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EN ENKEL POTENTIALTEORETISK MODELL

H. GASK och J.-E. ROOS

Inledning. Potentialteorien skapades i borjan av 1800-talet av La-
place, Gauss och Green i arbeten, som behandlar den matematiska teo-
rien for gravitation och elektricitet. Den har senare blivit en sjilvstéindig
gren av. matematiken, som alltjamt utvecklas. Karakteristiskt for de
senaste drens bidrag dr, att de forenar geometriska och analytiska me-
toder.

Mass- eller elektricitetsférdelningarna beskrivs matematiskt av méngd-
funktioner eller distributioner och uppfattas som element i en flerdi-
mensionell rymd (Hilbertrymd), dir fysikens variationsprinciper kan
ges en geometrisk form. Vi skall i denna artikel ge exempel pa dessa
metoder genom att anvinda dem pé problemet att bestimma och under-
soka den elektrostatiska jimviktsférdelningen pa ett system av elektriskt
laddade ledare. Den fullstindiga behandlingen av detta problem fordrar
en teori for allménna méngdfunktioner i tre dimensioner och en teori for
Hilbertrum av odndlig dimension och ligger utom ramen fér en elemen-
tér framstéllning. Med forenklade antaganden kan man emellertid f& en
god illustration till den allménna teorien. Vi bérjar framstdllningen
med nagra potentialteoretiska begrepp.

Kraft, potential, laddningsférdelning, stod. Betrakta tvid punktfor-
miga, positiva eller negativa laddningar pa avstindet r fran varandra.
Enligt Coulombs lag paverkar de varandra med kraften

of

e
72

K = —

dér e och f #r laddningarnas storlek tagna med tecken. Kraften #r at-
traktiv om K >0 och repulsiv om K < 0.

Vi skall i fortsdttningen arbeta med en enkel potentialteoretisk modell
och antar dérfor, att var yviirlds endast bestar av gitterpunkter pa reella
axeln, d. v. s. punkter x=nd, =0, +1, +2, ..., dir d ir ett fixt posi-

(8]
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tivt tal. Detta antagande &r rimligt, ty de flesta metalliska ledare har
gitterstruktur. I naturen #r § mycket litet.

Vi vill studera kraftverkan mellan laddningar i var modell och infér
foéljande motsvarighet till Coulombs lag:

K = —efy(r).

Hér 4r p en lamplig icke-negativ funktion och r avstandet mellan ladd-
ningarna. Det #r naturligt att fordra, att v ej ar identiskt noll, och att
y(r) avtar monotont mot noll, d& » gar mot oéndligheten.

Strangt taget ar y(r) endast definierad, d4 r &r en heltalsmultipel av 4,
men vi ritar fér enkelhetens skull y
som i fig. 1. Detta giller &ven om
potentialfunktionen, som vi nu skall
inféra.

Lat oss betrakta en positiv enhets-
laddning E, i origo och en annan
positiv enhetsladdning £ i punkten
x. De repellerar varandra med kraften

¥(r)

r

e w(la) -
Eftersom denna kraft inte &r definierad for alla |z|, kan vi inte som i
teorien for den Newtonska potentialen beridkna det arbete, som atgar att
fora B fran en punkst till en annan, i form av en integral. Vi infor i stillet
foljande postulat, varvid vi underférstar att v dr definierad ocksi i
origo: Det arbete, som dtgdr att flytia E fran punkten x+ 6 till z eller fran
—x—0 till —x (x=0), dr dy(|z|). Ju mindre § ir, desto nirmare ansluter
sig detta postulat till de forhallanden, som riader i den Newtonska
potentialteorien. L&t oss betrakta det arbete p(z), som &tgar att fora
E fran + oo till #, da 2 2 0 resp. fran — oo till z d& z < 0. Man far tydligen
i bada fallen

(1) g@) =22|'16w(y) = 0p(|z])+op(ja| +0) +op(|x[ +20)+ . .. ,

Y=\
och vi antar att serien dr konvergent. Funktionen @ kallas den av E,
alstrade potentialen. Man Gvertygar sig litt om att ¢ &r icke-negativ,
icke-viixande f6r 20 och jémn, d. v. s. ¢(x) =g@(—z), och att

¢(@)—9(y)

ar det arbete, som atgar att fora laddningen E fran y till . Om skill-
naden &r negativ, t.ex. om x>0 och y=0, skall detta tolkas s& att
negativt arbete atgar, d.v.s. arbete utvinnes, di Z fores fran y till x.
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Av definitionen av ¢ foljer att

p(@)—(x+0) = dy(z)
dad z=0. Om x>0 (d. v. s. z=4) har vi alltsa dven

p(x—0)—g(@) = dyp(x—9) .
Eftersom vi har antagit att y(x) <y(x—0) foljer av dessa tva likheter
att for x>0 ar
(2) p@) = ¥p@+0)+p—9)).
Eftersom ¢ dr jimn, foljer samma olikhet ocksd d& x<0. Vi har med
andra ord visat, att potentialen @ dr konvex utanfor origo. Den har det
utseende som framgar av fig. 2. Observera att ¢(x)<¢(0) d& |z|>0. I
annat fall skulle nimligen konvexiteten ge @(x)=¢(0)>0 for alla x.
Detta ar omojligt, ty serien (1) dr konvergent, och detta medfér att
p(x) = 0, d& |z| — oo.

(x)

Fig. 2

Ett exempel pa de potentialfunktioner, som definierats ovan, ér den
s. k. takfunktionen, vars utseende framgéar av fig. 3. Den kommer att
visa sig vara var motsvarighet till den »naturliga« potentialfunktionen
1/r. (Se sats 9.)

o(x)

l X
Fig. 3
Om enhetsladdningen E, placeras i en punkt x, utanfér origo, blir
potentialen av E, tydligen
P1(®) = p(x—2,) .

Motsvarande kurva fir man av kurvan i fig. 2 genom att forskjuta den
s4, att toppen kommer 6ver punkten z,. Om vi i stillet for en enhets-
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laddning har laddningen e i punkten x,, blir dess potential tydligen
ez — ).

Hittills har vi bara betraktat potentialer av laddningsférdelningar
bestdende av en enda punktladdning. Vara allménna laddningsfordel-
ningar skall bestd av ett dndligt antal punktladdningar. En sddan ladd-
ningsfordelning kan alltsé beskrivas som en funktion e med virden e,
som anger laddningens storlek i punkten = och sddan att endast &ndligt
manga e, ir skilda fran noll. Med laddningsférdelningens si6d menas de
punkter, dir det finns laddning. Motsvarande arbete vid forflyttning av
en enhetsladdning ¥ fran odndligheten till # antages vara

P(z) = Yp(x—y)e, .
Y

Funktionen P kallas for laddningsfordelningens potential, och P #r
tydligen summan av de enskilda laddningarnas potentialer.

Antag att e >0, d. v. s. att alla e, = 0 och minst ett e, > 0. Av olikheten
(2) ovan foljer att P(x) dr konvex utanfor stodet till e. (Se fig. 4.) Att
detta ej behover vara fallet for andra laddningsfordelningar framgér av
fig. 5.

P(z)

\,\

+ +

Fig. 4. Potentialen av en positiv laddningsférdelning.

B

Plz)

/

Fig. 5. Potentialen av en positiv och en negativ laddning.
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Energi. Betrakta en laddning e i en godtycklig punkt P. Vi definierar
dess egenenergi, som det arbete, som fordras fér att samla ihop laddningen
av odndligt sma delar, som fors in till P fran oéndligheten. Vi skall visa,
att denna energi &r

(3) , $9(0)e? .

Lat N vara ett stort naturligt tal, placera en laddning e/N i P och for
sedan N —1 laddningar av storleken e/N fran o#éndligheten till P, en
efter en. For den forsta av dessa atgar arbetet

e e

?(0) %%

for den andra, som repelleras av laddningen 2¢/N arbetet ¢(0)-2¢%/N?;
for den tredje, som repelleras av laddningen 3e/N arbetet ¢(0)-3e2/N2
och s& vidare. Det sammanlagda arbetet blir

1424+...+(N-1) N -
v = ¢(0)e?

(0)e2 )
@(0)e oN

Later vi hir N gi mot oéndligheten far vi (3).

Betrakta nu tva laddningar e, och e, placerade i punkterna x och y
med egenenergierna 4¢(0)e,? och 4¢(0)e,? respektive. For att fora en av
dem in mot den andra fran odndligheten till avstandet |x—y| atgir
arbetet @(x—y)e,e,, och systemets totala energi blir alltsé

$[p(0)e,? + @(0)e,* + 2p(x —y)ese, ] -

Man inser p4 samma sitt, att den totala energien hos en samling ladd-
ningar e, i punkterna x blir

(4) I(e) = I(e, ) = } X plw—y)ee, = + 2 Pa)e,,

dir P dr potentialen av e, och den forsta summationen utstrickes 6ver
alla  och y. Om alla laddningarna e, har samma tecken &r det klart,
att energien dr positiv, men om en del dr positiva och andra negativa,
upptrider bade positiva och negativa termer i tredje ledet av (4), och
det &r tinkbart att energien kan bli negativ eller noll, d. v. s. att systemet
kan samlas ihop utan energiatging eller med energivinst. Vi skall se att
detta dr omojligt. Vi siger att en laddningsfordelning e &ar skild fran
noll om néagot e, dr skilt fran noll. Da géller

SatTs 1. Energien av en godtycklig laddningsférdelning skild fran moll
dr positivt.

1 T integralform har denna sats bevisats av A. Beurling i ett opublicerat arbete.
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Bevis: Vi har I(e, e) =% 3 p(x —y)e,e,. Infor o,= 3 e,. Abels partiella
summation ger o=t

Ns

Ns
=é‘m")(”—?/)% = =§m[¢(w—y)—¢(w—y+6)]crz+<p((N+ 1)0—y)os

- (=M "?/)0'~(M+1)a .

Lat nu N och M g& mot oéndligheten! Vinstra ledet konvergerar, ty det
finns endast laddning i ett &ndligt antal punkter. Hogra ledet konver-
gerar da ocksa och eftersom g(z) — 0 da |z — oo far vi

Ply) =Y p@—y)e, = 3 [plx—y)—plx—y+0)]o,,

dir det i sista formeln dr visentligt, att summationen utstrickes 6ver
alla . Nu ar

Ie,e) = } X ( Xp(x—y)es)e, = 3 3 P(y)e,,
y

och P(y) gar mot noll, da y gar mot odndligheten. Vi kan dirfér dnnu en
gang anvinda partiell summation kombinerad med en griénséverging

och fér I(e, ¢) = 1 3 [P(y)— Ply +6)] o,
eller

(5) I(e,e) = =2 ' ' A(x—y)o,0, ,
dar !

Ax—y) = tp@—y+0)+p(x—y—0)—2¢px—y)] .

Likheten (5) skall vi komplettera med ett par identiteter. Eftersom
Dlp@—y)—px—y+06)]=0 for alla 2 blir
y

Ns
2 D re—y)—pe—y o= ot = 0,

vilket vi skriver

Né
2 2 [pe-y) —pl@—y+0)]lo,2~0,.,*] = 0
y x=—Mb

for alla N och M. Om N och M ér tillrdckligt stora s& ér o,=0,,, for
= N6 och x < — M§. Vi finner déarfor:

22 [p@—y)—p@—y+0)l[o,~ 0,1 = 0.
y
En partiell summation visar att
2 lp@—y)—pl@—y+06)][0,2~0,4°]
=2 [2p(x~y)—px—y+0)—p—y—3)]o?,
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och vi far

S a@-yop = 0.
y =

Att
Y'Y Ax—y)o,2 =0
y

ar trivialt. Alltsa ar

(6) I(e,e) = 3 X' Aw—y)(o,— o) .
Men villkoret att ¢ dr konvex utanfoér origo kan skrivas
Az—y) 20 for z+y,

och hirav foljer I(e, e) 2 0. Fallet I(e, ¢) =0 kan endast intréffa om varje
term i (6) &r 0. Emellertid maste det finnas ett x*+0 s& att A(z*)>0,
ty om A(x)=0 for alla x40 s& blir

px)—px—0) = p+d)—¢p(x) foralla =z =+ 0.

Men detta innebér att ¢ &r ritlinjig utanfér origo, vilket dr omdjligt

eftersom @(z) —~ 0 da |x| - co. Alltsé finns det ett x* med de dnskade

egenskaperna och d& medfor I(e, ) =0 att o, ,+=0, for alla x. Alltsa &r

AVen 0,=0,, .+ =0, 0.+ =... fOr alla x. Eftersom o;=0 for alla tillrick-

ligt stora negativa ¢ foljer att ¢,=0 for alla x, s& att e,=o0,—0, ;=0

for alla x, vilket motsiger forutsittningen. Hérmed ar satsen bevisad.
Vi kommer i nésta avsnitt att beh6va foljande tilligg till sats 1:

SaTs 2. Betrakta en folijd av laddningsfordelningar el, €2, ..., som alla
har sitt stod o ett fixt intervall. Om I(e¥) — 0 dd k — oo sd gdller ocksd att
ek — 0 for varje x och omvint!.

Brvis: Satsens forsta del i annan formulering séger, att alla e, dr sma,
bara I(e) ar tillrdckligt litet. For att bevisa detta anknyter vi till sista
delen av beviset f6r sats 1. Vi far tydligen olikheten

(Ogiar—0,)" = L(e)/A(2¥) ,

for alla x. Beteckna for korthetens skull hogra sidan med ¢2, ¢ 2 0. Olik-
heten kan da skrivas

Iaw+m*_0xl sc.
Hérav far man t. ex.

Iawi‘.’.x*—dxl = chi?.x*_o'xi—w*['*‘[o':vix*_ax[ = 26:

och allmint
[0t kg — 0| = ke

1 Denna sats ér en omedelbar f61jd av sats 1 och bekanta satser om kontinuerliga
funktioner av flera variabler, men vi féredrar att ge ett elementirt bevis.
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for alla  och alla naturliga tal k. Enligt forutsdttningen &r ¢,=0 da |¢|
ar tillrackligt stort, |{| = N. Detta innebir att ¢, ar noll d& ¢< — N och
konstant da ¢= N. Viljer vi k=K, s& stort att K,0= 2N, s blir ett av
talen x+ K z* < — N, férutsatt att <N, och for detta z far vi alltss
log| < Kyc. Men eftersom o, dr konstant dd x= N, giller olikheten for
alla z, och vi far le,|=]|o,—0,_s| < 2K,c. Eftersom ¢ gir mot noll med
I(e), &r forsta hilften av satsen bevisad. Den andra hilften #r trivial,
eftersom I(e) &r ett polynom i variablerna e,, om e, &r noll utanfér ett
fixt intervall.

