4 9

13 7 2 3 1 57 1 18 1 9 19

14 1 2 18 1 3 7 30 1 1 1

15 3 3 3 1 2 8 1 1 2 1

16 15 1 2 13 1 2 1 4 1 12

17 1 1 3 3 28 1 10 3 2 20

18 1 1 1 1 4 1 1 1 5 3

19 2 1 6 1 4 1 120 2 1 1

20 3

Table I
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Ly = BIS, 973397"4418,97“398
L118 = A19,97x98'“B19,977597 .

The values for @,;, and x,,5 are now used in a similar way as q; and g,
and it turns out that the partial quotients from ay,, to @33 can be found.

In the third step we then find the partial quotients from a5, t0 @y,
in the fourth, fifth and sixth steps we find the partial quotients from
Qg9 1O @7y, FTOM Gyzy £0 @9y, and from ayey 10 Ay respectively.

The result of the computation is given in table I, which contains all
partial quotients from @, to @y,. The partial quotient a,, is here denoted
by a,s where 8 is the last digit of » and « stands for the number formed
by the remaining digits of n.

This solves in a way our problem, but in order to check our computa-
tions, it is important to compute at least some of the convergents be-
longing to the continued fraction.

As initial values we use Ag, Bys, Agg and Byg. Using equations (4) and
putting =97 and n=19, we obtain

Ays = Aglis 0t Ag5Bis, 97
Byy5 = BygAig, 97+ BosBis,er >
and by putting »=97 and n=20, we obtain
Ajg = AgeAig 97+ AgsBig, 07
an = B96A19,97+B95B19,97 )

The four numbers Ayq g7, Big o7, Ai1g,97 a0d By o7 are precisely those
given in (5), and it is therefore possible to compute A5, Byys, Ayy6 and
B,,¢ from the four equations given above.

From the four numbers A,;5, Byys, 4116 and Byyg, we find in a similar
way Ajge, Biss, A1z and Big,. Continuing this way, we finally obtain
A g9, Biggs Asgo and Byy. The values worked out are given below.

A5 = 14568 28022
05181 73875 12246 15843 96739 57004 73722 68189 47377 34606
By = 4637 22761
88867 08791 99782 01502 88713 00051 50363 42235 41866 16619
Ay = 1 24496 99887
45789 04010 63661 55256 01511 49764 54553 33790 60338 90313
By = 39628 62554

19907 26261 22622 86579 00463 63439 12658 94998 43510 74158



B132
A133
Bl33
’A147
B147
A14S
B148
A170
Bz
A171
B171
A190
B190
A191
B191

A199
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31896 39360 46693 45743

36450 38073 47336 85726

88439 45381 72109 17066

89158 59654 96062 65611

58246 51900 33381 68889

27901 73514 28027 01913

07583 21000 36380 70125

32100 56578 25906 35277

19562 67991
00865 86937 56307 01763

6226 99441
07684 77540 95676 57488

37710 43527
78958 40989 43051 33802

12003 60436
07896 44674 76100 37258

6940 71435 62613 24291
08890 00522 53605 98011

2209 29799 67757 44073
35614 39620 25124 10083

9939 18757 03585 90019
58485 30145 43118 17735

3163 74166 42801 89726
81979 06676 97836 97039

52067 61227 41156 04820
09660 74719 37893 33391

67244 83827

20506 56576

48754 64958

47285 80844

33530 04282
97106 64194

10672 94411
64783 09561

65983 26041
02108 22221

21003 12411
65240 51505

34289 83460
53532 87366

66935 07672
63083 13774

51232 28591
64505 07634

03656 79752
75142 68960

13895 79783
40594 57443

81056 51602
91413 62832

23176 29777
63125 82986

23843 75688
70662 41968

16369 10149
45590 90569

21775 21346 97428 27726
61244 07906 80231 81267

6931 26572 11815 85049
77981 45125 96705 39277

28055 66453 91640 26167
95963 00532 06925 51644

8930 39538 62719 13130
63970 64369 05358 52361

58231 73538 78651 88641
82440 64617 94760 34521

56254 01312 93749 87921
77864 73760 07102 63755

76767 96185 20427 18624
06439 66505 40149 73630

35861 21120 97382 00566
17078 94238 40414 50531

60076 99100 22310 99567
28209 14526 50154 45601

80722 53361 92506 70294
03311 86060 33116 85792

46329 22751 86474 13279
43268 42102 33392 18920

09703 64381 92216 03095
55964 86127 56884 86239

24190 96687 67041 34606
02273 41726 92661 49443

66558 67328 74660 99680
99148 16960 43584 77235

82467 00101 69479 30758
08949 78753 85127 73005

52136 34740 85441 88952
26293 70217 41022 18418

2722
52455 80376 29127 74696
88538 51544 04202 44451
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By = 866
60524 65496 46562 72926 67594 90027 66400 54365 43883 92932
73326 35120 20743 05984 73820 18860 52979 28184 01138 27831

Aopo = 9800
17613 20888 23621 50045 52208 16620 23582 32495 54679 95158
24531 21170 18519 77163 37781 96634 02622 29704 65887 62051

By = 3119
49294 91862 95341 33892 30555 01530 51653 50046 07765 45528
29009 24137 22262 93718 76624 48358 56139 25327 15414 16482

An extensive calculation like the present one calls for a very thorough
check of the final result. The partial quotients and the four numbers
Agg, Biog, Asgo and Bsg, have therefore been checked in the following
way.

Assuming that the 4’s and B’s are computed correctly from the partial
quotients, one can obtain a check of the latter by using a theorem which
is due to Legendre [3, pp. 44—45]. The fraction Ay/Byg, is @ convergent
in the continued fraction expansion of z, if and only if it satisfies the
inequalities

1 A200 1
— < T— < .
By (2B309 — Bigy) Bygy  Bago(Bago + Bigg)

Using the inequalities in this form is rather inconvenient because it
implies the carrying out of the arduous division 4,q/Bygy. We therefore
rewrite the inequalities by multiplying by Bsg,; We then obtain the in-
equalities

1
———— < aBygg—Aggg < 55—
2Bjg0— B1gg Bygo+ Bigg
Since 1
e _1.86-10-104,
2Bjg0— Bigg
mBygg— Agge = 2.43-1071%,
and I
= 251-107%,
Bygo+ Bigg

we find that the inequalities are satisfied.
The four numbers A,gg, Bigg, Azgo and By may be checked by the
fact that they must satisfy the equation

A199B200—A200B199 =1.
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A direct check of this equation is rather arduous, and such a check hag
not been performed here. One can obtain a rather effective check of the
equation by using a remainder test, which requires much less work.
In testing, we use the fact that the remainder on dividing 1072 by 107 — 1
is 1. To determine the principal remainder on dividing a number ¢ by
107 — 1, we group the digits of ¢ beginning from the last digit in sections
of p digits. Each group is considered as a p-digit number, and the sum
of these numbers is a remainder on dividing ¢ by 107 — 1.

In the actual check I used p=10. It is then rather easy to determine
the principal remainders on dividing 4,99, B;gq, Aggo and Bygy by 10101,
Replacing A,g9, Bigg, Aggp and B,y in the expression A;99Bs00— A200B199
by their respective principal remainders, we obtain a remainder modulo
101°—1, and from this we finally find the principal remainder modulo
101°—1. The check shows that this principal remainder is 1.

Khintchine [7] has proved the following theorem:

o——
The geometric mean Va,as,. . .a,, of the partial quotients of a regular con-
tinued fraction & converges for almost all & for n — oo to the constant

log r
)logZ .

]}(H

r(r+2)

My(x)—K

+0,6

0,5

0,3~

!

