OM »STRINGENT TANKNING
0G PRAGNANT UDTRYKSFORMc«

DAVID FOG

Foredrag holdt i Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier
i Danmark i oktober 1955 (noget omarbejdet).

I formélsparagraffen for matematikundervisningen i de danske gym-
nasier star bl. a., at man skal sgge at udvikle og skole elevernes evne
til stringent tenkning og praegnant udtryksform. Det er et hgjt mal
at swette sig, men ikke derfor mindre berettiget. I en videnskab,
der er si gennemsyret af logik som matematikken, er det oplagt ned-
vendigt at leegge veegt pa preecision, bade i tanke og udtryk. Dog er det
min hensigt i det fglgende at henlede opmearksomheden pa, at den al-
mindelige regel om, at intet er s4 rigtigt, at det ikke kan overdrives, ogsa
har gyldighed her.

Over for fremholdelsen af det nevnte krav vil det veere naturligt til
en begyndelse at sporge: Hvorledes honoreres dette krav i det daglige
liv, i den almindelige omgang mellem mennesker? Svaret er entydigt og
lige til: Det sprog, vi taler med hinanden til daglig, er langtfra logisk
eller klart. Jeg skal illustrere dette med et par simple eksempler.

Nar A har besggt B under hans sygdom og er ved at bryde op, er det
hefligt, om han ved afskeden siger: »Nu haber jeg ikke, at jeg har trattet
Dem¢. A har hermed formuleret sit onske helt forkert; han mener:
»Nu haber jeg, at jeg ikke har traettet Dem«. De to citerede udtalelser
kan i daglig tale nermest anvendes i flieng og med samme betydning.
Hvor stor forskellen i indhold virkelig er, ser man tydeligt, nir man er-
statter dem med to s@tninger, der har samme sproglige opbygning, men
hvor indholdet er gjort matematisk, f. eks. »heraf folger ikke, at a er
lig b« og »heraf folger, at a ikke er lig b

Eller man kan nzvne en almindelig benyttet vending som denne:
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yDer er 5 minutter mellem hver sporvogn«. Omsat til matematik svarer
det f. eks. til, at man om en rekke skvidistante punkter pa en ret linie
sagde: »Der er 5 cm mellem hvert punkt«, hvad der nok ville f& de fleste
matematiklerere til at reagere.

Disse eksempler er relativt uskyldige og giver kun udtryk for sma
formuleringsmessige ungjagtigheder; men hvis man for alvor begynder
kritisk at g4 efter, hvad der siges og skrives, ikke mindst hvor det har
agitatorisk preeg, vil man snart opdage, at det absolut ikke er den strin-
gente tenkning eller den preegnante udtryksform, som dominerer. Jeg
skal ikke gi ind p& en nermere dokumentation af dette, men blot be-
meerke, at det som felge heraf er klart, at vanskelighederne mé vere
ganske overordentlig store, nar man stiler mod korrekt omgang med det
seerlige og meget krevende sprog, som er matematikkens.

Jeg skal nu behandle et omfattende omrade inden for skolematematik-
ken, der stiller seerlig store krav til klarhed i tanke og fremstilling, og
som vel netop derfor falder eleverne svart; det er spergsmélet om
geometriske steder. Jeg vil gerne dvewle udferligt ved den logiske side
heraf.

Hvad vil det egentlig sige, at en kurve er geometrisk sted for et punkt,
der opfylder en vis betingelse ? Vi kan give svaret siledes: Det vil sige,
at samlingen af punkter p& kurven er identisk med samlingen af punkter,
som opfylder betingelsen. For at uddybe dette vil vi betragte nedensté-
ende skema:

A B

Nar et punkt opfylder betingel- | Nar et punkt ligger pa kurven,
sen, ligger det pa kurven. opfylder det betingelsen.

Nar et punkt ikke ligger pa kur- | Nar et punkt ikke opfylder be-
2 | ven, opfylder det ikke betingel- | tingelsen, ligger det ikke p& kur-
sen. ven.

Skema 1

Hertil knytter vi fglgende bemaerkninger:

De to udsagn 1 (de to overste) er — i seedvanlig forstand — indbyrdes
omvendte. Det ene fremgar af det andet ved ombytning af forsetningens
indhold (det givne) og indholdet af eftersaetningen (det pastiede). Ana-
logt for udsagnene 2.




STRINGENT TANKNING OG PRAGNANT UDTRYKSFORM 179

Lad os dernzest betragte to udsagn i samme sgjle (to udsagn, der —
med dagligsprogets ophgjede sans for logik — star »lodret over hin-
anden¢); det ene fremgar af det andet, nar man foruden at foretage den
ovennavnte ombytning negerer begge setningers indhold. Sddanne ud-
sagn er logisk ensbetydende, idet hvert af dem kan udledes af det andet.
Som eksempel vil vi udlede A2 af Al. Dette sker let indirekte: Idet Al
antages gyldig, forsgger vi, om et punkt, som ikke ligger pi kurven,
kan opfylde betingelsen; men dette er umuligt ifelge Al. Hermed er
‘A2 bevist.

Den foran givne definition pa begrebet »geometrisk sted« kan nu ud-
trykkes saledes, at udsagnene A og B skal veere opfyldt. Med brug af
lidt andre ord kan vi sige, at kurven skal indeholde alle de punkter,
som opfylder betingelsen, og ingen andre. Det forste sikres ved A, det
sidste ved B. For i et konkret tilfeelde at dokumentere en kurves egen-
skab som geometrisk sted skal man altséd godtgere Al eller A2 samt Bl
eller B2.

Vi vil nermere betragte et meget simpelt eksempel, hvor alle fire i
skemaet fremsatte pastande er lige lette at efterprgve. Der foreligger en
spids vinkel (Im) med toppunkt O; vi vil bevise, at det geometriske sted
for de punkter i vinkelrummet (Im), som ligger lige langt fra vinkelbenene
l og m, er vinklens halveringslinie.

! I l
P
0
M
m m

Fig. la Fig. 1b

\
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Idet vi forudssetter kendskab til maling af periferivinkler, kan beviset
fores saledes:

Al. Lad (fig. 1a) P veere et punkt, som opfylder betingelsen. Cirklen
over OP som diameter skeerer [ og m i fodpunkterne L og M for de vinkel-
rette fra P. Da korderne PL og PM er lige store, geelder det samme om
de tilsvarende buer, saledes at (med figurens betegnelser) u=w», d. v.s.
P ligger pa halveringslinien.

B1. Lad nu (atter fig. 1a) P ligge pa halveringslinien. Da u=wv, bliver

13*
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buerne PL og PM lige store, ligesa korderne, d.v.s. P opfylder betingel-
sen.

Hermed er setningen om halveringslinien som geometrisk sted bevist.
I stedet for Al kan vi ogsa godtgere A2. Lad da (fig. 1b) P veere et punkt,
som ikke ligger pa halveringslinien. Cirklen over OP som diameter be-
nyttes atter. Med betegnelser analoge med for bliver nu u=wv; buerne
PL og PM bliver derfor ulige store, ligesd korderne, d. v.s. P opfylder
ikke betingelsen. P4 lignende made kan man, atter med benyttelse af
fig. 1b, vise B2, der kan trade i stedet for B1.

Det kan vzere nyttigt at sammenligne det foranstidende skema 1 med
de sedvanlig anvendte beviser for de elementere geometriske steder.
Dette vil vi dog her forbiga, men i stedet tage et par andre eksempler
pa skemaer, der i logisk henseende er ekvivalente med skema 1.

Nar noget star i avisen, Néar noget er sandt,
er det sandt. star det i avisen.
Nar noget ikke er sandt, Nar noget ikke star i avisen,
star det ikke i avisen. er det ikke sandt.
Skema, 2

Ingen af disse udsagn er jo rigtige for nogen eksisterende avis. Udsag-
nene til venstre kunne nok tilnsermelsesvis opfyldes; men approksima-
tionen kan ikke i almindelighed siges at veare serlig god. Derimod kan
udsagnene til hgjre under ingen omstendigheder opfyldes, end ikke med
tilnermelse; dertil er spalterne i en avis ikke rummelige nok.

Vi tager endnu et eksempel. Der er et gammelt ord, der siger: »Den,
der tror, haster ikke«. Den dybe sandhed, der métte ligge heri, pavirkes
ikke af, om vi jonglerer lidt med ordsproget.

Den, der tror, haster ikke. 1 Den, der ikke haster, tror.
Den, der haster, tror ikke. ‘ Den, der ikke tror, haster.
Skema 3

Et menneske, der helt uforberedt bliver stillet over for dette skema, vil
dog vist tgve noget, inden han er fuldt overbevist om, at to udsagn i
samme sgjle har samme indhold. Derimod ser man ret let, at indholdet
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af venstre og hgjre side er forskelligt. Selv om vi nemlig godkender sand-
heden af udsagnet til venstre, folger ikke heraf rigtigheden af udsagnet
til hgjre: nar en person ikke haster, behgver det ikke at skyldes tro, men
kan f. eks. — i al sin trivialitet — skyldes dovenskab.

Hvad er det nu egentlig, der er faelles for disse 3 skemaer ? Det er ikke
vanskeligt at se. Vi betragter folgende fjerde skema, hvor A og B betyder
to udsagn:

Af A folger B I Af B folger A
Af ikke-B folger ikke-A I Af ikke-A folger ikke-B
Skema 4

Dette er den logiske keerne, som her treeder klart frem, befriet for alt
matematisk eller andet tilbehor. Og godtgerelsen af, at to udsagn i samme
sojle er identiske, er derfor mere gennemskuelig end for. Og vi ser sam-
tidig, at denne logiske keerne ikke blot kan anvendes over for den mate-
matiske problemkreds, vi foran har behandlet, de geometriske steder,
men overalt i matematikken, hvor det drejer sig om at undersgge en
seetning og dens omvendte setning.

Efter nu udferligt at have omtalt den logiske side af matematikken,
belyst ved problemet om de geometriske steder, skal jeg ga over til den
pedagogiske. Hvorledes kan man med udbytte undervise i disse ting?
Pé den ene side har man logikken med dens ideale fordring, pa den anden
hensynet til elevernes modenhed, deres evne til at optage og fordgje
stoffet og i det hele taget at folge en abstrakt tankegang. P4 gymnasie-
niveau vil man efter min mening nedsages til visse modifikationer i for-
hold til det, man som »voksen« matematiker vil betragte som idealet;
dog ber det mere vzre en renonceren over for fuldsteendighed end over
for korrekthed. Man kan godt tale sandhed uden hvert gjeblik at veere
forpligtet til at sige hele sandheden. Jeg skal nedenfor soge at gore rede
for mine synspunkter i tilknytning til nogle eksempler; de forste handler
igen om geometriske steder.

Vi vil bestemme det geometriske sted for skaringspunktet mellem to
linier 7 og m, der drejer sig lige hurtigt til modsat side om hver sit faste
punkt L og M.

Vi loser opgaven analytisk i et bekvemt koordinatsystem (fig. 2).
Begyndelsespunktet veelges i midtpunktet O af LM. Nar linierne drejer
sig en halv omgang, vil de to gange undervejs blive parallelle; de to
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herved bestemte, pa hinanden vinkelrette retninger veelges som retninger
for koordinatakserne. Dersom i dette koordinatsystem L= (a, b), bliver
M = (—a, —b). Vi vil her kun
interessere os for det tilfeelde, hvor
bade @ og b er +0.

For en vilkarlig stilling af lini-
L(a,b) erne, hvor de ikke er parallelle,
1 tilfredsstiller deres skeeringspunkt

P =(x, y) ligningerne

X 1) y—b = x(x—a),
y+b = _(X(x_‘_a')}

hvor « betegner haeldningskoeffi-
M(—a,~b) cienten for [ (og — « derfor hseld-
ningskoefficienten form). Multipli-
ceres de to ligninger med henholds-

Fig. 2 vis z+a og x—a, og adderes, fis
@) (@+a)ly—b)+(@—a)ly+b) = 0,

der reduceres til

(3) xy = ab .

Denne ligning fremstiller en ligesidet hyperbel, der har koordinat-
akserne som asymptoter og gar gennem L og M.

Vi har ovenfor vist, at alle skeeringspunkter P ligger pa hyperblen (3),
svarende til Al i skema 1; men vi har endnu ikke godtgjort, at (3) er
det spgte geometriske sted, kun at stedet er indeholdt i (3). For at doku-
mentere, at det geometriske sted virkelig er hele kurven (3), kan vi {. eks.
vise B1 i nevnte skema. Dette kan gores ved »tilbageregning«: Nar (3)
og altsi den dermed sekvivalente (2) er tilfredsstillet, viser en lille over-
vejelse, hvis detailler jeg forbigar, at der altid findes et «, som tilfreds-
stiller begge ligningerne (1).

Vi kan imidlertid ogséd godtgere Bl pa en anden og mere anskuelig
made. Nar [ og m drejer sig en halv omgang om L og M, vil skeerings-
punktet P ifglge Al beveege sig pa hyperblen (3), og nar { (og dermed m)
ikke springer nogen mellemstilling over, vil P heller ikke kunne springe
noget hyperbelpunkt over. Hermed har vi atter bevist B1.

Dette sidste bevis benytter, som det vil ses, en ikke skarpt defineret
»sammenhaengende variation« af figuren, og det er tilladeligheden af en
sadan, jeg gerne vil sla til lyd for og forsvare. Den geometri, som dyrkes
i skolen, er jo ikke strengt aksiomatisk opbygget — af mange grunde,
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som jeg ikke her behgver at komme ind pa; men nir man alligevel ikke
holder sig til den rene aksiomatik, ser jeg ikke, hvorfor eleverne ikke ma
tage naturligt pa tingene og benytte deres medfedte anskuelsesevne —
det kan méske endda virke forfriskende pa dem at ferdes i et terreen,
hvor matematikkens natur endnu kan udfolde sig lidt frit og ikke er
blevet underlagt civilisationen. Eleverne opnar i hvert fald herved mere
forstaelse og indleven i de foreliggende problemer end ved en rakke
igvrigt uangribelige talmanipulationer. Og den her anbefalede metode
er ikke logisk underlgdig eller mindre preecis. Den respekterer fuldt ud de
logiske grundprincipper, som er udtrykt i skema 1, men erstatter blot
visse trivielle regninger med en naturligere og lidt mere frimodig benyt-
telse af anskuelsen.