Energin som avstandskvadrat. En laddningsférdelning e karakterise-
ras av de éndligb manga talen e,. Dessa kan uppfattas som koordinater
fér e och laddningsfordelningen sjélv kan betraktas som en punkt i ett
rum R. Observera att varje punkt i R endast har &ndligt manga koordi-
nater. Summan e +f av tva laddningsférdelningar e och f far man genom
att addera koordinaterna, och produkten ae av en laddningsférdelning
och ett tal @ far man genom att multiplicera koordinaterna med a, s& att

(e +f)ac = €, +f.z’ (a’e)m = ae, .

Med dessa definitioner blir R en linedr rymd. Enligt sats 1 &ir I(e) 2 0 for
alla e. Vi kan sdledes inféra

ele—f) = VI(e—f).

Detta g dr tydligen ett slags avstind mellan e och f i den meningen att
0>0dad e+f och g=0 da e=f. Vi skall se att funktionen p ocksi har
egenskaperna

(7) olae) = lalo(e) (a ett tal) ,

(8) ele+f) =

som den delar med t. ex. det euklidiska avstandet
we—f) = VX (e.~fo)? -

Egenskapen (7) foljer omedelbart av att I(ae)=a2l(e). For att bevisa
(8) observerar vi att

o(e)+o(f) (triangelolikheten) ,

9) I(ae+bf) = a2l(e) +b2I(f)+ 2abI(e, f) ,
dar
(10) I(e:f) = %2 (p(x_y)ezfy = I(f’ 8) .

Men I(ae+bf)=0 for alla @ och b, och detta medfér som bekant att
Ie, f)* < I(e)I(f) .
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Vi far alltsa
(ele+f))? = I(fo) < I(e)+I(f)+2VI(e)I(f) = (o(e)+o(f))?,

vilket #r (8) i en annan form.

Liksom f6r de reella talen kan vi definiera begreppet Cauchyfoljd i R.
Hirmed menas en f6ljd av punkter (laddningsférdelningar) {e*}°, sidan
att

(11) o(ef—e¥) -0 da& j,k— oo.

En Cauchyfoljd av reella tal har alltid ett grinsvirde. Forhaller det sig
likadant i R, d. v. s. finns det ett e i R sadant att

(12) o(e¢f—e) >0 da j—>oof
Svaret dr nej. Det dr litt att se att t. ex. den foljd som definieras av
e = (1+2?)t da |z =j, ef=0 da |z >

dr en Cauchyfoljd. Foljden har déremot inget grinsvirde i R. Antag
nimligen motsatsen och kalla gréinselementet foér e. Da skulle e ha sitt
stod i ett begrinsat intervall. Vilj nu a* som i beviset for sats 2, sa att
vi har
(U:c+x*j - ij)z = I(ej - 6)/A($*) dar ij = 2 (etj '—el) .
I=x

Om vi hir viljer x sd stort att bada punkterna x och x+x* ligger till
héger om stodet av e och viljer j >max |z, |z +2*|) utgdr vinstra ledet
ett av j oberoende positivt tal, medan hiogra ledet gar mot noll da j — oco.
Ur denna motsigelse foljer pastdendet. Det dr intuitivt klart att e/ bor
ha till gréinsvirde f6rdelningen e, = (1 + 22)~1. Denna fordelning ligger inte
i R, men den har #ndlig energil.

Vi skall nu visa, att en Cauchyfoljd {e"};"’ har ett grinsvirde om alla
ek har sina stod i ett fixt intervall. I detta fall medfor sats 2 att (11) dr
ekvivalent med att

ej—ekf >0 da 4, k- o

for varje x. Alltsa existerar for varje x ett e, sddant att
ef—e,~0 dia j—> oo,

vilket i sin tur, aterigen enligt sats 2, medfor (12).

Efter dessa forberedelser skall vi bevisa en geometrisk sats, som kom-
mer att géra oss stora tjéinster i fortsdttningen. Lat K vara en delméngd
av R. Delmingden K férutsittes vara konvex i den meningen att om e

1 Det ar latt att ta med ocksa saddana laddningsférdelningar, men teorin blir d4 mindre
elementér.
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och f ligger i K, sa ligger mittpunkten av férbindelselinjen mellan ¢ och
S, d.v.s. §(e+f), ocksd i K. Antag vidare att alla element i K har sitt
stod i ett fixt intervall och att K ar sluten, d.v.s. att om {e*};° 4r en
Cauchyfcljd av element i K, s& ligger grinselementet ocksa i K.

Sats 3. Det finns ett entydigt bestimt element e © K, som ligger nirmast
origo.

Brvis: Att e ligger ndrmast origo (se fig. 6) kan ocksa uttryckas sa att

, I(e) = infI(f) da f tillhér K .
V Beviset av satsen beror pa identiteten
(13) I(e+f)+I(e—f) = 2I(e)+2I(f),
som foljer av att (se (9)—(10))
Iletf) = I(e)+I(f)x 2I(e, f) .

Identiteten séiger att summan av sidornas
kvadrater i den parallellogram, som har
hoérnen 0, e, f och e+ f ér lika med summan av diagonalernas kvadrater.

Infér nu d?=infI(f) da f tillhér K. Detta betyder, att det finns en
foljd {f*}7° av element i K sidan att

(14) I(f¥) >d® & F—oo.
Av (13) foljer att
I(fi—f%) = 2I(f1)+ 2I(f%)— 4I(3(f7 + %)) .
Har ar I(3(f7+/%)) 2 d? eftersom K ir konvex. Alltsa far vi
I(fi—f*) = 2I(f7)+21(f*)—4d?.

Enligt (14) gir hogra sidan mot noll da j, k — co. Alltsd &r {f*}° en
Cauchyfoljd. Enligt forutséttningen ligger grinselementet e i K. Det dr
klart att I(e)=d?. Det aterstar att visa att e ar entydigt bestimt. Men
om ocksd e’ tillhér K och I(e')=d?, s& far vi av (13) att

0 = I(e—e') = 2d2+2d%—4l(}(e+¢')) .

Hir ar I(%(e+e')) = d? och alltsd I(e—e')=0, s4 att e=¢’. Alltsd dr satsen
bevisad.

Fig. 6.

Det allmiénna jimviktsproblemet. Lat oss betrakta ett #ndligt antal
ledare i den tredimensionella rymden, vilka vid en viss tidpunkt laddas
med positiv eller negativ elektricitet. Efter en mycket kort tid férdelas
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elektriciteten s att den befinner sig i ett jimviktstillstand, som karak-
teriseras av att den totala energin &r minimal. Vi skall berikna motsva-
righeten till detta tillstdnd i var modell. Som ledare tar vi begrinsade
delméngder L., L,, ..., L, av gittret x=nd (n=0, +1, £2,...) utan
gemensamma punkter?.

Vi skall visa att det bland alla laddningsférdelningar pa ledarna med
totala laddningen 7, pa L,, I, p4 L, o.s. v. finns en och endast en, for
vilken den totala energin dr minimal. Detta &r en omedelbar féljd av
sats 3. Lat K vara méingden av alla sddana laddningsférdelningar.
Varje fordelning i K har tydligen sitt stod i ett fixt intervall. Att totala
laddningen &r [, pa ledaren L; uttrycks genom ekvationen

(15) 2=l @ily),

vars geometriska betydelse dr ett plan i R. Mingden K &r genomsnittet
av dessa plan, och man konstaterar omedelbart, att K &r konvex. Vidare
dr K sluten, ty om {e}7° ar en Cauchyféljd i K med grinselementet e,

84 visar sats 2, att om . .
Zew] =l (xily)
x
for alla j, sa giller (15) for e.
Vi formulerar vart resultat i

Sats 4. Bland alla laddningsfordelningar pd ledarna med totala ladd-
ningen U, pd Ly, k=1, ..., t, finns en entydigt bestimd férdelning e med
manimal energs (jamuikisfordelningen).

Jamviktsférdelningen ¢ har nu andra intressanta egenskaper:
Sats 5. Jamvikisfordelningens potential dr konstant pd varje ledare.

Bevis: Lat # och y vara tva godtyckliga punkter i en godtycklig
ledare L, och lat g vara laddningen —11ix och +1 iy. For varje ¢+0
har di e+eg, som fis av e genom att man flyttar laddningen ¢ fran x
till y, samma totalladdning som e pé varje ledare L men stdrre energi
enligt foregaende sats. Man har alltsa

I(e+eg) > I(e) .
Om P &r potentialen av e blir vinstra ledet med hjilp av (9) och (10)
I(e)+e(P(y) - P(x)) +e(g) ,
s(P(y)—P(x))+821(g) >0

1 Vi kan ténka oss att man férbundit de olika punkterna inom varje L; inbdrdes med
tunna metalltradar, medan det ddremot inte finns négon férbindelse mellan tva punkter
tillhérande olika Lj;.

s& att
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for varje e. Detta dr mojligt bara da P(y)=P(x), och satsen dr bevisad.
Satserna 4 och 5 giller speciellt for en ledare L. Om totalladdningen
pé L &r m, motsvarande jamviktsfordelning e och potentialen av e dr P*
s& dr tydligen P*=2I(e)/m enligt (4), eftersom P* &r konstant pa stodet
for e.
Vi skall nu i viss mening omvéinda sats 5 och visa

SATS 6. Om e har konstant potential pa varje ledare, si mdste e dverens-
stimma med den jamvikisfordelning e*, som har samma totalladdning som
e pd varje ledare.

Bevis: Lat P* vara jimviktsfordelningens potential Da ar

I(e—e*) = 72[P — P*(x)][e, —e,*] = %Zoc D (e—ex*),

xelLyg

dir o, dr virdet av P(x)— P*(x) pa L, Detta ger I(e —e*)=0 och alltsa
e=e*.

Som en illustration till de satser vi har bevisat, skall vi nu explicit
berikna ett par jimviktsfordelningar.

ExempeL 1. Lat oss betrakta en enda ledare L bestdende av punk-
terna —a, 0 och >0 och antag att totala laddningen &r 1. Vi har da

. . egtete, =1
och potentialen blir

(16) P(x) = ple+a)e_,+@(@)eg+px—a)e,

Jamviktsfordelningen karakteriseras av att potentialen ér konstant pa L,
d. v.s. att P(—a) = P(0) = P(a). Av detta far man eftersom g(a) < ¢(0):

o _ PO +9(20)—20(a)
B p(0)—p(a) "7

Observera att e ar =0.

eg = €

ExempeL 2. Lat oss betrakta tva ledare L; och L,, som bestar av
punkterna —a och 0 och punkten a respektive (se fig. 7), och antag att

B
)

[& o+
}
Sete
¥
8

Fig. 7
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totala laddningen &r 0 pd L, och 1 pa L, Man far e_,+e,=0 och ¢,=1
och villkoret att potentialen (16) skall vara konstant pa L, ger

9(2a) — ¢(a)

#(0)—g(a)

Observera att e;<0 och e_, =0 och att vi far string olikhet di ¢ &r
stringt avtagande. (Jamfor influensfenomenet i elektricitetsliran.)

€ = _e~a=%

Jimviktsfordelningen av en positiv laddning. Som bekant ir jimvikts-
fordelningen av en positiv laddning pa en ledare alltid >0 i det New-
tonska fallet. Denna sats giller ocksa i var modell (jamfor exempel 1),
och vi skall bevisa den nedan. Vi undersoker férst potentialfunktioner
av positiva laddningsférdelningar nirmare. Om e > 0 sa #r P(z) en dndlig
linedrkombination av icke-negativa funktioner, som — 0 da |z| — oo.
Det finns alltsé minst en punkt, ddr P antar sitt maximivirde. Vi vill
undersoka var denna punkt ligger.

Sats 7. »Maximisatsens. Om e>0 si finns det minst en punkt 1 stodet
for e, dar P antar sitt maximivirde.

Brvis: Lat « vara en punkt, dir P antar sitt maximivirde. Antag,
att x ligger utanfor e:s stod. D4 dr P konvex i z d. v. s.

P(x) < {P(x—05)+P(x+d)].
Men & andra sidan ar
P(x—06) < P(x) och P(x+6) £ P(x)

sa att P(x)=P(x—0d)=P(x+4). Om nagon av punkterna x—4 eller x+9
ligger i e:s st6d, sa &r satsen bevisad. Om detta ej intriffar, kan vi ut-
fora upprepade translationer med beloppet ¢ tills vi kommer till en
punkt y i e:s stod for vilken giller P(y) = P(x), varmed satsen &r bevisad.
(Se fig. 8.)

Plz)

|
+  + + +

z-dxx+é Y

Fig. 8. Plustecknen anger stédet for e.

NMT. Hefte 1, 1958. — 2
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Vi kan nu visa

Sats 8. Jamwiktsfordelningen av en positiv laddning pd en ledare L dr
positiv.
Brvis: Lat K vara mingden av alla laddningar f pa L med given
positiv totalladdning m, sé att da f tillhor K galler
D' f = m ( tillhér L) ,
X
och 18t K+ vara mingden av alla laddningar f i K, som &r 20, d. v.s.
alla fi K si att
fz 2 0 da « tillhor L.

Man konstaterar omedelbart med hjilp av sats 2, att K+ ar en sluten,
konvex mingd i R. Alltsa finns det enligt sats 3 ett entydigt bestdmt
element e+ i K+, sadant att

I(e*) = intI(f) da f tillhér K+ .

Det ar klart att satsen ar bevisad, om vi kan visa att e* dr identisk med
jamviktsférdelningen e, som karakteriseras av

I(e) = infI(f) da f tillhor K .

Enligt sats 6 ricker det att visa, att potentialen P+ av et dr konstant
pa L. Enligt maximisatsen finns det en punkt z, dir P+ uppnér sitt
maximum och dir e,*>0. Lat y vara en annan punkt i L, och 14t g
bestd av laddningarna —1 och 1 placerade i « och y respektive. Om
0 <e<e,+ dr det klart att et +eg fortfarande tillhér K+, och silunda har
man
I(et+eg) > I(e*).
Nu &4r vinstra ledet lika med
I(e*) +e(P*(y) — P+(@)) +(g) ,
s& att olikheten Svergar i
e(PHy)—P+(@))+e(g) > 0.