1 ] 1 1 1 1 \ 1 i 1 1 1 1 1 1 1 1 1 1 T n
0 200 40 6‘0\/ 80 1007120 140 160 180 200
-0,1+

—0,2¢

Fig. 1
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Khintchine gives the value of the constant as 2.6..., but there are
certain difficulties involved in computing the constant because of the
rather slow convergence of the infinite product. Lehmer [5], however,
has shown how the constant can be computed with great accuracy, and
he found the value

K = 2.685550 .

Having computed this constant K, Lehmer used the opportunity to
compare the geometric mean M,y () of the first 100 partial quotients
in the continued fraction expansion of = with K. In this way he found

that
M ypo(w) = 2.683147 ,

so that the difference M,y () — K is equal to —0.002403.
The calculation carried out in this paper supply us with 200 partial
quotients, and for these I have computed the geometric mean

Mypo(m) = 2.727378 .

Thus the difference Mo, () — K is equal to 0.041828.
Since Mgy(m) — K is more than 17 times as large as the numerical

n
n M,(7) — K n VB,—L
10 +0.6755 10 +0.8296
20 —0.1978 20 —0.1762
30 +0.2010 30 +0.2254
40 +0.4622 40 +0.4562
50 +0.3441 50 +0.3173
60 +0.0191 60 +0.0256
70 —0.0974 70 —0.0959
80 +0.1537 80 +0.1728
90 +0.1317 90 +0.1378
100 —0.0024 100 —0.0066
110 —0.0124 110 —0.0338
120 +0.0328 120 +0.0122
130 +0.0816 130 +0.0573
140 +0.1555 140 +0.1194
150 +0.1685 150 +0.1421
160 +0.1310 160 +0.1052
170 +0.0893 170 +0.0532
180 +0.1268 180 +0.0883
190 +0.0458 190 +0.0172
200 +0.0418 200 +0.0163

Table IT Table III
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value of M,y(n)— K, one is compelled to draw the conclusion that the
fine agreement between M,q,(7) and K is accidental. That this is actually
so is confirmed by table II, where the value of M, (x)— K is given for
n=10, 20, ..., 200. The numerically smallest value in this table is
precisely M 100(n) — K. This fact is illustrated in fig. 1, where the values
M, (7)— K are plotted as ordinates against the values of n as abscissas.

Khintchine [8] and Lévy [9, 10] have proved independently of each

other that lim W\L/B—n for almost all numbers is an absolute constant,
Nn—>00

and Lévy has found its value to

2

L = ¢'2l0e2 — 3 275823 .

In table III, I have computed the values of \/B — L, where the B,’s
are taken from the convergents in the continued fraction expansion of 7.
The values in table III agree with those in table II as far as the signs
are concerned, and the numerically smallest value occurs also in table III
for n= 100.
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OM LOSNINGEN AV ETT
OVERBESTAMT EKVATIONSSYSTEM ENLIGT
MINSTA KVADRATMETODEN

OLLE PERSSON

Foljande uppsats utgor en sammanstillning av férut kéinda och inom
utjimningsrikningen tillimpade metoder, sedda fran statistisk synvinkel
och med nigon matematisk motivering.

Tnom statistiken stélles man ofta infér problemet att pa grundval av
observationer av en stokastisk variabel (t.ex. métvirden) uppskatta
okiinda konstanter som ingd i denna variabels frekvensfunktion, vilken
antages given till sin analytiska form. En metod enligt vilken sddana
uppskattningar kunna erhallas ar den s. k. maximum-likelihood-metoden.
Vid anvindandet av denna bildas ett uttryck L foér sannolikhetstétheten
i den simultana fordelningen fér de observerade virdena. Genom att
maximera L erhéllas uppskattningar av de okénda konstanterna. Maxi-
meringen av L 6verfor det ursprungliga problemet till problemet att 15sa
ett ekvationssystem, vilket, om ett stort antal parametrar ingd i fordel-
ningen, kommer att innehalla ett stort antal ekvationer. I allménhet ir
detta system icke linjirt. Ett annat problem som uppstar r att be-
stimma noggrannheten (medelfelen) i de erhallna uppskattningarna.

I fortsittningen skall ett speciellt problem av ovan angivet slag stu-
deras.

Problem: Det forligger en serie oberoende mdtningar ly, 1y, .. ., 1, dar
1, antages vara normalférdelad med medelvirdet 1; och medelavvikelsen o.
Vidare antages att

(ry A= @@y, o ), t=1,2,...,7r (§<7),
dir x,, . . ., x4 dro okinda konstanter. Bilda wppskatiningar av konstanterna
zy, ..., xg pd grundval av mitningarna 1;.

Likelihood-funktionen L blir i detta fall

1L
L= g,
r

(V20)

(69]
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Ty, - . ., T, skola bestimmas s& att L blir maximum d. v. s. s& att
r
(2) 2 (=)
=1

blir minimum (minsta kvadratmetoden).

Problemet &r i allménhet svart, men om funktionerna @; dro linjira
bli rikningarna genomfoérbara utan négra férhandstips om konstanterna
Z;.

Fortsattningsvis géres foljande inskrinkning :

@iy, o, ) = apa+ ... +a;, .
Inféras storheterna v; =4, — I, kan systemet (1) skrivas
Uyt oo+ = Li+v; (1=1,2,...,7)
och uttrycket (2): ,
5o
PN
i=1

For den fortsatta framstéllningen férutsittes kiinnedom om elementiira
rikneoperationer med matriser.
Inféras nu f6ljande matrisbeteckningar

—0_’/11---“1.; [ 2] [ [ o]
P N N N N

Gpy ... @

rs-

overgar (1) och (2) till

(1) AX = L+V (A forutsittes ha rangen s)
rs sl i 7l rs
(2) VY,
1r r1

I fortséittningen slopas dimensionsbeteckningarna.
Minimum av ¢=V*V sikes:

¢ = V*V = (X*A*—L*)(AX - L) = X*A*AX — X*A*L — L*AX + L*L, .

Men
L*AX = X*A*L (L*AX &r en skalar) ,
och dirfor blir
q = X*A*AX — 2X*A*L 4 L*I, .

Bildas nu den totala differentialen av g erhalles
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dq = dX*A*AX + X*A*AdX — 2dX*A*L
= 2dX*A*AX — 2dX*A*L = 2dX*(A*AX — A*L) .

Faktorn 2(A*AX —A*L) utgor de partiella derivatorna av ¢ med av-
seende pa z, ..., Z;, Losningen till systemet

(3) A*AX = A*L

leder alltsd till maximum eller minimum av gq. Efter ytterligare en
differentiering av g erhalles

d?q = 2d°X*(A*AX — A*L) + 2dX*A*AdX .
Ps grund av (3) forsvinner forsta termen och
d?q = 2(AdX)*(AdX) = 2| AdX|? =2 0.

Likhetstecknet kan emellertid aldrig gilla, ty da vore AdX =0, vilket
strider mot forutsdttningen om rangen hos A4.

Alltsa ar d?g >0 och systemets (3) 16sning leder till minimum foér gq.
Det ursprungliga problemet dr siledes Gverfort till problemet att 16sa
det symmetriska ekvationssystemet (3).

Choleskys metod for upplosning av linjara symmetriska ekvationssy-
stem: For losandet av storre linjara ekvationssystem av den typ som
erhalles enligt minsta kvadratmetoden ha ett flertal metoder utarbetats.
Av dessa torde Choleskys trianguleringsmetod vara mest limpad for
handmaskinrikning. Den medfér bland annat minimalt skrivarbete till
skillnad fran andra liknande metoder och dessutom erhallas medelfelen
i uppskattningarna av de okdnda konstanterna pa ett mycket 6verskad-
ligt och enkelt sitt.

Antag inledningsvis att det dr mojligt att genomfora en sénderligg-
ning av A*4 =S8 enligt foljande identitet:

T*T = S,
[tyg « -« big| . . .
T - M t:ls (trianguldr matris; alla element till vinster
B t. om huvuddiagonalen dro nollor).