Vedrgrende nevnte anskuelse vil jeg gerne fremswtte endnu nogle
bemzarkninger. Efter mit skon er man i gymnasiekredse — som led i en
igvrigt prisveerdig streeben efter preecision — ved at komme ind pé at
anse enhver brug af anskuelse i geometrien for uvidenskabelig og der-
for ugnskelig; den betragtes som et forssg pa at smutte over, hvor
geerdet er lavest, og som noget, en matematiklerer med respekt for sig
selv og sit fag ber se ned pa eller i bedste fald beere over med som et
ngdvendigt onde. Denne indstilling bygger, som jeg skal prove at klar-
gore, pa en misforstaelse.

Man kan fremstille geometrien som en uangribelig logisk videnskab péa
to forskellige mader: Enten kan man opstille et fuldsteendigt geometrisk
aksiomsystem og derefter udelukkende bygge pa dette (Hilbert); aksiom-
systemet mé si bl. a. indeholde elementerne af den normale anskuelse
(oplysning om brug af ord som »mellem¢, »pa samme side af¢ o.s.v.),
og en del af den fgrste opbygning af geometrien kommer da til at besta
i at flikke disse elementer sammen, si den sedvanlige anskuelse bliver
til radighed for det folgende. Eller man kan bygge hele geometrien op
pé tallene, for plangeometriens vedkommende altsa definere et punkt
som et talpar, en ret linie som de punkter, der tilfredsstiller en ligning af
1. grad, o. s. v.; man kan da talmeassigt definere de lige omtalte anskuel-
seselementer og derefter som for bevise gyldigheden af den ssedvanlige
anskuelse. T begge tilfeelde er der altsa foretaget en analyse af vore rent
primitive anskuelsesforestillinger; men denne analyse folges op af en
syntese, der lader anskuelsen fremstd pény i lutret og logisk uangribe-
lig form som et yderst virksomt instrument til videre anvendelse. I den
videnskabelige geometri er anskuelsen ikke blot en inspirationskilde,
som flyder med s@tninger, der dog for at opna anerkendelse forst ma
»bevises ordentligt« med tal. Anskuelsen kan med fuld videnskabelig ret
indgé i selve disse beviser. Er det sa rimeligt at stille den i skammekrogen
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i skoleundervisningen — selv om man ikke i skolen er i stand til fuldt at
legalisere dens anvendelse ? ‘

Som et nyt eksempel pa, hvordan man eventuelt kan drage anskuelsen
ind i sagen, vil vi betragte udledelsen af ellipsens og hyperblens ligning.
En ellipse teenkes defineret som geometrisk sted for de punkter, for
hvilke braendstralerne har en given sum. Betegnelser og koordinatsystem
veelges som sedvanlig. »Fremregningen« udfgres efter mit skon lettest
saledes:

Idet breendstrilernes sum er 2a, kan de betegnes r=a+t og r;=a—*t.
Vi har da

(4) @+0P = (@+eal+y?  (@—1)P = (z—ea)i+yt.
Ved subtraktion fas ¢=ex, som indsat i (4) giver
(5) (@a+ex)® = (x+ea)?+y2, (a—ex)? = (x—ea)®+y2.

Disse to ligninger, som gjensynlig udtrykker det samme, giver ved om-
skrivning

(6) y: = (1-e’)(@®—2?).

Vi har hermed vist, at hvert ellipsepunkt ligger pa kurven (6), svarende
til Aliskema 1. For nu at fuldende beviset for, at (6) er ellipsens ligning,
plejer man ved tilbageregning at vise B1, altsd at ethvert punkt, som
tilfredsstiller (6), tilhgrer ellipsen. Fra (6) kan man umiddelbart vende
tilbage til de to ligninger (5). Da e<1 og derfor |z|<a, er storrelserne
a +ex og a—ex begge positive, hvorefter (5) giver

r = a+ex, = a—ex,

saledes at r+7, =2a. Hermed er beviset fuldfert.

Selv. om denne tilbageregning ikke kan siges at volde principielle
vanskeligheder, er den dog lidt besveerlig og netop af den art, som ikke
ligger for gymnasieelevers psyke. Jeg vil derfor foresla den erstattet med
folgende anskuelige betragtning: Vi tanker os ellipsen beskrevet ved
hjelp af en blyant, der glider med spidsen langs en strammet trad, hvis
ender er fastgjort i breendpunkterne. Det er da anskuelig klart, at ellipsen
er en sammenhaengende, lukket kurve. Da denne ifglge Al ligger helt pa
den lukkede kurve (6), ma de to kurver veere identiske, og ligning (6)
fremstiller derfor ellipsen.

Ved hyperblen ligger forholdene sa temmelig analogt. I halvplanen
x>0 kan brendstrilerne r og r, skrives pa formen ¢{+a og ¢ —a, og man
godtger da ganske som for, at hyperbelpunktet ligger pa kurven

) P = (@1 -a?).
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Af symmetrigrunde gelder dette ogsa om hyperbelpunkter i halvplanen
- < 0. Hermed er Al bevist. Bl kan derefter dokumenteres ved tilbage-
regning ganske som ved ellipsen.

For ogsa her at give en anskuelig begrundelse for B1 vil vi betragte
fig. 3. Vi teenker os da to (uendelig lange) trade fastgjort i breendpunk-
terne F og F,. De fores begge strammet langs abscisseaksen hen til top-
punktet A4,=(a,0), og de resterende
stykker klebes derpd sammen pa en Y
sddan made, at de atter kan skilles ved
pres af en blyantspids. Ved en sadan
adskillelse, hvor blyanten fores fra A4,
ind i 1. kvadrant, medens begge de L
frie snorstykker stadig er stramme, vil /
blyantspidsen beskrive et kurvestykke, #
som udger den i 1. kvadrant liggende Fig. 3
hyperbelbue. Denne bue er sammen-
hengende og strekker sig i det uendelige, og da den ifglge Al ligger
helt pa kurven (7), mé den vere identisk med den bue af (7), som ligger
i 1. kvadrant. Da forholdene i de 3 andre kvadranter af symmetrigrunde
er analoge, har vi hermed atter bevist Bl og dermed godtgjort, at (7)
fremstiller hyperblen.

Nu vil en og anden maske mene, at i ovenstidende fremstilling er
anvendelsen af anskuelse drevet for vidt. Hertil er forst at sige, at de
rent materielle ingredienser sasom blyanter, trade og klister jo mere er
at betragte som kulisser, der ikke er ngdvendige for selve den mate-
matiske tankegang; men tilbage bliver den realitet, at den her benyttede
anskuelse er af lidt mere kompliceret art end i eksemplet s. 182. Allige-
vel er det kun en yderst simpel figurvariation, det drejer sig om, og
jeg skulde tro, at en sadan tilpas primitiv og naturlig anvendelse af
»sammenhaengende variation« (eller »skontinuert variationg, for at benytte
den betegnelse, som alligevel ligger en pa leeberne) ville veere en gevinst
for geometriundervisningen og ikke behgve at kollidere med det i funk-
tionsleren benyttede, skarpt definerede kontinuitetsbegreb.

Der er et andet omrade, hvor den kontinuerte variation ogsd pa natur-
lig made kan anvendes, og det er over for speorgsmalet om sertilfelde.
Det synes mig ofte rimeligere at behandle sddanne tilfeelde ved »grense-
overgang« fra det almindelige tilfeelde end ved at give dem en swrbe-
handling, der er helt anderledes end behandlingen af hovedtilfzldet.
Jeg skal atter forklare mig nermere i tilknytning til et par eksempler.

Vi begynder med bestemmelsen af tangenten til cirklen
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(8) (@—x)?+(y—p)* = r*.

Jeg tenker mig dette gennemfort elementert, uden differentialregning,
men med anvendelse af setningen om heeldningskoefficienterne for to pa
hinanden vinkelrette linier. Betegnes roringspunktet (x,, ,), bliver re-
sultatet

(9) (@ —x)(@— )+ (o= PNy —p) = 7*.

Ved beviset er der 4 tangenter, som unddrager sig den almindelige be-
tragtning, nemlig de 4, som er parallelle med en af koordinatakserne.
For disse plejer man at vise direkte — uden kontakt med det alminde-
lige bevis —, at (9) er gyldig. Det forekommer mig dog naturligere at fa
disse serlige tangenter med ved en kontinuitetsbetragtning, der bygger
pa folgende:

1) Nar (g, yo) uden spring beveeger sig pa cirklen, vil tangenten i
(%, Yo) 0gsa beveege sig uden spring.

2) Nar koefficienterne i ligningen

(10) ar+by+c =0

varierer uden spring, og (a, b) holder sig = (0, 0), s& (10) hele tiden frem-
stiller en ret linie, vil denne linie ogs4 variere uden spring.

Disse rent anskuelige ting mé efter min mening kunne betragtes som
selviglgelige, og en skarpere formulering synes mig ikke ngdvendig. Ud
herfra er det klart, at nar (9) vides at fremstille tangenten til (8) i (2> Yo)
undtagen for enkelte isolerede stillinger af dette punkt, da m& den ogsa
gore det i disse undtagelsespunkter.

Som et andet eksempel vil vi betragte det system af trigonometriske
formler, som gelder for en retvinklet sfeerisk trekant. Disse formler
bevises sedvanlig forst for trekanter med spidse kateter, hvorefter de
ved overgang til nabotrekanter let udvides til ogsa at gwlde, nar den ene
katete eller begge er stumpe. Tilbage star det overgangstilfeelde, hvor en
eller begge kateter er rette. Dette kan selviglgelig uhyre let behandles
direkte, uafhangigt af det tidligere; men med benyttelse af kontinuert
figurvariation kan resultatet naturligt formuleres siledes, at alle de
formler, der i overgangstilfeeldet har mening, ogsa er gyldige i dette til-
feelde, de andre naturligvis ikke.

Dersom den sferiske trekant ABC er retvinklet ved C, medens alle
andre stykker er +90°, geelder saledes f. eks.:

cosc=cosa cosb, tga=tgAsinb, tgb=tgBsina.

Dersom nu b (og dermed ogsa ¢ og B) er rette, vil da de to farste form-
ler stadig geelde, derimod ikke den tredje. Skrives denne sidste formel
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imidlertid ps formen cot B=cotb sina, bevarer den ogsa sin gyldighed
i det betragtede seertilfelde.

Jeg skal ngjes med de her navnte eksempler. Det forekommer mig, at
den kontinuerte variation knytter swrtilfzeldene pa naturlig méade til
hovedtilfzldet, si man far fremhsevet sammenheengen, og tillige siledes,
at sagens proportioner bliver rigtige, idet hovedtilizeldet fremstdr som
det veaesentlige, medens omtalen af sertilfeeldene far karakter af en af-
pudsning. Behandler man derimod sertilfeldene ved at give helt nye
beviser, kommer man let til at fremheve forskelle, som er betydnings-
lgse, og man risikerer at drage disse specialtilfzelde s& steerkt i forgrunden
hos eleverne, at de overskygger hovedtilfeeldet. I det hele taget mener
jeg, at man skal vogte sig — selv om det sker ud fra et nok s& eedelt
gnske om praecision — for at gere for meget ud af seertilfeelde og graense-
tilfeelde ; for min skyld kan man godt ofte forbiga dem i stilhed, hvis ikke
eleverne selv bringer dem p& bane. Tiden, man har til radighed til sin
undervisning, er jo altid begraenset, og det gzlder dog mere om at lere
eleverne logikkens grundlove og give dem en portion positiv matematisk
viden og indsigt end at gve dem i at feje sadan op efter sig, at der ikke
ligger et matematisk stovgran — et undtagelsespunkt — tilbage, som
de har overset.

Sa er der kun een ting, jeg endnu vil n@vne, og det er spergsmalet
om pracisionens stilling over for de skonhedsverdier, matematikken
rummer. Utvivlsomt har pracisionen i sig selv en eestetisk verdi, og
der er vel endog matematikere, som vil mene, at pracision og skenhed
er ulgseligt forbundne og nwermest er to sider af samme sag. Nu drejer
det sig imidlertid her om gymnasieelever, hos hvem i mange tilfeelde
bade evner og interesse er begreenset. For sadanne geelder, ndr man over-
skrider et vist punkt, sikkert den Bohr’ske komplementaritetsteori i
denne specielle form: Jo mere man forgger praecisionen, desto mere drae-
ber man af skenheden og interessen. I formélsparagraffen for gymnasie-
undervisningen i musik star bl. a., at man ma streebe efter hos eleverne
at udvikle »den umiddelbare gleede ved at synge og ved at lytte til eller
dyrke musik«. Nu er matematikken jo knap sa lyrisk betonet som musik-
ken, men »den umiddelbare gleede« ved faget skulle dog vel ikke vere
en ren utopi? Jeg vil mene, at nir vor formalsparagraf kun fremhaever
prcisionen og ikke si meget som antyder dennes komplementere be-
greb, fagets skenhed og gleden ved at dyrke det, sa er denne paragraf
ensidigt udformet. Det geelder netop i hojeste grad om at finde en frem-
stillingsform, der kan &dbne elevernes gjne for den ophgjede skenhed i de
matematiske formler og figurer og pid denne méade vaekke og fastholde
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deres interesse for faget, efter den gode gamle regel, at det er lysten,
som driver veerket. Som illustration skal jeg gennemgé et enkelt eksempel.

I stereometrien beviser man de to formler F =472 og V=2mr, gel-
dende for en kugles overflade og volumen. Den forste formel vises soed-
vanlig ved grenseovergang ud fra en rzkke indskrevne omdrejnings-
keglestubbe, den sidste ved integration med benyttelse af den almindelige
formel for et omdrejningslegemes volumen. Men man omtaler ikke — i
hvert fald ikke i flere af de almindeligt brugte lereboger — formlen
V =4$rF, som sammenknytter overflade og volumen, og dennes anskuelige
fortolkning ved opdeling af kuglen i en mangde tynde pyramider med
feelles toppunkt i kuglens centrum. Og grunden er sikkert den, at den
nys nzvnte fortolkning svarer til en opfattelse af kugleoverfladen som
granse for et net af polygoner, hvilket ikke stemmer med de tidligere be-
tragtninger, hvor man gik til grensen ps anden made. For at redde
preecisionen har man altsa kastet skenheden (= den anskuelige sammen-
heng) over bord.

Der er efter min mening adskillige andre punkter i gymnasiepensumet,
hvor man ogsé uden skade kunne slekke noget pa de sedvanlige frem-
stillingers »preecision« til fordel for en mere naturlig indstilling; men jeg
har her holdt mig til geometrien som det omride, hvor det mest braender
pé. Skolens geometriundervisning har ikke i gjeblikket den samme vita-
litet som for en menneskealder siden; den er ligesom trangt op i en krog
af principper og ngjagtighedskrav, som passer over for analysen, men
anvendt pd geometrien virker som en spazndetrgje.