Dividerar man hir med &>0 och liter ¢ — 0 foljer att P+(y)=P*(x).
Men enligt foérutsittningen har man ocksd den motsatta olikheten.
Alltsa ar P+ konstant pad L, och satsen &r bevisad.

Nir ligger jimviktsfordelningen pa randen? I det Newtonska fallet
ligger jamviktsfordelningen till en samling ledare alltid p4 randen (ytan)
av ledarna. Vi skall se att det i var modell finns potentialfunktioner, som
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i detta avseende dr analoga med den Newtonska potentialen. Man ser av
exempel 1 att jamviktsfordelningen &r noll i origo d& och endast d&

¢(2a)+¢(0) = 2¢(a) ,

vilket, eftersom ¢ #r konvex, innebdr att ¢ #r ritlinjig i intervallen
0= x| £a. Vi skall se, att detta forhallande dr allmint.

SaTs 9. Om jamwiktsfordelningen av en ledare L av lingden 1, som inne-
haller minst tre punkter, ligger pd randen (d.v.s. dndpunkterna) av L, sd dr
potentialfunktionen @ rditlinjig ¢ intervallen 0< |x| <1. A andra sidan, om
@ har denna egenskap, si ligger varje jimvikisfordelning pa varje system
av ledare, som dr innehdling i ett intervall av lingden 1, pd randen av le-
darna, forutsatt att de inte dr inflitade © varandra.

Bevis: Lat L vara en ledare av lingden ! med dndpunkterna y och z
och antag att jaimviktsfordelningen e av enhetsladdningen pa L ligger
pa randen. Om

P(x) = e,p(x—y)+e,px—2)
ar potentialen av e, dr speciellt
P(y) = e,9(0)+e.0(y—2) = e,p(z—y) +e,9(0) = P(z).
Eftersom ¢(y —2) < ¢(0) far man e,=e,=1, och
P@) = Yplx—y)+px—2)

dr konvex utanfér y och z. Om nu v ér en tredje punkt i L mellan y och z
s& dr P(y)=P(z)=P(v), vilket medfor att P &r konstant=C mellan y
och z. Nu ér g(x—y) for fixt y konvex utanfér y och ¢(x—z) for fixt z
konvex utanfor z si att

px—y) = 20 —gp(x—2)

dr bade konvex och konkav, d. v. s. ritlinjig mellan y och z. Men detta

p(z)

Fig. 9
2%
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innebir att ¢(t) dr rédtlinjig i intervallen 0= || £/, s4 att forsta delen av
satsen dr bevisad. Potentialfunktionens utseende framgar av fig. 9.

Antag omviint, att ¢ har denna egenskap och 13t e vara jimviktsfor-
delningen péi ett system av ledare innehéllna i ett intervall av lingd
<1. Det ricker att visa f6ljande: Lat y, v och z vara tre punkter pa samma
ledare och antag att v ligger mellan y och z och att e &r noll mellan y
och v och mellan v och z. D4 &r e,=0. Potentialen P av e &r nédmligen
summan av potentialen P, av alla laddningarna utom e, och potentialen
Py(x)=e,p(x—v) av e, Mellan y och z #r enligt forutsittningen P,
ritlinjig och eftersom P(y)=P(v)=P(z) innebir detta, att de tre punk-
terna pd kurvan f6r P, som svarar mot y, v och z ligger i riit linje. Men
detta dr mojligt bara da e,=0 och satsen #r bevisad.

Anm. Om ledarna #r inflitade i varandra, kan man uppdela dem i
ledare, som ej dr inflidtade i varandra och jimviktsférdelningen ligger dé
pé randen av dessa.

Den allminna potentialteorin. Den allménna potentialteorin har ut-
vecklats av bl. a. Brelot, Cartan, Deny och Frostman. For en utforlig
framstillning av denna héinvisas lisaren till nedanstaende arbeten.
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ET UNGDOMSBREV FRA NIELS HENRIK ABEL

VIGGO BRUN og BURGE JESSEN

1. I august 1955 brakte de danske dagblad meddelelse om et oppsikts-
vekkende funn av brev fra det 19. &rhundres gullaldertid. Det dreiet seg
om den i sin tid bekjente pedagog og publisist, professor F. C. Olsens
arkiv. Arkivet, som ni befinner seg i Det kgl. Bibliotek i Kgbenhavn,
viste seg & inneholde tallrike brev fra Oehlenschleger, Carsten Hauch,
H. C. Orsted, B. S. Ingemann, J. L. Heiberg, Madvig og atskillige andre.
Blant brevene var ogsa det ungdomsbrevet fra Abel, som vi her offentlig-
gjor.

Brevets mottager, Frederik Christian Olsen, som né iser huskes som
utgiveren av en rekke brev til belysning av Johannes Ewalds liv og som
forfatteren av den forste biografi over Poul Martin Meller, til hvis nzer-
meste krets han hgrte, var fodt i 1802 og var saledes jevnaldrende med
Abel. Han ble student i 1819 og studerte filologi ved Kgbenhavns univer-
sitet. Han deltok med iver i studenterlivet. Fra 1819 bodde han pa Regen-
sen. Etter i 1827 & ha tatt embedseksamen virket han en arrekke som
leerer ved forskjellige skoler. Fra 1844 til 1866 var han rektor for Viborg
katedralskole. Han dede i 1874.

Det her offentliggjorte brev er skrevet etter Abels hjemkomst til Chri-
stiania fra besgket i Kgbenhavn sommeren 1823, hans ferste utenlands-
reise. Fra denne reise er bevart to brev til Holmboe, datert henholdsvis
den 15.juni 1823 og »Aar V/6.064.321.219 (Tag Decimalbrgken med)«.
Brevene er trykt i »Festskrift ved Hundredaarsjubileet for Niels Henrik
Abels Fodsel, Christiania 1902, i hvilket ogsd finnes en faksimile av det
annet brevs forste side. Datoen for det farste brev var en sendag, og ifolge
brevet var Abel ankommet den foregdende fredag, altsa den 13. juni.
I en pategning p4 det annet brev har Holmboe angitt kubikkrotens verdi
til 1823.567, hva han omsetter til 24. juni 1823. I stedet for juni kan dog
muligens ogsé leses juli, hvilket forekommer rimelig; dog svarer desimal-
broken ikke til 24., men til 26. juli. For gvrig er kubikkrotens verdi
1823.5908 . ... P& grunnlag av dette setter festskriftets utgivere datoen
til 4. august 1823. I slutten av dette brev skriver Abel:

[21]
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»Den 1ste Julii heitideligholdtes Regentsens Jubilsum. Jeg var med.
Der blev drukket tappert 800 Flasker Viin. Her har veeret to Gange
Comedie. Jeg var der begge Gange. Den sidste Gang blev et Stykke
udpebet. —

Jeg kommer hjem i Slutningen af August, og skal da meddele Dig min
Host som er ganske god. —«

Festen i anledning av Regensens 200-ars jubileum den 1. juli 1823 om-
tales som en av de mest stemningsfulle i dens historie. Der deltok omkring
400 studenter. F. C. Olsen var blant arranggrene.?

Lederen av Theaterhistorisk Museum i Kgbenhavn, Robert Neiiendam,
har i brev meddelt at Abel ikke har kunnet vaere i teatret i juni 1823, da
det var lukket ; men i juli oppfortes: den 15. yPeter og Paul« og »De borger-
lige Steevnemader«, den 22. »Saragossas Belejring« og »Den Forsigtige, den
29. »Det stille Vand har den dybe Grund« og »Postmesterens. (Kursiv
skrift betyr nye stykker.) Piping var den gang temmelig alminnelig. Bare
hvis demonstrasjonen tok overhand, sa politiet métte tilkalles, ble den
notert i journalen. Den pipingen Abel skriver om m4 henfores til Kotze-
bues lystspill »Saragossas Belejring«; om dette skrives i Thortsens »Thalia«
1823, at det var »lydeligt Mishag efter Forestillingens Slutning«. Da en
tilsvarende bemerkning ikke gjores ved de andre forestillinger, kan man
fastsld at Abel var i teatret den kvelden, den 22. juli. Spetakkelet har vel
gjort serlig inntrykk pa ham, da han kom fra en by hvor enna intet
offentlig teater fantes. Christiania fikk forst sitt skuespillhus 1827.

2. Det na funne brev inneholder intet av matematisk interesse, men
det foyer litt til var viden om Abels Kobenhavnsreise.
Utenpéskriften lyder:

ST

Hr Studiosus magist: Olsen
Regentsen
i Kjobenhavn

og innholdet er folgende:
Christiania d: 13de August 1823

Gode Ven!

Du er nok bleven forundret over ikke at have seet mig fer min
Afreise, og jeg maa bede dig holde mig undskyldt; thi jeg kom saa
pludselig afsted saa at jeg netop fik Tid til at fase mit Pas. Min
Reise var just ikke af de heldigste; Jeg var 10 Dage underveis, og
havde Modvind hele Veien. Imidlertid kom vi dog frem saaledes
som det var. — Jeg har en Ting at bede Dig om som Du ikke maa
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negte mig; det er at gaae hen til Decanus for det philosophiske
Facultet og erholde Attest for Studiosus Theol: Glatveds specielle
Caractherer til Examen philo: Han var oppe til Examen i Foraaret
1813. Det er ham meget magtpaaliggende at faae denne Attest [Jeg]
maa derfor bede Dig at faae den og sende mig den med Trepka neest-
kommende Leilighed. —

Forresten lever jeg meget vel og beder dig hilse Henningsen Krarup
og hvem flere Du veed jeg kjender. Skjelderup lever vel og hilser
iligemaade. —

Din Ven
N: Abel
ST
Hr Stud: Olsen.

3. Oystein Ore har i brev meddelt, at han har undersgkt Abels ankomst
til og avreise fra Kobenhavn 1823. 1 dagbladet »Dageng for 18. juni 1823
finner man i rubrikken »Reisende til Kjgbenhavn«: »Ankommet den 14de,
15de og 16de juni . . . Student Abel fra Christiania . . .«. Abels navn kom-
mer nesten sist pa listen. Avreisedagen sto ikke i avisene, men av politiets
protokoller fremgikk det, at 30. august 1823 var avreisepass til Christiania
utstedt til Student N. H. Abel. Hans kausjonist var onkelen Tuxen og
avgiften var 1 daler 24 sk.

Ore mener derfor, at Abel pa brevet til Olsen ma ha kommet til & skrive
13de August istedenfor 13de September.

Om de i brevet nevnte personer kan fglgende opplyses:

Jens Glatved var fodt 1792 pa Norderhov, hvor hans far var prest. Han
reiste 1809 til Kgbenhavn, hvor han tok examen artium i oktober 1812
og den philologiske preve i april 1813. 1 1820 ble han innskrevet ved
universitetet i Christiania. I 1825 tok han der eksamen i teologi, ble samme
ar sogneprest til Gildeskaal og 1835 til Vestby, hvor han dede 1837.

Emil Trepka, norsk skipskaptein, senere reder, forte jakten »Apollog,
som gjorde 6-8 turer &rlig mellom Christiania og Kgbenhavn for damp-
skipenes tid. Den var opprinnelig dansk og var pa 19 commercelaester.

Henningsen og Krarup kan ikke med sikkerhet identifiseres. Det var i
de nwrmest foregiende ar ved Kgbenhavns universitet immatrikulert
flere studerende av disse navn. Det ligger neer & anta, at den forste er
Henrik G. Henningsen, en av arrangerene av Regensens 200-ars jubileums-
fest. Han ble innskrevet ved universitetet i 1817, 20 ar gammel, og tok
teologisk eksamen i 1824. Han ble sogneprest i Lysabild pa Als. Dod
1866. Den annen er antagelig Otto Christian Krarup, todt 1802, student
1820. Han var bror til F. C. Olsens lerer, den senere rektor ved Borger-



24 VIGGO BRUN OG BORGE JESSEN

dydskolen, Niels Bygom Krarup, og Olsen hadde hatt ham boende hos
seg pd Regensen innen han i mai 1823 ble alumne. Han tok teologisk
eksamen i 1826 og dede 1827.3

Skjelderup. Professor Michael Skjelderup, fedt i Jarlsberg 1769, pro-
fessor i Kgbenhavn 1805-1814, professor i Christiania 1814-1848, ded
1852, hadde to sgnner. Etter all sannsynlighet er det hans eldste sgnn,
Jacob Worm Skjelderup, som er nevnt i brevet. Han var fodt i Kgben-
havn 1804, kom 1814 med sine foreldre til Christiania og var Abels klasse-
kamerat pa katedralskolen. Hoyesterettsadvokat fra 1837. Han var som
Abel meget teaterinteressert og var flere ganger direkter for Christiania
Theater. Dod 1863.4

4. Etterskrift. Nar det gjelder brev fra og om Abel kan det veere av
interesse & nevne, at Magnus Olsen har klarlagt det hittil gitefulle uttrykk
av Hansteen i brev fra 1826 til Boeck: »Men hvad den Thor i Ura vil
svinge til Leipzig og Rhinegnene for ved jeg ikke.’

Et sagn, som nettopp var omtalt i Hansteens »Magazin for Natur-
videnskaberne«, sier at Tor mistet sin hammer i uren ved Urebg nser
Totak i Telemark, mens han i sinne slo ned de stenene fra fjellet, som
danner uren. For 4 finne igjen hammeren veltet Tor sten snart tilvenstre,
snart tilhoyre, sd det ble en slags vei gjennom uren. (Ur eller urd, norsk
ord for en stor stensamling, som er rast ned fra fjellene.)

NOTER

1 For en narmere omtale av arkivet, se Morten Borup: F. C. Olsens brevarkiv pa Det
kgl. Bibliotek, Fund og Forskning i Det kongelige Biblioteks Samlinger III, 1956, s. 103—
116. Se ogsd Morten Borup: Mellem klassiske Filologer, Kobenhavn 1957.

% Jfr. C. E. F. Reinhardt: Kommunitetet og Regentsen fra deres Stiftelse indtil vore
Dage, Historisk Tidsskrift 3. r. IIT, 1862, s. 377-380, og Knud Fabricius: Regensen gennem
Hundrede Aar, Kgbenhavn 1923-1925, s. 40-43 og 345.

8 Jfr. Morten Borup: Mellem klassiske Filologer, Kebenhavn 1957.

* Han omtales i Johanne Luise Heiberg: Et Liv gjenoplevet i Erindringen I, Keben-
havn 1891, s. 144 og 159-160. Se ogsa Slegthistoriske Meddelelser ved Arthur Skjelderup,
Christiania 1915.

