CARL STORMER IN MEMORIAM

VIGGO BRUN

Den 13. august i ar dede Carl Stermer i en alder av ner 83 ar. Han
var fodt i Skien 3. september 1874 som eneste barn av apoteker G. L.
Stgrmer og frue fodt Miilertz.

Hans interesse for realfagene ble tidlig vakt. Han har selv berettet
om dette: »Astronomi var noget av det forste jeg var betatt av. Min
eneste sorg var, at for at bli astronom méatte man lere noget som het
matematikk. Jeg kom dog senere pa andre tanker. Botanikk var en annen
stor lidenskap.« Kjerligheten til botanikk bevarte han for gvrig gjennom
hele sitt lange liv. Da jeg en ukes tid for hans ded hjalp ham ned den
bratte veien til hans vakre sommersted »Villa X« ved Drebak, fortalte
han meg navnene pé alle de ville blomstene vi passerte.

Om sin forste matematiske erobring har han skrevet: sJeg har aldrig
siden felt en slik opdagerglede, som da jeg forste gang fandt flateinn-
holdet av et parabelsegment.« Han var bare 18 ar da han utga sitt ferste

Tegningen ovenfor ble laget av @yvind Serensen for Aftenposten i anledning pro-
fessor Stormers 75-ars fedselsdag.
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matematiske arbeid: »Summation af nogle trigonometriske rekker.« En
av de setninger han her gir er

" sinx\" /sin2z\" /sin3z\"

3_(1)_< 2 )+( 3 )
nar z ligger mellom grensene —x/n og nt/n. For n=1 far man den kjente
Fourierrekke for }x. Han generaliserer formelen idet han erstatter 2"
med produktet @@, . . . z,. Det var i sannhet et betydningsfullt arbeid
for en attenaring! ©

. . e . * sinax 7
I sitt neste arbeid, »Om en generalisation af integralet S dx = 3 «

0
utforer han en grenseovergang for av sine trigonometriske formler &

utlede tilsvarende »Fourierske integralerq.
Stermers neste arbeider er inspirert av Machins formel

7T 4 + 1 ‘ 1
— = 4 arctg ——arctg —.
4 g5 g239

Han loser fullstendig det problem & finne de hele tall m, n, x, y og k som
gir

1 1
m arctg —+n arctg— = k-
& y

NE

Han finner fire sett lgsninger, hvoriblant Machins. Senere utvider han
problemet til

1 1 1
m arctg — +n arctg —+r arctg — = k
x Y 2

JT

4 b

og finner 102 sett losninger for hele m, n, r og k. Det er fremdeles et ulost
problem om det finnes flere losninger. Jeg gir et eksempel pa en av disse
lgsninger:

7T 1 1
— = 4 arctg —— 2 arctg — + arctg ——.
4 J 5 g 478 + J 54608393

Stgrmer har omdannet problemet til et rent tallteoretisk, idet han har
benyttet seg av at
b
a+ib = V“2+b2'emm°a_
Ved multiplikasjon av flere slike uttrykk far han da en sum av arcus-
tangenser i eksponenten. Hvis denne sum blir k= blir eksponensialfunk-
sjonen +1, og det resterende uttrykk kan behandles rent tallteoretisk.
Problemet blir om et produkt av sterrelser av formen a-+ib blir reelt,
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rent imaginzrt eller ingen av delene. Stgrmer opplyser for gvrig at han
er blitt oppmerksom pa at Gauss for ham har benyttet seg av samme frem-
gangsméte for 4 lose samme problem, slik som det gar frem av Gauss’
etterlatte papirer. Gauss har her beregnet divisortabeller for tallene
12422, 22422, ..., 92+ 22, men han har bare etterlatt disse notater og
har ikke behandlet problemet for en sum av n arcustangenser.

Stermer har ogsa studert den alminneligere ligning

1 1 1 7
¢, arctg —+cyarctg —+ ... +c arctg— = k-—,
Zy Zo n 4

og funnet en nedvendig og tilstrekkelig betingelse for at den skal veere
tilfredsstillet for heltallige verdier xy, z,, ..., z, og ¢, ¢y, ..., ¢, og for
k lik 0 eller 1.

Disse undersgkelser har vert fort videre av Ljunggren.

Studiet av disse problemer har fort Stermer inn pa undersgkelser av
Pells ligning

22—Dy? = +1.
Av de mange interessante resultater han her har funnet skal jeg bare
nevne ett: For at ligningen
1+a2 = 2yn

skal tilfredsstilles av hele tall z, ¥ og n stgrre enn 1 mé n veere en potens
av 2.

Ogsa Minkowskis »Geometrie der Zahlen« har inspirert Stgrmer til et
arbeid: »"Nogle geometriske satser fra den moderne taltheori.« Han benyt-
ter seg her ogsa av Sophus Lies undersgkelser.

I et senere arbeid behandler han noen aritmetiske egenskaper ved
elliptiske integraler og deres anvendelse pa teorien for hele transcendente
funksjoner. Det gir en vidtgédende generalisasjon av Liouvilles, Hermites
og Borels undersgkelser over transcendens.

I 1903 inntreffer en begivenhet som far avgjorende betydning for
Stgrmers videre produksjon. Fra na av ble det nordlyset som fanget hele
hans interesse.

Som rimelig er har nordlyset opptatt sinnene i hgy grad i Norge. I var
meget fattige vitenskapelige litteratur for 1800 finner man adskillige
avhandlinger om nordlyset. Av sterst betydning er skildringen av nord-
lyset i Kongespeilet fra 1200-tallet, dernest Gerhard Schenings utferlige
avhandling fra 1759, »Nordlysets ZAlde beviist med gamle Skribenters
Vidnesbyrd«. Den danske matematiker Fester har i sin Trondhjemstid
skrevet to avhandlinger om nordlys som ogsi er av interesse.

12*
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I 1815 skriver Hansteen til H. C. Orsted i Kjgbenhavn: »Inderlig skulde
det gleede mig, om Degen paa mine lave Grundvolde kunde opfere en
anseligere Bygning saa at Norden ved egne Krefter havde bragt Magnet-
theorien i Rigtighed. Unegtelig burde ogsaa en Magnet- og en Nordlys-
theori komme fra os.«

Nar dette for nordlysets vedkommende ble tilfelle skyldes det for en
vesentlig del Stermers veldige innsats pa dette felt. Han fikk i 1903 se
de eksperimentene fysikeren Kristian Birkeland utferte for & gi en for-
klaring pa nordlyset, idet han i en lufttom glassbeholder sendte katode-
straler mot en magnetisk kule som skulle forestille jorden. Det slo da
Stgrmer at han her sto overfor et meget interessant matematisk pro-
blem, & finne banene til de elektriske partiklene som beveger seg i det
magnetiske felt omkring en magnetisk kule.

Stermer angrep problemet pa folgende mate: Tenker man seg en
magnetisk dipol anbragt i et romlig koordinatsystem med retning langs
z-aksen og med midtpunkt i origo, gjelder det & studere banen for en
negativt ladet korpuskel. Velger man buelengden s som uavhengig varia-
bel far man et simultant system av tre annenordens differensialligninger
til bestemmelse av korpuskelens koordinater z, y, z som funksjoner av s.
Ved & innfere polarkoordinater for punktets projeksjon i zy-planet
(x=Rcosg, y= Rsing) utleder Stormer denne ligningen av de tre nevnte:

4 (Rz‘?f) _ i(!’f),
ds ds ds \ r3
Her er r avstanden fra origo til korpuskelen. Denne ligning lar seg inte-
grere, og man finner
R dy _ 2 +R2
s T
hvor y er en integrasjonskonstant. La vinkelen mellom banens tangent i
punktet (z, ¥, 2) og planet P som gir gjennom z-aksen og punktet veere
6. Da blir o B
14 . Y
RE; =s§in0 = E-I_;‘;
Dette gir en opplysning om de omréader av rommet som ikke inneholder
noen av de sgkte kurver, da betingelsen |sinf| <1 ma veere oppfylt.
Derved har Stermer skaffet seg en verdifull diskusjon av kurvenes forlgp.
Han utleder ogsé det sldende enkle resultat

e =1,

hvor g er kurvens krumningsradius.
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Men for & utfere en integrasjon av differensialligningene ble det nod-
vendig & gripe til numeriske metoder. Ved hjelp av en stor stab assisten-
ter ble det utfort et regnearbeid som inntil 1940 hadde kostet 18000 timer.
Under sitt arbeid med dette utviklet Stormer en tilnzrmelsesmetode som
fikk stor betydning. Den er opptatt i mange leerebgker, siledes i Hada-
mards, i Andersen-Bohr-Petersens og i Tambs Lyches matematiske ana-
lyser. Den er utarbeidet for integrasjon av et simultant system av annen-
ordens differensialligninger. Den russiske matematiker Kryloff har for-
gvrig modifisert metoden til 4 kunne anvendes pa et system av forste
orden.

I arene 1930 og 1931 offentliggjorde den tyske fysiker Briiche resul-
tatene av noen forsgk med katodestraler. En mere sldende overensstem-
melse mellom de beregnete og de eksperimentelle baner kunne Stermer
neppe ha ventet seg. (Se figuren.)

Til venstre periodiske elektronbaner, funnet ved numerisk integrasjon;
til heyre de samme elektronbaner etter Briiches forsek. (Billedet finnes
ogsd i boken »The polar aurora«, fig. 164.)

Stermer har ogsd utfert et meget stort arbeid for & bestemme nord-
lysets hoyde ved & fotografere fra to stasjoner samtidig, med kjente
stjernebilleder som bakgrunn for nordlyset. I alt er det blitt malt 20000
hgyder.

I 1947 holdt Stermer en tale i norsk kringkasting, hvor han fremhevet
de mange ulgste problemer man enna hadde i nordlysforskningen. Han



174 VIGGO BRUN

gir ogsd anvisning pa en leosningsmate: »Vi behogver bare & sende en
V2-rakett med instrumenter opp i nordlyset og la instrumentene enten
sende radiosignaler om hva slags partikler det er eller &4 instrumentene
ned i fallskjerm og lese dem av. Saken er mulig.«

Om alle disse undersgkelser har Stgrmer gitt en livfull skildring i et
av kapitlene i sin bok »Fra verdensrummets dybder til atomernes indreq.
Den store popularitet denne boken oppnadde ser en best av at den ble
oversatt til svensk, tysk, fransk, hollandsk og italiensk. Leser en denne
spennende boken far en et sterkt inntrykk av forfatterens allsidige in-
teresse for naturvitenskapene. I den retning tror jeg ikke han har hatt
mange jevnbyrdige.

Etter & ha avlagt embedseksamen i 1898 studerte Stermer matematikk
i Paris og ble i 1899 universitetsstipendiat ved universitetet i Kristiania
i dette fag. I 1900 giftet han seg med Ada Clauson.

Som universitetsstipendiat nedla Stermer et stort arbeid ved utgivel-
sen av »Festskrift ved hundredarsjubileet for Niels Henrik Abels fadsel«
(1902). Den verdifulle samling av dokumenter vedrgrende Abel som
finnes der skyldes Stgrmer.