Jeg synes, at skolens geometriundervisning traenger til en blodtrans-
fusion, og haber, at det her fremforte kan virke lidt i en sadan retning.
Matematikken — og specielt geometrien — lever ikke af praecision og
logik alene; skal den trives og blomstre i skoleundervisningen, ma der
ogsa tages passende hensyn til andre kvaliteter sisom anskuelse og sken-
hed. Jeg vil slutte med et citat, hvis oprindelse jeg ikke erindrer, men
som i sin paradoksale form indeholder en god del sandhed:

Den morsomste matematik er den, som ikke er helt rigtig.




EN SATNING OM PARABELDIAMETRE
MED ANVENDELSER

SIGURKARL STEFANSSON

Lad O vere et punkt uden for en parabel. Man kan da fra O traekke
to tangenter til parablen. Diametrene igennem disse tangenters rerings-
punkter vil jeg for at lette fremstillingen kalde punktet O’s diameterpar
med hensyn til parablen. Lad dernsest O veere et punkt inden for parablen.
Da kan man gennem O trekke een korde, som har midtpunkt i O. Her
bliver det parabeldiametrene gennem denne kordes endepunkter, som
skal kaldes punktet O’s diameterpar med hensyn til parablen.

Der geelder nu fglgende setning:

Pad en wvilkdrlig parabelsekant gennem O wvil produktet af afstandene til
skeeringspunkterne med parablen vere numerisk det samme som produktet
af afstandene fra O til skeringspunkterne med O’s diameterpar.

I et koordinatsystem, hvor Y
Y-aksen er parallel med parab-
lens akse, kan parablens ligning
skrives pa formen

(x—a)® = p(y—0b),

hvor (a, b) er toppunktet og p
parameteren. Pa fig. 1 ligger be-
gyndelsespunktet O wuden for
parablen. Tangenterne fra O har
rogringspunkterne R og R;; lini-
erne d og d, gennem disse punk-
ter og parallelle med Y-aksen er
da O’s diameterpar med hensyn
til parablen. En sekant s gen-
nem O og med ligningen y=oxx
skeerer parablen i punkterne A4 Fig. 1

[189]
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og B og diameterparret i P og P;. Projektionerne af 4 og B pa X-aksen
betegnes A’ og B’, og diametrenes skaringspunkter med X-aksen kaldes
R’ og R,’. Indsettes y=ox i parablens ligning, fas efter ordning med
hensyn til z: 2 — (wp+2a) 5 +bp+a? = 0.
Denne ligning viser, at OA’ og OB’ har et af « uatheengigt produkt, hvis
veerdi s& mé veere OR'2=0R,'%. Ved parallelprojektion ses da, at man
ogsa ma have O4-0B=0P2=0P,2.

Nar O ligger inden for parablen, kan man ga frem pi samme made.
Vil man bevare parablen og diameterparret pa fig. 1, skal O tenkes flyttet
til midtpunktet af korden RR;. For sekanter gennem dette punkt fas
OA-OB=0P-0P,, idet betegnelserne er analoge med fgr. Hermed er den
opstillede seetning bevist.

Fra et projektivgeometrisk synspunkt bliver seetningen indlysende,
nir man giver agt pa, at de vinkelrette projektioner af A og B pé akse-
normalen gennem O danner en involution med centrum i O.

Med hensyn til anvendelserne giver vi seetningen en anden ordlyd:

Man kan finde punkter pi O’s diameterpar ved pd en vilkdrlig parabel-
sekant gennem O udfra dette punkt til begge sider at afscette mellempropor-
teonalen mellem afstandene fra O til sekantens skeringspunkter med parablen.

Ved hjelp af denne swtning lgses let nogle konstruktionsopgaver i
forbindelse med parabler, som nok er ret vanskelige at lose ved brug af
B A4 de parabelsetninger, som almin-
delig anfores i de elementeere loere-
boger. Vi skal nedenfor omtale de
fem tilfzelde af bestemmelsen af en
parabel ved fire elementer (punk-
ter eller tangenter). Vi vil over-
lade analyse, bevis og diskussion
til leeseren, men kun skitsere kon-
struktionen i hovedtraek og nevne
det maksimale antal lgsninger.

1. Af en parabel kendes fire
punkter, som er vinkelspidser i en
Fig. 2 konveks firkant A BOD (fig. 2). Be-

stem akseretning og breendpunkt.

Firkantens diagonaler skeerer hinanden i O. P4 diagonalen 4C bestem-
mes punkterne P og P,, saledes at OP2=0P2=0A4-0C. P4 den anden
diagonal bestemmes @ og @, pa analog made. Modstaende sider i parallelo-
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grammet PQP,Q, er da punktet O’s diameterpar med hensyn til de sogte
parabler.!

Af de to lgsninger udfgrer vi nsermere den, hvor akseretningen er QP.
En linie gennem A parallel med akseretningen skeaerer BD i K, og en linie
gennem D med samme retning skerer AB i F. Punktet H bestemmes,
s4 HAFH er et parallelogram. Skeeringspunktet mellem KB og AH
kaldes M.

Af to par ensvinklede trekanter, der alle har en vinkelspids i M, ses, at

MB MA ME

ME MH MD’
d.v.s. ME?=MB- MD. Heraf folger, at E ligger p4 M’s diameterpar, og
M A er derfor parablens tangent i 4. Spejlbilledet af AE i denne tangent

gar gennem brzndpunktet, og ved endnu en tangentbestemmelse og pa-
folgende spejling kan dette punkt derfor bestemmes.?

2. Givet tre punkter 4, B og C og en tangent ¢ (fig. 3).

@ Ry

Fig. 3

1 Er firkanten ABCD indskrivelig i en cirkel, bliver 04 -00=0B-0D (=punktet O’s
potens m. h. t. cirklen), hvoraf felger, at PQP,Q, bliver et rektangel. Er omvendt PQP,Q,
et rektangel, bliver 4ABCD indskrivelig. Heraf fas den velkendte setning: To parabler,
som skeerer hinanden i fire punkter, har da og kun da p& hinanden vinkelrette akser, nar
deres skeeringspunkter ligger p& en cirkel.

? Da tangenten MA gar gennem midtpunktet af liniestykket EF, gewlder felgende
setning: En parabels tangenter i vinkelspidserne af en i denne indskrevet trekant er
midtpunktstransversaler i en anden trekant, hvis vinkelspidser er projektionerne i akse-
retningen af den indskrevne trekants vinkelspidser pa dens modstéende sider. Denne sat-
ning giver en yderst simpel bestemmelse af en parabel, af hvilken man foruden tre tangen-
ter enten kender akseretningen eller reringspunktet for en af de givne tangenter.
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Linierne 4B og AC skerer t i O og O;. Pa AB bestemmes punkterne
P og P,, siledes at OP2=0P,2=0A-0B, og pa AC analogt punkterne
@ og ;. Da O og O, ligger pi samme tangent, ma diameteren gennem
rgringspunktet vare fwlles for deres diameterpar. Siderne i firkanten
PQP,Q, angiver derfor akseretningerne for de spgte parabler og skeerer
¢ i de respektive roringspunkter R,, R,, R, og R,.

Nér rgringspunktet er valgt, bestemmes let tangenten i et af de givne
punkter, hvorefter breendpunktet kan findes som i opgave 1. Der kan blive
4 lgsninger.

3. Givet to punkter 4 og B og to tiagenter ¢ og ¢, (fig. 4).
Lad AB sk®re ti 0 og ¢, i O,. P4 AB bestemmes P og P;, siledes at

P, R

Fig. 4

OP2=0P,2=0A-0B, og endvidere @ og @, siledes at 0,02=0,Q,%=
0,4-0,B. Midtpunkterne M,, M,, M, og M, af PQ, PQ,, P,Q og P,Q,
bestemmes og forbindes med tangenternes skearingspunkt 7' ved rette
linier. Disse linier angiver da akseretningerne for de sggte parabler,
medens linier parallelle med dem gennem de pigwldende liniestykkers
endepunkter bestemmer parablens reringspunkter med de givne tan-
genter. Pa figuren er kun tegnet reringspunkterne R og R, for den
parabel, som har akseretningen 7'M ,. Der bliver 4 lgsninger.
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4. Givet et punkt D og tre tangenter a, b og ¢ (fig. 5).

Det erindres, at nar parablen gar gennem D, vil dens polarkeglesnit
m. h. t. en cirkel med centrum i D vere en anden parabel gennem D,
med hvis akse den forste parabels tangent i D danner en ret vinkel.

Fig. 5

Lad normalerne fra D pé a, b og ¢ skeere disse i 4,, B, og C,. P4 DA,,
DB, og DC, bestemmes punkterne henholdsvis 4,, B, og C,, siledes at

DA,-DA, = DB,-DB, = DC,-DC, = r?.

Punkterne A4,, B, og C, bliver da de givne liniers poler m. h. t. en cirkel
med centrum i.D ogradius r. Linien Cy B, skeerer D A, i O. Man bestemmer
nu som i opgave 1 O’s diameterpar m. h. t. parablerne gennem A4,, B,,
O, og D ved punktparrene P, P, og @, @,. Normalerne gennem D pi
disse diameterpar bliver de sggte parablers tangenter i D. Den ene af
disse, d, er vist pa figuren.

Akseretningerne bestemmes nu let ved s@tningen i fodnote 2.

Brendpunkterne kan igvrigt bestemmes umiddelbart saledes: Hver
af de mulige tangenter i D tages sammen med de tre givne, og opgaven
er hermed omdannet til falgende opg. 5.

Der kan blive to lgsninger.

5. Givet 4 tangenter; 5 af deres skeeringspunkter er A, B, D, E og
H (fig. 6).

Den midterste vinkelspids Z i trekanten AEB spejles i midtnormalen
for den modstaende side AB, hvorved den gar over i E,. Punkterne D,,
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B, og H, bestemmes p& analog
made ved trekanterne ADH, ABE
og AHD. Linierne E,D, og B H,
vil da skeere hin~nden i parablens
brendpunkt F'.

Spejler man nemlig de samme
vinkelspidser i de modstéende si-
ders midtpunkter, gar f. eks. ¥
og D over i £’ og D', som ifglge
seetningen i fodnote 2 begge ligger
pd diameteren gennem rerings-
punktet R for tangenten AB,
samtidig med at de er spejlbille-
derne af E, og D, i denne tangent.
Her bliver kun 1 lgsning.

Braendpunktet kan ogsa findes ved benyttelse af, at det ligger p4 de
omskrevne cirkler for de ovenneevnte trekanter.

Fig. 6

Ved lgsningen af disse opgaver har vi med undtagelse af nr. 4, hvor der
blev anvendt polaritet, udelukkende benyttet almindeligt gymnasiestof
i tilknytning til den ovenfor anforte s@tning om parabeldiametre.




GAUSS OCH DEN ICKE-EUKLIDISKA GEOMETRIN
ROLF NEVANLINNA

Forkortad 6versdttning av en artikel i Arkhimedes, hafte 2, 1955.

Carl Friedrich Gauss féddes 1777 i Braunschweig som son till en hant-
verkare. Redan under skoltiden utmirkte han sig genom osedvanlig
begavning, som inte begrénsade sig endast till matematiken. Hertigen
av Braunschweig fiste sin uppmirksamhet vid detta underbarn och
forhjialpte Gauss till fortsatta skol- och hogskolestudier. Som aderton-
aring inskrevs Gauss 1795 i universitetet i Gottingen. Hans avsikt var
d4 att studera filologi; intresset f6r sprak uppehdll han hela livet igenom.
Han behiirskade vil grekiskan och latinet, pa vilket sprak han enligt
tidens sed publicerade sina flesta undersokningar. Vid 6ver sextio ars
alder borjade han studera det ryska spraket och vann hér snart en sidan
skicklighet, att han kunde lisa rysksprakig skonlitteratur och poesi. S&
blev det honom mdjligt att studera Lobatjevskijs arbeten pa original-
spraket.

Det oaktat forsummade Gauss i Gottingen icke matematiken. Pa detta
omrade hade han i all stillhet redan under skoltiden natt mérkliga
resultat. Dessa framgangar fortsatte under hans forsta studiear, och
snart beslot Gauss att helt dgna sig 4t matematiken.

Det forefaller som om undervisningen i Gottingen dock icke i higre
grad skulle ha bidragit hértill. Professorn i matematik, Késtner, var
kind for sin kvickhet, men som matematiker och ldrare virderades han
icke hogt av Gauss. Under de tre ar Gauss studerade i Gottingen levde
han isolerad fran sin omgivning. Ett ndrmare forhallande utvecklade sig
endast med studiekamraten, ungraren Wolfgang Bolyai, och det dr endast
genom dennes meddelanden som efterviirlden fatt nagon liten inblick i
Gauss idévirld under dessa studiedr. Bolyai omfattade med passionerat
intresse fragan om parallellaxiomets stéllning i den euklidiska geometrin,
och det var kring dessa fragor som de tva unga matematikernas diskus-
sioner kretsade.

14* [195]
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Men det #r tid att kasta en blick p4 situationen inom den elementér-
geometriska forskningen under dessa tider. Fragan om giltigheten av
Euklides system har alltsedan antikens tider sysselsatt den geometriska
forskningen. Men forst pa 1700-talet, tvatusen ar efter Euklides, nadde
man pa detta omrade resultat, som visentligt f6rde over antikens stand-
punkt sddan som den ér samlad i Euklides Elementa, detta beundrans-
virda verk, som alltjimt representerar det hogsta som det ménskliga
teoretiska tinkandet frambringat.

Den geometriska grundforskningens huvudproblem kan alltsedan
dessa tider koncentreras i tva fragor: 1) Ar det mojligt att bindande
motivera den traditionella uppfattningen, enligt vilken Euklides system
representerar den enda logiskt och empiriskt riktiga, ja, till och med
den enda méjliga geometriska grunduppfattningen? 2) Ar det maojligt att
inom ramen for detta system na lingre &n Euklides, sdlunda att nagon
tidigare som axiom betraktad sats skulle kunna bevisas med tillhjilp av
de andra axiomen ?

Fastian den forsta av dessa fragor dr allménnare #n den andra, an-
sluter de sig dock nidra till varandra. Bland Euklides axiom har det
elfte, parallellaxiomet, genom tiderna férefallit tvivelaktigt: dess giltig-
het har inte i samma mén framstatt som evident som de 6vriga axiomens
(t. ex. satsens: »Genom tvéa punkter kan man ligga en, men blott en
rit linje.«). P4 1700-talet fortsatte diskussionen om parallellaxiomets
stillning med allt stérre malmedvetenhet. Sarskilt viktiga var Saccheris
och Lamberts forsok att bevisa detta axiom genom indirekt bevisféring.
Resultatet var naturligtvis negativt, men de tankegangar de hirvid
leddes till blev synnerligen betydelsefulla f6r geometrins senare utveck-
ling. Forkastandet av parallellaxiomet forde till féljdsatser vilkas en-
hetliga, om ock fran den euklidiska geometrin helt avvikande innehall
var dgnat att undergriva tron pa Euklides system.