5 Se Magnus Olsen: »Tor i Ura«, Maal og Minne 1955, s. 121-123, og Qystein Ore:
Niels Henrik Abel. Et geni og hans samtid, Oslo 1954, s. 134.




AN INEQUALITY FOR CONVEX FUNCTIONS

BENGT JOEL ANDERSSON

THEOREM: Let F,(x), Fy(x), ..., F,(x) be convex functions, defined in
0<x <1, and for which

If

then

0 27’!.
SFI(x)Fz(x) P @)dr 2 gy ...
J n+1

Proor: Put F *(x)=2«,r and

a

@) = § (F,* )~ F, )y

Q

Then @,(0)=®,(1)=0, and it follows from the convexity of F,(x) that
Dyr) 20 in 0=sx=1.

Let K denote the class of convex functions of the theorem. If G(z)e K,
then

-

1 1
SG(x)Fp(x)dx 6@ SG 2)dd
0

1 1
G(2) F* (@) da+ g B, (2)dG(z) = SG(x)Fp*(x)dx .
0

0

Il
St o

An arbitrary finite product of funcsions in K belongs to K. Further
F*(x)eK if F(z)eK, and the above inequality gives

[25]
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1 1
SF1F2 e 2 g F.F,...F, F *dx,
0 L
since F,F,...F,_ eK. But F\F,...F, ,F,*cK, and so
1 1
S FF,...F, F *dv 2 S FF,...F, ,F, *F *dx.
0 0

Repeating the argument, we find

1 1
SFIFZ o Fodo 2 \ PPy B rde

o
0

(=]

22061062...06,” xdm:;@:—l—(xlzxz...ocn,
0

and the theorem is proved. We obtain equality if F,(z)=2x,%,
p=1,2,...,n.




KOMMENTAR TILL EN GAMMAL OLIKHET

M. TIDEMAN

E. Mathieu angav 1890 utan bevis f6ljande olikhet:

had 1
(1) D nm2+a?)-2 < — forallaz + 0.
202

=

Olikheten dok ater upp 1949 och bevisades forsta gangen 1952. Den har
senare blivit féremil for ytterligare behandling, se referenserna. Héir
skall ges ett bevis med standardmetoder, varvid som biprodukt erhallas
en foljd olikheter av samma slag.

Enligt vilkinda uppskattningar giller foljande olikhet: Om f(y) &r
en kontinuerlig, positiv funktion av y, dad y >0, med f(0)=lim f(y)=0
och med endast ett extremvirde A, sa ar Yy

@) {tray—4 s 31m < { sy 4.
1 1

Vi skall tillimpa detta pa

Fulys 1) = Ryt 405, S, = Sy(t) = gjfkm, 0,

~
=]
If
~
e
=
]
me g

iy, 0dy, k=1,2,...,
med avsikten att visa att
(3) S,< 4% foralla ¢20, k=1,2,....

Med k=1, t=x2 erhalles som specialfall olikheten (1).
En partiell integration ger att

oo

I, = —%ztgu"—ld(uﬂ)—k = (1 +)*+1,,
1 = %t[(1+t)_k+...+(1+t)“1] < %tf(l_l_t)—v: _%.
v=1

[27]
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Later vi 4;=A4,(¢) vara maximivirdet av fi(y,¢) som funktion av y
for positiva y, sa ger (2):

RO+ -4, < 8, < 1+4,.

Eftersom A4, gar mot noll, d& ¢ vixer 6ver alla griinser, s& konvergerar
8y mot }. Vidare dr S, <$ for 0=t < (4k)-2, ty S, <kt X'n-3 < 2kt.

as
Som slutlig forberedelse konstateras att for S, = d—tk giller
(4) 18y = —k(sk'"Skﬂ) .
Lemma: For 0St<oo dr Sp<}, k=1,2, ....

Brvis: Antag att det i ett intervall (4%,)-<¢< B finns punkter, dir
8y, > %+d for ett konstant positivt d. Da 8},” maste vara positiv fér
négot av de t-virden, dir Sy >} +d, méste det enligt (4) finnas punkter
i intervallet, dir Sy ,;>%+d. Vi kan gi vidare till S}, +2 etc. och far
saledes en motsigelse, om det giller att A4, konvergerar likformigt mot
noll i varje &ndligt intervall (4k,)-<t< B. Direkta rikningar visar att
84 ar fallet.

Sars: Olikheterna (3) dr wppfyllda.

Bevis: Antag att det finns ett 7' sd att 8; =14 for t=7. Av beviset for
lemman framgér att alla S, =1 f6r t="7. Later vi a vara ett tal i inter-
vallet —1<a<1 och infér férkortningen u=n?a(n®+ 7)1 s finner vi:

}=(1-a)i+ie+3a?+...) = (1-—a)§ak‘18k

1
= (1—a) 3 nT(n?+T)-2 (izuk)

* T T \~2 T
= E 2 — =S
n=11—a(n+1-a) 1(1—-a>’

vilket medfor att S;=4% for £>47. Vi {4 siledes en orimlighet. Beviset
sker pa samma sitt for k=2, 3, .. ..

-
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ETT OVERTACKNINGSPROBLEM

GOTE NORDLANDER

Vi skall i det foljande betrakta méngder, vars element i sin tur &r
punktmingder, t. ex. méngder av intervall pa en linje eller kvadrater i
ett plan. Fér enkelhets skull infér vi féljande bendmningar:

Tva punktmingder 4r disjunkta, om de saknar gemensamma punkter.

En mingd av punktméngder ér distinkt, om de ingdende punktméing-
derna &r parvis disjunkta.

Det problem vi skall behandla hérstammar frin Tibor Radé. Lat
oss borja med det endimensionella fallet.

M &r en mingd, bestdende av ett andligt antal intervall pad en rit
linje, som vi kan antaga vara den reella talaxeln. Dessa intervall far
ha gemensamma punkter. Med /(M) betecknar vi totala lingden av de
delar av linjen, som &r tdckta av intervall i M. Vi vill visa, att man
alltid kan utvilja en distinkt delmimgd M' av M, sidan att

UM') z 3UM) .

Bevis: Lat I, I,, ..., I, beteckna de i M ingdende intervallen. Vi
kan antaga, att det i varje I, =1, ..., k, finns en punkt x, som inte
ligger i nagot annat intervall i M. Ty eljest kan vi ta bort ifrigavarande
intervall utan att foérindra I(M). Numreringen kan viljas sd att
Ty <Xy < ... <Xy

Vi indelar nu intervallmingden i tva klasser; den ena far innehalla
de intervall, som har udda index och den andra intervallen med jimna
index. Tva intervall i samma klass méste vara disjunkta, ty mellan dem
finns ju minst en punkt z,, som endast tillhor ett intervall ur den andra
klassen. Vardera klassen &r alltsd distinkt. Nagon av dem maste tydligen
ha en total lingd, som #r storre én eller lika med 4I(M), och &r darfor
av den stkta typen v.s. b.

Exemplet med tva lika langa intervall med en gemensam dndpunkt
visar att konstanten } icke kan forbattras.

Vi underséker nu motsvarande problem i planet, i vilket vi antar ett

[29]



30 GOTE NORDLANDER

riatvinkligt koordinatsystem givet. Intervallen I, liter vi motsvaras av
kvadrater K, med sidorna parallella med koordinataxlarna. I stillet for
U(M) betraktar vi y(M), dvs. totala ytan av de delar av planet, som &r
overtickta av kvadrater i M. Det finns dd en konstant »,, si att vi alltid
kan wtvilja en distinkt delmingd M' av M, sidan att

Y') 2 %y y(M) .

Vi kan némligen vilja »,=3-2= 4. Detta framgar av foljande konstruk-
tionsmetod for delméngden M':

L&t ¢, vara den storsta kvadraten i M (eller en av de storsta).

- e - - - - - -, sddan att méngden {c,, ¢,} dr di-
stinkt.

- e - - - - - -, sddan att mingden {c, c,, ¢;} 4r
distinkt,

ete.

Denna process méste upphora efter, 14t oss siga, N steg. Mingden
M'={c,}, v=1,2, ..., N, har den 6nskade egenskapen. Ty konstruera en
kvadrat C, med axelparallella sidor, tre gdnger s4 langa som ¢, :s, och med
samma medelpunkt som ¢,. Miangden {C,}, v=1, 2, ..., N, kallar vi H.
Pa grund av konstruktionen kommer hela den del av planet, som &ver-
tiacks av kvadrater i M, ocksa att 6vertickas av kvadrater i H. Hirav
fas W) 2 y(H) = y(M) v.s.b.

Det bésta virdet pa konstanten x, &r oként. En naturlig gissning &r
#y=2"2=}. For det speciella fall, d& alla kvadraterna i M férutsittas
lika stora, har Richard Rado! visat att detta dr det ritta virdet. Vi
skall hir ge ett nytt bevis for detta resultat.

Forst en omformulering. Vi kan tydligen antaga att kvadraternas
sida dr =1. Vi skall d& visa féljande

SaTs: Antag att den storsta distinkta delmingden M’, som kan utviljas
ur M, bestir av p kvadrater. Dd gdiller

y(M) £ 4p.

Bevis: Om linjen z=a skiir nagon eller nagra av kvadraterna i M,
s& kommer skirningarna att bilda en intervallmingd pa linjen, varvid
varje intervall dr utskuret av en viss kvadrat i M. Liksom tidigare
betecknas med I(a) totala lingden av de delar av linjen, som #r tickta
av dessa intervall. Sidtt d=2+¢, £>0, och

1 R. Rado: Some covering theorems, I. Proc. Lond. Math. Soc. (2) 51 (1950), pp. 232-264.
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L(a) = S’ol(a+vd)
= ... +la=2d)+l(a—d)+Ua)+Ua+d)+l(a+2d)+ ...,

dir summan givetvis existerar, eftersom endast ett dndligt antal termer
dr skilda fran noll.
Om funktionen L(a) géller

(1) L(a) < 2p forallaa.

Ty om L(a) > 2p f6r ndgot a, si kan vi ur méngden I av de intervall,
som utskirs av linjerna x=a+»d, v=0, +1, +2, ..., utvilja en distinkt
delméngd I’ bestdende av mer &n p intervall, enligt vad vi nyss visat.
Intervallen i I’ ir utskurna av vissa kvadrater i M. Men dessa kvadrater
maste vara parvis disjunkta, ty om tva kvadrater dr associerade med
intervall p4 samma parallell till y-axeln, sa dr de disjunkta, eftersom
intervallen #r det, och om de &r associerade med intervall pa olika
paralleller, si& kan de inte nad varandra, eftersom avstindet mellan
parallellerna #r storre én 2. Vi skulle alltsd ha en distinkt delméngd av
M, bestiende av mer dn p kvadrater, mot férutséttningen.

Det aterstar bara att konstatera, att

2+e
y) = \ Lwyda,
0

eftersom hela planet oversveps, nir vi forskjuter skaran av paralleller
2+e¢ i z-axelns riktning. Uppskattning av integralen medelst (1) ger

y(M) = (2+¢)-2p.
e — 0 ger
y(M) < 4p v.s. b.

Att konstanten ej kan forbittras framgér denna ging av exemplet
med fyra lika stora kvadrater med ett gemensamt horn.

Det #r tydligt att problemet och bevisforfarandet kan generaliseras
till den n-dimensionella euklidiska rymden. Vi finner da att »,=3—"
duger som konstant i det allménna fallet, medan x,=2-" &r det ritta
virdet, om kuberna i M #r lika stora.



BOKMELDINGER

R. A. BucriNeuAM : Numerical methods. Sir Isaac Pitman & Sons, Lon-
don, 1957. 124597 pp. sh. 70/-.

(Innholdsfortegnelse i NMT 5 (1957), s. 197.)

Boken avses vara en handbok i numeriska metoder for personer som
sysslar med olika slags beriikningar, déir riknesnurror kommer till an-
viindning. Man skulle kunna tro att detta #r ett passerat stadium i rikne-
konstens historia, nir man dagligen hor talas om de elektroniska rikne-
maskinernas prestationer. S& dr emellertid inte fallet, och denna bok &r
mycket vérdefull &ven for den som anvinder elektroniska maskiner for
l6sning av problemen, eftersom man alltid maste gora nagra handrik-
ningar for testning av rikneprogrammet.

Boken innehaller de flesta av de metoder som kommer till anvéndning
vid numeriska berikningar. Genomréknade exempel pa, varje metod okar
bokens virde.

I inledningskapitlet limnas allménna synpunkter pa handrikning, hur
olika slags rikningar utféres pa olika maskiner och hur riknescheman
utarbetas. I nagra foljande kapitel behandlas interpolation, dir forfatta-
ren dven medtagit ett kapitel om symboliska metoder, som &r effektiva
nir man vill hdrleda samband mellan olika interpolationsformler. Detta
kapitel innehéller dven Euler-MacLaurins summationsformler med till-
limpningar. Varje kapitel avslutas med &vningsuppgifter som nistan
alltid &r av typen »visa att ...« vilket medfor att svaren ar givna. I
regel hiirledes de olika formlerna, men vissa generaliseringar limnas utan
bevis, men hénvisningar gors i siadana fall till olika lirobscker. I manga
fall anges &ven metodernas begrinsningar. Det klassiska exemplet pa
Lagranges interpolationsformel &r medtaget, men man saknar en mera
uttommande diskussion om Newton-Raphsons metod. Ingenting néimns
om den periodicitet, som litt kan uppsta vid tillimpningar av metoden
och ingenting om anvindningen av metoder vid funktioner med kom-
plext argument.

I kapitlet om losning av ordiniira differentialekvationer saknas givet-
vis Runge-Kuttas metod, eftersom den inte kan konkurrera med andra
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handmetoder, men som i regel dr den enda tdnkbara vid losning av
differentialekvationer p& automatiska riknemaskiner.

Minsta kvadratmetoden genomgas fore kapitlet om matrisrakning, vil-
ket medfor att forfattaren ej anvinder matrissymbolik vid uppstéllning
av normalekvationer och beréikning av medelfel. Framstéllningen &r dér-
for en djungel av index, vilket dr skada, eftersom minsta kvadratmeto-
den har stort anvindningsomrade. I detta kapitel behandlas &ven orto-
gonala funktioner och deras anvindning. Losning av linjira ekvations-
system behandlas utforligt, bade direkta och indirekta metoder genomgas.
Egenvirdesproblem behandlas ritt utforligt, dock utan att Jacobis metod
omnimnes. Numerisk losning av randvirdesproblem vid ordinéra och
partiella differentialekvationer formuleras med matrisalgebra, vilket gor
framstéillningen klar och overskadlig. Paraboliska och hyperboliska
ekvationer behandlas mycket flyktigt.