Han var 29 ar da han i 1903 ble professor i ren matematikk ved universi-
tetet i Kristiania. Det var et tradisjonsrikt professorat han overtok. Hans
forgjengere var C. A. Bjerknes, Ole Jacob Broch, Holmboe og Rasmussen,
s4 disse fa4 navnene forer oss over i den klassiske tiden da Abel levet.
Stgrmer kom like fra studietiden i Paris og hans forelesninger virket
inspirerende pd oss unge studenter, preget som de var av den franske
elegante, men ngkterne klarhet. Det matematiske seminar som Stermer
i denne tid ledet fikk ogsd stor betydning for dem av oss som hadde
serinteresse for matematikk, og han fulgte vare senere forsgk som for-
skere med stor oppmerksomhet.

Gjennom mere enn 40 ar ledet Stermer pa en utmerket mate under-
visningen for bifagsstuderende ved universitetet. Av de hovedfagsemner
som han tok opp i denne tiden kan nevnes Sophus Lies transforma-
sjonsgrupper, gammafunksjonen og de elliptiske funksjoner. De stensi-
lerte utgaver over de to sidstnevnte emner vidner pa en utmerket mate
om Stgrmers dype innsikt i disse teorier.

Stgrmer var en ivrig deltager i de nordiske matematikerkongresser.
Han deltok i samtlige tolv som ble holdt i hans levetid. Han var president
for den internasjonale matematikerkongress i Oslo i 1936.

Det kan vel hende at en del av den rene matematikks dyrkere s& med
en viss bekymring pa at Stermers sterke interesse for og utrettelige
arbeid med nordlyset hindret ham i den rike utfoldelse av sine matema-
tiske evner, som hans forste arbeider hadde gitt sa overbevisende lofte
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om. At han ogsi selv delte denne folelse fremgar av et brev han sendte
meg i 1944. Jeg hadde meddelt ham en ganske komplisert rekkeutvik-
ling. Det gjaldt en undersgkelse som sto i forbindelse med problemet om
svingningene i primtallmengden. Stermer svarte pr. omgéende at rekken
matte kunne behandles ved Lagranges omvendingsformel, noe jeg selv
ikke hadde oppdaget. Det betydde en veldig forenkling av min under-
sokelse. Stormer sluttet sitt brev slik: »Nar jeg loser slike problemer,
far jeg san lyst til & ofre mig for matematikken igjen, men jeg er dess-
verre si nedsyltet i nordlysmaterialet, at jeg ikke far tid.«

Jeg tror allikevel at vi ikke behgver & sgrge over at Stegrmer valgte et
emne, noe pa siden av professoratets fagkrets. En vitenskapsmann ma
alltid fritt felge inspirasjonens vei. Stermer er selv det beste bevis for at
denne frihet i emnevalg kan fore til resultater av store dimensjoner.
Han hadde ogsd den glede & se utallige uttrykk for anerkjennelse av sin
store innsats bade fra utland og innland.

Mest gledet det ham sikkert at han av Sir Appleton i Oxford ble opp-
fordret til &4 samle sine studier over nordlyset i en bok. Den ble trykt i
Oxford 1955 og fikk titelen »The polar aurora«. Han tilegnet boken til
sin hustru, »who never ceased to encourage me to work hard till this
book was safely finished«. Forordet i denne boken, som Stermer hadde
den glede & arbeide med i sine siste levear, slutter slik : "My work has given
me infinite pleasure and satisfaction ... This fascinating phenomenon,
the aurora, guards its secrets well and it may be far in the future before
they are completely yielded up to man.«



EN MATEMATISK MODELL FOR LANDSVAGSTRAFIK

LENNART CARLESON

I samband med diskussionen varen 1955 kring den svenska trafik-
sikerhetsutredningen uppmirksammades trafikfragorna ocksa av Sven-
ska matematikersamfundets kontaktnimnd. Det var genast klart att
man i utredningen helt hade férsummat att anvinda matematiska
metoder. For att underséka hur trafikproblem skall kunna matematiskt
behandlas beslét Kontaktnimnden att nirmare underscka gles! lands-
vigstrafik. Detta problem var limpligt av tva skdl: dels innehaller
landsvigstrafiken f& komponenter och dels hade resultaten intresse i
samband med huvuddiskussionen angidende hastighetsbegrinsning.
Undersokningen utférdes huvudsakligen av forfattaren och jag skall hir
nirmare redogora fér den matematiska modell som konstruerades.

Vi ténker oss en obegrinsad vigstricka. Forbi en fix punkt pé vigen
passerar i medeltal @ fordon? per timme. Vi gor vidare féljande huvud-
antaganden:

1° Varje fordon X har en »idealhastighet«  som det haller néir det &r
ostort av andra fordon d. v. s. nir det inte vintar pa ett tillfalle att kora
forbi ett laingsammare fordon. Det finns d& en férdelningsfunktion H(z)
s att H(£) anger brikdelen av fordonen med hastighet x < ¢&.

2° Vid en omkérning av ett fordon med idealhastighet x av ett annat
med idealhastighet y <« fordras en sikerhetsstricka c¢ si att om X gir
ut i hogerfilen strickan « bakom Y och atergar i vinsterfilen § framom
Y, ar c=o +p. Omkorningsstrackan blir da

cx

A

-y

3° Vigen och mottrafiken ér sidana att ett fordon X som hunnit upp
ett fordon Y maste halla Y :s hastighet strickan s(1) innan det kan
kora forbi och atertaga sin idealhastighet x. Vi skall senare specialisera
s(4) till att vara en linedr funktion i 4.

1 Norsk: glissen. Dansk: svag, sparsom.
2 Norsk: kjoretoy.

[176]
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4° Vi antar att trafiken dr s& gles att vi kan bortse fran kobildning,
d.v.s. under den tid X véntar bakom Y héller Y sin idealhastighet.
(Det ir litt att stilla upp teorin utan detta antagande. Vi fir emellertid
da en icke-lineiir integralekvation, som saknar enkel 16sning.)

Nir det nu giller att studera trafiken i stort &r det i férsta hand for-
donens medelhastighet man maste bestdmma. Denna &r en funktion f(x)
av idealhastigheten . Vi studerar nu ett bestémt fordon X. Tétheten
av fordon med hastighet y <z lings vigen &r

% amg) 2
Fa)
X nirmar sig ¥ med hastigheten f(z)— f(y). Totalt upphinnes saledes
J(@)—f(y)
————dH
(1) “ ) (¥)

fordon Y per tidsenhet. Varje gang ett Y upphinnes maste X firdas
strickan s(A) (ant. 3°) med hastighet y (ant. 4°). Totalt firdas saledes
X strickan

(2) a S s() D=1

0

@) —fly
f®)

bakom langsammare fordon. Den tid som atgar ar

f@)—f(y) dH(y)
f(y) y

Resten av tidsenheten, 1 — 7", har X sin idealhastighet och hinner strickan
2(1—-1T). Detta uttryck jamte (2) blir da f(x), d. v.s. vi far ekvationen

dH( )

T=aSs(A)

0

¢ J@=1)  dHE)
=x— A
f@) =« a§s( R
Infor vi i stillet p(z) = ,]?(_ far vi en linedr integralekvation:

dH (y)
y

1 De upptradande integralerna innehallande dH(y) ar sjalvfallet Stieltjes-integraler.
Léasare som inte ar fortrogna med detta begrepp, kan ténka sig férdelningsfunktionen
H(z) som en kontinuerlig funktion fér alla z; darvid upptriader endast ordindra inte-
graler. Detta ticker ocks& talexemplet som &r illustrerat i fig. 1, men déremot inte
exemplen i tabellerna 1 och 2.

1 = ap(x)—a Ss(z)(q)(y)—qo(x))( —y) —=
0
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Vi skall nu behandla denna under det enklaste antagandet om s(4),
s(A)=yA. Om vi infér hjalpfunktionen
dH(y
A(x)=acy§J—-kB() k= acy,
v Y
kan ekvationen da skrivas

1 = ap(e) - | (p0) - p(e))dA)

Antar vi att 4’(x) dr kontinuerlig fér alla « kan vi derivera och far
ekvationen

1
5= @' (@) (1+A()),
varav
¢ dt 1 1 ¢ A({t) dt
#@) = 9lzo) = S(_—_H»A 0)e ¢<x°>‘;c;+5+3ﬁz<3 7

Antag nu att alla fordon har hastighet 24>0. Da giller zg(x)=1 for
@ < 8. Later vi 2, — 0 far vi16sningen (géllande utan antaganden om A’ (@)):

1 1

A d
) "o = = \ T w2

1+4@) -

Ur denna formel kan nu nagra intressanta slutsatser dragas. Om vi i
(3) later x — oo finner vi att

1 .
- = limgp(z) =

J x>0

¢ AW dt
§FA‘(&S ©

existerar och dr 0. Detta innebir att ett enstaka fordon vid en given
hastighetsfordelning aldrig kan fi en higre medelhastighet &n g, obe-
roende av hur hog idealhastighet det har.

Antag i stillet att trafiktéitheten a—oco. Om da A(zx)=0 for x <z,
A(z)> 0 for x> x,, giller

@) limple) =+ | 2= 2.

a—> o x

Samtliga fordon fir siledes samma medelhastighet =langsammaste for-
donets idealhastighet. Detta &r ju ocksd vad man bor fordra. Samma
relation giller ocksd om yp —>co och svarar t. ex. mot en intensiv mot-
trafik.




EN MATEMATISK MODELL FOR LANDSVAGSTRAFIK 179

Nar det giller att bedoma en trafiksituation ur sikerhetssynpunkt
ar det framst tva kvantiteter som har intresse. Den forsta dr trafik-
flodet F' som anger den totala transporten per tidsenhet av de fordon
som passerar en viss plats pd vigen. Vi har formeln

o0

(5) F= aS f(@)dH(z) .

0

Om man &r intresserad av konsekvenserna av t. ex. trafikrestriktioner,
vilka i var teori innebdr att H(xz) fordndras, dr det kvantiteten F som
skall hallas fix. Den méter ju ndmligen transportméngden per tidsenhet.
En sinkning av hastigheterna medfér da att a vixer.

Den andra kvantiteten fr antalet omkoérningar O per tidsenhet och
langdenhet. Med hjilp av (1) finner vi latt

(e )
»

) O = a?

0

(p(y) — @(x))dH(y) lqv x)|dH(y)dH () .

(= ]
°e_/:

Ett allmént resultat foljer hér genast. Man skulle kanske vinta att
antalet omkorningar vixte kvadratiskt da a vixer. P4 grund av det
tidigare naimnda forhallandet att p(x) — 1/x, nir @ — oo, giiller emellertid

.0
Iim —=C.
a—>o00 @

Om H ej har ett sprang i x=x, (se (4)), visar en enkel rikning att

C =

1 SH( )dH( x)
cyd «*B(@)

Om vi vidare antar att den allminna trafikintensiteten vixer, d& a
véxer, innebédr detta att mottrafiken forsvarar omkorningarna si att
det &r rimligt att ansétta t. ex. y =y.a. Vi far d& som resultat att antalet
omkorningar blir begrinsat dd @ —oco. Man méste dock komma ihag att
hirledningen skedde under antagande av gles trafik (ant. 4°), varfor
beskrivningen for stora @ kan antas mindre god. Tendensen att antalet
omkorningar vixer mycket langsamt, torde dock sté sig.