Sadana tvivel kunde emellertid endast sméningom vinna fotfiste.
Newtons och Kants auktoritet var enorm, och det forefsll till en bérjan
nistan olampligt att téinka sig att deras lira angdende rymdens euklidiska
karaktir skulle innehalla nagon svag punkt. Oppna tvivelsmal i denna
riktning torde forst ha blivit lancerade av Lambert. Men det f6rfl6t mera
#n ett arhundrade, tills den vicke-euklidiska uppfattningen« efter manga
vixlingar kunde bryta fram och vinna full férstielse bland matemati-
kerna. Till denna utveckling har Gauss pa ett mérkligt sitt bidragit.
Vid tiden for hans fodelse 1ag alltsa fragan om parallellaxiomet »i luftend.
Dirtill bidrog férutom Saccheris och Lamberts resultat framfor allt
det intresse som de franska matematikerna, sirskilt d’Alembert och
Legendre, visade denna friga. Betecknande #r den férres uttalande
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(1767): »Situationen inom parallellteorin ir elementirgeometrins fort-
satta skandal.«

Det ir mot denna bakgrund man har att betrakta Gauss och Bolyais
diskussioner, som emellertid redan 1798 avbrdts, emedan Bolyai flyt-
tade till Braunschweig och senare till sitt fosterland Ungern. Ar 1799
meddelade han Gauss att han #ntligen lyckats bevisa parallellaxiomet.
1 sitt svar (16.12.1799) beklagade Gauss att han under studietiden i
Giottingen erfarit for litet angdende Bolyais underskningar, som denne
nu trodde sig ha avslutat, och han fortsétter: »Sjalv har jag i mitt arbete
pa detta omrade natt langt, men den viig jag foljt leder icke till det resultat
som Du enligt Ditt meddelande har funnit, utan tvirtom till att hela
geometrins giltighet blir tvivelaktig.« Mera yppar Gauss i dessa samman-
hang icke om sina tankar. Men i hans dagbok finner man en i september
1799 daterad anmirkning: »Jag har kommit till resultat vilka for de
flesta skulle gilla som bevis (Gauss asyftar forsoket att bevisa det Eukli-
diska systemets giltighet), men vilka i mina o6gon icke just utvisar
nagonting; kunde man t. ex. bevisa att det finns en triangel med god-
tyckligt stor area, s& kunde jag fullkomligt stréingt bevisa hela geometrins
system. De flesta skulle sikerligen uppstélla denna sats som axiom, men
detta gor icke jag; det vore ju ténkbart att, huru langt fran varandra
man 4n skulle vilja triangelns hornpunkter, triangelns yta dock skulle
stanna under en dndlig grins. Jag dr i besittning av flera satser av denna
art, men ingen av dem tillfredsstaller mig.«

Den hir asyftade méjligheten forverkligas som bekant just i den icke-
euklidiska geometrin, och Gauss anmérkning bevisar hur djupt han
redan si tidigt, vid 22 ars alder, hade intréingt i geometrins grundfragor.

Under de férsta dren av 1800-talet fortgick forskningen inom parallell-
teorin i flera olika riktningar, och det &r svart att avgora huru stor andel
de enskilda forskarna hade i fragornas klargérande. Intressant och liro-
rikt dr att iakttaga huru stora kunskapsteoretiska och matematiska
svarigheter hindrade den enkla, men djupt liggande sanningens genom-
brott inom dessa problem. Gauss anteckningar fran aren 1803-04 visar
att han fortfarande tog dven den mdojligheten i betraktande att parallell-
axiomet trots allt vore bevisbart. Hans standpunkt synes hiér ha for-
blivit oklar flera ar framat. Sa forholl det sig dtminstone &nnu 1813.
Fran detta ar hdrror Gauss ord, som kan jimstéillas med d’Alemberts
ovannimnda uttalande: »In der Theorie der Parallellinien sind wir jetzt
noch nicht weiter als Euklid war. Dies ist die partie honteuse der Mathe-
matik, die friih oder spdt eine ganz andere Gestalt bekommen muss.«

Astronomen Schumacher, som 1808 studerade i Géttingen under Gauss
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ledning, meddelar i sina anteckningar angiende sina diskussioner med
Gauss bl. a., att denne pavisat att i fall parallellaxiomet vore oriktigt,
dérav skulle folja existensen av ett absolut lingdmatt, vilket a priori
forefaller »meningslost«, och han tilligger att Gauss sjilv icke #nnu
betraktade sina resultat som slutgiltiga. Hir kan nimnas att Lambert
och Legendre (1794) redan tidigare gjort samma iakttagelse, och den
sistnimnde hade just héri velat se ett bevis for parallellaxiomets giltighet.

Denna uppfattning delades dock ej av Gauss. Den ovan nidmnda
egendomliga iakttagelsen forefaller att under &drens lopp i allt hogre grad
ha rubbat hans tro pa parallellaxiomets och dérmed hela det euklidiska
systemets absoluta giltighet. Detta framgar bl. a. av ett brev till Ger-
ling (1816), dér Gauss med anledning av Legendres forsck siger att
hypotesen betréffande en absolut langdenhet visserligen forefaller »nagot
paradoxal¢, men att han déri icke kan finna nagot motsigelsefullt, och
han tillagger: »Det vore t. 0. m. énskvirt (!) att Euklides geometri icke
skulle vara riktig, emedan vi d& vore i besittning av en allmént giltig
laingdenhet a priori¢; en sadan enhet, fortsitter Gauss, vore t. ex. sidan
hos en liksidig triangel, vars vinklar dro 59° 59’ 59'/.999.

Denna anmérkning dr synnerligen intressant. Gauss beaktar hir att
triangelns vinkelsumma enligt den icke-euklidiska geometrin &r mindre
dn 180° och att triangelns storlek (dess yta, eller i en liksidig triangel,
sidans lingd) bestdmmer avvikelsen, den s. k. vinkeldefekten. Denna
vixer med triangelns dimensioner och i en »oéndlig stor« triangel for-
svinner vinkelsumman, vinkeldefekten dr d& maximal, lika med 180°.
D4 nu Gauss sésom langdenhet foreslar sidan hos en siddan liksidig
triangel, vars vinkeldefekt &r utomordentligt liten, ndmligen endast
0.003 vinkelsekunder, si& bor man inte betrakta detta enbart som ett
skimtsamt infall. Utan tvivel har han dérmed just syftat pa att Eukli-
des geometri i relativt smé figurer sikert dr nistan riktig. Aven om den
icke-euklidiska geometrin skulle gilla i véirldsrymden, sa skulle dock den
euklidiska geometrin i sa sma figurer, som i vara terrestra forhallanden
dro mitbara, dga sin giltighet med sa stor noggrannhet att man icke
kunde vidnta sig annat #n ytterst sma avvikelser fran de euklidiska
virdena. Gauss anmérkning synes salunda peka pa den mojligheten att
avvikelserna i de allra storsta »still buds stdende« trianglarna méhénda
genom métningar kunde empiriskt pavisas. Vi atervinder i slutet av
denna framstéllning till denna intressanta fraga.

Oberoende av Gauss hade de icke-euklidiska idéerna pa annat hall
avancerat. Ett mérkligt bidrag till fragan ldmnade 1807 F. C. Schwei-
kart vid Charkovs universitet; hans namn har kvarstannat i historien
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pé grund av hans matematiska fértjanster, trots att han till yrket var
jurist. Han publicerade en undersdkning med den nagot dramatiskt
betonade titeln: »Die Theorie der Parallellinien, nebst dem Vorschlag
ihrer Verbannung aus der Geometrie.« Dir framhaller han mdgjligheten
att parallellaxiomet vore ogiltigt, men att avvikelserna fran Euklides
geometri skulle bli mirkbara forst pa mycket stora kosmiska avstand;
darfor kallade han den nya geometrin »astralgeometri«. Senare (1818)
flyttade Schweikart till Marburgs universitet och fick da genom Gauss
viin Gerling hora om dennes idéer. P4 hans begiran skrev Gerling till
Gauss om astralgeometrin, och i sitt svar gav Gauss Schweikart sitt fulla
godkénnande.

Paverkad av Schweikart dgnade sig dennes systerson F. A. Taurinus
(f. 1794), dven han jurist till yrket, 4t geometrins studium. Han nadde
hér betydligt lingre in Schweikart, och 1824 sinde han Gauss ett forsok
att bevisa parallellaxiomet. Gauss svar var erkinnande; av nedanstaende
utdrag frangar huru lingt Gauss sjilv utvecklat den icke-euklidiska
geometrin: »Antagandet att triangelns vinkelsumma &r mindre dn 180°
leder till en egendomlig, fran det euklidiska systemet helt avvikande
geometri, som #r fullt konsekvent och vilken jag for mig utvecklat pa
ritt tillfredsstillande sitt, si att jag diri kan 16sa varje problem, forut-
satt att en viss konstant ér given, som inte kan bestémmas a priori. Ju
storre denna konstant dr, desto mera nirmar man sig den euklidiska
geometrin, och da konstanten blir oéndlig, overensstdmmer de bada
geometrierna. I fall den icke-euklidiska geometrin vore giltig och kon-
stanten icke vore oproportionerligt stor i forhallande till storheter, vilka
kunna nds av vara mitningar, s& kunde denna konstant bestdmmas a
posteriori.«

TFastin Taurinus tydligen forblev vertygad om parallellaxiomets gil-
tighet, undersokte han synnerligen langt de konsekvenser som foljer av
dess fornekande. Aren 1825 och 1826 publicerade han undersokningar dir
han pa denna bas hirledde den icke-euklidiska geometrins vabsoluta
lingd« samt den hyperboliska trigonometrin, till vilken han kom genom
att i den sfiriska trigonometrins formler ge sfirens radie ett imaginért
virde (sdsom man innu denna dag brukar forfara). Med dessa hjilp-
medel bestimde han lingden av perimetern hos en icke-euklidisk cirkel
samt dess ytinnehall, ddrtill &ven sféirens area och volym.

Kanske dessa framsteg fick Gauss att bryta sin tystlitenhet, som han,
med undantag av korta skriftliga anteckningar i sin dagbok och i brev,
stringt iakttagit si vl i frigan om den icke-euklidiska geometrin som
6ver huvud betriffande sina matematiska undersokningar. Visserligen
publicerade han #ven denna gang ingenting, utan ndjde sig med anteck-
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ningar, som man fann efter hans dod. I dessa anteckningar, hirstam-
mande fran &ren 1828-31, bevisar han, utan att antaga parallellaxiomet,
att triangelns vinkelsumma icke kan Gverstiga tva rita vinklar och visar
huru den icke-euklidiska cirkeln med obegrinsat vixande radie vergar
i en kurva, som man numera betecknar som »oricykel«. Denna griins-
cirkel skir ortogonalt en skara likriktade réita linjer och den skiljer som
griansfall 4t de éndliga cirklarna fran hypercyklerna (orten fér de punkter
som har ett konstant avstdnd fran en given rit linje). Vid samma tid-
punkt, visserligen fem &r senare #n Taurinus publikation utkom, med-
delade Gauss Schumacher lingden av den icke-euklidiska cirkelperi-
metern och ndmnde att figurers likformighet icke férekommer i den
icke-euklidiska geometrin. Det han redan 1816 hade framhallit an-
gaende existensen av en absolut konstant tyder dirpé att denna senaste
insikt redan da statt klar for honom.

Jag kommer nu till Bolyai den yngre, med fullt skil betraktad som
en av den icke-euklidiska geometrins grundliggare. Johann Bolyai, son
till Gauss véin Wolfgang B., hade féljande faderns fotspar redan tidigt
intresserat sig for geometrins grundfragor. Han dgnade sig 4t militér-
banan men uppehdll det oaktat fortfarande sitt intresse for geometrin.
I november 1823 meddelade han sin far att han lyckats uppbygga ett
nytt, fran den euklidiska geometrin avvikande system, eller som han
entusiastiskt siger: »Jag har ur intet skapat en annan ny virld.« Redan
1820, medan han studerade vid ingenjorakademien i Wien, hade J.
Bolyai skrivit om dessa idéer till fadern. Denne, som hela livet igenom
dock med ritt ringa framging hade undersokt parallellteorin, var allt
annat dn néjd med att hans son nu dgnade sig 4t denna omdjliga upp-
gift, och han varnade sonen allvarligt for att fortsitta sina férsék:
»Forlora inte en timmes tid dérpa. Det leder till intet resultat utan for-
giftar blott hela ditt liv. Under arhundraden kommer hundratal av
virldens bésta geometer fa grubbla utan att lyckas bevisa det elfte
axiomet (parallellaxiomet), saframt de inte tar nigot nytt axiom till
hjilp. Jag tror att jag sjdlv hir tagit alla tdnkbara idéer i betraktande.«

Diri hade Bolyai den dldre sikert rdtt, men hans insikter i frigan
hade icke fért honom si langt, att han som mal skulle ha st#llt sig den
systematiska utvecklingen av den icke-euklidiska geometrin. Trots alla
misslyckanden ville han tydligen halla fast vid Euklides system.