L 88 -

Da erhallas foljande rikneregler (for enkelhets skull genomfores kalkylen
med en matris av ordningen 3):

811 S12 S13 Ttn 0 07 Tty tip big]
S1a Sag Saz | = | bz lag O || O gy 2

t13 t23 t33— —0 0 t33

L 813 Sa3 S33
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. -
t® = 11> ly = Vsu
S12
tintie = S125 by = .
11
S13
tintis = S35 tig = 1
11
2 2 _ — Ve _41 2
bio® +1a9® = Sgg, lge = Vszz"tm
8o —l1ali3
biotis +lagleg = a3, log = —
los
2 2 2 _ - 2
bi3® +log” +133° = 833, lgg = Vé‘:sa“tw —ta?,

allmént for m < n:

t.

m
imbin = Smn »
=1

)
m—1

tumbmn = Smn— 2 bimbin -
1=1

Om nu alla diagonalelementen ¢;; dro reella och =0 blir denna kalkyl
genomforbar. Det aterstar siledes att visa att sa &r fallet.

Fran algebran forutsittes foljande hjalpsats bekant: Om X*SX >0
for alla X0 sd dr varje avsnittsdeterminant

Su - Sue
ISel = | : S>>0 (k=1,...,98).
S1 - - - Skk

Forutsidttningen i denna sats dr uppfylld for ett ekvationssystem erhallet
enligt minsta kvadratmetoden, vilket framgér av andra differentialen
vid minimiundersékningen (dX*A*AdX=dX*SdX>0 for godtyckligt
dx).
Man ser litt att
T T, =8, (k=1,...,9)

dér T, dr den till S, hérande triangulira matrisen. Alltsa dr

[Skl = [Tk*HTkI = |Tkl2'

Vidare giéller att
1Tyl = tor| Tl

och foljaktligen &r

ISl = 8x®1Sgl -
Av hjilpsatsen foljer da att £, kan viljas >0 (k=1, ...,s) och att
ocksa |T| > 0.
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Systemet
SX =R (R = A*L)
kan saledes skrivas
T*TX = R
eller
TX = (T*)-'R = C .

Nir C ar kind dr detta ett trianguldrt ekvationssystem, som kan l6sas
successivt med avseende pa de obekanta, varvid z, 16ses ut forst.
Hur skall nu (T*)-1R beridknas ?
Niér metoden for upplosningen av S hirleddes utnyttjades identiteten
T*T =8, d. v.s.
T = (T*)-'S.

Varje kolumn i T erholls sidledes genom operation av (T*)-! pd mot-
svarande kolumn i S. Om nu en godtycklig kolumn R ligges till hoger
om S kommer tydligen (T*)-1R att erhallas pa precis samma sitt som
T-kolumnerna. Alltsa blir elementen ¢, (m=1, ..., s) i kolumnen C

m—1
"m— 2 C; tim
Cp = =1 .
" tmm
Berikning av medelfelen ¢ uppskatiningarna av de okinda konstanterna :

Foregaende resultat kan nu anvindas dven for berikning av den upp-
skattning av den okdnda konstanten ¢2 som erhalles enligt maximum-

likelihood-metoden samt medelfelen i uppskattningarna av z,, ..., z,.
Uppskattningen s? av ¢? enligt maximum-likelihood-metoden blir
82 = (_Ii*v)miﬂ.
r

Om medelviardet av s? beriknas erhélles

r—s
— 0?2,
r

varfor uppskattningen V4P,

r—s8

82

har korrekt medelvirde och bér anviindas da antalet 6verbestimningar
r—s ar litet. I fortsdttningen skall denna sista medelvirdeskorrigerade
uppskattning anviéndas. Det visentliga vid berikningen av s? 4r att
berikna (V*V)y..

NMT. Hefte 2, 1958. — 6
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Enligt féregaende ar
V¥V = X*4*AX - 2L*AX + L*L .

Om uppskattningarna X = (4*A4)-1A*L insittas erhalles

(V*V) = L*A(A*A)TA*A(A*A)-TA*L — 2L*A(A*A)-*A*L + L*L

= L*L— L*A(A*A)-'A*L
Nu ar
och saledes blir
(V¥V)pin = L¥L— L*AT-YT*)7A*L = L*L—[(T*)-A*L]*(T*)-1A*L .

(A*¥A)= = (T*T) = T-(T*)-1,

Om matrissymbolerna tolkas erhalles

r s
V¥V )iy = 2 12— X' e
=1 i=1

Medelfelen i uppskattningarna av z,, ..., z, kunna erhallas om f6l-
jande sats tillimpas: Om f=f(l;, ...,1,), ddr mdtningarna 1; antagas
vara oberoende och normalfordelade med medelvirdena A, och samma medel-
avvikelse o, dr

r 0 2
o = o? . 2> (87f> (medelfelets fortplantningslag).
=1 T

En linjar funktion av z,, ..., z, kan i matrisform skrivas:
f=FX
Zy
exempel: f = x;+x,+2; =[111]| 2, |, F=[111]
Lxg |

For att satsen skall kunna tillimpas maste uppskattningarna av
&y, ..., xs uttryckas i de ursprungliga oberoende métningarna. Alltss
f = F(A*A)14*L

och df = F(A*A)-1A*dL .

laf of
oL, T al,
och om uppskattningen s? insittes i st. f. o® erhalles uppskattningen

872 av g%
sz = 82F(A*A)_1A*A(A*A)_1F* — 82F(A*A)_1F* .

Hirav erhalles
} = F(A4*4)1A4*

P4 samma sétt som férut blir
s = SH(TH)TF¥H(TH)F*,
och medelfelet i f erhalles om kolumnen F* ligges pa godtycklig plats
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till hoger om S och upplosningen utfores precis som forut. Till hoger
om 7T, under F* aterfinnes di kolumnen (T*)-F*. Kallas elementen i

denna f; erhalles .
52 = s 2 f2.
=1

Speciellt blir f=uppskattningen av z; om
F=1[10...0]
och f=uppskattningen av x, om
F=[01...0] etc.

Vid tillimpningen av minsta kvadratmetoden pa praktiska problem

kunna rikningarna limpligen uppstillas enligt foljande schema: '%
Qi1 - - Oy %1
Qpy o O ir
:913 Sgs 9s 0 . 1

by - .tls € fu )
tss Cs fsl fss
7 8 8§
Xy .. X 22— ek D fmdm=1,...,8)
i=1 i=1 i=m
eller med matrisbeteckningar:
A L
A*A = S A*L = R E F*
L*L
T (T*)—-IR (T*)-l (T*)-—IF*
X+ V4P )i (T*T) | F(T*T)-

6*
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Foljande exempel ma tjina till att underlitta forstéelsen av ovan
presenterade metoder.

Exempel: For att uppskatta hojden 6ver en viss nivayta pa tre punk-
ter 4, B, C' samt medelfelen i dessa uppskattningar utfordes avvigning
enligt fig. 1 (stigning i pilens riktning). Punkterna D, E, F' ligga vid
nivaytan, vars hojd sittes =0. Hojdskillnaderna

=2 Il =2
ly=3, =1,

vilka antagas vara normalférdelade med samma medelavvikelse o, upp-
méttes.