Fér att illustrera ovanstaende teori, tar vi ndgra numeriska exempel.
Vi antar forst att endast tva idealhastigheter forekommer och att bada
ar lika vanliga. Vi utgér (Tab.l) fran den transportmingd som =200
ger nir hastigheterna #&r 50-70 km/tim. Vi antar vidare y=3 och
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H(x) F a f 0 k = ayc
!
30-50 11100 340 35,2 142 102,0
40-60 11100 251 48,3 68 75,3
50-70 11100 200 60,9 36 60,0
60-80 11100 167 72,8 20 50,1
70-90 11100 144 84,3 13 43,2
80-100 11100 127 95,4 8 38,1
Tabell 1

¢=0,1 km. Virdena fér f i tabellen anger de snabbare fordonens medel-
hastighet.

I tabell 2 har vi gjort antagandet y=y,a och utgatt frin y=3 for
a=200.

H(x) F a f o k = ayc
30-50 11100 351 33,2 99 184,8
40-60 11100 255 47,1 61 97,5
50-70 11100 200 60,9 36 60,0
60-80 11100 166 73,7 21 41,3
70-90 11100 143 85,6 13 30,7
80-100 11100 126 96,9 9 23,9
Tabell 2

I fig. 1 &r inritad funktionen fi=)

f(z) for fordelningsfunktionen
100 -
0, xz < 30 90+
z—30 k=15
- 80+
= <x<
(7) H(x) 60 300=<x=90 b= 30
70
1, x> 90. k= 60
60 k=100
Observera att man kan studera 90|
f(x) dven for x>90; det anger 4|
medelhastigheten hos ett enstaka
fordon med denna hastighet. 3030 40 50 60 70 80 90 100 =

Fig. 1




OM ELEMENTARGEOMETRIENS
KONGRUENSSATNINGER

H. H. HANSEN

Kongruensleren indtager en ejendommelig stilling i de geengse frem-
stillinger af den elementsere geometri. Seedvanligvis defineres to figurers
kongruens ved, at de ved flytning skal kunne bringes til deekning punkt
for punkt, hvorefter de bekendte seetninger om trekanters kongruens med
storre eller mindre held begrundes. Kongruensbegrebet tages derefter
kun lejlighedsvis i ‘anvendelse for andre figurer. Ved ngjere undersggelse
af sagen vil man bemerke, at det ved de nevnte trekantssaetningers
talrige anvendelser ikke i sig selv har sa stor interesse at konstatere,
at et par trekanter er kongruente, som at det deraf faglger, at et par linie-
stykker eller et par vinkler er lige store. Kongruensssetningerne kommer
derved til at optreede som formidlere af et sddant resultat, som hjelpe-
seetninger om man vil.

Gar man til Euklid, bliver man, som s& ofte for, overrasket over klarhe-
den. Ordet kongruens forekommer ikke, og de satninger, der svarer til vore
kongruenssaetninger, har derfor en anden formulering. F. ex. har forste
kongruenssetning fglgende ordlyd: »Nar to trekanter har to sider parvis
ligestore og de vinkler, der indesluttes af de ligestore rette linier, ligestore,
s& vil de ogsd have grundlinierne ligestore, og trekanterne vil vaere lige-
store, og de gvrige vinkler, overfor hvilke de ligestore sider ligger, vil
veere parvis ligestore.« Bortset fra, at det her siges, at de to trekanter er
lige store — noget tilsvarende siges igvrigt ikke i de gvrige kongruens-
setninger — s& daekker formuleringen netop det, der er vasentligt for
setningens anvendelser, nemlig at der pa grundlag af visse liniestykkers
og vinklers ligestorhed kan sluttes, at andre liniestykker og vinkler er
lige store. Euklids bemsrkning om, at de to trekanter er lige store, kan
som bekendt forstas pa flere mader ud fra en senere tids begrebsdannel-
ser, og glosen kongruens er netop indfert som betegnelse for en serlig
form for figurers ligestorhed. Men dette har medfert, at selve kongru-
ensen som mal i sig selv er kommet til at dominere de omtalte trekants-
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swtninger. En almindelig teori for figurers kongruens kan neppe have
interesse, hvilket ogsa viser sig ved, at man hovedsagelig kun taler om
kongruens for trekanter.

Det vil imidlertid veere formalstjenligt at se pa disse setningers stil-
ling i den axiomatiske opbygning, og vi vil her holde os til Hilberts frem-
stilling, som vel mé siges i hovedsagen at veere en udtgmmende analyse
af den formelle struktur i den faktisk foreliggende geometri; i hvert fald
er det den axiomatiske opbygning, der ligger elementergeometrien nzer-
mest. I Grundlagen der Geometrie behandles kongruensen i axiom-
gruppe IV1). Da en formel, axiomatisk undersogelse ikke er forbundet
med noget bestemt forestillingsindhold, kan der ikke hos Hilbert veere
tale om en explicit definition af kongruens, kun om fastleggelse af sa-
danne egenskaber derved, som er ngdvendige og tilstreekkelige ved op-
bygning af den betragtede lerebygning. Det fastslas axiomatisk, hvilke
egenskaber der skal tillegges relationen kongruens eller ligestorhed af
liniestykker og vinkler. Da disse objekter er forskelligartede, mé de to
dertil svarende kongruensdefinitioner sammenknyttes, og det sker hos
Hilbert ved folgende axiom: »Wenn fiir zwei Dreiecke 4 BC und A'B'C’
die Congruenzen AB=A'B’, AC=A'C", LBAC=£B'A'C" gelten, so sind
stets auch die Congruenzen /ABC=/A'B'C' und LACB=/LA'C'B
erfiillt.« Dette er stort set ensbetydende med, at den ovenfor citerede
euklidiske setning medregnes blandt axiomerne. Man bemsrker imidler-
tid, at det ikke i axiomet siges, at de to trekanter er kongruente, hvilket
naturligvis heller ikke kan gores, for det er defineret, hvad der skal for-
stas ved trekanters kongruens. Det sker hos Hilbert ved en definition:
yZwei Dreiecke ABC und A’B’C’ heissen einander congruent, wenn
simtliche Congruenzen

AB = A'B’, AC = A'C, BC = B'C'
LA = LA, LB = LB, L0 = LO

erfiillt sind.« Ved denne definition fastholdes, ligesom ved en tilsvarende
for vilkarlige figurer, at det drejer sig om liniestykkers og vinklers lige-
storhed. Nar Hilbert pa grundlag af axiomerne gar over til at bevise andre
kongruensseetninger, ngjes han derfor heller ikke med at konstatere, at to
trekanter er kongruente, men fastslar, at de vinkler og sider, hvorom der
ikke er talt i forudsatningerne, er parvis lige store.

Som et lille sidespring skal det her bemzrkes, at kongruensaxiomerne
er uatheengige af parallelaxiomet, siledes at kongruens trives lige vel i de
forskellige geometrier, der opstar ved de forskellige former af parallel-
axiomet.

1y I forsteudgaven — i de sidste udgaver derimod i axiomgruppe III.
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Vil man herefter sgge at klargere sig kongruenssetningernes seerstil-
ling, s4 kan det for det forste bemerkes, at s& at sige alle elementzer-
geometriens setninger handler om liniestykker og vinkler i samme figur,
mens kongruenssetningerne (sammen med proportionalitetssetningerne)
udtaler sig om to figurer. Dernzst ma det konstateres, at det ikke uden
forbindende mellemled er muligt at knytte nogen logisk tvingende for-
bindelse mellem s at sige frit sveevende liniestykker eller vinkler. De to
objekter mé indgé i figurer, hvorom der vides eller antages et eller andet.
Da trekanter er simple, let handterlige figurer, vil det veere naturligt at
spge de betragtede liniestykker eller vinkler inkorporeret i trekanter.
Dette er da ogsé en hyppig brugt fremgangsmade, nar det skal bevises,
at et par liniestykker eller et par vinkler er lige store. Herved kommer
kongruenssatningerne til anvendelse, og disse kan derfor siges at veere et
hjelpemiddel til fastleeggelse af relationen lighed mellem storrelser af
ovennavnte slags. De bliver sa at sige det medium, der baerer rsesonne-
mentet, og de kommer derved til at indtage en meget central plads i
geometrien.

Ved den elementeere geometriundervisning kan der naturligvis ikke
veere tale om abstrakte axiomatiske betragtninger, s& kongruens bade af
liniestykker, vinkler og heraf sammensatte figurer defineres utvivlsomt
bedst som simpel og anskuelig deekningsmulighed. Efter en siddan expli-
cit definition bliver det omtalte Hilbertske axiom, der forbandt kon-
gruens af liniestykker og vinkler, gjensynlig overfladigt, siledes at den
tilsvarende kongruenssaetning bliver en seetning pa linie med de ovrige.
Detite er i overensstemmelse med, at et deduktivt system kan se ander-
ledes ud som abstrakt system end som interpreteret system. For imidler-
tid at give trekantstilfeeldene det rette perspektiv vil det utvivlsomt
veere nyttigt straks pa begynderstadiet at gere opmaerksom pé, at kon-
gruens af trekanter forklaret som deekningsmulighed er ensbetydende med,
at liniestykker og vinkler bliver parvis lige store, og endvidere for at tyde-
liggere kongruensseetningernes funktion at ledsage hver af dem med en
forklaring, der neermer sig den euklidiske formulering af setningerne.
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ET DISKUSSIONSINDLAG

J.F. STEFFENSEN

Diskussionen om indfgrelse af sandsynlighedsregning i det danske
gymnasium har bragt mig til at teenke over, hvordan man bedst indferer
begrebet sandsynlighed i skolen. Resultatet af disse overvejelser folger
nedenfor.

1. Et forseg foretages under forhold, hvor udfaldet nedvendigvis ma
tilhgre et vist omrade, uden at der dog er nogetsomhelst, der tyder pd,
at den ene mulighed snarere vil blive realiseret end nogen af de andre.
Som illustration vil vi benytte et kompaslignende apparat med en ikke-
magnetisk nal. Vi ser forelgbig bort fra en inddeling af periferien og
betegner for kortheds skyld apparatet som en »forsggscirkel«.

Saetter man nu nalen i hurtig roterende beveegelse, vil den, nir den
standser, udpege et punkt pa periferien, uden at der, hvis forsggscirklen
har veret omhyggeligt konstrueret, har varet nogetsomhelst, der tydede
i retning af dette eller noget andet bestemt punkt. Vi siger derfor, at
punktet er tilfeldigt udpeget blandt lige mulige punkter.