Boken kan rekommenderas till alla dem som sysslar med numeriska
rikningar. Ett stort antal referenser (huvudsakligen till engelsksprakig
litteratur) ges for mera ingdende studium i olika delar av dmnet.

Olle Karlquist

E. B. Dy~xgiN — W. A. UspeENSKI: Mathematische Unterhaltungen, I1.
Aufgaben aus der Zahlentheorie. Ubersetzung aus dem Russischen. (Kleine
Erginzungsreihe zu den Hochschulbiichern fir Mathematik, 14.) Deut-
scher Verlag der Wissenschaften, Berlin, 1956. 9+4-134 8., 32 Fig. DM 6.10.

(Innholdsfortegnelse i NMT 5 (1957), s. 150.)

Den foreliggende lille bog er et veludfert eksempel pa anvendelse af
den sokratiske metode. Indholdet bestar af 129 opgaver, fordelt i en ret
bred tekst, som leder leeseren ind i de tankebaner der skal folges. Bogen
vil veere verdifuld for den leser, som gennemregner opgaverne; men det
er ikke en bog han bagefter vil benytte som opslagsbog, dertil er det for
besveerligt at blade frem og tilbage mellem opgaver og lgsninger, som
begge kun forstds ved at lese en lengere sammenhaeng. Bogens aktive-
rende formal fremgar ogsd af, at setninger og resultater ikke presses til
stor almindelighed, i stedet bibringer den leseren en fornemmelse af, at
der mé ligge endnu mere bagved, som det kunne veere interessant at fa
opklaret.

Man ma ikke af titlen lade sig forlede til at tro, at det er en alsidig
talteoretisk bog; den behandler kun visse specielle emner, som det vil
fremgé af folgende indholdsoversigt:

Forste kapitel benytter som udgangspunkt, at regning med restklasser
modulo 10 kendes som erfaringsresultater for slutcifrene i de hele tal som

NMT. Hefte 1, 1958. — 3
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indgar i et regnestykke. Det generaliseres til regning med restklasser med
vilkérlig modul, og Fermats og Wilsons smtninger fis let og ubesvzret.

Kapitel IT omhandler m-adiske tal og p-adiske tal. Disse indfores og
anskueliggores ved felgende betragtning: ved subtraktionsstykker be-
stemmer man cifrene i facit sukcessivt, begyndende fra hgjre side, og
ved divisionsstykker, hvor man ved, at divisionen gir op, kan man be-
nytte den samme metode, safremt divisors sidste ciffer er 1, 3, 7 eller 9.
Hvis man anvender denne metode i tilfelde, hvor regnestykket ikke pa
forhdnd er muligt, fremkommer en uendelig cifferfglge, et dekadisk (10-
adisk) tal. Samlingen af disse tal udger et regneomrade, f. eks. kan man
(bdde for endelige og uendelige cifferfolger) ogsa ved multiplikation og
kvadratrodsuddragning bestemme facits cifre sukcessivt, begyndende
fra hgjre side. Tallene minder altsd om uendelige decimalbrgker, blot er
de uendelige p& venstre side af decimalkommaet og ikke pa hgjre side.
Betragter man p-adiske tal, hvor p er et primtal, undgar man forbehold
af den ovenn®vnte art med hensyn til divisors slutciffer, og regneomradet
bliver helt velafrundet.

I bogens to afsluttende kapitler anvendes disse begreber s& ved mere
indgdende betragtninger over binomialkoefficienter (disse indfert uden
kombinatorik, blot som de tal der fremkommer i en Pascal’sk trekant)
og over Fibonaccis talfelge 1, 1, 2, 3, 5, ... (hvori hvert tal er summen af
de to foregdende).

Bogen er udmerket anvendelig for skoleelever, som blot har mellem-
skoleeksamen. Den er indbydende at gi i gang med, dels pé grund af
den omtalte nere tilknytning til regneteknik, og dels p4 grund af de
mange grafiske fremstillinger af restklassecykler og af Pascals trekant

med indlagte skralinier og smatrekanter o. s. v.
Thoger Bang

E. B. DynriN — W. A. Uspenski: Mathematische U- nterhaltungen, I11.
Aufgaben aus der Wahrscheinlichkeitsrechnung. Ubersetzung aus dem Rus-
sischen. (Kleine Ergéinzungsreihe zu den Hochschulbiichern fiir Mathe-
matik, 15.) Deutscher Verlag der Wissenschaften, Berlin, 1956. 7-1-84 S.,
32 Fig. DM 4.10.

(Innholdsfortegnelse i NMT 5 (1957), s. 151.)

Efter en kort indforelse i den klassiske definition af begrebet sandsyn-
lighed efterfulgt af en opstilling af sandsynlighedsregningens additions-
og multiplikationssetninger for et endeligt antal heendelser beskaftiger
bogen sig udelukkende med problemer inden for teorien om diskrete Mar-
koff-kaeder, hvorved, maske lidt pretentiost udtrykt, forstds problemer
om tilstandsfordelingen af en samling partikler, hvis bevaegelser er under-
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kastet tilfzeldighedens love (random walk), saledes at forst4, at fordelingen
i udgangsgjeblikket er kendt, ligesom overgangssandsynlighederne fra en
tilstand til en anden (inden for en vis tid) er kendte. Man sgger heraf op-
lysninger om fordelingen til et senere tidspunkt (eller maske endog for-
delingen i den sakaldte statistiske ligevaegt). Da selve de teoretiske dele
af fremstillingen er ganske korte, medens hovedveegten er lagt pa ind-
forelse i den nodvendige teori gennem opgavelgsning, mé man paskenne,
at det, trods det begrensede emne, er lykkedes forfatterne at finde s
mange (p& visse punkter dog lidt ensartede) opgaver.

Bogen er fremkommet p& grundlag af et kursus, der skulle inspirere
gymnasieelever til aktiv medleven inden for et mere beskedent matematisk
omréde uden for det egentlige obligatoriske stof. Det skal tilfgjes, at
interesserede elever i vore nordiske gymnasier ogsa vil kunne f& glede
af denne lille bog til selvstudium. Kai Rander Buch

G. GroscHE: Projektive Geometrie, I, I1. (Mathematisch-naturwissen-
schaftliche Bibliothek 7, 8.) B. G. Teubner Verlagsgesellschaft, Leipzig,
1957. Bd. I: 6+204 S., 45 Fig. Geb. DM 10.20. Bd. IT: 196 S., 46 Fig.
Geb. DM 9.10.

(Innholdsfortegnelse i NMT 5 (1957), s. 110, 152.)

Den projektiva geometrien ér ett ur flera synpunkter trevligt omrade
av matematiken: den innehaller ménga vackra satser, den har sina rotter
i sammanhang som livligt viidjar till 4skadningen, den fordrar atskilligt
av formaga till abstraktion och abstrakt tinkande.

Foreliggande lirobok i &mnet har atskilliga fortjinster. Den &r ambi-
tiost och rejilt skriven. Den for ldsaren i varlig takt fran de forsta enkla
grunderna till teoriens mera avancerade delar. De analytiska motsvarig-
heterna till de rent geometriska resonemangen fignas tillborlig uppmirk-
samhet. Figurerna &r pa ett skickligt sitt enkelt gjorda. Korrekturlis-
ningen &r bra.

Recensenten vill ockss komma med ett par kritiska papekanden. Slarv
eller forbiseenden forekommer pa nagra stillen. Storre skérpa vid formu-
lerandet av definitioner hade hir och var varit énskvird ; nu far lisaren
en del onodigt besvir med att komma underfund med vad forfattaren
avser. Ett typiskt exempel hiirpa #r forfattarens anviindningar av stric-
kors riktning och vinklars tecken. Ny rad borjar alltid lingst till viinster
pé sidan. Arbetet hade fortjéinat att tryckas pa bittre papper.

Erforderliga forkunskaper &r sma. Forfattaren forutsitter nagot matris-
rikning bekant (skandinaviska lisare kan limpligen himta detta stoff
ur Andersen-Bohr-Petersen, Leerebog i matematisk Analyse, I, Koben-
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havn 1945). Vidare dr det nyttigt men ej nodvindigt att kunna nagot
gruppteori (se t. ex. kap. 8 i Lass, Elements of pure and applied mathe-

matics, McGraw-Hill Book Co., New York 1957).
Arne Broman

JosErH E. HOFMANN: Geschichte der Mathematik. Zweiter Teil: Von
Fermat und Descartes bis zur Erfindung des Calculus und bis zum Aus-
bau der neuen Methoden. 109 S. Dritter Teil: Von den Auseinandersetzun-
gen um den Calculus bis zur Franzosischen Revolution. 107 S. (Sammlung
Goschen 875 und 882.) Walter de Gruyter & Co., Berlin, 1957. Je DM
2.40.

(Innholdsfortegnelse i NMT 5 (1957), s. 152.)

Da jeg anmeldte Hofmanns forste bind av denne serien i NMT 2 (1954),
sluttet jeg med & si: »Det kan ikke unngses at man under lesningen ofte
tenker: gid forfatteren hadde hatt sterre plass til sin radighet, s& han
hadde kunnet gjore fremstillingen mindre summarisk.«

Dette gnske blir om mulig enna mere levende ved lesningen av disse to
nye smé bindene. Da Hofmann ogséd medtar i sin fremstilling mindre
beromte matematikere — hva i og for seg kan vere interessant nok —
kan det ikke unngées at han ofte mé ty til telegramstil. Som et eksempel
pa at en sterkt forkortet tekst kan virke uheldig anforer jeg de linjer hvor
Newton introduseres: »Newton (1643—1727) ist der technisch interessierte,
jedoch fiir die landwirtschaftliche Betéitigung, zu der er urspriinglich be-
stimmt war, vollig ungeeignete nachgeborene Sohn eines Gutspichters
aus Lincolnshire.« Men man ma beundre den rikdom pé interessante opp-
lysninger som det har lyktes Hofmann & presse inn i disse to sma bin-
dene. Det krever for gvrig ganske store forkunnskaper & fglge hans frem-
stilling. Her har Zeuthens fremstilling i hans »Mathematikens Historie«
en stor fordel, da den kan leses med betydelig storre utbytte ogsa av dem
som har fa forkunnskaper. Men sa har jo Zeuthen hatt langt sterre plass
til sin radighet!

Man mé héape at disse bindene, som hgrer til den populere Sammlung
Goschen, vil gke interessen for matematikkens historie i vide kretser.
Mange matematikk-interesserte har ofte forbausende liten kjennskap til
fagets historie. Nar det gjelder en s& gammel vitenskap som matematik-
ken mé dette regnes som en meget stor mangel. Sveert mange problemer
som vare forfedre har behandlet ma ofte oppfattes som bare halvveis
loste, da de simpelthen er gatt i glemmeboken, kvalt av nye moteret-
ninger. .

Viggo Brun
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C. HYLriN-CAVALLIUS — L. SANDGREN: Matematisk analys (for ny-
borjarstadiet vid universitet och hogskolor). Lunds studentkérs intresse-
byra, Lund, 1956. 164467 s. Sv. kr. 55.00, vid rekvisition direkt fran
Lunds studentkérs intressebyra sv. kr. 41.50.

(Innholdsfortegnelse i NMT 4 (1956), s. 217.)

Denna bok #r avsedd att anvindas som forsta lirobok vid svenska
universitet och hogskolor. Dess innehall ticker teorin for funktioner av
en variabel sdsom teorin for derivator och integraler samt de enklare sat-
serna om serier. Dessutom finns grunddragen for de komplexa talen och
delbarhetsegenskaperna hos hela tal och polynom.

Boken #r genomgaende mycket grundligt skriven. Den innehéller ett
stort antal exempel, sivil sddana som &r genomriknade av forfattarna
som sédana som limnas som 6vning &t lisaren. Den dr utmérkt laimpad
som kursbok men torde #dven med fordel kunna anvindas av den som
onskar lisa in kursen pa egen hand.

Vad som skiljer denna bok fran det stora flertalet av det otal bocker
pa olika sprak som técker analysens grunder dr det moderna greppet pa
dmnet. Genom mycket stringa definitioner inféres de olika begreppen
och hiirigenom erhalles att grunderna blir stabilare &n vad som &r brukligt
i bocker avsedda for detta stadium. Denna stréinghet fullféljes sedan i
bevisen for satserna.

Denna noggrannhet och den omsorgsfullhet med vilken boken &r
skriven gor den mycket intressant. Att den ér verkligt virdefull for den
unge matematikstuderande som har fallenhet for &mnet forefaller uppen-
bart. Det maste vara virdefullt vid fortsatta studier att ha grunderna
ordentligt avklarade.

Vad som diremot kan diskuteras ér vilken verkan en bok av denna typ
kan ha pa de nagot mindre begivade studenterna. Om som hir stor vikt
ligges vid den logiska strukturen, blir géirna det rent riknemdissiga och
formelmissiga kunnandet lidande. Detta ér givetvis frin matematikerns
synpunkt knappast av ondo; riknefirdigheter som ej innebér full for-
stéelse ir av tvivelaktigt virde. Men de som studera matematiken huvud-
sakligen for att tillimpa den &r kanske av annan asikt. For dem synes
det riknemissiga vara av storre betydelse. Hir ar asikterna delade. Men
den moderna utvecklingen av matematiken synes ga mot allt storre
stringens. Detta har kanske sin forklaring i att ju abstraktare matemati-
ken blir och ju mer den avligsnar sig fran askadningen desto storre ér
faran for felslut om grunderna inte &r ordentligt lagda. Denna abstrak-
tion synes #ven vara pa vig in i tillimpningarna, s& det &r mojligt att
man fran tillimpat hall mer och mer far forstaelse for kravet pé stringens.
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Vilken asikt man &n har i denna fraga kan man med dylika argument
inte kritisera sjilva boken utan mojligen dess anvindbarhet. Matematik-
undervisningen i Sverige har linge lidit av att négon ldmplig lirobok pa
detta omrade saknats. Det &r dirfor med stor tillfredsstillelse anmélaren

hilsar denna bok.
Olof Hanmner

I. M. Jacrom — W. G. Borrsanskr: Konvexe Figuren. Ubersetzung
aus dem Russischen. (Hochschulbiicher fiir Mathematik 24.) Deutscher
Verlag der Wissenschaften, Berlin, 1956. 16+257 8., 318 Fig. DM 15.00.