Fig. 1

Om for de okinda hojderna A, B, C infoéras beteckningarna wx,, ,, x4
erhalles f6ljande Sverbestimda ekvationssystem :

xy ~l =1
Xy ~ly =2

2y A lg =3

—%; +7y ~l =1
—T, +xy ;=2
—x, txy vl =1

och rikneschemat blir
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1 1
1 2
1 3
-1 1
- 1 2
-1 1 1
3 -1 -1 -1 1
-1 3 -1 1 1
—1 -1 3 6 1
20
- 1 1 1 1
1/3 —_——= R —_—— ha—
V3 3 V3 3
Vé 4 V§ 2 V?, 1 VE V§
3 3 Vgl 3 Vs 3 1sg 8
/2 6 L 1 1 1
V2 o2 22 Y2
5 7 X 3 1 1 1
4 4 2 2 2 2

Ur riikneschemat erhallas f6ljande uppskattningar:

31 1
32 —_ et =
23 2
5 7 3
Xy =—, Xyg=-—, &zg=
155 2= 3
2 2 2.1 _1
Sy Sagt = Smy” = 85 =7
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A MECHANICAL PROBLEM BY H. WHITNEY?)

ARNE BROMAN

1. The following problem is discussed in Courant-Robbins: What
18 mathematics?2,

Suppose that a carriage is movable on a horizontal rail (the s axis of
fig. 1). A rod can move without friction around a horizontal axle, per-
pendicular to the rail, through the lower end of the rod. A certain motion

£(0) i) ’
Fig. 1

is prescribed for the carriage: s=f(t), 0 <t < 7', where f is a given function
of the time #, s is the position at the time ¢, and the motion starts at the
time ¢=0 and ceases at the time ¢=7". There is given to the rod a certain
initial inclination at the time ¢= 0, viz. the angle « in fig. 1. It is assumed
that if the rod falls down into a horizontal position sometime during the
time 0<?<T, it remains in this position. Is it possible to choose & so
that the rod stands vertically at the time ¢=7', i.e. that the angle § of
fig. 1 equals 7/2?

Courant-Robbins give the following solution of this problem. The
physical assumption is made that the inclination angle 8 at the time
t=T is a continuous function of «, say f=p(x). Obviously, x=0 gives
=0 and x=mx gives f=x. By a known theorem on continuous functions
there exists a number x, between 0 and & such that B(x,) =m/2. Hence,
the answer to the question is yes.

2. However, the physical assumption in the solution of Courant-
Robbins seems a bit hazardous?. We therefore want to dig a little deeper
into the problem. A natural way then is to study the differential equation

[78]
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for the motion of the rod. In this connection we must impose some con-
ditions on the function s=f(t). We choose to assume that it has a con-

tinuous second derivative f (t) in the considered interval 0 <t = T. (We de-
note differentiation with respect to time by dots.) We further assume that

f(0)=F(T)=0,i.e. that the velocity of the carriage is zero at the times {=0
and ¢=T, and that the rod has the angular velocity zero at the time ¢ =0.
Fig. 2 gives the situation at the time ¢. Here
0 is the lower end of the rod and C its center of y
gravity. The segment OC is a units of length.
The inclination angle of the rod is denoted by
¢ and its weight by mg, this force being applied
at C. The frame of reference xy is in the vertical

plane of the s axis of fig. 1; the x axis and s ™7 c

axis have the same direction. The frame xy has

a translation motion with respect to the s axis 9

(which is supposed to be at rest in a newtonian @ mg

frame of reference). We compensate for the 0 z

motion of the zy frame by applying* the ficti- Fig. 2

tious force mf at C (equally directed as the ne-
gative x axis if f is positive; otherwise the force is directed as the positive
x axis). The moment equation® with respect to the point O reads

(1) Iy = mfasing —mgacosg ,

where I is the moment of inertia of the rod with respect to O.
Equation (1) is the differential equation for the motion of the rod:

I, m, a, and g are given constants, f is a given continuous function of ¢,
and ¢ is the function of ¢ looked for; when the function @(t) is known,
then the motion of the rod is of course also known.

The right-hand member of (1) is a continuous function of ¢ and ¢.
This function satisfies a Lipschitz condition with respect to ¢. A known
theorem® on differential equations then shows that given initial values
of @(0) and ¢(0), there exists a solution of (1) and that this solution is
uniquely determined. In the following we denote the solution of (1),
which corresponds to the initial values ¢(0)=« and ®(0)=0 (i.e. at the
time £=0 the inclination angle of the rod is « and its angular velocity
is zero), by ¢=g,(i).

Further, a known theorem? on differential equations shows that to a
given function ¢ =g, (f), a given interval 0=¢= T, and a given number
¢>0, there corresponds a number #>0 such that @, (8) — @, ()] <& if
lo— oy <n and ¢ belongs to the interval. We express this property in
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the following by saying that the curve ¢ =g,(t) is situated in the e-channel
around the curve p =g, () for |x — x| <5 and 0<¢< 7.

3. We now remove for a while the stops for the rod in the horizontal
positions so that the rod can revolve all around the point O. Then the
final angle B, considered as a function f=pg(x) of the initial angle «, is
obviously defined and continuous for all real «. Further, this function
satisfies the condition

(2) plx+2m) = B(x)+ 27

for every «, for if « is increased by 27, the motion of the rod is not changed
and B is also increased by 2n. Equation (2) shows that the function
B =pB(x) is bounded neither upwards nor downwards. Hence the function
assumes both positive and negative values. According to the already
used theorem on continuous functions there exists at least one number
oy such that f(«,)=umn/2.

Now the following question arises: Is there also any «, such that the
curve = g, (t) is situated within the

1 strip 0 <@ <z ? In connection with
x 00 2 this question the curves in fig. 3
a, \\ (T x ) should be studied: the lower curve
ay "2l gives a solution for our problem,

4 7 . the upper curve does not, because
@ assumes the value x and the rod
then falls into a horizontal position
and remains there.

Fig. 3

4. We now restrict ourselves to the class® K of the connected parts of
the curves ¢ =g, (f) which have their left-hand end point on the side 4B
of the rectangle ABCD of fig. 4 and their right-hand end point on any
of the other sides. By equation (1) and our assumptions on the function
J there is a number 4, 0 <d < /2, such that ¢ <0if 0<p <6 and ¢ >0 if
m—d<@<n. Hence, every curve in the class K which has entered the
lower narrow rectangle of fig. 4 is “‘sucked down’’ to AD, and an analogous
property holds for the curves of K which have entered the upper narrow
rectangle.

Suppose that no curve of the class K passes through the middle point
M of CD. We then divide K into two classes, K, and K,, such that the
curves in K, have their right-hand end point on 4D or DM and the
curves in K, their right-hand end point on BC or C M. We further divide
the side A B into two point sets, £, and E,, such that E, consists of the




A MECHANICAL PROBLEM BY H. WHITNEY 81

left-hand end points of the curves in K, and E, of the left-hand end
points of the curves in K,. None of these sets is empty: e.g. £, contains
the whole interval (0, d) and E, the whole interval (z—J, n). Because
the segment AB is a connected set of points there exists a point o,
belonging to one of E, and E,, e.g. E,, which is a limit point of #,. There
is accordingly in F, a sequence of points {«,}%¥ such that limw, =«;.

Hence every e-channel of the curve =g, (f) contains a curve of K,,
and the curve ¢ =g, (t) has a positive distance to the rectangle side 4.D
in fig. 4 (otherwise some curves of K, would be sucked down to AD;

?

f

xB c
n—a _E2 e

al 2

6E1 K,

PISN D __;

A T

Fig. 4

this is contrary to the definition of the class K,). It has further a positive
distance to BC, because it belongs to the class K. Then there is a number
¢>0 such that the corresponding e-channel of the curve ¢=g, () con-
tains no point of 4D and BC and does not contain M. In this e-channel
there are curves of K,. This, however, contradicts the definition of the
class K,. Hence, the class K contains at least one curve passing through
M. Our mechanical problem is thereby solved?: the anwer is yes.

5. If the motion of the rod is described for 0<¢<7 by the function
@=g,,(t) of section 4, then the rod probably has a positive kinetic
energy at the time {=7" and it will fall down into a horizontal position
at some later time (we suppose that the carriage stands still for ¢=T).
We can then ask if « can be chosen so that the rod never falls down.