Vi afsmtter dernest en bue af vilkarlig lengde « pa periferien, hvis
samlede leengde vi betegner ved P. Foretager man nu en rekke forsog
som foran neevnt, vil nalen enten udpege et punkt tilhgrende «, eller et,
som falder udenfor «. Men alle vil veere enige om, at ved et tilstreekkelig
stort antal forsgg vil antallet af tilfzelde, hvor resultatet tilhgrer «, for-
holde sig til det samlede antal forssg omtrent som o« til P. Man ud-
trykker dette ved at sige, at sandsynligheden for et resultat tilhgrende

(62
x er —.
P
Sandsynligheden for et resultat, der ikke tilhgrer «, er gjensynlig
— X [0
ller 1 ——.
eller 1 -

Er der pa periferien afsat to forskellige buer x og f, er sandsynlig-
heden for et resultat, der tilhgrer en af dem, ligegyldigt hvilken, aben-
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bart x+p

eller %-{—g, altsd summen af den til « og den til 8 hgrende

sandsynlighed. Dette er setningen om sandsynligheders addition.

2. For at udlede s®tningen om sandsynligheders multiplikation ind-
forer vi endnu en forsggscirkel med periferien ¢, hvorpd der er afsat en
bue med lengden f. Vi betragter nu det sammensatte forseg, som bestir
af et forsog med hver af de to forsegscirkler, og der sperges om den
hyppighed, hvormed man ved en lang forsggsreekke kan vente at fa bdde
et resultat tilhgrende « og et tilherende § ved det sammensatte forseg.

Fig. 1

Vi tenker os nu (se fig. 1) P og @ afsat som koordinater i et retvinklet
koordinatsystem, hvor ogsi « og B er afsatte. Et bestemt resultat af det
sammensatte forsgg vil da veere repraesenteret af et bestemt punkt af
rektanglet med siderne P og @, og alle punkter af dette rektangel ma
betragtes som lige mulige.

Ordinaterne i de to punkter, der begrenser «, og abscisserne i de to,
der begrenser g, afgrenser et rektangel (skraveret pa figuren), som repree-
senterer de tilfelde, hvor bdde « og B er indtruffet ved det sammensatte
forsgg, og man mé antage, at ved et stort antal gentagelser af det sam-
mensatte forsog vil antallet af tilfeelde, hvor resultatet tilhorer det sile-
des afgreensede areal, forholde sig til det samlede antal forssg omtrent
som dette areal, altsa «f, til det samlede areal PQ. Men dette udtryk-

kes ved at sige, at sandsynligheden for, at bdde x og B indtraeffer, er ﬁé
eller %-g, altsi produktet af de to sandsynligheder % og g Dette er

s@etningen om multiplikation af sandsynligheder.

NMT. Hefte 4, 1957. — 13
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3. Vi har i det foregiende talt om omrdder i stedet for som Laplace
om antal af mulige og gunstige tilfeelde. Har man at gore med antal,
behgver man blot at tenke sig forsegscirklens periferi inddelt i det gn-
skede antal dele. Siledes kan Laplace’s terning erstattes af en forsggs-
cirkel, hvis periferi er inddelt i 6 lige store og nummererede dele. Vi
behover ikke at gi nermere ind herpa.

4. Ved sandsynlighedsregningens mangfoldige anvendelser er situa-
tionen neesten aldrig den, at man som foran ved aprioriske betragtninger
kan slutte sig til sterrelsen af den sandsynlighed, man har brug for.
Man méa da ga den modsatte vej og undersgge den relative hyppighed,
hvormed det resultat, man interesserer sig for, optreeder ved gentagne
iagttagelser. Dersom denne relative hyppighed synes at tendere mod et
bestemt tal, nir antallet af gentagelser vokser, accepterer man proviso-
risk dette tal som den sggte sandsynlighed og opererer dermed efter de
for sandsynlighedsregningen geeldende regler, sa leenge man ikke stoder
pad modsigelser.




MERA OM VALMETODER

FOLKE ERIKSSON

I sin f6r 6vrigt mycket trevliga artikel om proportionella valmetoder
(NMT 5 (1957), sid. 91-98) har Carl-Erik Froberg i mitt tycke behandlat
uddatalsmetoden en aning styvmoderligt i foérhallande till valkvots-
metoden. Han nidmner, att uddatalsmetoden med en viss inskréankning
kan baseras pa principen att det »relativa felet« bor minimeras. Diremot
nimner han inte ett annat mycket naturligare sitt att hirleda uddatals-
metoden direkt ur 6nskan att gora ett visst »fel« sa litet som mojligt. Det
kan kanske vara av intresse att hir redogora for denna hirledning, som
torde vara ganska okéind. Jag har tidigare i storsta korthet publicerat den
i artikeln »En metod att férdela mandat«, Liberal Debatt nr. 1, 1949.

Utgéngspunkten &r principen att alla réster bér ha.samma virde.
Denna princip skall hiir 4 en exakt innebord. Vi intresserar oss nirmast
for vilket utbyte i mandat varje enskild rést har gett vid en viss mandat-
fordelning. Om t. ex. ett parti har fatt 3 mandat for 30000 roster, kan
varje rost anses ha gett 0.0001 mandat. Lat oss da siga att rosten har
fatt mandatvirdet 0.0001. Allmént definierar vi mandatvirdet for en
rost pa ett parti I, vilket fatt M, roster och n, mandat, som kvoten ny [ M,.
Mandatvirdet ér alltsd helt enkelt antalet erhallna mandat per rost.

Den ideala rittvisan vore givetvis att résterna pa alla olika partier
finge samma mandatvérde. Men utan att infora delbara mandat kan man
endast undantagsvis forverkliga detta. I regel uppstar skillnader mellan
mandatvirdena for roster pd olika partier. Skillnaden mellan mandat-
virdena for roster pa i-te resp. k-te partiet skall vi beteckna med O

Saledes ar
Ny Ny

M, M|

ik =

Dessa d;;, ér ett slags fel i mandatférdelningen. Det &r naturligt att
striva efter en fordelning som géor alla §;;, sma.

Vi 8vergar nu till sjilva mandatférdelningen och behaller den vanliga,
bl. a. i de nordiska linderna anviinda, successiva férdelningen: mandaten

13+ [187]
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utdelas ett och ett med anvindning av vissa jimforelsetal. Antag att
vi kommit till ett steg, da det i-te partiet har fatt n, mandat (i=1, 2, ...).
Vi vill nu underséka vilket parti som bér f& nista mandat. Vi jimfor
dirfér mojligheterna att ge mandatet till partiet I eller partiet K: Om [
far mandatet, blir skillnaden mellan mandatvirdena for roster pad I
resp. K:

n,+1  my
Mi Mk ’

’
ik

Om K far mandatet, blir motsvarande skillnad:

n, Np+1
M M

rn

6ik =

Den forra mojligheten &r att foredraga, om 6;; < 6;;, — den senare dér-
emot om &}, > 8;,. En enkel rikning visar att dessa villkor &r ekvivalenta
med uddatalsmetodens villkor att I:s jamforelsetal M;/(2n;+1) skall
vara storre resp. mindre &n K :s jimforelsetal M,/(2n;+1). Man méste
emellertid behandla de fyra olika ténkbara teckenkombinationerna var
for sig:
n;+1  my v g+l my
M, M, * M, M;

(1) O =

k2
Da ar 8> d;;,, om

ng+1 mp  mp+l my 2m4+1  2m+1 M, M,

> —_— > . < .
‘M'i Mk 'Mk M’i M‘i Mk 2nl+1 2nk+1

(Detta bevis finns i huvudsak i Frobergs artikel: jamfcrelsen mellan
storheterna &, och &,, sid. 95.)

n;+1  my " n; np+1

2 A A S T .
( ) k Mi -Mk ik Mi Mk

£7

’ n ’ " 1 1 . . oy
Da dr 8, > 8y, ty 0y — 0i, = ——+——>0. Vidare giller enligt definitionen
ik ik ik k M . Mk g

0> 0> — 0
n;+1 my, g+l

M, M, M, M,

?

M; M,

Pa samma sitt som under (1) f6ljer av denna sista olikhet < .
I, +1  2my+1

, n, M+l » n,+1 n,
(3) 0y = -J_i[__;kf_’ 0 = i MZ .
k i k i
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. L " Mi Mk
Analogt med (2) fas da 6, < d;;, och 2ni+1>2nk+1'

, Ny, n@-i—l " n; nk+1
4 Op = —————=—> Oy = 37— ’
(4) WU M Mt M M,
Detta kan of intréffa, ty i sa fall vore 8+ 8= — ———— <0,

» ty 1 sa 1all vore 0y, + 0y, = —-r —— <

etta kan e] intriffa, ty TR M, M,

Vi finner saledes, att skillnaden mellan mandatvirdena for roster pa
partierna I resp. K blir mindre, om det av de bada partierna, som har
det hogsta jimforelsetalet enligt uddatalsmetoden, far ett nytt mandat,
in om det andra far ett mandat till. Utstrickes jamforelsen till samtliga
partier, framstar det som naturligt att ge nista mandat till det parti
som enligt uddatalsmetoden har det storsta jamforelsetalet M;/(2n;+1).

Sats: Qenom uddatalsmetoden erhdlles en mandaifordelning, dir varje
fel 8, dir minimalt i foljande mening: Ingen overflytining av mandat fran
ett parts, I, till ett annat, K, kan minska 6, (skillnaden mellan mandat-
vardena for réster pa I resp. K).

Pa detta sitt forverkligas alltsé genom uddatalsmetoden den natur-
liga rittviseprincipen: att skillnaderna mellan olika résters (mandat)vér-
den bor goras sd sma som mojligt.

Beviset for satsen dr enkelt: Om §,, bleve mindre fér mandatfordel-
ningen (n;—1, n,+1) &n fér den givna férdelningen (n;, ny), vore enligt
ovan M,/(2n;—1) < M,/(2n;+1). Det i-te partiet kunde d& vid fordel-
ningen enligt uddatalsmetoden aldrig ha fatt sitt n;,-te mandat, innan
det k-te fatt sitt (n,+1):a.

Nu kunde man kanske forledas att tro, att férdelningen enligt udda-
talsmetoden dven gor »felsummanc Z 6,,C minimal. Att detta inte alltid &r

fallet visas av foljande exempel: 10 mandat skall fordelas mellan tre
partier med M, =100000, M,=20000 och M;=1000. Férdelningen blir
ny=8, ny=2, ny=0. (Jamférelsetalen for de biigge storsta partiernas
attonde resp. andra mandat &r lika=66663.) Mandatvirdet for en rost
p& resp. parti blir 0.00008, 0.0001 och 0. Dérav fas »felen« d;,=0.00002,
8,5="0.00008 och 8,5 =0.0001. Enligt ovan ér dessa fel var for sig »mini-
mala«. S& t. ex. bleve for fordelningen n,=9, ny=1, ny3=0 mandatvir-
dena 0.00009, 0.00005 resp. 0, varvid d;,=0.00004 — dubbelt s stort
som férut. Daremot skulle felsumman d,,+ 8,5+ 03 minskas fran 0.0002
till 0.00018, beroende pa den kraftiga minskningen av d,; till 0.00005.
Exemplet visar ocksd, att den fordelning som gor felsumman minst



190 FOLKE ERIKSSON

knappast dr rimlig. Det vore ju absurt, om existensen av det tredje
partiet skulle #ndra fordelningen mellan de tvi storre partierna fran
(8,2) till (9,1)! En metod som strivar att minimera felsumman X'¢,,

2,

forefaller dérfér mindre limplig. — Exemplet torde ha motsvarigheter
i praktiken, eftersom smapartier utan mandat &r vanliga.