(Innholdsfortegnelse i NMT 5 (1957), s. 153.)

»Das Buch ist fiir Schiiler der hoheren Klassen an Oberschulen, fiir
Studenten der Anfangssemester an Universititen und Padagogischen
Hochschulen sowie fiir alle Freunde der Mathematik bestimmt« hedder
det i forfatternes forord. Emnet, konvekse figurer i planen, egner sig i
seerlig grad til en bog med et sidant sigte, fordi man med ganske elemen-
teere hjzlpemidler ret hurtigt kan na frem til meget forskelligartede,
interessante og ofte overraskende resultater vedrgrende sidanne figurer.
Forfatterne giver imidlertid ikke en egentlig lerebogsagtig fremstilling af
omradet, men snarere en vejledning til at treenge ind i det ved eget ar-
bejde. Omtrent som i Pélya’s og Szegt’s velkendte »Aufgaben und Lehr-
sitze aus der Analysis« er stoffet delt op i opgaver, hvis formuleringer
sammen med de nedvendige definitioner, en del forklarende bemserk-
ninger og henvisninger til generalisationer og til litteratur udger omtrent
bogens ferste halvdel, medens de udferligt fremstillede losninger er sam-
let i anden halvdel. Hvert afsnit begynder med lette, tildels forberedende
ovelser og ender som regel med ret dybt liggende swtninger, hvis beviser
endda erfarne matematikere (ogss med den hjeelp, som foregiende op-
gaver ofte giver) vil have sveart ved at hitte pé. I sadanne tilfzelde bliver
leseren dog advaret ved dobbeltstjerner; i det hele taget leegger forfat-
terne ikke skjul pa, at der er ret mange opgaver, der mé forventes at volde
vanskeligheder. Bogen indledes med en kort anvisning i dens brug, og
der gives laeseren bl. a. det rad ikke at laese en opgaves lgsning, for den er
lost selvstaendigt eller der er gjort flere forgzeves forseg, siledes at der er
opniet klarhed over de vanskeligheder, som det geelder at overvinde. Det
er klart, at dette vil give det storste udbytte. Det bor dog fremheves, at
bogen udmserket godt kan leses pa sedvanlig vis ved efter de enkelte
opgaver straks at indskyde deres lgsninger.

Af de otte paragraffer handler den forste om de grundleggende begre-
ber, relationer mellem konveksitetens forskellige definitioner, stgttelinier
0.1. Opgaverne er her lette, men giver allerede lejlighed til at gore sig
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fortrolig med nogle for omrédet s@regne reesonnementer. En kendt seet-
ning af Helly: »Hvis det for en samling af begransede konvekse figurer i
planen gzelder, at hvilke som helst tre af dem har et punkt feelles, da findes
et punkt, som er indeholdt i dem alle« og en del morsomme anvendelser
af den er emnet for § 2. I § 3 er samlet s@tninger, som kan bevises ved
hjelp af en kontinuitetsbetragtning, nermere betegnet setningen om, at
en kontinuert funktion, der antager to forskellige veerdier, ogsd antager
enhver mellemveerdi. Som et simpelt eksempel kan nzvnes: enhver be-
graenset konveks figur har et omskrevet kvadrat. § 4 handler om »addi-
tion« af konvekse figurer, et begreb der spiller en fundamental rolle i den
videregaende teori. Opgaverne vedrgrer ikke s& meget anvendelserne som
egenskaber ved selve begrebet, og dette afsnit vil derfor méske interessere
begyndere i mindre grad end de andre. Med simple elementaergeometriske
ekstremumsopgaver som udgangspunkt fores leseren i § 5 frem til det
isoperimetriske problem i planen. Et udvalg af de mange andre interes-
sante ekstremumsproblemer, der knytter sig til konvekse figurer, formu-
leres i § 6. Kurver med konstant bredde, ikke-cirkelformede kurver, der
kan drejes i en ligesidet trekant, séledes at alle sider stadig bereres, og
besleegtede kurvefamilier behandles i de to sidste paragraffer.

Benyttelse af bogen efter forfatternes hensigt kreever som naevnt en
betydelig arbejdsindsats. Men der er n@ppe tvivl om, at alle geometrisk
interesserede, der f.eks. behersker hovedtrakkene i gymnasiets mate-
matikpensum, altsi naturligvis matematikstuderende og vel ogsd de
dygtigste gymnasieelever, pa den ene eller anden made vil kunne {4 et
rigt udbytte af store dele af bogen. Specielt vil matematiklerere her
kunne hente materiale til underholdende og inspirerende digressioner fra
den foreskrevne vej. Der kommer séledes en meget stor kreds af lesere i
betragtning, og bogen kan varmt anbefales.

Af hensyn til de, forhabentlig, mange lesere, der ikke har forkund-
skaber pa omradet, er det vist ikke overfledigt at nzvne et par, omend
ikke veesentlige, s& dog beklagelige mangler. Det ville vaere fuldtud for-
svarligt i en bog som denne slet ikke at berore historiske spergsmal og
ikke at nzevne de mange setningers ophavsmend. Dette er ogsé sket for
de fleste opgavers vedkommende; en ikke ringe del af dem er imidlertid
ben@vnt »Satz von N. N.«. Efter anmelderens skon drejer det sig dels om
sadanne, hvor den pagzldende benwvnelse er traditionel, dels om nyere
resultater, for hvis oprindelse der ikke er gjort rede i de videregiende
sammenfattende fremstillinger af de konvekse figurers teori. En med disse
ikke kendt leeser mé da fa et temmelig skevt billede af den historiske side
af sagen. Eksempelvis kan nevnes, at af omradets pionerer H. Brunn og
H. Minkowski er den forste slet ikke nevnt og den anden kun i en lille
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henvisning til en videregiende saetning. Sma historiske indledninger til de
enkelte afsnit kunne have genoprettet balancen. — I den russiske origi-
naludgave henvises for videregdende studier naturligvis forst og fremmest
til den pé russisk tilgeengelige litteratur. I den foreliggende tyske udgave
er der tilfgjet en del henvisninger til tyske arbejder. Enkelte steder savner

man imidlertid et sddant supplement.
W. Fenchel

Harry Lass: Elements of pure and applied mathematics. (International
series in pure and applied mathematics.) McGraw-Hill Book Co., New
York, Toronto, London, 1957. 114491 pp. sh. 58/6.

(Innholdsfortegnelse i NMT 5 (1957), s. 45.)

Den hir boken tycks vara avsedd i forsta hand att ge matematisk bak-
grund till arbete i fysik och teknologi. Men den har ett brett register och
ar virdefull lisning ocksd for den som arbetar inom andra omraden dir
matematiken tillimpas och for den som undervisar i matematik pa
skilda universitetsstadier. Lésaren forutsittes ha ungefiir ett ars univer-
sitetsstudier i matematik bakom sig. Boken ger i nio kapitel om samman-
lagt 370 sidor elementen av olika matematiska teorier med tillimpningar,
medan det tionde kapitlet pa ungefiir ett hundra sidor ger en stringent
bakgrund till mycket av det som behandlats tidigare. Upplidggningen r
i sammanhanget utmérkt.

L&t oss borja en mera detaljerad granskning med det sista kapitlet.
Dess omfang kan nirmast anges som knapp svensk tvabetygskurs i mate-
matisk analys. Det inledes med inforandet av de reella talen och med
topologi pa réita linjen, allt i en charmant framstéllning. Naturligtvis kan
inte allt behandlas med avsikt att na fullstindighet och stringens och i
de foljande avsnitten forekommer ibland vaga och nigon ging rent
olyckliga formuleringar. Boken har massor av virdefulla exempel samt
ovningar. I det tionde kapitlet blir t. ex. avsnittet om grinsovergingar
vid integraler mycket instruktivt belyst. En stor fortjinst hos boken ir,
att matematikens foérhallande till naturvetenskaperna diskuteras. Det
sker framst i det sista kapitlet och vid behandlingen av sannolikhetsteori.
Matematisk sanning har inte i sig med fysisk sanning att gora. Antagligen
ir existensen av olika integralbegrepp en god illustration till denna mate-
matikens sjélvstandighet. Boken avslutas ocks& med korta och triaffande
skisser av Riemannintegralens ofullkomligheter och inforandet av Lebes-
gueintegralen.

De nio forsta kapitlen utgor forstas bokens huvuddel. Storst utrymme
dgnas at analytiska funktioner och differentialekvationer. De forra be-
handlas efter klassiska linjer. Av de senare behandlas niistan bara ordi-
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nira ekvationer, och framstéllningen omfattar ekvationer med reella och
med komplexa variabler. I nagra viktiga fall ges existenssatser. Sanno-
likhetsteori och statistik behandlas i ett kapitel om trettiosex sidor, dér
ocksa en elementir illustration till spelteorien ges. Kapitlet ar ett ut-
mirkt exempel pa forfattarens forméga att med fa ord séga visentlig-
heter, och pa ett fattbart sidtt. Nagon géng har man en inviindning att
gora i nagon detalj. S4 4r inforandet av vektorer forenklat till inkorrekt-
het. Det giller sirskilt den abstrakta n-dimensionella vektorrymden.

I en kort anmilan som denna blir det inte plats till sérskilda kommen-
tarer till varje kapitel. Det borde kanske ha framhivts att ett kapitel
om gruppteori och algebraiska ekvationer ingar. For ovrigt kan jag nog
hénvisa till innehallsforteckningen. Jag hoppas att av det sagda framgér
att detta ar en bok som man girna vill rekommendera. Den trevliga och
lagom kompakta typografien forhojer trevnaden vid lasningen.

Gunnar Bergendal

MOTTATTE BUKER

H. G. Eggleston: Problems in Euclidean space. Application of convexity.
(Series in pure and applied mathematics 5.) Pergamon Press, London,
New York, Paris, Los Angeles, 1957. 8165 pp., 31 fig. sh. 40/-.

Problems in which convexity is used either by analogy or in subsidiary arguments
4-76 * Problems which can be reduced to problems on convex sets 77-92 * Problems

on convex sets 93-129 * Problems concerned with the structure of subclasses of
the class of convex sets 130-165.

Carl-Erik Froberg — Hans Wilhelmsson: T'able of the function F(a, b) =
(o (@)(@*+b*) Fdo. (Lund University, Dept. of Numerical Analysis.
Table No. 3.) CWK Gleerup, Lund, 1957. 18 s. Sv. kr. 1.00.

The function of the title is tabulated to 6 decimal places for

a, b = 0(0.1)2(0.2)10 .

R. Kochendorffer: Determinanten wund Matrizen. (Mathematisch-na-
turwissenschaftliche Bibliothek 12.) B. G. Teubner Verlagsgesellschaft,
Leipzig, 1957. 6144 S. DM 6.60.

Vorbereitungen 1-10 * Determinanten 10-15 * Die wichtigsten Eigenschaften
der Determinanten 16-36 * Matrizen 36-47 * Vektorrdume. Der Rang einer Matrix
48-70 * Lineare Gleichungen 70-87 * Hermitesche und quadratische Formen 87—
102 * Weiteres iiber Determinanten und Matrizen 102-122 * Ahnlichkeit 123-144.
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Solomon Lefschetz: Differential equations: Geometric theory. (Inter-
science tracts in pure and applied mathematics 6.) Interscience Publ.,
New York, London, 1957. 104364 pp. $ 9.50.

Preliminary questions 1-28 * Existence theorems. General properties of the solu-
tions 29-54 * Linear systems 55-75 * Stability 76-85 * The differential equation

d
—dit: = Px+ q(x;?) (P a constant matrix; ¢(0;¢) = 0) 86-130 * The differential equation

%:P(t)w—}-q(w ;t) (P(t) a variable matrix; ¢(0;£)=0) 131-143 * Periodic systems
and their stability 144-169 * Two dimensional systems, simple critical points. The
index. Behaviour at infinity 170-197 * Two dimensional systems (continued) 198-245
* Differential equations of the second order 246-289 * Oscillations in systems of the
second order. Methods of approximation 290-324 * Appendix I. Complement on
matrices 325-334 * Appendix II. Some topological complements 335-347 % Pro-
blems 348-350 * Bibliography 351-359 * List of principal symbols 360 * Index 361-
364.

Herbert Lugowski — Hans Joachim Weinert: Allgemeine Gruppen-
theorie, I. (Mathematisch-naturwissenschaftliche Bibliothek 9). B. G.
Teubner Verlagsgesellschaft, Leipzig, 1957. 44234 S., 15 Fig. DM 10.00.

Grundbegriffe der Gruppentheorie 5-79 * Permutations- und Transformations-
gruppen 80-126 * Homomorphe Abbildungen 127-170 * Einige wichtige Struktur-
aussagen iiber Gruppen 171-194 * Losungen der Aufgaben 195-222 * Anhang
223-230 * Verzeichnis einiger Lehrbiicher 231 * Sachverzeichnis 232-234.

Fumitomo Maeda: Kontinuierliche Geometrien. Ubersetzung aus dem
Japanischen. (Grundlehren der mathematischen Wissenschaften 95.)
Springer-Verlag, Berlin, Gottingen, Heidelberg, 1958. 104244 S., 12 Fig.
DM 36.00, Ganzl. DM 39.00.

Grundbegriffe der Verbandstheorie 1-53 * Allgemeine Eigenschaften modularer
Verbénde 53-70 * Projektive Réume 70-87 * Die wesentlichsten Eigenschaften
stetiger komplementdrer modularer Verbénde 87-104 * Die Dimensionsfunktion
eines stetigen komplementdren modularen Verbandes und seine Darstellung als
subdirektes Produkt 104-131 * Regulére Ringe 131-156 * Stetige regulidre Ringe
156-167 * Der normierte Rahmen eines komplementéren modularen Verbandes
168-178 * Der Matrizenring 178-197 * Der Hilfsring eines komplementéiren modula-
ren Verbandes 197-209 * Die Darstellung eines komplementéren modularen Ver-
bandes 209-226 * Die Darstellung eines orthokomplementéren modularen Verban-
des 226-235 * Anhang 235-239 * Literaturverzeichnis 240-241 * Sachverzeichnis
242-244.