To give an answer to this question we make the additional assumption?

that f (T')=0. Then the right-hand member of (1) is a continuous func-
tion of ¢ and ¢ for 0 <#< oo, satisfying a Lipschitz condition. Hence, by
the problem already solved, there exists a sequence {«,}T of values of «
such that the curve g =g, (¢) lies in the strip 0 <@ <z for 0=¢t=<nT and
passes through the point (»7', z/2). This sequence has at least one limit
point .. From the assumption that p=g¢, (f) takes the value 0 or =
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for some ¢ > 0 there is easily deduced a contradiction, using an ¢-channel
around the curve. Hence there is a value &, of « such that the rod never
falls down. It can be shown that only the following two cases can occur:
1) ¢, (0)=n/2 for t=2T, 2) ¢, (!) approaches z/2 asymptotically as ¢
tends to oo.

NOTES

1 Lecture given at the 13th Scandinavian Mathematical Congress in Helsingfors in
August 1957.

2 CouraNT-RoBBINS: What is mathematics? (New York 1941, 3rd impr. 1946), pp.
319-321. According to these authors the problem was proposed by H. Whitney.

3 In saying this we do not intend to criticize the interesting and well-written book by
Courant and Robbins. They have included the problem to get an application of the men-
tioned theorem on continuous functions.

4 See e.g. J. NIELSEN: Laerebog © Rationel Mekanik, II (3rd ed., Kebenhavn 1952), pp.
27-29, where this fictitious force is studied for the motion of a particle. It is left as an
exercise to the reader to prove that the fictitious forces on all parts of the rod can be

replaced by the force mf.applied at C.

5 See e.g. J. NIELSEN, loc. cit., p. 209, the italicized theorem.

8 See e.g. CODDINGTON-LEVINSON: Theory of ordinary differential equations (New York
1955, International series in pure and applied mathematics), chapt. 1, sect. 6.

7 See e.g. CODDINGTON-LEVINSON, loc. cit., p. 22, theorem 7.1.

8 Can two curves of the class K have a point in common ? The answer to this question
is probably no, but the author has not found a proof. If this were proved, the rest of the
proof in section 4 could be considerably simplified.

9 An interesting alternative solution has been proposed to the author by Dr. M. Tide-

man. We give a concise account of his proof. — Denote the right-hand member of (1)
by h(g, t). Consider the differential equation
(3) Ip = h¥(p, 1),

where h*=h if 0 S @ <m, h*=h(0,t) if ¢ <0, and h* =h(n, t) if ¢ 27, It is readily
verified that if a solution curve of (3) leaves the rectangle ABCD of fig. 4, it can never
enter it again. As above in section 2 it is seen that to the initial values ¢(0) =« (0 < & < 7)
and @(0) =0 there corresponds a unique solution. Denote this solution by ¢ =@, (¢). It
is seen that @,(7T) is a continuous function of «, that ¢, (7)< for & =0, and that
@ (T) >n—0 for « Zm—0, where 0 has the same meaning as in fig. 4. Hence there
exists a number oy, 0< oy <z, such that @, (T)=mn/2. The curve @ = @,,(t) has no
point in common with 4D or BC. It then gives the answer yes to the question.

10 Tt is possible to get rid of this assumption. We refrain from this, however, in order
to avoid a more complicated proof.

st




EN BEMARKNING OM TO RAKKER

DAVID FOG

I en artikel i NMT? har Viggo Brun fremdraget de to klassiske rekker

(1) In2 =1-%+3-%+ ...
og
T

Det folgende skal blot vise en simpel forbindelse mellem disse rekker;
de kan nemlig betragtes som specialtilfzelde af en og samme formel.
Som udgangspunkt tages ligningen

. toP
(3) Stgl’—lxdx = éE—-Stgiﬂ“flasolx, pz1,
p
hvis rigtighed umiddelbart kan indses ved differentiation. Af (3) fas
i 1
(4) S tgPledr = — —S tgPtlade ,
0 Y20
som ved gentagen anvendelse giver
4 11 (—1)2 1
(5) S tgPlowde = ————+ ... + +(— 1)‘1+1§ tgP ety dy .
0 p pt2 p+2g o

Da tg™x for n — oo konvergerer ligeligt mod 0 i ethvert lukket delinterval

til intervallet 0 <z <Z, vil restleddet i (5) g& mod 0 for ¢ — oo, og vi har

3

(6) ftpl de=t_ 1 1 L
—rar = —— —_ P
og p p+2 p+4 p+6

For p=1 er denne formel identisk med (2), medens den for p=2 giver
tIn2 =3—-4+%-3%+...,
der er ensbetydende med (1).

1 Viggo Brun: On the problem of partitioning the circle so as to visualize Leibniz’ formula
Jor m. NMT 3 (1955), s. 159-166.
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EINE NOTIZ N. H. ABELS FUR A. L. CRELLE
AUF EINEM MANUSKRIPT OTTO AUBERTS

KURT-R. BIERMANN und VIGGO BRUN

Nach dem Tode August Leopold Crelles (1780-1855), des Berliner
Freundes und Protektors N. H. Abels, kamen die Manuskripte fiir das
von Crelle 1826 begriindete »Journal fiir die reine und angewandte Mathe-
matik¢, dessen 197. Band z. Zt. im Erscheinen begriffen ist, in den Besitz
der Berliner Buchhandlung Asher. 1867 beschloB die Berliner Akademie
der Wissenschaften auf Antrag von Weierstrass, Borchardt, Kummer und
Kronecker, diese Manuskripte anzukaufen. Schon damals begann der
spiter verwirklichte Plan sich abzuzeichnen, eine Gesamtausgabe der
Werke C. G. J. Jacobis, Steiners und Lejeune Dirichlets herauszugeben.
Dabei sollte, wie Weierstrass es in der Vorrede zum 1. Band von C. G. J.
Jacobis Ges. Werken (Berlin 1881) ausfiihrt, jede einzelne Arbeit »vor
dem Abdruck einer sorgfiltigen Revision unterworfen und nicht nur von
Schreib- und Druckfehlern, sondern auch von sonstigen, offenbar blof8
durch Versehen entstandenen Unrichtigkeiten moglichst gereinigt, im
Ubrigen aber der urspriingliche Text als historisches Dokument treu bei-
behalten werden«. Es versteht sich, daf bei der Durchfiihrung dieses Pro-
gramms die Manuskripte der in Crelles Journal erschienenen Abhand-
lungen fiir die Revision benutzt worden sind, worauf Weierstrass auch
a. a. O. ausdriicklich hinweist.

Die im erwihnten Nachlal Crelles befindlichen Abhandlungen N. H.
Abels wurden von der Berliner Akademie an L. Sylow und Sophus Lie
(eine Empfangsbestidtigung vom 22. 11. 1873 wird im Archiv der Deut-
schen Akademie der Wissenschaften aufbewahrt) zur Benutzung bei der
Herausgabe der Werke Abels ausgeliehen, und zwar die Originale der
Nrn. 11, 16, 19, 20, 21 des I. und der Nr. 23 des II. Bandes der Ausgabe
Holmboes. Spiter ist auf Veranlassung von Weierstrass die Leihgabe in
ein Geschenk umgewandelt worden, damit die Manuskripte zusammen
mit dem iibrigen Nachlal Abels in Oslo aufbewahrt werden.

Heute befinden sich noch unter den im Archiv der Deutschen Akademie
der Wissenschaften zu Berlin liegenden Handschriften aus Crelles Nachla8
folgende zwei Abhandlungen Abels:

Beweis eines Ausdrucks, von welchem die Binomial-Formel ein ein-
zelner Fall ist (Crelles Journal, 1, Bln. 1826, S. 287-292)
und
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Fernere mathematische Bruchstiicke aus N. H. Abels Briefen. Schrei-
ben Abels an Legendre (Crelles Journal, 6, Bln. 1830, S. 73-80).