Liksom Frioberg papekat en orimlighet hos uddatalsmetoden (sid. 93),
bor jag kanske ndmna ett par orimligheter hos den av honom férordade
valkvotsmetoden. For det forsta kan mandatférdelningen mellan tva
partier piverkas av ett tredje partis rostetal. Vi kan belysa detta med
ett exempel, dir 10 mandat skall fordelas mellan tre partier. Antag
forst att rostetalen dr M, =85000, M,= 14000 och M = 1000. De »reduce-
rade rostetalen« (Froberg, sid. 91) blir m,=8.5, my=1.4 resp. my=0.1.
Saledes blir mandatférdelningen enligt valkvotsmetoden n;=9, n,=1,
ny=0. Nu antar vi, att M, vid nista val ckas till 3000, medan M, och
M, forblir oférdndrade. D& blir de reducerade rostetalen m,~8.33,
my~v1.37, my~s0.29 och mandatférdelningen n; =8, n,=2, ny=0. Parti 2
har vunnit ett mandat fran parti 1 tack vare att parti 3 6kat sitt réstetal!

Den andra orimligheten ar risken for ett parti att foérlora ett mandat
genom att totala antalet mandat 6kas. Detta har verkligen intriffat i
USA. Vid férdelning av platserna i representanthuset mellan de olika
delstaterna forlorade Alabama ett mandat till £61jd av att antalet platser
6kades. Som exempel pa denna s. k. Alabama-paradox kan vi hér ta tre
partier med rostetalen M, = 93000, M,= 83000, M,=24000. Om 20 man-
dat skall fordelas mellan dessa partier, blir de reducerade rostetalen
my=9.3, my=8.3 resp. my=2.4. Mandatfordelningen enligt valkvots-
metoden blir d& n, =9, n,=8, ny=3. Okas nu mandatantalet till 21, blir
de reducerade rostetalen m,~9.8, my~8.7, mya~2.5 och mandatférdel-
ningen 7, =10, n,=9, ng=2. Det tredje partiet férlorar ett mandat pa
grund av att hela antalet mandat dkats! Omviint kan naturligtvis ett
parti vinna ett mandat genom att totala antalet mandat minskas.

Avslutningsvis vill jag instdimma med Froberg i konstaterandet att
valkvotsmetoden och uddatalsmetoden #r klart 6verligsna 6vriga disku-
terade valmetoder. Valet mellan dessa bada metoder har diremot mera,
karaktdren av en smakfriga. Béigge metoderna har sina fér- och nack-
delar. For min del hivdar jag dock gentemot Fréberg, att skilen for
uddatalsmetoden overviger. Aven Frobergs egna tabeller 6ver det
»totala felet« kan dberopas som stod hérfér: Det dr anmirkningsvirt att
uddatalsmetoden vid bedomning utifran valkvotsmetodens egna pre-
misser visar sig praktiskt taget jimbordig med denna metod.




REPLIK

CARL-ERIK FROBERG

Tanken att bygga en valmetod pé principen »storsta mojliga réttvisa«
kan sjilviallet inte leda till nagot entydigt resultat. Man maéste nimligen
bestimma sig for vem som skall komma i atnjutande av denna réttvisa.
Eriksson hévdar, att rittvisan skall vederfaras de rostande genom att
alla réster savitt mojligt skall ha samma virde. Denna uppfattning synes
dock inte ha vunnit genklang hos den rostande allménheten, som i stillet
undantagsldst intresserar sig for de olika partiernas erhallna mandat. Av
denna anledning synes det naturligast att bygga p& en minimering av
summan av avvikelserna mellan mandat och reducerat rostetal, och
didrmed 4r man framme vid valkvotsmetoden.

Vad sedan den forsta paradoxen betriffar, s& har man i det citerade
fallet dock att géra med tva olika politiska situationer, och jag kan inte
finna nagot orimligt i att resultatet kan utfalla olika. Exemplet pa den
kinda Alabamaparadoxen fortjinar att penetreras nérmare. Vi antar
dessutom, att mandatokningen sker efter halva mandattiden. Da skall
det forsta partiet ha 9.30 mandat under forsta halvan och 9.76 mandat
fér andra halvan, eller i medeltal 9.53 mandat. Motsvarande siffror for
de bada andra partierna &r 8.30, 8.72 och 8.51 samt 2.40, 2.52 och 2.46
resp. Det verkliga mandatantalet blir 9.50, 9 och 2 enligt uddatals-
metoden samt 9.50, 8.50 och 2.50 enligt valkvotsmetoden. Felen blir
1.06 och 0.08 (!) resp. Nu inviinder man kanske, att en saidan utjimning
i tiden 4r frimmande for det politiska livet. Detta dr dock inte fallet.
I Sverige forekommer ganska ofta, att tva partier med varandra triffa
avtal om en uppdelning av mandattiden.

Valkvotsmetoden maste saledes enligt min mening ges ett litet forsteg
framfor uddatalsmetoden, framst diarfor att den dr grundad pa en mer
realistisk minimiregel. Det skall emellertid gérna medges, att uddatals-
metoden i regel ocksa dr fullt acceptabel, och i de allra flesta fall ger
metoderna identiska resultat. Vad som framst fortjinar att kritiseras ar
den i Sverige anviinda spérrfaktorn 1.4, som saknar varje tillstymmelse
till teoretisk bakgrund.
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ULr GRENANDER —- MURRAY ROSENBLATT: Statistical analysis of
stationary time series. Almqvist & Wiksell, Stockholm, 1956. 300 pp.
Sv. kr. 56.00.

(Innholdsfortegnelse i NMT, denne argang, s. 45.)

Den matematiske teorien for stokastiske prosesser som er utviklet
gjennom de siste ca. 25 drene, er nd temmelig omfattende nar det gjelder
grunnleggende kjennskap til selve prosessene, iser de stasjonzre. Sam-
tidig utvides de praktiske anvendelsesomrader for teorien stadig. Fysi-
kere, ingenigrer, biologer, meteorologer, sosialvitenskapsmenn etc. bruker
stokastiske modeller i sine teorier. Vesentlige problemer melder seg her
nar man ut fra et gitt observasjonsmateriale, en »tidsrekke«, vil trekke
slutninger om den prosess som postuleres & ligge bak observasjonene.
Dette er forsavidt klassiske statistiske problemer, men de er langt fra
lost for stokastiske prosesser, idet de vanlige metoder fra den teoretiske
statistikk hittil bare har fert til sparsomme resultater. I en rekke av-
handlinger siden 1950 har Grenander og Rosenblatt, hver for seg eller
sammen, angrepet problemene, til dels pa nye fronter. Resultatene er na
samlet og supplert i denne monografien. Hensikten er bl. a. & vise stati-
stikerne pa den ene siden og de gvrige forskere, serlig fysikere og ingenig-
rer, p4 den annen, hvordan den generelle teorien for stokastiske prosesser
kan brukes pa de statistiske problemene.

Kap. 1 gir en meget god oversikt over den delen av teorien for stokas-
tiske prosesser som brukes i boken. Spesielt er innforingen av stokastiske
mengdefunksjoner og stokastiske integraler gjort pa en tiltalende méte.
Forfatternes viktigste hjelpemiddel videre i boken er representasjonen av
kovariansfunksjonen for en stasjoneer stokastisk prosess ved den spek-
trale fordelingsfunksjon (eller det avledede spektrum), og den tilsvarende
ortogonale representasjon av prosessen selv.

I kap. 2 forutsettes prosessens spektrum kjent. Ut fra dette gis en
fremstilling av Kolmogoroffs prediksjonsteori, noen interpolasjonspro-
blemer, et filterproblem og estimering i en regresjonsmodell.

Kap. 3 inneholder en kortfattet oversikt over metoder som har vart
brukt ved »tidsrekkeanalyse«, fra periodogramanalyse til estimering i
autoregressive modeller. Tilsynelatende har forfatterne lite til overs for
disse metodene og anbefaler ikke-parametriske metoder isteden. I virke-
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ligheten er det nok misbruken av metodene de vil til livs, det har liten
hensikt & bruke en metode som forutsetter en meget ngyaktig spesifika-
sjon av prosessen hvis en ikke kjenner prosessen godt nok til & vite om
forutsetningene virkelig er rimelige.

I kap. 4 kommer forfatternes bidrag til losning av et ikke-parametrisk
problem, nemlig estimering av kontinuerlige spektra for reelle stasjonzere
prosesser ved estimatorer som er kvadratiske former i observasjonene.
Estimeringskriteriene er konsistens, asymptotisk forventningsretthet og
asymptotisk variansminimalitet (evtlt. minimum mean square error).
Forfatterne kommer bl. a. frem til »spectrograph-estimates« som kan
betraktes som veiede gjennomsnitt av periodogrammet, og undersgker
spesialtilfeller av disse som er foreslatt tidligere, f. eks. av Bartlett.

I kap. 5 behandles spesielle eksempler hvor forutsetningene i kap. 4
erfaringsmessig kan anses oppfylt, nemlig problemer ved »random noise,
turbulens og havbglger. Forgvrig vrimler boken av eksempler fra de
forskjelligste omrader, iseer fra fysikk, med henvisninger til litteratur
hvor man kan finne bedre innferinger enn en kort oversikt kan gi.

Kap. 6 omfatter (asymptotisk) fordelingsteori for estimatorene, kon-
fidensomrader og dessuten estimeringsresultater for noen kunstig gene-
rerte tidsrekker. Kap. 7 behandler regresjonsmodeller med bl. a. hypo-
teseproving og estimering av regresjonskoeffisientene nar »forstyrrelses-
leddene« stammer fra en linesr, stasjonsr prosess. I kap. 8 behandles
diverse problemer, det viktigste er vel prediksjonsproblemet nar spektret
m4 estimeres fra data. Her er det visse ulgste vanskeligheter.

De fleste av forfatternes resultater er av asymptotisk natur, de kan
altsd antas & gjelde tilnermet for store utvalg, og de gjelder linezre
prosesser med diskret ¢-parameter. For kontinuerlig ¢ er det gitt noen
resultater, som bl. a. kan veere av betydning ved prosesser hvor en vil
bygge en analogmaskin for beregningene. Som det vil forstas, er det
iseer tekniske og fysiske anvendelser forfatterne behandler.