Oaktat faderns varningar fortsatte Johann B. sina anstriingningar.
Hans ovanndmnda resultat (1823) lyckades ej dvertyga fadern om den
nya teorins betydelse, och de bigge Bolyai besléto nu limna fragan till
Gauss avgorande. Det forflét dock manga ar innan Johann Bolyai fick
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sin teori publicerad (»Appendix Scientia Spatii Absolute Veram exhibensg,
1831), och forst i februari dirpa foljande &r erholl Gauss arbetet. En
vecka senare var han firdig med lektyren och han skriver i februari
1832 till Gerling: »Jag ndmner vidare att jag dessa dagar fran Ungern
fatt mottaga en liten artikel betriffande den icke-euklidiska geometrin,
vari jag &terfinner alla mina egna idéer och resultat, synnerligen elegant
utvecklade, om ock i koncentrerad form, vilket for en obevandrad
lasare kan forsvara lektyren. Forfattaren dr en mycket ung osterrikisk
officer; hans far &r min ungdomsvéin, med vilken jag 1798 ofta disku-
terade frigan, fastin mina idéer d& #nnu voro langt ifran det mogna
stadium, till vilket denne unge man genom sjilvstdndiga forskningar nu
utvecklat dem. Jag betraktar denne unge geometer v. Bolyai som ett
forsta rangens geni.«

I mars f6ljde sedan Gauss svar till Wolfgang B.: »Nu nagra ord an-
giende Din sons arbete. Om jag borjat med att siga att jag icke far
berémma det kinner Du dig sidkert forvanad: men jag kan icke annat;
berom skulle nimligen betyda eget berdm, ty hela artikelns innehall, -
den vig Din son féljer, 4vensom resultaten han kommit till, samman-
faller med mina egna meditationer, som jag delvis utfért redan fér 30-35
ar sedan. I sjialva verket kommer detta mig som en stor overraskning.
Min avsikt var att laimna mina egna arbeten, av vilka endast litet finns
upptecknat, for hela min livstid opublicerade. De flesta mé#nniskor
forma ej uppfatta, vad som hir #r visentligt, och jag har endast pa-
traffat f& som med intresse skulle ha mottagit vad jag meddelat dem.
En forutsittning harfor dr att man klart uppfattat, vad som egentligen
fattas, och detta ar for de flesta ménniskor fullkomligt oklart. Diaremot
var det min avsikt att med tiden anteckna allt, s& att det icke skulle
foérsvinna med mig.«

Dartill rekommenderar han Bolyai nigra speciella problem ur den
icke-euklidiska geometrin och ber fadern férmedla sonen hans hjirtliga
hélsning och en forsikran om hans sirskilda hégaktning.

Gauss svar synes i hog grad ha tillfredsstéllt Wolfgang B. I ett brev
till sonen lovordar han det som »synnerligen vackert«, och han anser att
det linder »vart fosterland och vart folk till heder«.

Annorlunda uppfattade emellertid Johann B. saken: han blev krinkt
over att Gauss ansdg sig tidigare ha funnit teorin (vilket utan tvivel
dven var fallet). Aven kinde Bolyai bitterhet ver att Gauss icke offent-
ligt gav erkéinnande &t hans verk. Bolyais negativa hallning tog senare
néstan sjukliga former, d4 han efter Lobatjevskijs upptridande miss-
tinkte Gauss, for att denne skulle ha arrangerat en intrig fér att berdva
Bolyai dran av den icke-euklidiska geometrins uppfinnande.
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Det har varit skil att stanna vid denna prioritetsfraga, emedan
Johann Bolyais instillning varit dgnad att till eftervirlden férmedla det
intrycket att Gauss i denna sak skulle ha handlat inkorrekt, eller d4tmin-
stone ovinligt gentemot den unga forskaren. Sjilv har jag under dis-
kussioner med matematiker kunnat konstatera att Gauss i detta av-
seende dnnu i var tid ofta stringt kritiseras.

Den som tar del av Gauss egna uttalanden kan foga forena sig om en
sadan uppfattning. Gauss erkdnnande var helt positivt, Bolyais reak-
tion diremot omotiverat negativ.

Det enda som betriffande Gauss i denna fraga syns problematiskt &r
att han under artionden hemlighallit resultat, vilka tydligen av honom
utvecklats till ett s& moget stadium att han till grund for sin tystlatenhet
f6ga mera kunde vidja till den princip, som han valt som réttesnére for
publicerandet av sina vetenskapliga resultat: »Pauca sed matura.«

Nagra utdrag av Gauss brev belyser mahénda denna fraga. Ar 1816
hade han i »Gottinger gelehrte Anzeigen« refererat tvenne publikationer
betriffande parallellteorin. Hér hinvisar han till den mojligheten att det
elfte axiomet kanske ej alls vore bevisbart, men ansag, att de forelagda
publikationerna icke bidragit till klargérande av denna gamla tviste-
fraga. Gauss kritik begynner med orden: »Es wird wenige Gegenstéinde
im Gebiete der Mathematik geben, iiber welche so viel geschrieben wiire,
wie iiber die Liicke im Anfang der Geometrie bei Begriindung der Theorie
der Parallellinien. Selten vergeht ein Jahr, wo nicht irgendein Versuch
zum Vorschein kime, diese Liicke auszufiillen, ohne dass wir doch, wenn
wir redlich und offen reden wollen, sagen konnten, dass wir im Wesent-
lichen irgend weiter gekommen wéren, als Euklides vor 2000 Jahren war.
Ein solches aufrichtiges und unumwundenes Gestéindnis scheint uns der
Wiirde der Wissenschaft angemessener, als das eitele Bemiihen, die
Liicke, die man nicht ausfiillen kann, durch ein unhaltbares Gewebe
von Scheinbeweisen zu verbergen.«

Nagra ar senare (1827) ndmner Gauss i ett brev till Schumacher att han
med anledning av denna kritik blivit féremal for ledsamma angrepp (ves
wurde mit Kot darnach geworfen«). Och &r 1818 skriver han till Gerling:
»Jag glider mig 6ver att Nii Er lirobok végat framféra tankar som peka
dirpa att parallellteorin, och med den hela var geometri, kunde vara
oriktig, men getingarna, vars bo Ni nu rér i, kommer nog att surra
omkring Ert huvud.« Och i ett brev till Bessel (1829) finner man hans
beromda ord (pa tal om hans »antieuklidiska geometri« och publicerandet
av dessa resultat): »Kanske detta icke under min livstid kommer att ske,
ty jag fruktar bootiernas skrén, om jag fullt skulle uttala min uppfatt-
ning.« I fragan om den icke-euklidiska geometrin iakttog Gauss salunda
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samma tystlatenhet som 6ver huvud taget vid publicerandet av sina
epokgorande matematiska undersokningar. Da man beaktar att Gauss,
yprinceps mathematicorum¢, redan tidigt hos sina samtida &tnjot en
enastaende auktoritet, dir det icke alltid latt att forsta den forsiktighet
som far sitt uttryck i uttalanden av det slag som ovan citerats.

Att tiden var mogen for de icke-euklidiska idéernas frambrytande
bevisas pa ett sirskilt betydelsefullt sitt av J. Lobatjevskijs (1793-
1856) framtriidande. Som professor vid Kasans universitet behandlade
han redan 1815 i sina forelisningar geometrins grunder pa grundvalen
av Legendres undersokningar, som han vil kinde till. Aven Lobatjev-
skij forsokte forst bevisa det elfte axiomet, men snart gick det med
honom som med de 6vriga forskarna pé detta omrade: misslyckandet
av alla forsok i denna riktning fick honom att tvivla pa axiomets bevis-
barhet. Pa 1820-talet var han redan 6vertygad om att uppgiften var
oméjlig, och han begynte liksom J. Bolyai (dock utan att kénna till
dennes eller Gauss forsok) konsekvent uppbygga den lira, till vilken
parallellaxiomets férkastande leder. Redan 1826 kunde han offentliggora
resultaten av dessa undersokningar. S& har hans namn vid sidan av
Bolyais kvarstannat i historien siasom den andre av det icke-euklidiska
systemets grundliggare.

Lobatjevskij kinde icke till den samtida utvecklingen pa sitt forsk-
ningsomrade, och lika litet visste man om Lobatjevskijs undersdkningar
i viister. Situationen forandrades férst d4 han 1837 publicerade en fram-
stillning av sin nya lira i Tyskland i Crelles Journal. Till Gauss kénne-
dom kom Lobatjevskijs resultat innu senare (1840), sedan den nimnda
undersokningen (»Geometrische Untersuchungen zur Theorie der Paral-
lellinien«) hade erhallit en offentlig, men mycket negativ kritik. Med
anledning hirav skrev Gauss till Encke i februari 1841: »Jag har redan
kommit s& langt att jag utan stérre moda kan lisa ryska, vilket bereder
mig mycket ngje. Herr Knorre har skickat mig en liten rysksprikig
undersokning, forfattad av Lobatjevskij i Kasan, och pa grund av den
och en liten tysksprakig artikel (om vilken i Gersdorfs Repertorium
utkommit en synnerligen tokig (alberne) kritik) skulle jag synnerligen
girna lira kinna flera av denne skarpa matematikers arbeten.«

Gauss studerade nu #ven Lobatjevskijs rysksprakiga undersdkningar,
vilket han alltsa kunde gora pa originalspraket. Lobatjevskijs framstall-
ning i dennes tidigare artiklar fann han dock ritt dunkla. S& mycket
hogre virdesatte han L:s ovannimnda tysksprakiga publikation, med
anledning av vilken han skriver (1844): »Jag minns att jag i Gersdorfs
Repertorium om detta verk liste en synnerligen nedsittande kritik, som
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hos varje sakkinnare vicker det intrycket att den skrivits av en full-
komligt okunnig person. Efter det jag sjilv fick tillfalle att ta del av
denna undersékning, dr mitt omddme dirom mycket positivt. Framfor
allt utmirker den sig genom mycket stérre konsekvens och precision &n
Lobatjevskijs stérre arbeten, som paminner om en tét skog, genom vilken
man endast med moda kan finna vigen, si linge man énnu icke lart
kénna alla enskilda tréad.«

Ur Gauss brev till Schumacher (1846) lanar jag éven féljande passus:
»Jag har ater haft anledning att genomdgna Lobatjevskijs arbete. Den
innehaller grunderna till en teori, som kunde vara och bor vara giltig i
¢all den euklidiska inte &r riktig. En viss Schweikart kallade denna
geometri astralgeometri, Lobatjevskij benimner den imaginérgeometri.
Ni vet att jag redan under 54 ars tid alltsedan 1792 (1) har delat samma
overtygelse (till den ansluter sig nagra tilligg, om vilka jag hir icke vill
tala). Nagot i materiellt avseende nytt har jag salunda icke patraffat i
Lobatjevskijs arbete, men han utvecklar sin tanke enligt en annan vig
an den jag slagit in pa, pa ett masterligh séitt, i dkta geometrisk anda.
Jag har anledning att fista Eder uppmiirksamhet pé detta verk, vars
lektyr sikert kommer att bereda Er mycken njutning.«

Man ser att Gauss givit dven Lobatjevskij fullt erkinnande och all dra.

I det foregiende har jag hallit mig till sddana understkningar dir
geometrins grundfragor behandlats elementiirt, antingen syntetiskt pa
euklidiskt vis eller med hjilp av relativt enkla analytiska medel. Det
som Gauss natt till pa detta omrade stiller honom, jamsides med Bolyai
och Lobatjevskij, som en av den icke-euklidiska geometrins grundlig-
gare. Men Gauss intriingde i geometrin dnnu mycket djupare och vidare
#n nagon fore honom eller under hans samtid. Hans allméinna ytteori
oppnade fér den geometriska forskningen helt nya perspektiv, vilka sedan,
vidare utvecklade av Riemann, lett den differentialgeometriska forsk-
ningen &nda till vara dagar.

Gauss ytteori vidgar &ven pa ett synnerligen betydelsefullt sitt hela
var uppfattning om rymdens natur. Endast mot bakgrunden av dessa
allméinna perspektiv blev det mojligt att vinna full forstaelse i de ele-
mentéra geometriska systemens (den euklidiska, den icke-euklidiska och
den sfiriska geometrins) natur och sirstéllning bland olika mojliga
rymdtyper. Det var karakteristiskt for Gauss att han leddes till dessa
banbrytande teoretiska insikter pa basen av helt praktiska, némligen
geodetiska uppgifter. P4 initiativ av Schumacher anfértroddes honom
1816 uppdraget att fortsitta det danska geodetiska triangelnitet till
det angrinsande omradet i konungaddmet Hannover. Gauss antog an-
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budet, och s& vidtog en verksamhet, som s& vil pd geodesins som pa
matematikens omrade kom att leda utvecklingen in pé& helt nya banor.
Aven till sina praktiska uppgifter forhsll sig Gauss med storsta grundlig-
het och samtidigt vidsynthet. De geodetiska méitningsarbetena gav
honom anledning att klarligga de buktiga ytornas allménna matematiska
teori, och snart hade han p4 detta omrade natt betydligt lingre &an alla
foregangare, av vilka i forsta rummet boér nidmnas Euler, Lambert,
Lagrange och Monge.

Gauss teori befattar sig med tvidimensionella ytor i den tredimensio-
nella euklidiska rymden. Det nya momentet i hans betraktelsesitt var
framfor allt att han konsekvent beaktade ytans inre egenskaper, d. v. s.
sadana, till vilka man kan nd genom att utféra métningar péd sjilva
ytan, oberoende av den omgivande tredimensionella rymden. Denna
tendens har som en ledande princip behirskat den senare geometriska
forskningen, inom differentialgeometrin och topologin. I samband med
denna princip utvecklade Gauss dven en ny »teknik« inom ytteorin: han
avstod fran det tidigare bruket att framstélla ytan med tillhjalp av en
ekvation mellan rymdkoordinaterna z, y, z, och inférde i stéllet systema-
tiskt den s. k. parameterframstillningen; ytans rymdkoordinater ut-
trycks sdsom funktioner av tva parametrar w, v, och i ytteorins funda-
mentalstorheter férekommer endast dessa »kurvkoordinater« samt funk-
tioner av dem. Endast s& blev det mojligt att konsekvent folja den
»inre« geometrins standpunkt.

Den viktigaste storheten i Gauss teori ér den s. k. férsta fundamental-
formen, som bestdmmer lingden ds av ett bagelement pa ytan. Om detta
linjeelements parameterkoordinater &r du och dv s& dr kvadraten av

dess lingd:
ds? = Hdu?+ 2Fdudv + Gdv? ,

en positivt definit kvadratisk form, vars koefficienter E, F, G ir funk-
tioner av punkten P(u,v) pa ytan. Genom att vilja parametrarna « och
v i en given punkt limpligt kan man ernd att H=G=1 och F=0, och
linjeelementet far den pytagoreiska (euklidiska) formen

ds? = du?+dv?.

I allménhet lyckas detta dock endast i en enskild punkt P. Ett undan-
tag bildar de ytor, vars »krékning« i Gauss mening foérsvinner. Dessa
ytor dro: planet, de koniska ytorna samt tangentytorna (d.v.s. de
regelytor, som alstras av tangenterna till en given rymdkurva). Om de
geodetiska (d. v.s. de kortaste) linjerna pa ytan tolkas som »rita¢, sa
giller den euklidiska geometrin pa dessa ytor.
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Den av Gauss inforda krokningen K #r ytteorins nyckelstorhet: den
bestémmer karaktiren av ytans inre geometri. Ett av Gauss huvud-
resultat, det berémda »theorema egregium, utsiger att K kan berdknas
med tillhjilp av de tre koefficienterna K, F, G i uttrycket for linjeele-
mentet, alltsd enbart med hjilp av den forsta grundformen.