In die Ausgabe Sylow—Lie ist die franzdsische Fassung dieser beiden
Artikel aufgenommen worden.

Bei der Durchsicht und Ordnung des Nachlasses Crelles im Archiv der
Deutschen Akademie der Wissenschaften wurde festgestellt, da sich auf
dem Manuskript von O. G. D. Aubert, das spéter in Crelles Journal, 5,
Bln. 1830, S. 163-173 unter dem Titel »Bemerkungen zu den Aufgaben
und Lehrsitzen S. 96, 97, 98 im ersten Heft zweiten Bandes dieses Jour-
nals« in erweiterter Form gedruckt wurde, ein unverdffentlichter Nach-
satz von Abels Hand befindet!:

»Liebster Hr. Geheimrath! Schon vor 14 Tage oder wohl noch mehr
sandte ich ihnen die Fortsetzung der Abhandlung iiber die ellipti-
schen Functionen, die Sie wohl erhalten haben werden. und ist es
mein Wunsch dafl Sie damit zufrieden waren. — Die vorstehende
Abhandlung ist von einem hiesigen noch sehr jungen Mathematiker;
der aber gewill Talente hat. Er beschiftiget sich wie Steiner vorziig-
lich mit geometrischen Sachen. Es sollte mich freuen wenn Sie diese
Abhandlung zur Aufnahme in das Journal wiirdig finden. Auch
zweifle ich nicht daran. — Und er wird darinn gewil Aufmunterung
finden. — Eben in diesem Augenblick habe ich endlich das zweite
Heft bekommen. Ich danke ihnen dafiir recht sehr. Das dritte und
vierte aber noch nicht, allein sie werden wohl bald folgen. — Nach-
dem ich meine Abhandlung fortgeschickt hatte, fand ich noch einen
algemeinen Satz iiber die elliptischen Functionen. Ich bitte Sie daher
noch folgendes der »Addition au memoire précédent« hin zufiigen:

On peut encore trouver la valeur de 1’angle v de beaucoup d’autres
maniéres: Ainsi par exemple on aura sans ambigiiité:

p=0+ 2 Arctang {tangf-}/1 — e2sin?6T} +
+ 2 Arctang {tang0-)/1 —e2sin20™V} + - - - +
+ 2 Arctang {tang6)/1 — ¢2sin2 @m}

Mit Hochachtung
ihr ergebenster

N. Abel«

1 An fremden Sprachen hat Abel fast ausschlieBlich die franzosische benutzt; Deutsch
beherrschte er weniger gut. Hier ist sein deutsch geschriebener Brief ohne sprachliche
Verbesserungen wiedergegeben.
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Die Notiz Abels auf dem Manuskript Otto Auberts trigt kein Datum,
ist aber hochstwahrscheinlich Ende Februar oder Anfang Mérz 1828 ge-
schrieben, da er sich darin auf die Fortsetzung der Arbeit »Recherches
sur les fonctions elliptiques« mit dem Zusatz »Addition au mémoire précé-
dent« bezieht. Abel hat diesen zweiten Teil am 12. Februar 1828 an Crelle
gesandt.

Otto Aubert (1809-1838), urspriinglich Pidagoge an der Christiania
Katedralskole, war spéter als Lehrer der norwegischen Sprache und der
mathematischen Wissenschaften fiir die beiden Schne des schwedisch-
norwegischen Kronprinzen Oscar, d. h. fiir die spiteren Koénige Karl XV
und Oscar II, angestellt. Ausser der Arbeit im Crelleschen Journal hat
Aubert im Programm fiir die Christiania Katedralskole fiir das Jahr
1833 eine geometrische Studie, »Echantillon d’une analyse spherique,
publiziert. Diese nach dem Tode Abels ausgearbeitete Abhandlung diirfte
die Meinung Abels, da3 er »gewill Talente hat«, vollauf bestéitigen. Wie
Abel ist auch er an Tuberkulose gestorben.

Aubert fuhr 1834 nach Deutschland. Seine dort geschriebenen Briefe
sind teilweise in »Landflygtige« von Sofie Aubert Lindbxk (Kristiania
1910) veroffentlicht worden. Er hat darin Crelle, J. Steiner (1796-1863),
J. Pliicker (1801-1868) und A. F. M6bius (1790-1868) sehr unterhaltsam
geschildert.




BOKMELDINGER

Max Hiekg: Vektoralgebra. (Mathematisch-naturwissenschaftliche Bi-
bliothek 4.) B. G. Teubner Verlagsgesellschaft, Leipzig, 1956. 64154 S.,
67 Fig. Geb. DM 9.20.

(Innholdsfortegnelse i NMT 5 (1957), s. 110.)

Denne boken gir forst en grundig innfering i den elementeere vektor-
algebraen (til sine tider vel pirkete etter anmelderens smak). Som vanlig
i tysk litteratur benyttes gotiske bokstaver for vektorer, og pa figurene
brukes skrevne gotiske bokstaver, noe som vel virker forvirrende pa de
fleste skandinaviske lesere til & begynne med. Som vanlig i eldre tysk
litteratur benyttes parentes for & betegne skalart produkt og klammer-
parentes for vektorprodukt, mens vel det mest vanlige og mer anvendelige
idager - og X.

En steiler uvilkarlig nar en pa s. 3 finner fglgende kategoriske utsagn:
»Die Kraft ist kein Vektor.« Som forklaring pa dette anferes at utenom
vektoregenskapene kommer det ogsé an pa angrepspunktet nar det gjel-
der virkningen pa et fast legeme. Hieke lar saledes ikke vektorbegrepet
omfatte linjevektorer. Etter anmelderens mening er dette uheldig. Meng-
den av alle like linjevektorer langs en bestemt virkningslinje danner jo en
undermengde av mengden av alle vektorer med samme retning og tall-
verdi. I sin sprakbruk klarer da ikke Hieke alltid & unngé & benytte beteg-
nelsen vektor om en linjevektor. Skulle en forfolge Hiekes tanke konse-
kvent, burde en jo heller ikke kalle en posisjonsvektor for en vektor.

Etter den elementare vektoralgebraen folger et inngiende kapitel om
linjevektorer med anvendelser. Anmelderen matte her lete lenge for han
fant definisjonen pa ekvivalente vektorsystemer, som star svert bort-
gjemt.

I neste kapitel behandles linezre transformasjoner ved hjelp av ma-
triser. Etter anmelderens mening er det naturligere & benytte dyader i
vektoranalysen. Brukes summasjonskonvensjonen blir det vel si enkelt
med dyader, og dessuten har dyade-begrepet store fordeler nar en skal
innfere tensorbegrepet.

[87]
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I siste kapitel som er kalt tensorer behandles kartesiske tensorer av
2. orden uten at summasjonskonvensjonen innfgres. P4 grunn av dette
blir ligningene ofte ungdig kompliserte og uoversiktlige. Nytt for anmelde-
ren i en bok av denne type var en rekke anvendelser pa krystallografi. —
Boken inneholder ingen gvelsesoppgaver.

I forordet sies at det ogsad skal komme et bind om vektoranalyse.

Oddvar Bjorgum

M. V. WiLkEs: dutomatic digital computers. Methuen & Co., London,
1956. 10+305 pp. sh. 42/—.

(Innholdsfortegnelse i NMT 5 (1957), s. 47.)

GEORGE R. STiBITZ — JULES A. LARRIVEE: Mathematics and computers.
McGraw-Hill Book Co., New York, Toronto, London, 1957. 74228 pp.
sh. 37/6.

(Innholdsfortegnelse i NMT 5 (1957), s. 155.)