Man kunne gnsket at forfatterne hadde gitt seg tid til & gi boken en
siste kritisk gjennomgaelse for utgivelsen. Det burde resultert i en mer
enhetlig fremstilling gjennom de forskjellige kapitler, feerre strykkfeil« og
retting av noen mindre heldige formuleringer og feil. Ett eksempel: pa
s. 114 star det at kravet om at den karakteristiske likning for en stoka-
stisk differenslikning i én variabel skal ha retter innenfor enhetssirkelen,
er et identifikasjonskrav. I virkeligheten er det et stasjonaritetskrav. Den
annen av de to lgsninger som er gitt i eksemplet er ikke stasjoner under
de vanlige betingelser om ortogonalitet etc. i en autoregressiv modell
(men blir det hvis vi reverserer tidsrekkefglgen).

Disse innvendingene er imidlertid bagateller i forhold til bokens verdi
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som et pionerarbeide pa sitt omrade. Den viser hva som kan gjores nar
en virkelig utnytter teorien, og den gir stimulans til videre arbeide pa

en rekke forskjellige felter. Herdis Thorén Amundsen

Jos. E. Hormann: Ueber Jakob Bernoullis Beitrage zur Infinitesimal-
‘mathematik. Monographies de I’Enseignement mathématique No. 3. In-
stitut de Mathématiques, Université, Genéve, 1957. 126 pp. § 3.80.

En av de aller interessanteste epoker i matematikkens historie er vel
siste halvdel av 1600-tallet. Da levet og virket Newton, Leibniz, Jakob
og Johann Bernoulli og mange andre. Til denne tid kan man henlegge
differensial- og integralregningens oppstéen, nar man oppfatter dem som
omvendte regneoperasjoner. Riktignok hadde de — tatt hver for seg —
oppnadd en ganske stor fullkommenhet allerede hos Arkimedes og senere
hos Pascal, Fermat og mange andre. Kanskje er dette forklaringen pa
at det omtrent samtidig med differensial- og integralregningens opp-
stden kunne lgses variasjonsproblemer, noe som ellers synes noe ner
mirakulgst. Newton lgste saledes et meget vanskelig variasjonsproblem,
4 konstruere et prosjektil slik at luftmotstanden skulle bli minst mulig.
Johann Bernoulli, Jakobs yngre bror, reiste i 1696 problemet om den
brakystokrone kurve, korttidskurven for en glidende partikkel mellom
to punkter. Oppgaven ble lgst av Newton, Leibniz og Jakob Bernoulli,
og Johanns egen lgsning ble offentliggjort. Jakobs lgsning var den verdi-
fulleste, sier Hofmann. Om denne klassiske oppgaven i variasjonsregning
forteller Hofmann, og om mange andre. Han forteller at Jakob Bernoulli
hadde fatt vite at Huygens hadde studert problemet om & dele en tre-
kant i fire like store deler ved hjelp av to rette linjer som star loddrett
p4 hverandre, et problem som skal la seg fore tilbake til Apollonios.
Huygens var blitt ledet til en ligning av 40de grad, mens Jakob Ber-
noulli reduserte det til en ligning av 8de grad.

Hofmann forteller at Jakob da han var 28 ar besgkte London hvor
han traff matematikerne fra Royal Society. Han var inntil da fullsten-
dig ukjent med infinitesimale metoder. Fra ni av kaster han seg over
studiet av Descartes, Wallis og Barrow.

Etter hjemkomsten til Schweiz disputerte han ved universitetet i
Basel, hvor han fikk & forsvare 100 teser. Jeg siterer noen av dem:
»Wenn die iibrigen Bedingungen gleich sind, ist grosser kleiner und
kleiner grosser.« »Zu einer geraden Linie gibt es eine noch geradere.«
»Manchmal gibt es mehrere kiirzeste Wege von Punkt zu Punkt.« Selv
Hofmann som i bokens 389 noter med gavmild hand gjer oss meddel-
aktige i sin overveldende viten, gir tapt her: »Leider tappen wir hier
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mangels irgendwelcher Hinweise in den Meditationes iiber die Absichten

des Verfassers im Dunkeln.« .
Viggo Brun

Insights into modern mathematics. Twenty-third yearbook, The Na-
tional Council of Teachers of Mathematics. Washington, D.C., 1957.
8440 pp.

(Innholdsfortegnelse i NMT, dette hefte, s. 199.)

Her i NMT har jeg i en artikkel om matematikkens plass i amerikansk
skole pekt pa de verdifulle »Yearbooks« for matematikklerere som blir
gitt ut i U.S. A. (NMT 5 (1957), s. 81-82.)

Nylig er bind 23 i serien kommet, kanskje det beste av dem alle. Det
har til hensikt & gi matematikklererne innblikk i moderne matematikk,
i sdvel »stoff« som »and«. En rekke spesialister har gitt en utsikt over en
aktuell disiplin, med litteraturhenvisninger og til dels oppgaver som skal
gi en innfering i emnet savidt grundig at leseren fir beskjed om bakgrun-
nen for og hovedideen i vedkommende disiplin, og ogsd far presentert
definisjoner, setninger med bevis, alt i en sd bred framstilling at det kan
tales om virkelig innsikt. Hvert kapitel er blitt gjennomlest og kritisert
av en gruppe lerere for & gjore utbyttet av lesningen storst mulig.

En komité som bl. a. tellet menn som professor Saunders MacLane
{(Chicago) og professor F. Lynwood Wren (Nashville) sto for redaksjonen,
og de ber veere svzert tilfredse med resultatet bade fra faglig og pedagogisk
synspunkt.

De emner som boka behandler er nevnt i innholdsfortegnelsen. Det er
vanskelig & trekke fram det beste. Sikkert er det at boka gir usedvanlig
nyttig og verdifullt stoff for matematikklererne, hva enten de er ny-
begynnere eller har arbeidet lenge i skolen. Den er ogsa et vitne om ten-
denser i U. S. A. som vil reformere de nokséd tradisjonelle pensa skolen
gjennomgiende har der na. Sluttkapitlet drefter da ogsd de folgene ut-
viklingen i den nyere matematikk vil kunne f4 for skolens matematikk-
undervisning. Spgrsmalet er om ikke ogsi vi her i Norden gjennom
denne boka kunne fi inspirasjon til lignende pensumreformer hos oss.
I alle fall har matematikkleerere i alle land her fatt en utmerket informa-

sjons- og inspirasjonskilde. Kay Piene

E. M. PaTTERSON: Topology. (University mathematical texts.) Oliver
and Boyd, Edinburgh, London, 1956. 84128 pp. sh. 8/6.

(Innholdsfortegnelse i NMT, denne &rgang, s. 46.)

Selvfglgelig er det fremdeles mulig & finne omrader av matematikken
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(som f.eks. den elementere tallteori) hvor topologien ikke har vert
anvendt i noen serlig utstrekning — men det blir feerre og feerre av dem
for hver dag. Og til en yngre matematikkinteressert som gnsker & trenge
inn i matematikken pa en litt bredere front, kan man trygt si at topologi
hgrer til noe av det han md lese hvis han ikke vil falle av lasset temmelig
snart. Selv pa et helt elementeert niva i analysen (bade reell og kompleks)
vil kunnskaper i topologi gke forstdelsen i en vesentlig grad.

Denne lille boka av Patterson er lagt opp helt elementeert og burde
kunne leses med utbytte ogsd av en interessert gymnasiast. Selv om det
har foregatt atskillig tilneerming i de senere arene, faller topologien i to
noksa atskilte deler: Den generelle (vmengdeteoretiske«) topologi og den
algebraiske (eller kombinatoriske) topologi. P4 bare 124 smé sider har
det lykkes forfatteren & gi en meget god innfering i begge disse emner.
Innholdet av boka er dette: I et innledningskapitel blir det gitt en
motivering for de senere kapitler. Forfatteren har valgt & gjore dette
ved eksempler fra den algebraiske topologi som Mébius-bandet, Kleins
flaske, det projektive plan, Eulers polyedersats og firfarveproblemet.
Dernest falger to kapitler om topologiske rom. Disse starter med en liten
innledning om mengder, dernest gis det euklidiske n-dimensjonale rom
og metriske rom i sin alminnelighet som eksempler pi topologiske rom,
for den generelle definisjon presenteres. Blant de generelle topologiske
begreper som omtales i disse kapitlene kan nevnes kompakthet, sammen-
heng, normalitet og kompletthet. Tychonoffs sats bevises i tilfellet av to
faktorer, og det mest dyptliggende resultat som bevises i denne delen av
boka er utvilsomt det bekjente Urysohns lemma.

Annen del gir en helt elementeer behandling av to hovedbegreper i den
algebraiske topologi, nemlig homotopi og homologi. I tilknytning til
homotopibegrepet behandles spesielt Poincarés fundamentalgruppe og
homotopigruppene. Til slutt fglger sa litt om homologi, hvor det omtales
begreper som simpleks, kompleks, kjede, sykel, homologigruppe, ko-
homologi og Betti-tall. Den algebraiske topologi spiller en nesten domi-
nerende rolle i natidens matematiske forskning og har hatt avgjerende
betydning p4 en rekke hgyst forskjellige omrider, som f.eks. kom-
pleks funksjonsteori (spesielt av flere variable), algebraisk geometri og
teorien for algebraiske tallkropper (klassekroppteori).

Som sagt, for en som vil trenge litt dypere inn i matematikken er i det
hele topologien s& fundamental at en ber begynne studiet av den s&
tidlig som mulig. Og Pattersons bok synes & kunne gi en utmerket start.

K. E. Aubert
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OPPGAVER TIL LOSNING

Losninger av oppgavene 129-132 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Matematisk Institutt, Blindern, Oslo. Slike lesninger vil bli trykt
i et folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste

lesning av hver oppgave. Lesninger av oppgaver i dette hefte m& vere sendt
innen 15. februar 1958.
De ovrige oppgaver i dette hefte er enklere, og lesninger av dem vil ikke bli trykt.
Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lesning.

129. Lad p veere et primtal af formen 4n + 3. Vis da, at

1@-D -1
Il @+y?) = 1 (mod p),
z=1 y=1

og angiv en simpel regel til bestemmelse af fortegnet pa hgjre side.

C.V.Jensen

130. La n veare et naturlig tall og u(n) det storste oddetall (ulike tall)
som gér opp i n. Rekken
X cos N

fl@) =2

n=1 1" u(n)

konvergerer absolutt og uniformt for alle x. Vis at f(z) er en kontinuerlig
funksjon som ikke i noe intervall har begrenset variasjon.

R. Tambs Lyche

131. Vis at
n+1
n  n—i 2 n+2
T N [+ 1—2(i+)] (" . z) = 2[*-J n+1]|—(n+1).
=0 j=0 J 2 T
R. Tambs Lyche
132. Bevis formelen
2n—1 (_ 1)1; n
Y= (2n+1)2 —_
()
v W. Ljunggren

[202]
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133. Beregn integralene

¢ dw © 2w T cos2ax
§ cosh2n+2g’ (S) cosh2n+2g’ § co h2"+2x
134. Bevis formelen
m\2
T’(—l)i*&)— = 20,—0,, Mm = N, 0, = 1+1+1+ +1.
2 3 r

=0

135. La A4 vere ett av brennpunktene for et kjeglesnitt og s og ¢ to
faste tangenter. En bevegelig tangent u skjerer s i S og ¢ i 7. Vis at
vinkelen SAT er konstant nir » beveger seg.