Fritz Rehbock: Darstellende Geometrie. (Grundlehren der mathemati-
schen Wissenschaften 92.) Springer-Verlag, Berlin, Gottingen, Heidel-
berg, 1957. 154232 S., 110 Fig. DM 23.00, Ganzl. DM 26.80.
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Einleitung: Grundbegriffe 2-3 * Teil I. Fernbilder: Anschauliche Bilder 6-32 *
Zugeordnete Risse 34-56 * Anschauliche Risse 58-82 * Einfache Flichen 84-106 *
Durchdringungen 108-130 * Teil IL. Zentralbilder : Distanzpunktperspektive 134-158
* Messpunktperspektive 162-190 * Gebundene Perspektive 192-222 * Literaturaus-
wahl 224 * Sach- und Namenverzeichnis 225-232.

Edward S. Smith — Meyer Salkover — Howard K. Justice: Calculus.
2nd edition. John Wiley & Sons, New York, 1958. 134520 pp., 257 fig.
$ 6.50.

Variables, functions, and limits 1-8 * Differentiation and applications 942 *
Integration and applications 43—79 * Differentiation of algebraic functions 80-94 *
Differentiation of transcendental functions 95125 * Further applications of deriva-
tives 126-165 * Plane curves; rectangular coordinates 166—181 * Integration 182—
207 * Methods of integration 208—226 * Further applications of integration 227—-266
* Approximate integration 267-272 * Limits; ’Hospital’s rule 273-281 * Infinite
series 282-307 * Expansion of functions 308-329 * Hyperbolic functions 330348 *
Solid analytic geometry 349-364 * Partial differentiation 365-397 * Multiple inte-
grals 398-433 x Differential equations 434-460 * Table of integrals 461-468 *
Formulas for reference 469-472 * Tables 473-487 * Answers to odd-numbered
problems 489-509 * Index 511-520.

Karl Zeller: Theorie der Limitierungsverfahren. (Ergebnisse der Mathe-
matik, neue Folge, 15.) Springer-Verlag, Berlin, Gottingen, Heidelberg,
1958. 8242 S. DM 36.80.

Grundbegriffe der Limitierung 2-19 * Hilfsmittel aus der Funktionalanalysis
19-37 * Struktur von Wirkfeldern 37-55 * Direkte Sitze 55-73 * Umkehrsitze 73—
99 * Verfahren von Cesaro-Abel-Typ 99-125 * Verfahren funktionentheoretischer
Typs 125-147 * Weitere Verfahren und Klassen 147-166 * Literaturverzeichnis
167-230 * Sachverzeichnis 231-234 * Verzeichnis der Verfahren 235-236 * Ver-
zeichnis der Sétze 237-240 * Bezeichnungen 241-242.



OPPGAVER TIL LYSNING

Losninger av oppgavene 137-140 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lgsninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste
lesning av hver oppgave. Lesninger av oppgaver i dette hefte ma vewere sendt
innen 10. mai 1958.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen losning.

Oppgave 134 (Bind 5, hefte 4) inneholdt en feil. Istedenfor denne stilles nedenfor
oppg. 137, som inneholder den korrigerte 134 som spesialtilfelle.

137. Bevis formelen

W. Ljunggren

138. Bestem alle losninger i hele rasjonale tall « og y av den ubestemte
likning
6t — 422+ 1 = 32 .
W. Ljunggren

139. Lat p vara ett primtal. Bevisa kongruensen

(3)-[3] min

140. La d,, vere determinanten

Bernt Lindstrom

[44]
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1 1 1

2 3 n+l

1 1 1
do=| 3 4 n+2 |,

1 1

n+171,1_2"' 2n

der n er et naturlig tall. Vis at
_ r n\ (n+k
t=1 k() (")

LOSNINGER

R. Tambs Lyche

129. Lad p vere et primtal af formen 4n+ 3. Vis da, at
- -1
Il @+y?) = +1 (modp),
z=1 y=1
og angiv en simpel regel til bestemmelse af fortegnet pa hejre side.
C. V. Jensen

—1\2
Losning: Idet 12,22, ..., (p—z—) er innbyrdes inkongruente mod p,

og hvert av dem tilfredsstiller =1 (mod p), blir

$@-D
JI (—x—i%) = (—2)}@ P -1 (mod p).
i=1

Innsettes p=4n+3, x=F?, fas

p-D
—JI 2+ = —kp1—1 = ~2 (mod p),
im1

hvorav
-1 3@-D

BT [T (#+) = 29 (mod p).

i=1 k=1
Da altsd R2=2r-1=1, mi R= +1 (mod p). Er 2 kvadratisk rest mod p
blir R= +1, ellers = — 1. Det er velkjent at i forste tilfelle er p=1 eller
7, i annet p=3 eller 5 (mod 8).
- - Helge Twerberg

Ogss lost av L. Carlitz, K. V. Rask, Rolv Rasmussen, Hans Riesel og Asmus
L. Schmidt.
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130. La n veere et naturlig tall og u(n) det sterste oddetall (ulike tall)
som gir opp i n. Rekken
X Ccosnmy

f@) =23

n—1 1 u(n)

konvergerer absolutt og uniformt for alle . Vis at S () er en kontinuerlig
funksjon som ikke i noe intervall har begrenset variasjon.

R. Tambs Lyche
Losning: Er n=2"(2u+1), blir u(n)=2u+1, og

cosnzr  cos{2"(2u + 1)nx}

new(n)  2uil | T
[} n—1
P, = g; Py, u> fn(x) = %: (2% f(x) = ]imfn(x) .

En slik omordning av leddene er tillatt da jamfering med rekken f(0),
som konvergerer mot 72/4, viser at rekken f(z) konvergerer absolutt. Da,
det samme viser at den konvergerer uniformt for alle z, er f(x) konti-
nuerlig nar alle ¢, , er kontinuerlige funksjoner av 2.

La I(n) vere et vilkarlig intervall ((i— 1)/2m=1, 4[2n-1)y Da ¢/ =
(=1)yn2/4 i I(v+1), er ogss f.(x) konstant i I (n), og da f(x)—f,(x) er
periodisk med perioden 1/27-1, er variasjonen av 2741 ekvidistante
ordinater f(0), ..., f(2) lik variasjonen v(f,) av f,(z) i [0, 2]. Er I(n, k)

2
et I(n) der f,:(x)=% (n—2k), vil hvert I(n, k—1) og hvert I(n, k) inne-
holde et I(n+1, k), slik at antallet av I(n, k)1i[o0,2] er (Z) for alle n.
Da blir

) =5 s S (7).

-1
2"

eller jamfort med oppg. 131,
n [(2n g ——
ofon) = o(fanms) = 22 ( n) > at)n—%,

som viser at f(x) har ubegrenset variasjon i [0, 2].

Et vilkarlig intervall av lengden 2, der I (r)Se<I(r—1), ma alltid
inneholde minst ett 7(2r, r). Her er altsa Jer() konstant, slik at f(z) har
et diagram som i dette intervallet er likedannet med diagrammet i
<0, 2) i forholdet 1/227, Dermed varierer f () ubegrenset i ethvert intervall.

H. Killingbergtro

Ogsé lest av C. V. Jensen, Bernt Lindstrom og Rolv Rasmussen.
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131. Vis at
é]gmﬂ_zmm ("’;‘) —2 [31212} ({Z_;])—(nju 1).

R. Tambs Lyche

Losning: Vi sitta ¢ +j=Fk och utnyttja likheterna
(n—i <n+1—i ( n—1 ) hn+1—2k(n+1) (n ( n

= —_ [e]¢] _ .
n—k) n—k-l—l) n—k+1 n+1 k k) k—l)

Alltsa

g: J::ln+l—— (@ +7)] (nﬂ ) ézzl:)' |n+1—2k| (Z:Z)
ﬁ]_.
- D12 (1) - 2,:; ](n+1—2k) ("3 -+

n n+1

~ o+ 1)([%1]) —(n+1) = 2[”—;2} ({n_—;_{}) —(n+1).

Bernt Lindstrom
Ogsa lgst av L. Carlitz og H. Killingbergtro.

132. Bevis formelen

2n—1 3
(—1)
i=20' : 2n i=1
C+1){
? W. Ljunggren
Lgsning: Sett
n 1 n—1 ( - 1)i
= (2n+1 — =M
( )g(n+z)2 L bar
(e+1)(.
En ser lett at
) e N 1 1 1

= + — .
2n+3 2n+1 (2n+1)2 (2n+2)2 (n+1)2

Videre er
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L (=1) 1 n+l—1 1
fan = 3 —— = 3 (= 1) :

0 (z’+1)(n;.r1) =0 n+l (i+1)(7;)
_n+2 1 (—=1)™ B n1(— 1)
_n+1ﬂ”_n+ly"+(n+l)2’ der yn—iég (n> .

7

Benyttes her at y,,.1=1, vy, =n/(n+1), far en ved to gangers bruk av
rekursjonsformelen for f,,:

; 2n+3 2n(2n+3) 2043 2n+3
T o1 (2n41)(2n+2)2 (2042)(2n+1) (204 2)2]

eller

(II) /32n+2 _ ;6271, 1 1 1

= -+ — .
2n+3 2n+1 (2rn+1)2 (2rn+ 2)2 (n+1)2

Ved 4 sammenholde (I) og (II) og bemerke at «,=pf,, folger alment

&pn=Pon-
n=Pan Helge Twerberg

Ogsé lost av L. Carlitz.

PRISOPGAVER FOR DANSKE GYMNASIEELEVER

Foreningen af Matematikleerere ved Gymnasieskoler og Seminarier i Danmark
udskrev i &r i lighed med tidligere ar prisopgaver for danske gymnasieelever og
kursuselever til studentereksamen. For den bedste besvarelse er udsat en preemie
pé 100 kr., og der kan eventuelt uddeles ekstraprsemier.

Sertryk af opgaverne blev tilsendt samtlige gymnasieskoler og kurser i Dan-
mark. Indleveringsfristen udlgb 31.marts 1958.

Opgavernes ordlyd var folgende:

1. Lad B vere midtpunktet af en cirkelbue AC, som er mindre end en
halveirkel, og lad D veere midtpunktet af buen 4B. Bevis:

1) Arealet af trekant ABD er stgrre end }-arealet af trekant ABC.

2) Arealet af afsnittet ABC er storre end 3 -arealet af trekant ABC.
(Benyt f. eks. resultatet fra 1).)

Lad tangenterne i 4 og C skeere hinanden i 7', og lad tangenten i B
skeere AT i B og CT i F. Bevis:

3) Arealet af trekant ETF er storre end }-arealet af trekant ABC.

4) Arealet af afsnittet 4BC er mindre end %-arealet af trekant ATC.
(Benyt f£. eks. resultatet fra 3).)

Idet AC er en bue pa 60°, skal man anvende resultaterne i 2) og 4) til
beregning af tilnsermelsesveerdier af 7.
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2. Kan man af en terning bortskere et legeme, saledes at der tilovers
bliver et »ringformet« legeme, gennem hvilket der kan skubbes en anden
terning, kongruent med den forste?

3. I et punkt O, der ligger i en plan «, er oprejst en normal 04 =1 til
x. Ved afbildningen f skal billedet f(P) af et vilkarligt punkt P, der
ligger i «, veere skeringspunktet mellem « og vinkel OAP’s halverings-
linie. Specielt er f(0)=0.

Beskriv den punktmengde, hvis punkter alle er billedpunkter af punk-
ter i o.

Hvad bliver billedet af en ret linie?

Hyvilke kurver afbildes i rette liniestykker eller cirkelbuer ?

4. Bevis, at
1

n—1 )
S(T>dt—>0f0rn—>oo,1detx > 0.
1

et fol@) = n(y{/a—c—l), z>0,

skal man vise, at f,(x) har en greenseveerdi for n ~>:oo.
Idet =, og z, er positive tal, skal man endvidere bevise, at

fn(xl'x2)_(fn(xl) +fn(x2)) - 0 fOl‘ n — oo .
5. Bevis, at uligheden

\roa =z 1@,
0

hvor f(x) er kontinuert og =0, 0 <z <1, kun tilfredsstilles af funktionen
fl@)=0.

6. P4 hvor mange mider (bortset fra ligedannethed) kan 4 punkter
anbringes i en plan, siledes at der kun er to veerdier for afstanden mellem
et vilkarligt par af dem?

NMT. Hefte 1, 1958, — 4
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MOTEREFERATER FOR 1957 FRA DE
UTGIVENDE FORENINGER

Daxsg MATEMATISE FORENING.

25.2 W.W. Boone, Princeton, N. J.: The insolvability of the word problem.
11.3 Th. Bang: Om en klasse af folger af hele tal.
1.4 V. Brun, Oslo: En generalisasjon av Eulers kjedebrok for tallet .
29.4 E. Folner: Middelvaerdier © grupper.
13.5 M. Protter, Berkeley: The wave equation and mean value theorems.
16.9 H. Tornehave: Om dobbelt noestenperiodiske hele funktioner.
30.9 E. Sparre Andersen: Om summer af stokastiske variable og den kollektive risiko-
teors.
18.11 L. Kalmaér, Szeged: What is the decision problem, and some results concerning it.
17.12 Richard Petersen: Demonstration af den elektroniske cifferregnemaskine DASK.

FORENINGEN AF MATEMATIKLERERE VED GYMNASIER OG
SEMINARIER I DANMARK.

14.10 E. Kristensen: Linear programmering som emne for undervisning ¢ realklassen.

15.10 S. Bundgaard: Matematikkens og matematikloerernes stilling 4 gar, 1 dag og i
morgen. Indledning til forhandling.

16.10 K. Piene, Oslo: En nordmann ser pd matematikkundervisningen i Danmark.

I den 3.nordiske lererkongres LMFK (Stockholm-Uppsala, 4-8.8) deltog ca.
90 danske matematiklaerere.

FINLANDS MATEMATISKEA FORENING.

30.1 Y. Kilpi: Puolirajoitetuista symmetrisistd transformaatioista [Om halv-begrdn-
sade symmetriska transformationer].

20.2 G. Elfving: En sats om definita matriser.

20.3 K. Vala: Viivallisen avaruuden ulkotuloista [Om ytire produkt i en linjdr
rymd].

10.4 R. M. Redheffer, University of California: Uber ganze Funktionen und Voll-
standigkent.

24.4 F. Nevanlinna: Differentioituvien kuvausten kddntaminen [Inversion av diffe-
rentierbara avbildningar].

2.5 E. Sperner, Hamburg: Zur gruppentheoretischen Begriindung der absoluten

Geometrie.