Nar man i arene like etter krigen skulle sette seg inn i teorien for og
bruken av de nye elektroniske regnemaskiner, var nesten den eneste mulig-
het & besgke personlig de forskjellige institutter hvor slike maskiner var i
bruk eller under konstruksjon. Noen representativ litteratur av betyd-
ning fantes ikke. Den eksplosive utvikling av disse maskiner i lopet av
det siste tiar har imidlertid etterhvert ogsa satt spor i litteraturen. Tek-
niske spesialartikler utkommer né i et omfang som gjor det vanskelig &
felge med i alt som skrives, og sterre bgker for begynnere og viderekomne
er det ogsa blitt skrevet endel av.

Anmelderen far ofte spersmal etter egnet litteratur om elektroniske
regnemaskiner. I et s& nytt felt har det ikke utkrystallisert seg noen
vklassiske« bgker, men jeg tror det kan vaere nyttig 4 innlede denne an-
meldelse med en liste over noen av de viktigste oversiktsverker innen
feltet.

De grunnleggende Princeton-rapporter av Burks, Goldstine og von
Neumann fra 1946-48 er vel na ikke 4 oppdrive. Av annen »eldre« litte-
ratur kan nevnes

D. R. Hartree: Calculating instruments and machines. Univ. of Illinois
Press, 1949; Cambridge Univ. Press, 1950.

Denne boken behandler flere forskjellige typer av regneinstrumenter og
maskiner. Spesiallitteratur om siffermaskiner kommer forst fra 1950
og utover:
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Engineering Research Associates: High-speed computing devices. Mc
Graw-Hill, New York 1950.

H. Rutishauser — A. Speiser — E. Stiefel: Programmgesteuerte digitale
Rechengerdte. Birkhiuser, Basel 1951.

Synthesis of electronic computing and control circuits. Ann. Comp. Lab.,
Harvard Univ., v. 27, 1951.

M. V. Wilkes — D. J. Wheeler — 8. Gill: The preparation of programs
for am electronic digital computer. Addison-Wesley, Cambridge (Mass.) 1951.

A. D. Booth — K. H. V. Booth: Automatic digital calculators. Butter-
worth, London 1953.

R. K. Richards: Arithmetic operations in digital computers. Van No-
strand, New York 1955,

Til denne rekke av »serigse« verker slutter seg den nye bok av Wilkes
som her skal anmeldes. Forfatteren har statt i spissen for konstruksjo-
nen og driften av maskinen Epsac i Cambridge, vel den forste operative
maskin i Europa. Det er ikke urimelig at Wilkes i sin nye bok gser av sine
rike erfaringer med denne maskin. En viss skjevhet i fremstillingen er det
kanskje blitt av den grunn, f. eks. ved den sterke vekt pa serie- kontra
parallell-maskiner. Men stort sett blir eksemplene fra Epsac balansert av
en fyldig omtale ogsd av andre maskin-typer.

Forste kapitel er en historisk oversikt. Som alle engelskmenn er Wilkes
meget stolt av Charles Babbage, som i begynnelsen av forrige arhundre
hadde komplette planer for en virkelig helautomatisk regnemaskin —
selvsagt pd mekanisk basis.

Annet kapitel gir prinsippene for maskinenes virkemate, de forskjellige
tall-representasjoner og litt om koding. Det siste utdypes i neste kapitel,
hvor Wilkes bruker Epsac-koden som eksempel. Prinsippene for sub-
rutiner behandles noksé inngdende; pa dette felt er jo Wilkes og hans
stab banebrytere.

Et kapitel om relé-maskiner faller litt utenfor rammen, men er i seg
selv meget morsomt. Deretter folger en oversikt over de forskjellige for-
mer for »hukommelse«. Dette kapitel forutsetter en del kjennskap til
tysikk for & kunne fordeyes fullstendig.

Et kapitel om logikken i elektroniske regnekretser er meget godt, med
en innfering i bruken av Boolesk algebra i slike kretser. Etter anmelde-
rens mening er imidlertid Wilkes’ utvalg av representative konstruk-
sjoner litt tilfeldig.

I siste kapitel kommer forfatterens erfaringer helt til sin rett. Han gir
en meget klar analyse av de problemer som reiser seg ved konstruksjon
og drift av en stor elektronisk maskin. I et appendiks avlives myten om
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»tenkende maskiner¢, og boken avsluttes med en fyldig litteraturforteg-
nelse og et stikkord-register.

Wilkes’ nye bok er ikke lett lesning for begynnere, men den vil gi noe
igjen for arbeidet. Ogsa viderekomne kan finne en rekke ting av interesse
i boken, spesielt i forfatterens kloke vurderinger av fordeler og mangler
ved de forskjellige systemer. Boken kan trygt anbefales; etter anmelde-
rens mening er den noe av det beste som er skrevet om elektroniske
regnemaskiner.

I tillegg til alvorlige bgker om de nye regnemaskiner kommer det ogsa
en voksende rekke av »lettvektere«, som varierer fra en sterkt populari-
serende innfering til ren »science fiction«. Den annen bok som her skal
anmeldes, av Stibitz og Larrivee, horer nermest til den sterkt populari-
serende type. Thvertfall en av forfatterne, Stibitz, har et ganske kjent
navn innen kretsen av fagfolk (men det vil irritere mange lesere at han
benytter anledningen til & fremheve sin egen innsats).

Boken behandler ikke bare siffermaskiner, men ogsa analogmaskiner.
Ifplge forordet skal den gi legmannen en viss forstéelse av den nye regne-
teknikk som er vokset frem. Som bakgrunn gis et »lynkurs« i hgyere
matematikk. Forfatterne fremhever at en matematiker godt kan hoppe
over dette avsnitt. Hvis han allikevel leser det, vil han stote pa felgende
gullkorn: De reelle tall inndeles i tre grupper, rasjonale, irrasjonale og
transcendente !

Etter at et spinkelt matematisk grunnlag er lagt, omtales endel pro-
blemer som lgses p4 automatiske maskiner, samt disse maskiners kon-
struksjon og virkemate i korte trekk. Det sier seg selv at forfatterne ikke
kan gi i detalj i en bok som denne, men man savner en omtale av den
siste utvikling pa omradet. Litt antikvert virker ogsa den stadige presise-
ring av forskjellen mellom »rene« og »anvendte« matematikere ; ifglge for-
fatterne er det bare de siste som befatter seg med elektroniske regne-
maskiner.

Boken er skrevet i en lett og humoristisk stil. Illustrasjonen av en
biner addisjonsenhet ved hjelp av trappevendere er f. eks. litt av en
perle. Men av og til blir forfatterne vel brakjekke, eller hva skal man si
til felgende: Etter en (meget kort) innfering av den deriverte folger en
(enda kortere) forklaring pé det bestemte integral, under titelen »Recon-
structing the crimeq!

Hvert kapitel avsluttes med noen forslag til litteratur. Etter anmelde-
rens mening er disse bgker og artikler noksa tilfeldig utvalgt. Derimot er
litteraturfortegnelsen i slutten av boken meget fyldig.

Ernst S. Selmer




OPPGAVER TIL LOSNING

Losninger av oppgavene 141-144 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et felgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte mé& vere sendt
innen 15. august 1958.

De avrige oppgaver i dette hefte er enklere, og losninger af dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredaktoren, helst sammen med forslagsstillerens egen lesning.