Krokningens forsvinnande #r icke endast ett tillrickligt, utan &ven
ett nodvandigt villkor for ytans euklidiska natur. Om daremot K icke
forsvinner, s& kan bagelementet icke framstillas i pytagoreisk form pa
hela ytan, eller ens pa en liten tvadimensionell del av denna, och ytans
inre geometri avviker da frin den euklidiska. En speciellt intressant
klass bildas av de ytor vilkas krokning K #r konstant, d. v.s. for vilka
K har samma viirde i alla ytpunkter P. Om denna konstant &r positiv,
sammanfaller ytans inre geometri med den som géller pa en sfir vars

radie B=1 /1/?{- I fall konstanten K ir negativ, ér ytans inre geometri

icke-euklidisk i Bolyai-Lobatjevskijs mening, och konstanten 1 /]/ﬁ{—[ ar
just den absoluta lingd, som i det féregdende ofta blivit namnd. Fastéan
Gauss icke direkt nimner detta sammanhang, férefaller det svart att
tinka sig att han icke skulle haft detta sakforhallande fullt klart for sig.

Ett av de vackraste resultaten i Gauss teori giller vinkelsumman i en
geodetisk triangel. Om man fixerar tre punkter pa ytan, tillréickligt néra
varandra, s& avviker vinkelsumman i den geodetiska triangel som har
némnda punkter som hornpunkter fran det euklidiska vérdet & (= 180°).
Avvikelsen (d.v.s. = minskad med vinkelsumman), den s. k. vinkel-
defekten D, bestims med tillhjilp av Gauss krokning enligt den enkla
formen

D= —Sde,

dir do dr ytelementet och integrationen utstricks over triangelns hela
yta. Vinkeldefekten dr alltsd lika med triangelns totala krokning. Om detta
resultat siger den annars s aterhillsamme Gauss (»Disquisitiones gene-
rales circa superficias kurvas« (1827), paragraf 20): »Denna sats ar utan
tvivel en av ytteorins elegantaste.«

I fall nu K #r konstant, &r D= — KA, dir A &r ytinnehallet av den
geodetiska triangeln. Om speciellt K &r negativ, si som fallet dr i Lobat-
jevskijs geometri, dr vinkeldefekten positiv och vinkelsumman allts&
mindre #n 180°. Defekten ir direkt proportionell mot triangelns yta.
Da vinkeldefekten & andra sidan sjilvfallet hogst dr lika med 180°
(eller x), s& &r ytinnehallet av en icke-euklidisk triangel alltid mindre
in 7: detta ir ytan av den storsta triangeln som kan foérekomma i
Bolyai-Lobatjevskijs geometri. Mot bakgrunden av denna mirkliga sats
forstar man vad Gauss asyftade med sin ovannimnda anmérkning att




GAUSS OCH DEN ICKE-EUKLIDISKA GEOMETRIN 207

han kunde bevisa parallellaxiomet, i fall det skulle finnas trianglar med
godtyckligt stort ytinnehall.

For en yta med positiv krékning overstiger den geodetiska triangelns
vinkelsumma det euklidiska vdrdet = med beloppet

D:S'Kdo).

S& forhaller det sig t.ex. med en geodetisk triangel pa jordens yta.
Emedan defekten dr proportionell mot triangelns ytinnehall, goér den sig
mirkbar forst i trianglar av mycket stora dimensioner. Stort uppseende
vickte en av Gauss anstilld métning, som avsdg att bestdimma vink-
larna i den geodetiska triangel som bestdmdes av tre bergtoppar H, B, 1
(Hohenhagen, Brocken, Inselsberg); dessa bergspetsar befinner sig pa ett
inbordes avstand av storleksordningen 100 km. Genom att observera
ljussignaler pa dessa bergtoppar bestimdes & ena sidan vinklarna H,
B, I mellan strickorna HB, HI, BI, och deras summa befanns vara
180°, i overensstimmelse med den euklidiska geometrin. A andra sidan
bestimde Gauss med hjilp av geodetiska mitningar vinklarna H*, B*,
I* av den motsvarande geodetiska triangeln HBI pa jordytan. Denna
vinkelsumma oOversteg 180 grader med beloppet 14'.85348 (jamfor
Gauss Disquisitiones, art. 28), och detta fordelade sig pa de enskilda
vinklarna pa féljande sdtt:

H*—H = 4"”.95113, B*— B = 47.95104, I*—1 = 4"".95131 .

Om nu jordklotet skulle ha exakt sfirisk form, s& borde dessa tre av-
vikelser alla vara lika (47.95116). De faktiskt férekommande skiljak-
tigheterna bero pa jordens avplattade form. Man ser att de dock icke
overstiger 0".0002, och Gauss anmérker att dessa avvikelser d4ro sd sméa
att de till och med i de storsta trianglarna pa jordens yta kunna neg-
ligeras.

Jag har stannat vid denna fraga, emedan man senare har formodat
att Gauss med sina métningar dven skulle ha strivat till ett annat mal,
néamligen till att undersoka, huruvida hans fors6k f6r den plana triangelns
HBI vinkelsumma H + B+ 1 skulle ge ett resultat avvikande fran det
euklidiska virdet 180°. Det ovanciterade stéllet i Gauss text innehaller
dock icke nigon antydan i en sadan riktning. Detta utesluter sjilvfallet
4 andra sidan icke den mojligheten att Gauss med sitt f6rsok mojligen
dven velat undersoka giltigheten av den euklidiska geometrin i den tre-
dimensionella virldsrymden.

Denna hypotes far stéd av den minnesskrift »Gauss zum Gedéchtnis«
som ett ar efter Gauss dod utgavs av Sartorius von Waltershausen. P4
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tal om Gauss métningar séiger han hér f6ljande: »Heliotropen fick genast
vid trianguleringsarbetet i Hannover full anvindning, och en stor triangel,
kanske den storste som nigonsin blivit mitt, ndmligen mellan Brocken,
Inselsberg och Hohenhagen, bestémdes med dess hjialp sd noggrannt, att
summan av de tre vinklarna icke avvek med mera &n c:a tva tiondedels
vinkelsekunder fran tva ridta vinklar.« Hértill ansluter sig en annan
mirklig anmérkning i samma skrift: »Enligt Gauss mening dr geometrin
endast en konsekvent uppbygd teori, som grundar sig pa parallellteorin,
vilken postuleras som ett axiom; men han var 6vertygad om att denna
sats ar obevisbar; dock vet man pa grund av erfarenheten, t. ex. genom
forsoket angdende triangelns Brocken—Hohenhagen-Inselsberg vinklar,
att den dr aproximativt riktig. Om man déremot icke forutsitter némnda
axiom, foljer hdrav en sjalvstindig geometrisk lira, som han (Gauss)
tidigare hade utvecklat och bendmnt antieuklidisk geometri.«

Aven i denna artikel har det hinvisats till uttalanden av Gauss, som
pa sin sida bevisa att idén angéende en empirisk icke-euklidisk rymd
icke var honom frimmande (jimfor t.ex. brevet till Taurinus samt
Gauss anmirkning betriffande valet av en absolut lingdenhet). I Ein-
steins gravitationsteori har denna tanke pa ett overraskande sitt blivit
forverkligad.

Gauss idéer, nidrmast hans ytteori och i anslutning dartill den inre
geometrins princip, inspirerade (1854) den unge Riemann till att ut-
veckla sin allminna differentialgeometri. Denna ldra innehdll i tva av-
seenden ett visentligt framsteg i forhallande till Gauss. For det forsta
stillde sig Riemann fran forsta borjan genast pa den »absoluta« eller den
sinre« geometrins standpunkt: hans utgangspunkt var alltsa icke, sisom
hos Gauss, antagandet att den undersékte ytan skulle vara inbdddad i
en hogre, omgivande euklidisk rymd. For det andra begrinsade han icke
dimensionstalet av den understkta rymden utan utvecklade sin teori
under forutsittningen att dimensionernas antal kunde vara ett god-
tyckligt helt tal n.

Det framgar av manga uttalanden av Gauss att tanken pi en allméin
n-dimensionell rymd sysselsatt honom i flere olika sammanhang. Detta
synes framfor allt ha varit fallet under hans sista levnadsir. P& tal om
nagra algebraiska problem siger han t. ex.: »Denna slutlednings egent-
liga innehall ansluter sig till en abstrakt storhetslira, oberoende av
rymdens egenskaper, ..., en lira som inte &nnu utvecklats langt och
som icke heller kan behandlas utan att man goér bruk av sprikliga
begrepp som grundar sig pa geometriska bilder.« Under sitt sista lev-
nadséar forelidste Gauss 4nnu om »n-dimensionella méangfalder«.
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Fragan om de olika mojliga elementérgeometriska systemen har fullt
klarlagts forst av den moderna s. k. »axiomatiska« skolan, sddan som
den grundlades av Hilbert i bérjan av detta sekel. Slutgiltig klarhet i
dessa sporsmal kunde vinnas endast si att den geometriska teorin som
ett logiskt system fullstindigt avskildes frin geometrin uppfattad som
ett empiriskt system. Den forra teorin avser att genomfora en fullsténdig
logisk analys av geometrins axiom, och dess huvudfriga dr undersok-
ningen av axiomens inbordes oberoende och motsédgelsefrihet. Daremot
ar den empiriska geometrin en »naturvetenskap; den vill klargora giltig-
heten av geometrins system i var empiriska rymd. Fér att detta problem
skall vara meningsfullt, bér man forst komma 6verens om de elementir-
geometriska grundbegreppens, sirskilt den rita linjens, konkreta fysika-
liska motsvarighet. Det star utom allt tvivel att redan Gauss hade
insett betydelsen av dessa olika aspekter inom den geometriska proble-
matiken. I olika sammanhang har han framhéivt att var rymduppfatt-
ning i avgérande grad grundar sig p4 erfarenheten, att den silunda ir
kunskap a posteriori, och han riktade sin kritik gentemot Kants upp-
fattning, enligt vilken geometrins grundbegrepp vore givna direkt, a
priori, s& som tankens nédvindiga »former« (yDenkformen a prioric).

Den moderna axiomatiska forskningen har icke inskriinkt sig till att
betrakta endast parallellteorin, den har fullstindigt klarlagt dven ovriga
geometriska grundrelationers och axioms logiska stillning i det elemen-
tédrgeometriska systemet. I detta sammanhang &r det intressant att kon-
statera att icke heller Gauss begriinsat sin kritik endast till parallell-
teorin. Jag citerar i detta sammanhang vad han nimner i sitt brev till
W. Bolyai (1832): »Vill man fullsténdigt utveckla geometrin bér sadana
ord som »emellan« forst aterforas till klara begrepp, vilket dven later sig
goéra, men som jag icke nigonstans funnit utfért.« Gauss hade salunda
insett att Euklides framstéllning icke endast i parallellteorin, utan &dven
i samband med begreppet »ordning« (Anordnung) innehaller luckor, som
fordrar en djupare behandling.

Aven manga andra uttalanden av Gauss angiende geometrins och de
matematiska begreppens natur i allminhet innehiller verraskande
»moderna« insikter. De fér tanken ostkt till det sitt, pa vilket Hilbert
attio ar senare i sitt beromda verk angéende geometrins grunder utveck-
lar sin uppfattning om axiomens karaktir. Gauss var dven inom den
matematiska kunskapsteorin en stor foregangare till var tid. Aven i detta
avseende har han givit avgérande impulser som fért den exakta forsk-
ningen in pa de banor som den under de senaste férflutna hundra ren
konsekvent har foljt.

Nordisk matematisk Tidskrift. — 15
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Bruck E. MesErvE: Fundamental concepts of geometry. Addison-Wes-
ley Publ. Co., Cambridge (Mass.), 1955. 9+ 351 pp. $ 7.50.

(Innholdsfortegnelse i NMT, denne drgang, s. 111.)

Denne bog benyttes sammen med den af samme forfatter tidligere ud-
sendte: »Fundamental concepts of algebra« ved et alment kursus over
matematikkens grundbegreber péa Illinois University.

Bogens hovedformél er at sztte den sedvanlige euklidiske geometri i
relief, idet den fremstilles som et specielt tilfzelde af den projektive geo-
metri. Det nas i hovedsagen efter samme retningslinier som i det snart
klassiske veerk af Veblen & Young: Projective geometry I-IT (1910-18).

Forst opbygges den projektive geometri syntetisk pa grundlag af inci-
densaksiomer, eksistensaksiomer, den sakaldte fundamentalsetning, set-
ningen om ikke-kollinearitet af en fuldstendig firkants diagonalpunkter
og aksiomer om cyklisk ordning af punkterne pé en linie, idet disse aksi-
omer indferes successivt med god belysning af den aksiomatiske metode.
Undervejs bevises bl.a. Desargues’, Pappus’, Pascals og Brianchons sat-
ninger, og ved gentagen konstruktion af det fjerde harmoniske punkt ud
fra tre givne punkter eftervises, at der pa enhver linie findes et punkt for
ethvert rationalt tal og desuden endnu et punkt (svarende til co). Det an-
fgres, at man ved yderligere at forudseette, at der ikke er flere punkter pa
en linie, ville gore aksiomsystemet kategorisk, men at man imidlertid
ogsa kan opnéd dette ved i stedet at postulere, at punktmeengden pa en
linie er isomorf med de reelle tal, suppleret med symbolet oo, som man reg-
ner med efter visse, neermere angivne regler. Dermed er man s naet frem
til den reelle projektive geometri, og i denne antydes indferelsen af ana-
lytisk geometri ved en udferlig redegerelse for inhomogene og homogene
punktkoordinater.

Dernzest opbygges den reelle projektive geometri analytisk, idet punk-
ter defineres som klasser af talset, punktreekker som punkter, der til-
fredsstiller linewre homogene ligninger, projektiviteter som homogene
linesmre substitutioner, o.s.v., og det klargeres, at syntetisk og analy-

[210]
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tisk projektiv geometri er to beskrivelser af samme ting. Herefter be-
nyttes fortrinsvis analytiske metoder, f.eks. ved indfgrelse af polaritet
og ved bevis for Steiners s@tning.