[50]
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25.9 E.Pesonen: Pddakseliprobleemista avarwudessa, jonka metriikla on indefi-
niitti [Om huvudazlarna i en rymd med indefinit metrik].

30.10 I.S. Louhivaara: Erddsti Dirichlet'n reuna-arvotehtivin yleistyksestd [En ge-
neralisation av Dirichlets randvdrdeproblem].

20.11 P. J. Myrberg: Erds differenssiyhtaloiden sovellutus automorfisten funktioiden
teoriaan [Anvindning av differensekvationer i teorin for automorfa funk-
tioner].

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

3-4.1 Demonstrationskurs i fysik med 135 deltagare. Forelisare fysikern Rudolf

Miillner, Wien.
3.2 Arsméte med val och forhandlingar. Arsmotet diskuterade och godkénde

ett forslag till utlatande om matematikundervisningen i mellanskolan.

4-8.8 I den tredje nordiska kongressen LMFK (Stockholm-Uppsala) deltog 85
medlemmar som aktiva och dessutom 40 personer som passiva deltagare.

26-29.8 Demonstrationskurs i fysik av Dr. E. Bretschneider, Gottingen. 100 del-
tagare.

Norskg MATEMATISK FORENING.

5.2 V. Brun: Generalisasjon av Bulers kjedebrok for tallet e.
12.3 H. 8. Jelstrup: Noen moderne bestemmelser av jordens storrelse og form med
en kort historikk over de eldre.
9.4 E.A.Hyllerds: Asymptotisk utvikling av nullpunkter for Bessel-funksjoner.
30.9 O. Schmidt, Kobenhavn: Om reciproktavler og pythagoreiske tal © babylonsk
matematik.
5.11 A. Lichnerowicz, Paris: Les variétés caractéristiques de la théorie unitaire du
champ.
26.11 V. Brun: Minnetale over professor Carl Stormer.
Euklidiske algoritmer for 3 og 4 storrelser.

NorRSKE LEKTORLAGS MATEMATIKKSEKSJON.

3.2 A. Baltzersen: Matematikk pd reallinjen. (Drammen.)
7.8 1. Johansson: Teoretiske betraktninger over regning med benevninger i mate-
matikk og fysikk. (Oslo.)
28.4 A. Gjelsvik: Det faglige nemningsverket i matematikk og naturfag. (Hamar.)
12.5 R. Dybvik: Provesensen i matematikk og regning. (Trondheim.)
28.9 K. Grodem: Samfunnsregning ¢ realskole og gymnas. (Karlstad.)
29.10 K. Piene: Beviset ¢ matematikkundervisningen. (Oslo.)

SVENSKA MATEMATIKERSAMFUNDET.
23.3 Mote i Stockholm:

J. Odhnoff: En konstruktion av Poissonkdrnor.

E. B. McLeod Jr., Oregon: Existence theorems by means of the Hahn-Banach’s
and Bohnenblust’s extention theorems.

T. Dalenius: En orientering om stickprovsundersékningar: teori och anvind-
ning.

B. Ulin: Om Fourierserier med luckor.

Ing. Fromme: Orientierung tiber eine elektronische Trommelmaschine.

4%
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8.6  Mote i Uppsala:
V. Thomée: Blandade problem vid hyperboliska differentialekvationer.
E. Asplund: Iteration av grafer.
Y. Domar: Minimalextrapolation av fullstindigt monotona Junktioner.
M. Tideman: Om T'chebycheff-approximation.

23.11 Mote i Stockholm:

T. Ganelius: Lokala egenskaper hos approximationspolynom.
H. Riesel: En ny metod for autokodning.
B. Andersson: Matematiska problem i samband med Sputnik.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Lunbp.

14.4 Mote med diskussion om den nya kursen i sannolikhetsréikning och statistik.
Inledande féredrag: '

M. Pihl, Kobenhavn: Nogle synspunkter vedrorende en eventuel undervisning
% sandsynlighedsregning © det danske gymnasium.

J. Ohlsson: Kursen i sannolikhetsrikning och statistik vid de svenska gymna-
sierna.

Vidare diskussion med inledande ord av
E. Malmsjé: Ndgra synpunkter pd realskolans provrikningar.
17.11 Hoéstméte, vilket dgnades at fysiken.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

4-5.1 Arsméte. Se referat i NMT, Bind 5, s. 59.

FORENINGSNYTT

Dansk MATEMATISK FORENING

holdt generalforsamling den 3.2.1958. Til bestyrelse valgtes prof. W. Fenchel
(formand), prof. H. Tornehave (nwmstformand), lektor K. Buch (kasserer), prof.
S. Bundgaard og aman. Chr. Andersen.

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND

holl sitt arsméte 2.2.1958 i Helsingfors. Val och forhandlingar. Styrelsen ofér-
éndrad. Ordférande for &r 1958 ér saledes dr. U. Kuuskoski. Styrelsen berittigades
att som sekreterare (utanfor styrelsen) antaga fil. mag. Jorma Nystrém (adr.
Advigen 15, Drumso, Helsingfors). Efter férhandlingarna tre diskussioner. Inle-
dare:

L. Kotkatlahti: Aktuella fragor inom matematikundervisningen.

B. L. Stara: Hur mycket bor man experimentera i fysikundervisningen?

L. Okkola: Den organiska kemin och elevklubbarna.




KRONIKK 53

Diskussionen var livlig och arsmétet antog det forslag till ny matematikkurs for
gymnasiets allménna linje, vilket styrelsen uppgjort.

Forbundets tidskrift fér de matematisk-naturvetenskapliga &mnena, "Matemaat-
tisten Aineiden Aikakauskirja«, skall utges som hittills. Redaktor ér fésrbundets ord-
férande.

FORENINGEN FOR MATEMATISKE-NATURVETENSKAPLIG UNDERVISNING
1 STOCKHOLM

holl arsméte den 7-8 januari 1958. Vid métet limnade lektor Bror Gustaver de befatt-
ningar som foreningens sekreterare och skattmiéstare, vilka han innehaft i 20 &r.
Ordféranden, lektor Ernst Knave, tackade lektor Gustaver for hans aldrig svikande
intresse for foreningen och papekade hur mycket medlemsantalet och déirmed for-
eningens betydelse okat under dessa 20 ar. Lektor Gustaver valdes av arsmotet
till féreningens forste hedersledamot.

Till ordférande resp. vice ordférande omvaldes lektorerna Ernst Knave och
Fredrik Ehrnst. Till ny sekreterare valdes fil. mag. Jan O. Unenge, Djursholm och
till skattméstare adjunkt Jacob Isander, Bromma.

Under arsmétet holls foljande foredrag och demonstrationer:

B. Nilsson: Information om tidigareldggningen av studentskrivningen 1 fysik.

B. Grundstrém: Ndgra enkla [jusbdjningsexperiment och deras betydelse for var
uppfattning om orsak och verkan.

R. Aarflot: Matematiken, fysiken och kemin ¢ de praktiska realskolorna.

B. Englund: Demonstration av experiment till realskolans kemakurs.

G. Beskow—A. Hedelius: Orienteringskurserna 4 fysik och kemsi. Diskussion.

A. Heimer: Om undervisningen i elektromagnetism.

U. Dahllof — 8. Hilding: Studieférbundets Ndringsliv och Sambhille utbild-
ningsmadlsutredning.

B. Gustaver: Ndgra avsnitt ur realskolans kemikurs med demonstrationer.

S. Paulsson: Enhetsskolans institutionslokaler. Diskussion.

Séndagen den 4 augusti 1957 samlades i Bla hallen i Stockholms stadshus, som
vilvilligt stillts till férfogande av stadens myndigheter, ett halvt tusental lérare
fran Nordens fem linder till den tredje nordiska kongressen for lirare i matema-
tik, fysik och kemi (LMFK). Av deltagarna var 138 fran Danmark, 121 fran Fin-
land, 68 fran Norge, 1 fran Island och resten fran Sverige. Dessutom deltog 2 vist-
tyska gister. Inbjudare till kongressen var de tvé svenska #mnesféreningarna i
Lund och Stockholm. Féljande foéredrag och diskussioner, som berdrde matemas-
tiken, holls:

J. Orring: Férséksskolans hogstadium, de matematisk-naturvetenskapliga dm-
nenas stillning och problem.

B. Beskow: De matematisk-naturvetenskapliga dmnena pé enhetsskolans yrkes-
linge.

C. E. Sjostedt: Matematiken i de svenska gymnasierna.

J. Vange: Matematikken som hjcelpedisciplin. Hvorledes kan man koordinere
undervisningen pd gymnasiets forskellige linier med universiteternes og de
hojere leereanstalters behov for matematik som hjeelpedisciplin?
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Vid en dirpa féljande kort diskussion med huvudsakligen danska deltagare be-
handlades olika krav p4 stringens i matematikundervisningen pé skolstadiet.

R. Woxén — O. Frostman: Vilka krav kan stillas av det praktiska livet, indu-
strien, den higre tekniska utbildningen och universiteten pd skolans under-
visning ¢ matematik?

O. Lindstad: Om en generalisasjon av middelpunktbegrepet.

K. Piene: Om beviset 1 matematikken.

L. Sandgren: Synpunkter pd det svenska gymnasiets kurs i funktionsldra.

E. Vaniis: Terminologi och riknemetoder vid mekanisk rikning.

Kongressen avslutades torsdagen den 8 augusti med avskedsmiddag i rikssalen
pé Uppsala slott.

UTNEVNELSER

Til professor i matematik ved Aarhus Universitet: Dr. phil. E. Sparre Andersen.
Til professor i matematikk ved Universitetet i Oslo: Fil. dr. O. Reiersel. |
Till professor i matematik vid Géteborgs Universitet: Fil. dr. T. Ganelius.
Til dosent i matematikk ved Norges Tekniske Hogskole, Trondheim: Cand. real.
H. Waadeland.
Till laborator i matematik vid Stockholms Hogskola: Fil. dr. O. Hanner.
Til rektorer ved felgende norske skoler:
Verdal komm. realskole: Lektor R. Dybvik.
Larvik h. skole: Lektor K. Kure.
Kragers h. skole: Lektor S. Seim.
Til medlem av Undervisningsradet i Norge fra 1.1.1958 (etter rektor K. Kure):
Rektor A. Gjelsvik.

RESULTAT AV PRISTAVLINGEN FOR SVENSKA GYMNASISTER
(Uppgifterna i NMT 5 (1957), s. 210-211.)

Forsta pris, 100 kr., tilldelades Olav Kallenberg, Kommunala Gymnasiet i
Gubbéngen, Stockholm, medan andra, pris, 50 kr., delades mellan Rooney Magnus-
son, Hogre allménna liroverket i Enskede, och Mats Neymark, Mérby kommunala
gymnasium i Danderyd.



SUMMARY IN ENGLISH

H.Gask and J.-E. Roos: 4 simple model from potential theory. (Swedish.)

The model consists of the lattice-points x=nd (n=0, +1, +2, ...) on the real
axis. The force between two electric charges e and f at a distance 7 is assumed to
be K = — efy(r), where y(r) decreases monotonously to 0 as » — oo.

A positive unit charge #, is placed at = 0. If a similar charge ¥ is moved from
240 to x or from —x—J to —z (z = 0), the necessary work is then defined to be
dy(|z|). The total work required to move E from oo to =0 or from — oo to <0
is the potential generated by E,:

px) =2 oy(|z|+Rd) .
h=0

An important property of the function ¢ is convexity outside the origin. For a
distribution e of charges e,, the potential is additive:

P) =X pla—y)e, .
vy

Only distributions with a finite number of charges e, are considered.
The energy of a distribution e is introduced as

I(e) = % th(w‘“y)ez Y = %ZP(x)ex.
z,y z

A central result, proved under the above assumptions, is that I(e) >0 whenever
charges are present.

The charges e, of a distribution may be considered as coordinates in a linear
space R. The distance between two points (two distributions) e and f is defined as
Vf(;—_f), and Cauchy sequences in R are introduced. In an elementary way, the
following results are proved:

If all the charges of a distribution are positive, then the potential attains its
maximum at a point with a charge. — Given a finite number of conductors Ly,
each of which has a total charge [, there is a unique equiltbrium distribution (of
minimal energy), and the potential of this distribution is constant on each con-
ductor. On a single conductor L with positive total charge, the equilibrium distri-
bution contains no negative charges. If L, of length I, contains at least three
points, then this distribution is concentrated at the end-points only if the
potential function @ is linear in the intervals 0 < |x| < I. Conversely, this property of
@ implies that the equilibrium distribution is concentrated at the end-points of
any set of non-overlapping conductors contained in an interval of length 7.

[55]
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Vicco BRUN and BoreE JESSEN: A letter by Niels Henrik Abel from his
youth. (Norwegian.)

The letter, hitherto unpublished, was discovered in Copenhagen 1955. It was
written in Christiania on Aug. (or probably Sept.) 13, 1823, to Abel’s friend Frederik
Christian Olsen in Copenhagen. The letter contains nothing of mathematical in-
terest. Abel tells about his voyage from Copenhagen to Christiania, and asks Olsen
to get an examination certificate for a Norwegian student Glatved.

BeNGT JOEL ANDERSSON: An inequality for convex functions. (English.)

If F(z), p=1,2, ..., n, are convex functions in 0 <z £ 1, for which

1
Fy(z) 2 0, F,0) = 0, SFp(x)dx = &,
0

then it is shown that

n

KyOg o e Oy o

2
Fi(@)Fy@) ... Fy(z)de =
1(%) Fy(@) w@)de = - 1

O P i

M. TipeMAN: Comments on an old inequality. (Swedish.)
It is shown that
(o e]
2 ktn* T P47 < L for 20, k=1,2,....
n=1
With k=1, ¢=2?% we get an inequality which was first given by Mathieu:
® 1
2 nm+2) < — for z+0.
n=1 222
GOTE NORDLANDER: A covering problem. (Swedish.)

A set of point sets is said to be distinct, if no two of the sets have points in com-
mon. After a short treatment of the one-dimensional case, a set M of squares with
parallel sides in the plane is considered. If y(M) denotes the total area covered
by M, one can find a distinct subset M’ of M such that

YM') 2 #yy(M) .

It is shown that x, = §, and that x»,=} when the squares are all of the same size.
These results are due to R. Rado; a new and simple proof of the latter is given.