136. To kjeglesnitt har ett brennpunkt 4 felles. La styrelinjene motes
i B og fellestangentene i C. Vis at vinkelen BAC er rett.

LUSNINGER

107. (Etter en idé av Viggo Brun.) Av den naturlige tallrekke stryker
en forst hvert annet tall, s4 bare de odde (ulike) tall star igjen; av den
fremkomne tallrekke stryker en sa hvert tredje tall, av den nye hvert
fjerde, osv. Av den opprinnelige tallrekke star da igjen en tallrekke som
begynner med

(1) 1,3, 7,13, 19, 27, 39, 49, 63, 79, 91, 109, .

La x vere et naturlig tall og »(x) antallet av tall <z i tallrekken (1).

Vis at

X X

lim >_—. Iim

<1.
n— 00 'V(x)z n—>00 'V(x)z

l\')»—l

Det antas at z/v(z)? for voksende x nermer seg en grense med en verdi
av ca 0,79. Om mulig gnskes denne formodning bekreftet.

R. Tambs Lyche

En lesning av denne oppgave er allerede gitt i innevaerende &rgang, hefte 2,
8. 114-116. Nedenfor bringer vi en annen lesning. Den bygger p& oppgavene 115
og 116, som begge er lost i hefte 3, s. 159-161.

Redaksjonen er blitt gjort oppmerksom pé at likheten i oppg. 115 er en ¢dentitet,

14%*
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i den betydning at den ogsé gjelder for en endelig sum og det tilsvarende endelige

produkt:
3 L (Y (i)
po14p i \2k+1) 4y (k+1)2)°

Dette folger umiddelbart av Carlitz’ lesning ved & bemerke at hans V, nettopp
er produktet pa hoyre side ovenfor.

Losning: En endelig tallfglge a,,, m=1, 2, ..., n, er definert ved

— m2
a, =n? og

Qpp+1 _ a/m_'l
n—m n—m

Settes siste tallet a,, lik b,,, far en den gitte rekken
b,=1,3,7,13,..., nar n=1,234,....

Under utregningen av a,, fra a,=n? til a,=>5, blir det n—1 ganger
subtrahert et 1-tall (skravert pa fig. 1) og en rest r,, (svart pa figuren),
mens vedkommende divisor er d,=n—m. P4 fig. 1 er n=10, og r, =
0,2,4,0,4,0,2,0,0 for m=1, ...,9. Kvadratets hvite del svarer til
byo="T9.

739, Fer A

]
]
<«—divisorkurven divisorkurvens |
. ]
grense X
grenser |
4.«Pe‘n - for rest-.
rest- = pey kurvene |
) . .
& RUr- z.fem .lp '
ver L iper )
.fﬂ'.‘ [}
L 05V, ,
. '. N )
43 f@v . !
1]
]
1)
)

- -' Qeccd o--
MMM AR ‘_a
dm

n - 1

Fig. 1 Fig. 2

Restene folger periodisk regelmessig etter hverandre. Farste rest er |
alltid null, og i p-te periode danner restene en aritmetisk rekke med
differens 2p. Etter siste rest r,,<d,, i p-te periode bestemmes neste rest
Tm+1 < dm+1 av

Apir S T +2p = hdpy iy + 700,
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0g 74 €T forste rest i (p+h)-te periode. Nar d,, avtar mot 1, ligger reste-
nes regelmessighet skjult i at hver rest blir den eneste i sin periode, mens
et stigende antall perioder, periodene mellom p og p+ A, ikke blir repre-
sentert. Men ved & velge n tilstrekkelig stor kan en, enten en dividerer
planet med n? eller med (n+1)?, fa en figur s& ner fig. 2 som en vil.
For n=v(z) er b,<x<b, ;. Av dette fglger at x[v(x)? nermer seg en
grense nar z vokser, og av fig. 2, hvor grensen for restkurven i p-te periode
har vinkelkoeffisienten 2p, utledes den sgkte gremsen som kvadratets
hvite del,

© 1 P o2k \P 1
Jim = 1— 3 — ( “)zn(p‘ _2>=§.
w00 P(T) po14p iy \2k+1 Paiey (2k+1) 4

H. Killingbergtro

121. Lad a,, as, ..., a, vere en mengde indbyrdes forskjellige tal.
Bevis folgende identiteter:

\%
ro

(1) P H (a,—a;)* =0, n

(2)

S
=
Q

=

I
£
L

[
vl—'

S

v
o

i=1 k+j
1sk=n
n
3 a;P a,(a,—a;)"t = 0, n > p, p hel og positiv.
j 1\A — @5 p, P g Pp
j=1 k+j
1sk=n Ove J. Munch

Losning: Er P(x)=(a,—x) ... (a,—x), blir venstresidene i (1) og (3)
henholdsvis

som etter oppg. 68 (NMT 3 (1955), s. 173) er null for de gitte verdiene
av p.

Dersom et a; er null, folger (2) umiddelbart. Er alle a;%0, og er
Q(x) =xP(x), blir venstre side i (2) lik
—Q'(0) @'(0)

—Qy . Wy *
4;P'(ay) ~j§ Q'(a;) Q'(0)

L[\ﬂs

J
H. Killingbergtro

Ogsd lest av L. Carlitz, F. P. Dahlkild, Antti Issakainen, Arne Pleijel, Rolv
Rasmussen og Ragnar J. Solvang. :
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122. Finn det volumet som begrenses av de tre enkappede hyper-
boloider
2tyt—22 =1, a?—yit22 =1 —a24y2422=1,

R. Tambs Lyche

Losning : Det avgrensede volum kan deles i 48 like store deler, hvorav
en er bestemt ved

(1) r2yz22z20, a22+9y%2 < 1422,

Fig. 3

Volumet beregnes sa ved & betrakte et snitt av legmet (1) med konstant

z-verdi (se fig. 3). Vi har £ BOA =§— arctgz, og C4 =1-=z. Folgelig blir

areal (ABC) = %((1+22) (Z—arctgz) —z(l—z)) = A(z),

og herav blir det sgkte volum
g
48 \ A(z)dz = 81n2.

0 Rolv Rasmussen

Ogsé lest av J. J. Bisgaard, Antti Issakainen, H. Killingbergtrs og K. V. Rask.




DEN ANNEN INTERNORDISKE PRISOPPGAVE

Oppgaveteksten sto i NMT 4 (1956), s. 166-168. Resultatet av konkurransen
ble kunngjort i NMT 5 (1957), s. 118.

Losningene nedenfor bygger pé innkomne besvarelser; oppgavelgserens navn
er gitt ved hver oppgave. Besvarelsene er imidlertid noe forkortet og til dels
bearbeidet. For enkelte oppgavers vedkommende var det selvsagt mange nesten
likeverdige lesninger & velge mellom. Johs. Ostvold

1. (Soren Poulsen). Ved hjelp av sirklene med radius a og b<a kon-
strueres ellipsepunktet P ved & trekke CP og EP. Sirkeltangenten il
skjerer z-aksen i F. Da er F'P
ellipsetangenten i P. Vi trekker
OQ L FP.

Firkanten OQCF kan innskri- a-b
ves i en sirkel fordi de to rette Q
vinkler ZOQF og LOCF spenner
over samme linjestykke OF. Av z P
dette far en LCOF=x=LOQF. E
Videre er /PCF=/PEC=x.
Da LEPC=90° fglger at EPCQ z F
kan innskrives i en sirkel med 0
EC=a—-b som diameter. N&r
x vokser fra 0° til 90° vil P bevege seg fra C til E langs nedre halvdel
av sirkelen over EC som diameter. @ vil bevege seg fra C til £ over gvre
halvdel av samme sirkel. Ett sted vil punktene vare diametralt mot-
satte. Den storste verdi for PQ er altsa a—b.

Fig. 1

2. (Erlend Ostgaard.) La projeksjonen av punktet P i planet ABC
veere P'. Da er PA2+ PB2+ PC?> P'A%+ P'B*+ P'C? nar P ligger uten-
for planet. Det er derfor tilstrekkelig & bevise pastanden for punktet P
beliggende i planet 4 BC.

I dette plan legger vi et koordinatsystem med z-aksen langs AB og
origo midt pa AB. Med A(—,, 0), B(xy, 0), C(x5, ¥) 08 P(w, ¥o) finner vi

3(PA?+ PB?+ PC?) — (AB?+ BC?+ CA2) = (3x,—23)2+ (3yg—92)* 2 0.
[207]
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Likhetstegnet gjelder for a,={z,, y,=1y,, som gir skjeringspunktet for
medianene i trekanten A BC.

3. (Mogens Fredriksen.) Gjennom A, trekkes A,D parallell med ooy,
altsdi ADBA,~ AC,BC og AAC,Cy~AADA,. Dette gir

B4, X 1
BD=""YBC,= "« —_. 4B, .
BC I+ 14y
_ l+y+ya ) )

(I+a)(I4y)

AC,  AC,  y(1+a)
A4, AD " 14ytya’
Videre blir
AAA,C 4,0 1
AABC T BC T 14«
ANAC,C  AC, y(1+«)
AAAC T A4, l+ytypx

Multiplikasjon av proporsjonene gir

NACO = TL AABC .

+y+yx
P4 tilsvarende méate faes
x B
AAA,B = ——+ANABC, ABB,C = ———— -AABC;
+otof +B+By
altsa
AA,B,C, _ * B 14
AABC I+oa+af 14+p+fy l4+y+yx
(xpy—1)2

T (Lrat o) (L+B+) L4y +ym)

4. (Tord Holmstedt.)

1 1
f@) = ——=;
sinx z
(@) 1 cosx 1 cosx 1/0 o 0 o
) = —— > — =—-tg?2—- > 0, <x< -
: x? gsin2x x sin%2z 4 J 2
4tg2=
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x—sinx 7
f@)=——>0, 0<x=—;
X sInx 2
Lz
. 2 sin2 —
tgx —sinx 2 $a? x
flz) < . = < = ,
x sinz Z Ccosx  xrcosx 2cosz

altsé lim f(x) =0.

x—>0

5. (Hans Blichfeldt Hansen.)
a) Qpioa=0pi 1+, eller a,=a, ,—a, ..
S, =a,+as+...+a,_1+a,
= (a3—ap) +(@g—a5) + . . . + (Wpy1— W) + (@p12— Vpi1) = Gyip— 1.
b) Formelen @,a,.,—@,..2=(—1)"*' er riktig for n=1. Hvis den
gjelder for n=p, vil den ogsa gjelde for n=p+1, idet
Qpi1@pis—pia® = Qi1 (@piotUpig) = Gpos®
= Gy = Cpa(@p =0y iy) = Qpi® =0 = —(—1)PF = (= 1)p+2.,
Altsa gjelder formelen for alle n.
€) Wpllyip=Apiy®= (= 1", eller a, y*— @y, 11—, +(—1)"+ =0, gir
Opiy = %(“n + ij‘i(—_ W‘) )
idet minus foran roten mé forkastes, da a, ., > a,. Altsa

A1 1 V“_. 4 . Opa =

n n NnN—>00 an

da a,,— oo nar n — oco.