141. La n veere et naturlig tall og P,, ,,(x) Legendres polynom av orden
2n + 1. Beregn integralet
\' P 2n+1(w ) da

o 1 2n+§
0 z(1+2) W. Ljunggren

142. La m og p vere naturlige tall. Bevis at

) Ga) - (Ginsy) | |
<m+z><m+p+2z

, (7;:1) (m;—2> (pT—ZﬁQ> =ﬁ p—i @- b
................................... RN

(m+n——1>( m+n > (m+2n——2)
p—n+l/\p—n+2/""" P

143. Lad ¢(z) betegne antallet af naturlige tal <z med given tver-
sum ¢. Bevis at

Johs. Lohne

_ﬂ@_? = ().
2—>00 (loglox) Ove J. Munch

144. Lad E vere en ellipse med halvakser a og b, a=b=0. Idet P(2)
er et polynomium af n’te grad med hovedkoefficient 1, skal man bevise
(nz=1):

7% [91]
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masipen = () +(45)

For hvilket polynomium indtreeffer lighed ?
Ove J. Munch

145. Binomialkoefficienterne tenkes opstillet pa sedvanlig made i
Pascal’s trekant. Bestem tre pa hinanden folgende binomialkoefficienter
(i samme rekke), siledes at den midterste er middeltal mellem de to andre.

Eks.: (*})=1001, (}})=2002, (1*)=3003.
S (4) (5) (6) David Fog

146. Om ellipsen b%?+ a®y?=a?? omskrives et rektangel der det ene
par parallelle sider har vinkelkoeffisienten k. Bestem rektangelets areal
og finn det storste av disse rektangler.

147. Vis at den storste femkant som har gitte sider a, b, ¢, d og ¢ mé
kunne innskrives i en sirkel.

LOSNINGER
137. Bevis formelen
. (50
2 (=)t = Oq+0p—0p
i=1

- (n)
il
)
der a, b og n er slike naturlige tall at a +b=n=b=a, og

1 1
op=ld4—d ... +-.
2 r

W. Ljunggren

(I den opprinnelige oppgave var eksponenten for — 1 feilaktig angitt som 7.)

Losning: Vi setter

a\ /b
fla, b, n) = 9(—1)1’-1»(@')(”')—, 90, b, n) = a0t 03— 0,

=1 [
vl .
2

for a+b=2n=b=a>0. Identiteten
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(5 a7 e (0

CE) T E

gir ved multiplikasjon med (— 1)1 <lz> 171 og summasjon fra 1 til n:

n—a a+1
1,b 1) = —— 1,b - b
fla+1,b,n+1) n+1f(“+ , ,n)+n+1f(a, ,m),

nar alle argumenter ligger i f’s definisjonsomrade. En enkel regning viser
at ogséd

a
“*g(a’_l'l’b:n)"' 77777 g(a'a b: n) :g(a’+1:b:n+l)'
n+ n+1

Det er da nok & vise at f(a, b, b)=g(a, b, b) og f(1,b,b+1)=¢g(1,b, b+ 1).
Den siste likheten innses umiddelbart; den forste bevises ved induksjon
etter a, idet

N (A

f(@,b,0) =£<_1)i—1% - - g f{’(f) 2i-1dz
B —,l(l-i—x)a—ld B —1(1+w)(1+x)a—1_1d
et fenr,

fla—1,b,b)— \ (1+2)3-1dz = f(a—1, b, b)+2.

0
Helge T'verberg
Ogsé lost av L. Carlitz.

139. Lat p vara ett primtal. Bevisa kongruensen
(m) = [ﬁ} (modp) .
" "

Losning: 1t is familiar that if

Bernt Lindstrom

a’i<p)s
b; < p),

m = ay+ap+ap>+... (0
kE=by+bp+bp*+... (0

A TIA

I

then

@ (2) = () () ) -+ ot




94 OPPGAVER

()

m
Z?L =t Oy P+

(3)-[z] n

Ogsd lost av C. U. Jensen og Helge Tverberg, som begge loser oppgaven uten &
forutsette kongruensen (1) kjent.

In particular

I

a, (modp).

Since

it follows that

L. Carlitz

140. La d,, veere determinanten

1 1 1
5 :": n+1
1 1 1

dy=| 3 4 n+2 |,
1 1 1
n+ln+2’ on

der n er et naturlig tall. Vis at
n n\ (rn+k
d=1[1I () (")

Losning: La a;; vere (x;+y;)1. Determinanten |a;;| blir da av formen

R. Tambs Lyche

Pxy, .o i@ Y1y« o5 Yp)
yimii (x;+y;)
=1 J=1

der P er et polynom. Er x;, =, eller y, =y, for noe par k1, blir |a;| =0
fordi to rekker eller sgyler blir like. Altsa har P som divisor

H (mj_xi)' H(yj_yi)'

i<j=n i<jsEn

3

Betraktning av et spesielt ledd, f. eks. x,"~'y,”~1, viser at P nettopp er
lik det angitte produkt. Ved & sette x;=1¢, y;=4, far en da umiddelbart

oppgavens formel. Helge Tverberg

Ogsd lost av J. E. Fjeldstad, Johs. Lohne og Asmus L. Schmidt.



SUMMARY IN ENGLISH

PrDER PEDERSEN : On the expansion of 7t in a regular continued fraction.
(English.)

In two papers from 1938 and 1939, D. H. Lehmer computed the partial quotients
ay in the continued fraction for 7 up to aq, (cf. references p. 68). Without knowing
Lehmer’s work, the author in 1945 performed the same computation up to ag.
In the present paper, the expansion is continued up to sy, using the step-by-step
method developed by Lehmer.

The partial quotients up to g, are given in table I p. 62, and the convergents
A, ,/B,_, and A4,/B, found at the end of each step are listed on pp. 63-65.
Two different checks of the final convergents, corresponding to n =200, are per-
formed.

As was also done by Lehmer, the author uses the convergents for a verification
of Khintchine’s and Lévy’s constants. The approximations obtained for n=10,
20, ..., 200 are shown in tables II-III p. 67, and table IT is also illustrated graph-
ically p. 66. The unusually close approximation obtained by Lehmer for n=100
must be accidental.

OLLE PERSSON: On the solution of an over-determined system of equa-
tions by the method of least squares. (Swedish.)

The following problem is considered: Given a set of independent measurements
l, 1y, ..., Iy, where [; is normally distributed with mean value A; and standard devia-
tion g. It is assumed that

A= apa .o taz, =127 (s<71),

where z,, ..., x; are unknown constants, which should be estimated.
Tt is shown that this problem, by the maximum-likelihood-method, leads to the
solution of a symmetric system of equations:

A*AX = A*L

(where X and L are column matrices). The method of Cholesky for solving such
a system (including the determination of mean errors for the ;) is described and
illustrated by a simple example.

ARNE BroMAN: A mechanical problem by H. Whitney. (English.)

A carriage is movable on a horizontal rail (fig.1 p.78) with a prescribed motion.
A rod can move without friction around a horizontal axle, perpendicular to the
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rail, through the lower end of the rod. Is it possible to choose the initial inclination
a of the rod so that the rod stands vertically when the motion ceases?

The problem, proposed by H. Whitney and discussed in Courant—Robbins:
What is mathematics ?, is solved (confirmatively) under the assumption of a con-
tinuous acceleration of the carriage. One can also choose the initial inclination so
that the rod never falls down.

Davip Foa: 4 remark on two series. (Danish.)

The classical series for n/4 and for In2 are particular cases, with p=1 and p=2
respectively, of the expansion

n

1 1 1 1 1
S4 tgPlady = — — + - +..
0 p p+2 p+4 p+6

v
—

o P

KurT-R. BiErRMANN and Vieco Bruw: A note by N. H. Abel to A. L.
Crelle on a manuscript by Otto Aubert. (German.)

The manuscripts, left by Crelle, for the “Journal fir die reine und angewandte
Mathematik”, are now deposited with the Deutsche Akademie der Wissenschaften
in Berlin. Among the manuscripts is a paper by O. G. D. Aubert: ‘“Bemerkungen zu
den Aufgaben und Lehrsitzen S. 96, 97, 98 im ersten Heft zweiten Bandes dieses
Journals” (published in Vol. 5 (1830), pp. 163-173). It has an unpublished post-
seript to Crelle by Abel, introducing Aubert and suggesting an addendum to
Abel’s “Recherches sur les fonctions elliptiques”.