Den reelle projektive plan specialiseres nu til en affin plan ved udmeerk-
ning af en linie som en ideal linie, hvorved parallellisme indferes, og den
affine plan specialiseres yderligere til en euklidisk plan ved udvzlgelse
af en elliptisk involution som absolut involution pa den ideale linie, hvor-
ved begrebet normal indfgres. De almene affine transformationer og en
rekke specielle affine (herunder euklidiske) transformationer fas ved
(geometriske og algebraiske) betingelser p4 de projektive transformatio-
ner. Inden for de enkelte geometriformer benytter forfatteren lejligheden
til at illustrere den oprindeligt af Felix Klein foreslaede opfattelse af geo-
metrien som en undersggelse af de egenskaber, der er invariante under en
transformationsgruppe. P& det projektive grundlag indferes de ikke-eu-
klidiske geometrier pa simpel og naturlig made, men ogsa de gvrige seed-
vanlige modeller tages med i billedet af disse.

For de ikke-euklidiske geometrier behandles, indskydes et afsnit om
geometriens historie fra Babylonerne til de moderne regnemaskiner.
Parallelteoriens historie leegger op til omtale af ikke-euklidisk geometri.

Det sidste afsnit omhandler topologi, motiveret ved at projektiv geo-
metri kan betragtes som et specielt tilfeelde af topologi. Formélet med
dette afsnit er at veekke interessen for topologi.

Bogen deekker siledes et stort omrade. Nar det kan geres pa tilfreds-
stillende made, skyldes det, at der ikke tilstraebes en helt gennemfart be-
handling af alle herunder hgrende problemer. Forfatteren treekker hoved-
linierne klart op og belyser de til grund liggende principper pa en instruk-
tiv made. Leeseren folges et godt stykke pa vej med udferlige beviser,
medens beviserne for senere satninger ofte stilles som opgaver eller ude-
lades, hvis de er for komplicerede inden for bogens rammer. I sidste til-
feelde gores setningerne plausible ved appel til leserens pa forhands-
kendskab til euklidisk geometri baserede intuition, eller deres betydning
illustreres ved anvendelse af dem. Bogen er opdelt i tilpas korte afsnit,
der indledes med en oversigt over, hvad meningen er med det falgende,
og afsluttes med et overblik over, hvad der er naet. En peedagog vil glede
sig over hyppige gentagelser og pointeringer.

Mindre indvendinger: Den p. 145 konstruerede involution pa en linie
ses neppe umiddelbart at veere projektiv. Bestemmelsen af fixpunkter ved
en homotetisk transformation under udledelsen p. 170 af ligningerne for
en parallelforskydning er ikke helt klar. Transformeringen af den abso-
lutte involution p. 187 er kun halvvejs udfert. Det er vanskeligt at se for-
skellen p4 opgaverne 3 og 7, p. 189. I opgave 2, p. 191, kan vi ogsa have:

15%
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Gy =0g="0 og k vilkirlig. Hvis de p. 195 betragtede to spejlinger har
samme centrum, er a=a’ og b=>0" (altsd k=1).

Bogen er meget at anbefale som en let laeselig indferelse i projektiv
geometri (den forudsetter kun almindeligt kendskab til reelle tal og eu-
klidisk geometri); den legger veegt p& det principielle og giver samtidig
et godt overblik over den projektive geometris almene betydning.

P.O. Neerup

I. M. WiNoeRADOW : Elemente der Zahlentheorie. (Ubersetzung der 6.
Auflage des russischen Originals, Moskva 1952.) Verlag R. Oldenbourg,
Miinchen, 1956. 8 + 156 S. DM 10.50.

(Innholdsfortegnelse i NMT, denne &rgang, s. 161.)

Dette er en usedvanlig klar og velskreven bok. Stoffutvalget er i det
store og hele det samme som i en hvilken som helst annen leerebok med
et grunnkurs i tallteori som formél, men forfatteren har klart i sterre
grad enn man vanligvis finner det, & gi fremstillingen en knapp men lett-
forstaelig form uten ungdvendige utbroderinger. En leser som bare
gnsker & fa et innblikk i tallteoriens grunnlag kan neye seg med & lese
gjennom bokens tekststoff. For dem som soker en dypere forstdelse av
tallteorien og som eventuelt har tenkt & arbeide innen denne gren av
matematikken, har boken ogsid meget & gi. Til hvert kapitel er nemlig
knyttet en lang rekke oppgaver som delvis omhandler problemer som i
andre og storre leerebgker er tatt med i stoffutvalget. Noen av oppgavene
har dessuten tilknytning til forfatterens arbeider om trigonometriske
summer og vil veare til stor hjelp for en leser som senere vil prgve &
trenge inn i dette ikke sa helt lett tilgjengelige felt.

Denne tyske utgave av Winogradows bok er oversatt fra den 6te utgave
av det russiske originalverk, og er stort sett identisk med den engelske
utgave, An Introduction to the theory of numbers, som kom ut pa
Pergamon Press for et ar siden.

Pi et sted har jeg dog funnet en liten forandring fra den engelske utgave.
Jeg vil nevne den her idet jeg stusset endel pa dette punkt da jeg forste
gang tok for meg det engelske eksemplar av boken. Oppgave 9(c) under
kapitlet om kvadratiske rester er i norsk oversettelse fra den engelske
utgave:

La p vare av formen 4m+1, (k, p)=1,

p-1 2
s = 3 (TEE9).

x=0

Bevis at (D. S. Gorshkov)
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()  S(k) er like,

B)  S(ke2) = <i> S(k)

(y) for <%> =1, (—) = —lerp=(380))+(3S(n))%

Oversettelsen fra den tyske utgave blir identisk, bortsett fra at man der
har sloyfet navnet D. S. Gorshkov. Det var ogsa dette navnet som for-
virret meg i sin tid, idet de ovennevnte resultater («), (8), (¥) jo i den
vestlige verden er knyttet til navnet E. Jacobsthal. Sigmund Selberg

Dick Wick HArn — GuiLrorp L. SPENCER I1: Elementary topology.
John Wiley & Sons, New York, 1955. 12+ 303 pp. $ 7.00.

(Innholdsfortegnelse i NMT, denne argang, s. 159.)

Forfattarna avser att med denna bok kunna inféra topologi pa ett s&
tidigt stadium av universitetsstudierna som méjligt. Boken #r avsedd
att vara en nyborjarbok i topologi ldmpad som kursbok fér en elementir
kurs vid ett amerikanskt universitet eller college. Den nordiske mate-
matikstuderanden torde fa sina férsta kunskaper i topologi (Aven om han
inte alltid far hora namnet) f6rst inom teorin for en eller flera reella vari-
abler och senare inom teorin for analytiska funktioner och inom Lebes-
gue-teorin. De enkla topologiska egenskaper hos linje, plan och allm#nt .
n-dimensionellt rum, som han dérvid inlir, tickes av ungefir en tredje-
del av foreliggande bok. Aterstoden av boken innehaller dels de enklaste
definitionerna och satserna fér metriska och topologiska rum, dels en
utforlig och modernt skriven redogérelse for en del djupare egenskaper
hos planets topologi, innehallande bl. a. ett méngdteoretiskt bevis for
Jordans kurvsats.

En av bokens stora fortjinster dr dess grundlighet. Forfattarna har
vinnlagt sig om att skriva en utforlig text. Sa t. ex. inféres varje svarare
begrepp tva ganger, forst i ett 16st resonemang och dérefter i en formell
definition. Boken torde dérfor i forhallande till det stoff den innehaller
vara littlast. Atskilliga exempel och 6vningsproblem forhojer ytterligare
bokens virde.

Vad som didremot saknas i boken dr all form av kombinatorisk topologi.
Silunda saknas en sidan »elementiir« sats som Brouwers fixpunktssats.
Vad slags topologi som skall kallas elementér dr givetvis en smaksak.
Men med det innehall boken har torde en béttre titel ha varit yElementary

point-set topologyx. Olof Hanner
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BurTtoN W. JoNES: The theory of numbers. Rinehart & Co., New York,
1955. 11+ 143 pp. $ 3.75. :

(Innholdsfortegnelse i NMT, denne &rgang, s. 159.)

Burton W. Jones #r professor vid Colorados universitet och gav hér-
omaret ut en lirobok i teorien fér kvadratiska former. Foreliggande
lirobok dr narmast avsedd for blivande lidrare vid amerikanska secondary
och elementary schools, och speciellt de forsta kapitlen ar forfattade med
tanke p& detta. Forfattaren framhaéller i forordet, att hans arbete inte
ar avsett for sjilvstudier utan bor gas igenom under en akademisk
lirares ledning. »The text is not supposed to be read like a novel.«

Forsta kapitlet inledes med en relativt ingdende behandling av det
naturliga talsystemets axiomatiska uppbyggnad, varvid bl. a. aterges
Peanos axiomsystem. Hir som &verallt i arbetet interfolieras framstall-
ningen av problem och exempel, som forefaller vil dgnade att hjilpa
lasaren att smilta och forstd det just genomgéngna avsnittet. Ofta &r
exemplen hiimtade fran teorien for periodiska decimalbrak, givetvis med
tanke pa de blivande lirarna. Speciellt giller detta kapitel 2, som handlar
om kongruenser.

I kapitel 3 behandlas diofantiska ekvationer av forsta graden, Pells
ekvation och pytagoreiska tal. Kap. 4 innehaller de inledande partierna
av teorien for kedjebrak, som féres fram t. o. m. bestéimningen av funda-
mentallosningen till en Pells ekvation. Framstillningen inledes med ett
avsnitt om Fibonaccital. Kapitel 5 omfattar m-te potensrester och pri-
mitiva rotter, och i kap. 6 ges teorien for kvadratiska rester. Man ligger
hir miarke till att den kvadratiska restsatsen hirledes med hjilp av
Eisensteins geometriska bevis. Kapitlet och boken avslutas med ett bevis
for satsen att varje primtal av formen 4n+1 &r en summa av tva kva-
drattal.

P4 grund av sin skolmissiga karaktér forefaller Jones’ arbete mindre
limpat for universitetsstuderande i de nordiska linderna. Trots var-
ningen att lisa boken som en roman far ldsaren ibland ett intryck av att
forfattarens syfte snarare varit att ge ldsaren en littsmilt matematisk
allminbildning 4n de foérsta grunderna av en teori, som kan utbyggas i
olika riktningar. I motsats till Winogradows larobok, som har samma
antal sidor och nyligen 6versatts till tyska och engelska, saknas exempel
med vidare syftning. Med hénsyn till sitt ringa omfang &r boken dess-
utom ganska dyr i jimforelse med exempelvis Nagells bekanta lirobok.

Bengt Stolt
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Einar Andersen: Adjustment of observations by the method of least
squares. (Mém. de I'Inst. Géodésique de Danemark, série 3, tome 22.)
Kgbenhavn, 1955. 51 s.

The general problem of adjustment 10-13 * The solution of the normal equations
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OPPGAVER TIL LOSNING

Logsninger av oppgavene 97-100 sendes til oppgaveredakteren, professor R.
Tambs Lyche, Holmengrenda 7, Holmen, Oslo. Slike lgsninger vil bli trykt i et
folgende hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lgsning
av hver oppgave. Losninger av oppgaver i dette hefte mé& vere sendt innen 10.
februar 1957.

De ovrige oppgaver i dette hefte er enklere, og losninger av dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredaktoren, helst sammen med forslagsstillerens egen lgsning.

97. En kurve K har parameterframstillingen

= ®(s), y = 1/’(8) >

der s er buelengden, malt fra et punkt P, og der ¢ og  er n+ 1 ganger
deriverbare.

La C veere en annen kurve som gar gjennom P, oppfyller de samme
betingelser som K, og dessuten har en bergring av n-te orden (n=2)
med K i P. Anta at buelengden for begge kurver er orientert i samsvar
med en orientert fellestangent i P. Sett av buelengden s fra P langs K
til Qg og fra P langs C til Q. Trekk @@ til skjering med kurvenor-
malen i P, og kall skjeringspunktet 7'. Vis at

n+2

lim PT = ——R,
§—>0 n+1

der R er den felles krumningsradius for kurvene i P.
Haakon Waadeland

98. Sett, for |z|<1,

La m vere et naturlig tall med primtalloppspaltingen

m = 2°3"p ™ L pp g g

der py, ..., Py 08 44, - - -, ¢; henholdsvis er primtall av formen 64+ 1 og
6h—1.

[220]
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Finn en formel for a,,, og utled av den at

1. a,, er positiv, a) dersom x=0, og b) dersom x=1 og alle f§; er
jamne (like) tall.

2. a,, er null, a) dersom x=1 og minst ett 5, er odde (ulike), og b)
dersom x=2 eller 3 og [=0 (ingen primdivisorer av formen 64— 1).

3. a,, er negativ i alle andre tilfelle.

R. Tambs Lyche
99. La n>1 veere et naturlig tall. Dersom 4 og B er fritt valte natur-

lige tall, setter vi
"lrd 4] [B+i
s-2 S5 HE

i—0 L 7 n

der [x] som vanlig betyr det storste hele tall som ikke overstiger z. Vis at

HREEGEES!

I hvilke tilfelle gjelder likhetstegnet til venstre, resp. til hgyre ?
R. T'ambs Lyche

100. Bevis formelen

§¢=4§M - 312<V5 )

;Zn—{- 1)2 (?) n=o (2n+1)2

W. Ljunggren
101. Lat x;, x,, ..., %, vara givna reella tal. Sitt sy=1, s;=2x,,

So= 2Ty, .., 8, =X %y. . .7,. Visa, att

81— S+ 85— ...

Jlarctge, = 2 """ (mod ),

So— Sg+S4— ...

och att
(81=83+85— ... )2+ (Sp—Sa+84— ... )2 = J[ (1+z2).

Carl-Erik Fréoberg

102. Funksjonen
f@) = wsin—, f(0)=0,

V ol

er deriverbar for alle x+0. Vis at den deriverte ikke er begrenset i
intervallet [ — 1, + 1], men at kurven y=f(z) likevel har buelengde.
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103. Rottene i ligningen
(x—a)(x—ay) ... (x—a,) = 4
er by, by, ..., b,. Angi rgttene i ligningen
(x—b)(x—by) ... (x—b,)+4 =0.

104. I rommet er det gitt » forskjellige plan med egenskapene: To
plan er aldri innbyrdes parallelle, tre plan er aldri parallelle med samme
rette linje, og fire plan gar aldri gjennom samme punkt. I hvor mange
omrader blir rommet delt av disse plan? (Vink: Betrakt skjeeringsfigu-
ren i det n-te plan med de gvrige n—1.)

105. Den ene fot til en fotgjenger har en horisontal hastighet v bestemt

ved formelen . .
v = v,y (sin ot + |sin wi|) .

Studer bevegelsen, og bestem fotgjengerens gjennomsnittlige marsjfart.

LOSNINGER

90. Med hjelp av setningen om at to polynomer med felles nullpunkter
er like pa en konstant faktor ner, skal en bevise multiplikasjonssetningen

for determinanter. Helge Tverberg

Losning: La A og B vere to n x n matriser og A en variabel skalar,

og sett U= A—JE, V—=B-JE.