6. (Karen Tonder Johansen.) Da n-kanten er konveks, ligger tre hjorner
ikke pa en rett linje. Det kan derfor alltid tegnes en firkant, hvis hjgrner
fremkommer ved & velge fire av n-kantens hjorner. Diagonalene i denne
firkant er samtidig diagonaler i n-kanten. Deres skjeringspunkt er da et
indre skjeringspunkt for to diagonaler. Omvendt ser en at ethvert
indre diagonalskjeeringspunkt bestemmes av to diagonaler som entydig
bestemmer fire hjorner. Antallet av indre skjeringspunkter er derfor lik
antall mulige kombinasjoner (uten gjentagelser) av 4 elementer blant n:

K= n(n— 1)(1;; 2)(n—3)

(n = 4).
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Idet der i en n-kant kan trekkes jn(n — 3) diagonaler, ville disse skjere
hverandre i K}, ,—g),» skjeringspunkter, dersom ingen av punktene falt
sammen. Fra hvert hjgrne gar n—3 diagonaler. Det antall skjeerings-
punkter som faller ssammen er da K, _; , i hvert hjgrne. Antall diagonal-
skjeeringspunkter utenfor n-kanten blir da

n(n—3)(n—4)(n—>5)

K;n(n—s),z“nKn—a,z"Kn,a: = 12 .

PRISTAVLING FOR SVENSKA GYMNASISTER

Liksom foregdende ar anordnar Nordisk Matematisk Tidskrift en pristévling for
svenska gymnasister. Var och en av de tre utgivande svenska féreningarna har
stallt 50 kr. till disposition, varigenom ett forsta pris om 100 kr. och ett andra pris
om 50 kr. kan utdelas.

For deltagande i tévlingen fordras, att 16sningar inséindas till minst fyra av
nedanstédende uppgifter. Gymnasister fran 6vriga nordiska lénder kunna deltaga
utom tévlan.

Losningar, atfoljda av en forsékran att de dro sjilvsténdigt utarbetade, insdndas
senast den 1 mars 1958 till: Nordisk Matematisk Tidskrift, Matematiska Institu-
tionen, Lund. Bifoga uppgift om namn, klass och ldroverk.

1. Funktionen s(z) dr definierad pa foljande sétt:

sfry=+4+1 da x>0,
sx)= 0 da x=0,
sx)y= -1 da x<?O.

Visa, att s(a) —s(b) =s(a—b)-[1—s(a)s(d)].

2. I triangeln A BC &r vinkeln 4 = 3«, vinkeln B = 38 och vinkeln C' = 3y.
Inuti triangeln viljes en punkt P s att vinkeln PAB=« och vinkeln
PBA =p. Pa analogt sitt viljas punkterna @ och R. En allméin sats
siger da, att triangeln PQR &r liksidig. Bevisa denna sats i det enklare
fallet d& triangeln ABC &r likbent.

3. I en fyrhorning bilda vinklarna i ordning tagna aritmetisk serie
och sidorna i ordning geometrisk serie. Bestim seriernas differens resp.
kvot.

4. Kurvan y=2? samt linjen y=a (a>0) 4r givna. P4 kurvan viljes
en punkt Py(x,, y,) med z,>0 och y,>a. Tangenten drages i denna
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punkt och triffar linjen y =a i punkten @,. Genom ¢, drages en vertikal
linje, som triiffar kurvan i punkten P,(z;, ¥;). Konstruktionen upprepas,
och pa detta sitt framkommer en serie punkter Py, P, Py, ... med
x-koordinater x,, 2;, s, .... Visa, att x, gar mot ett grinsvirde och
angiv detta.

sin?x

5. Visa, att for 0<x<g géller cosx <

1 1 1
6. Summan 1 +§+§+ ...+~ betecknas med s,,. Visa, att talen s, for
n

7> 1 aldrig kan vara heltal.

PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1958, arrangert av Norsk Matematisk Forening.

Den beste samling besvarelser vil bli tildelt H.K.H. Kronprins Haralds premie
p& 200 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster veere med. Oppgavene faller inn under reallinjens pensum.
Jo enklere og mer elementzre lesningsmater en kan finne, dess bedre. Oppgavene
ber droftes og greies ut si fullstendig som rdd er. Det er ikke nedvendig & ha svart
pé alle 6 oppgavene.

En sender lesninger til rektor Kay Piene, Skjerstadvn. 2 A, Smestad, Oslo,
innen 1.5.1958, ledsaget av en erklering om at oppgavene er selvstendig lost.
Oppgi skole og klasse.

1. Som kjent gjelder folgende setninger: 1° Dersom a og b er naturlige
tall og c=ab, s& er ogsi ¢ et naturlig tall. 2° Et hvert naturlig tall kan
skrives som et produkt av primtall og det bare p4 en méte.

La tall i det folgende bety tall av formen 4n+1, der » er et naturlig
tall. Gjelder da setningene 1° og 2° fortsatt? Gjelder den omvendte set-
ning til 1°? Finn eksempler.

2. Bevis identiteten

1-2 1:2:3- ... 'n - 1-2:3- ... 'n

1+ais+x(x+ )+ 2(x+1) ... (x+n—-1) (x+1)(xz+2)... (x+n)-
3. I en trekant ABC er gitt BC=a, AC=b og LACB=v. Normalen
pa midten av A B skjeerer BC i punktet N. Finn ON uttrykt ved a, b og v.
Siden AC ligger fast. Finn det geometriske sted for N nér v varierer,
mens BC har fast lengde. Hvorfor blir midtnormalen tangent til det
geometriske sted ?



212 OPPGAVER

4. I zy-planet ligger et kvadrat med hjgrner (0, 0), (6, 0), (6, 6) og
(0, 6), som er grunnflate i en terning. Et plan gjennom origo skjerer de
to nermeste sidekantene henholdsvis 2 og 3 lengdeenheter over zy-planet.

Finn koordinatene for trasene til snitt-figurens sider i xy-planet, og
finn ligningen for trasen til planet i xy-planet. Finn vinkelen mellom
snittplanet og xy-planet.

Planet svinger om trasen. Hvordan endrer snittfiguren seg ?

5. Vi sier at et naturlig tall med sifferne a, b, ¢, ... (fra venstre) har
voksende siffer nar a<b<c<.... Videre forutsetter vi at et telefon-
nummers forste siffer ikke er 0.

a) Hvor mange firsifrete telefonnummer har ett siffer som er lik 7%

b) Hvor mange firsifrete telefonnummer har minst ett siffer som er
lik 7°?

¢) Hvor mange to-, tre- og firsifrete telefonnummer har voksende
siffer ¢

d) Besvar spersmalene a) og b) for alle sekssifrete telefonnummer.

e) Et sekssifret telefonnummer kan deles opp i tre tosifrete tall.
(469688 i 46 — 96 — 88.) Dersom disse tre tallene vokser, sier vi at
tallene har voksende parsiffer. Hvor mange sekssifrete telefonnummer
har voksende parsiffer ?

f) Hvor mange 8-, 9- og 10-sifrete tall har voksende siffer ?

6. Pi et vannrett plan « ligger tre kuler med sentrene 4, B og C og
radiene 1, 2 og 3 slik at de rgrer hverandre to og to. Projeksjonene av
punktene 4, B og C pa planet er A’, B" og C'.

Finn sidene i trekanten A’'B'C’ og volumet av det legemet som
avgrenses av trekantene ABC, A'B'C' og trapesene 4'ABB’, B'BC(C’
og C'CA44".

Finn cosinus til vinkelen mellom planet « og planet gjennom sentrene
i kulene.

Er oppgaven lgsbar dersom radiene er vilkarlige, lik @, b og ¢?




SUMMARY IN ENGLISH

Viceo Brun: Carl Stormer tn memoriam. (Norwegian.)

An obituary on professor Carl Stermer, who died August 13, 1957.

LeNNART CARLESON : A mathematical model for highway traffic. (Swedish.)

(The formulas etc. referred to are found on pp. 176-180.)

The “public relation” committee of the Swedish Mathematical Society (Svenska
Matematikersamfundets Kontaktné#mnd) has asked the author to undertake a
mathematical investigation of highway traffic. The following assumptions are
made:

An average of a vehicles per hour is passing a fixed point of a two-lane road.
Each vehicle X keeps an ‘“‘ideal speed”” , when not waiting to pass a slower vehicle
Y of speed y. The percentage of vehicles with ideal speed < is given by a distri-
bution function H(x). When X passes Y, it travels in the other lane a distance
A=cx/(x—y), after having waited behind Y (on the average) a distance s(4) with
speed y: the traffic is assumed so sparse that Y keeps its ideal speed during this
period (no queues are formed). This assumption is inessential but simplifies the
formulas.

Let f(z) denote the average speed of a vehicle X. Then ¢(x)=1/f(x) satisfies the
integral equation

z

1 = 2p@)—a\ st (p) — @) @—y) d—%‘y—)

0
This is specialized to the case of s(41) =y and the solution (3) is derived. It turns
out that there is an upper bound g for the average speed f(x) when = — oco.

The traffic flow F (total transport of vehicles passing a fixed point per time
unit), and the number O of passings of other vehicles per unit of time and distance,
are given by formulas (5)—(6). Table 1 illustrates the case y=3, ¢=0,1 km, and
only two ideal speeds (given in km/hour), both with the same frequency. The
column f shows the average speed of the faster vehicles.—Table 2 is constructed
similarly, but under the assumption that y =3},a.—Fig 1 shows f(x) for the con-
tinuous distribution given by formula (7).

H. H. HaNSEN: The congruence theorems of elementary geometry.
(Danish.)

With references to Euclid and Hilbert, it is stressed that the development of
congruence relations for triangles should not be a purpose in itself, but only a
useful tool in geometric considerations.
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J. F. STerrFENSEN: Contribution to a discussion. (Danish.)

In connection with the discussion about introducing probability theory and
statistics in the Danish grammar schools, the author outlines his views as to how
the elementary probability concept, with the laws of addition and multiplication,
should be presented.

ForLkE ERrikssoN: More about representation systems. (Swedish.)

In an earlier paper in NMT (this volume, pp. 91-98), Carl-Erik Froberg con-
cluded that the classical methods of “odd divisors” (Sainte Lagué) and of ‘‘greatest
excess’’ are superior to all other proportional election systems. In his opinion, the
latter method has an advantage over the former one.

The author of the present paper joins Froberg’s general conclusion, but he
prefers the former method, which in a certain sense maximizes the ‘“‘mutual justice”
between any two parties. Some disadvantages of the method of greatest excess
are illustrated by examples.

CArRL-ERIK FROBERG: Reply. (Swedish.)

A few comments on the above-mentioned paper by Folke Eriksson.
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