Determinantene

Ul = UQA) = (—1)""+ ... +|A]
(1) V| = V() = (=144 ... +|B]
er da polynomer i 1, og deres nullpunkter er bestemt ved
@) U =0=23x & A - x*A—Lx* = 0*
VA) =0=3x & i >Bx—lx =0.

(x er en kolonnevektor og x* dens transponerte.) Setter vi videre
|U-V| = W) =2+ ...+|A-B|,
har Vi gy 0= ga & A, >
ABx— ) (A+B)x+A2x = (A—-1,E)(Bx—;x) = 0
(3) eller
x*AB — A;x*(A+ B)+ ARx* = (w*A— Ax*)(B—AME) = 0%,
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Av (1), (2) og (3) felger sa umiddelbart
U-v] = |U-|V]. Rolv Rasmussen
91. A #r en reell matris (dvs. en matris med reella element). Visa, att
nédvindiga och tillrickliga villkoret for att det skall finnas en positivt
definit symmetrisk matris G, sddan att GA dr symmetrisk, dr att alla
egenvirden till A dr reella och att egenvektorerna spénner upp hela

rymden. Lars Hérmander

Losning: La A veere en reell n» xn matrise og G en positiv definit
symmetrisk (p. d.s.) matrise, slik at GA er symmetrisk, GA=(GA)*
(* betyr at matrisen er transponert). Da G er p. d. s., finnes det en ikke-
singuleer matrise P slik at G =P*P, og vi har

P*PA = A*P*P
hvorav felger at matrisen

PAP-! = (P-L)*A*P* = A

er symmetrisk. Folgelig er alle karakteristiske rotter (egenverdier) i 4
reelle. Videre eksisterer det en ortogonal matrise U slik at

vaU-1 = A
er en diagonalmatrise. Folgelig har vi
A(UP)-! = (UP)-1A

hvor (UP)-1 er ikke-singuleer og sammensatt av A’s karakteristiske
vektorer, som altsa er linesert uavhengige.

La pd den annen side A veere en matrise hvis karakteristiske rotter
alle er reelle og hvis karakteristiske vektorer er linesert uavhengige. La
videre V veere en matrise sammensatt av A’s karakteristiske vektorer, og
A en diagonalmatrise med A’s karakteristiske retter som elementer.

D

e V-IAV = A = A% = VFAX(V-1)% |
lik at
Sk & (VV*)-14 = A*(VV*)-1

hvor (V¥V*)-1 = G er p. d.s.
Rolv Rasmussen

Ogsé lest av Helge Tverberg.

92. Funksjonen -
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er reguler for |z| < 1. Vis at koeffisienten a,, i rekken
= a,z2m
m=1
aldri er negativ. Dersom m har primtalloppspaltingen

m = 2'p*t L pt ™ g
der py, ..., p er primtall av formen 4A+1, mens g, ..., ¢, er primtall
av formen 4h+ 3, sd er
14+ (=1)" 1+ (=1~

5 e 5 ,
slik at a,, da, og bare da, er null dersom m er delelig med en odde (ulike)
potens av et primtall av formen 44+ 3.

U, = (% +1) ... (o + 1)

R. Tambs Lyche
Losning: Ved & sammenligne potensrekken

A b
= 2 amzm
+ z2n foon
med dobbeltrekken

FE) = 3 3 (— 1t

n=1 u=0
framgar det at
gl ty = 3 (=1
2u+1|m

En ulike divisor 2u+1 i m kan skrives

2ut1l = p™ .o g

Ved pé alle mulige mater & danne produkter med 0<a;<w;, 0=b;= 6,
framkommer alle ulike divisorer i m. En slik divisor er av formen 4k +1
eller 45+ 3 etter som summen b, + ... +b, er et like eller ulike tall, og
folgelig er (= 1) = (= 1ottt

Oppfattes p; og ¢; som tegn for variable storrelser, gjelder identiteten

3 pe e = I ( 3. a1 (3.

0sai= o =1 j=1
0=b;=p;j
Ved i denne identitet & sette p;=1, ¢;= — 1, framkommer
1+ (=1 14(=D7
Up = 2 (=1 = (g +1) ... (g + 1) 5 .
2u+1|m Z

Johannes Kvamsdal

Ogsé lost av Anders Bager, L. Carlitz, H. Killingbergtro, Henrik Meyer, Rolv
Rasmussen og Helge Tverberg.
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PRISTAVLING FOR FINSKA LAROVERKSELEVER

Finlands matematik- och fysiklararférbund utlyser en pristdvling i matematik,
i vilken alla ldroverkselever har rétt att deltaga. Av de sex uppgifterna bér minst
fyra l6sas. Losningarna renskrivas med bléck, figurerna kan ritas med blyerts
eller tusch. Deltagare bor uppge namn, adress, klass och ldroverk samt bifoga en
forsikran om att han eller hon sjdlvsténdigt har 16st uppgifterna.

Tv& penningpris, ett pd 5000 mk och ett pd 3000 mk, kommer att utdelas.
Extrapris kan komma i fraga.

Lésningarna bor inséndas till Pristdvlingskommittén fére den 15 februari 1957
under adress fil. dr. Inkeri Simola, Rajasaarenk. 5, Helsinki.

1. Cirkeln 2%+ y2=172 samt punkten A(a;0) pd =z-axeln dr givna.
P och @ betecknar tva punkter pa cirkelns periferi, vilka ligger symme-
triskt till y-axeln, och O &r origo. Vilken &r orten fér de riita linjerna
AP:s och OQ:s skirningspunkt, d& P beskriver cirkelperiferin? Hur
beror orten av virdet pa a?

2. For vilka virden pd x konvergerar serien

°°( 2 sinz )" 2 sinx +( 2 sinx >2
n=0

sinx + cosx sinx 4+ cosx sinx 4+ cosz

Framstéll grafiskt seriens summa.

3. Los olikheten
2log,z < logy, (22+3), k> 0.

4. Undersok om ekvationen
sin [sin (sinz)] = sin [cos(cosz)]

har nagra ltjsnirigar. (De siner och cosiner, som férekommer som argu-
ment, tolkas som mitetal for vinklar, métta i absolut vinkelmétt.)

5. I triangeln ABC skéres sidorna AB och AC samt sidan BC':s
forlingning av en rit linje i punkterna C,, B, och A4, respektive. Bevisa

likheten 4,B CB, AC,

4,0 B,A O,B

6. Pyramiden P —ABCD:s basyta &r en kvadrat (sidan=a). Kanten
PA(=a) star vinkelritt mot basytan. Normalplanet till kanten PC
genom punkten A4 skir kanterna PB, PC och PD i punkterna E, F och
G respektive. Bevisa att vinkeln AEF &r riat. Bevisa vidare, att man
kan omskriva en sfir kring vardera av de polyedrar, i vilka det nimnda
normalplanet delar pyramiden. Berikna dessa sfirers radier.

Nordisk Matematisk Tidskrift. — 16
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PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1957, arrangert av Norsk Matematisk Forening.

Til den siste oppgavekonkurransen for norske gymnasiaster kom det ikke inn
noen losninger. Dette kan tyde p& at oppgavene har vart for vanskelige, noe vi
sterkt beklager. Denne gangen hdper vi at oppgavene er lettere, slik at det vil
komme mange lesninger. Vi presiserer ogsé at det ikke er nedvendig & ha svart
pé alle 6 oppgavene for & vere med.

Den beste samling besvarelser vil bli tildelt H. K. H. Kronprins Olavs premie
pd 100 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster veere med. Oppgavene faller inn under reallinjens pensum.
Jo enklere og mer elementere losningsméter en kan finne, dess bedre. Oppgavene
hor droftes og greies ut s& fullstendig som rad er.

En sender losninger til rektor Kay Piene, Skjerstadvn. 2A, Smestad, Oslo, innen
1. 5. 1957, ledsaget av en erklering om at oppgavene er selvstendig last. Oppgi
skole og klasse.

1. Gitt en vinkel APB (PA heoyre ben). En annen like stor vinkel
COD (OC hgyre ben) har toppunkt i O pa PA. I skjeringspunktet mellom
OD og PB er trukket en parallell med PA. Finn den kurve K som be-
skrives av skjeeringspunktet mellom OC og denne parallellen nar vinke-
len COD dreier seg om O. Droft kurvene K nar vinkelen APB varierer.
Vis at toppunktene i disse kurvene ligger pa en ellipse gjennom O.

Bestem til slutt vinkelen APB slik at arealet begrenset av K og nor-
malen til P4 i O er storst mulig.

2. Et kvadrat 4BCD med side a er gitt. Man skal bestemme et linje-
stykke x som skal veere lik fem kanter i et legeme A BCDEF slik at AE =
DE = EF = BF =CF =2. Boyningsvinklene mellom kvadratet ABCD og
sideflatene A BFE respektive BCF skal vere komplementvinkler. Finn z
uttrykt ved a og deretter legemets volum uttrykt ved a.

Vis ogsd at man kan bygge opp et dodekaeder av en kubus og et pas-
sende antall legemer av ovennevnte type. Finn volumet av dodekaede-
ret uttrykt ved a, deretter ved .

3. Gitt en sirkel med radius R. Fra et punkt pa periferien utgar to
korder hvis buer er « og f (x> ). Beregn radien i en sirkel som bergrer
de to korder og buen mellom dem.

4. Et tetraeder 7 er gitt. Hjornene skjeres vekk ved hjelp av plane
snitt slik at der fremkommer et polyeder 7'; med 12 hjerner. Deretter
gjentas den samme prosess med 7';, slik at en etter n ganger har fatt et
polyeder 7T',. Finn antall flater, hjorner og kanter i polyedret 7',,.

ey
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5. Gitt en sirkel med sentrum O og et punkt P utenfor sirkelen.
En sgker de rette linjer gjennom P som avskjerer buer pa 120° av
sirkelen. Bevis riktigheten av folgende konstruksjon: Med OP som side
konstrueres en reguler trekant OP@, og sirkelen om @ gjennom O og P
skjeerer den gitte sirkel i 4 og B. Linjene PA og PB er da de sgkte
linjer. — Prov a generalisere oppgaven.

6. 1 et plan er gitt to rette linjer I og m som star loddrett pa hver-
andre, og en sirkel med radius r som har sentrum pa ! og tangerer m.

Pa I ligger et punkt P. Konstruer gjennom P en sekant slik at
PM =2PQ. Her er M midtpunktet av den avskarne korde og ¢ er se-
kantens skjeringspunkt med m. Hvor pa ! kan P ligge hvis konstruk-
sjonen skal veere mulig ?

Undersgk si hvor pa [ punktet P kan ligge hvis det skal eksistere
en sekant gjennom P slik at PM =n-P@, hvor n er et gitt tall.

PRISTAVLING FOR SVENSKA GYMNASISTER

Liksom tidigare ar anordnar Nordisk Matematisk Tidskrift en pristdvling for
svenska gymnasister. Var och en av de tre utgivande svenska féreningarna har
stillt 50 kr. till disposition, varigenom ett férsta pris om 100 kr. och ett andra pris
om 50 kr. kan utdelas.

For deltagande i tivlingen fordras, att losningar inséndas till minst fyra av
nedanstdende uppgifter. Giymnasister frén évriga nordiska linder kunna deltaga
utom tévlan.

Lésningar, atfoljda av en forsikran att de dro sjalvsténdigt utarbetade, inséndas
senast den 15 mars 1957 till: Nordisk Matematisk Tidskrift, Matematiska Institu-
tionen, Lund. Bifoga uppgift om namn, klass och ldroverk.

1. I talet N, som bestar av 2n + 2 siffror, ir de n forsta siffrorna ettor,
de dérpa foljande n+ 1 siffrorna tvéor och sista siffran fem. Visa, att N
ir kvadraten pa ett helt tal samt berikna VN.

2. Inuti en given triangel viiljes en punkt P, vars avstand till triangel-
sidorna betecknas med d,, d, och d,. Bestdm orten fér de punkter P
tor vilka giller d,+d,+dy=a, dir a 4r en konstant. Angiv ocksé for
vilka viirden pa a som orten existerar.

3. I ett tresidigt rakt prisma ér basytan en liksidig triangel med sidan
. Prismat skiires av ett plan, som endast triffar sidoytorna och som med
basytan bildar vinkeln v. Visa, att summan av kvadraterna pa sidorna
i den darvid uppkommande triangeln endast beror p& « och v.
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4. T ett parallelltrapets &r de parallella sidorna @ och b. Genom mitt-
punkterna pa de Ovriga sidorna drages en parallelltransversal med
lingden a, och genom diagonalernas skéirningspunkt en med lingden b,.
Hérigenom uppkommer ett nytt parallelltrapets med de parallella si-
dorna @, och b,. I det nya trapetset upprepas samma konstruktion,
varigenom transversaler med lingderna a, och b, bildas o. s. v. Visa, att
talfoljderna a,, @y, as, ... och by, by, by, ... har ett gemensamt gréns-
virde samt att motsvarande f6ljder av transversaler har som gemensamt
grianslige en transversal, som delar det ursprungliga trapetset i tvé lik-
formiga delar.

5. Parabeln ay=2? dr given. En punkt dr beligen s& att man fran
densamma kan draga tvd tangenter och tre normaler till parabeln.
Léngderna av dessa betecknas med #;, ¢, n;, n, och n, Visa, att
4dn,ngng = atl,.

6. Kurvan y=tgz, — 4w <x < {n, dr given. P4 kurvan viljes en punkt
A utanfoér origo. Tangenten i A triffar kurvan i en annan punkt B
samt y-axeln i punkten P. Visa, att AP <BP <2A4P.

RESULTAT AV PRISTAVLINGEN FOR FINSKA GYMNASISTER
(Uppgifterna i NMT 3 (1955), s. 179-180.)

Sammanlagt 12 svar insdndes. Foérsta priset, 5000 mk, fick Ensio Nieminen,
Jamsin yhteiskoulu, Jdmsd och andra priset, 3000 mk, Seppo Mustonen, Suoma-
lainen yhteiskoulu, Helsinki. Dessutom utdelades tv& extrapris i form av en bok
till Matti Huovila, Hdmeenlinnan lyseo, Himeenlinna samt Tapani Perko, Someron
yhteiskoulu, Somero.



SUMMARY IN ENGLISH

Davip Foa: »Stringent thinking and concise mode of expression.«
(Danish.)

The title is a quotation from the Danish school law, stating one purpose of
mathematical education in the high schools. The author is inclined to think that
the claim on stringency and conciseness in some domains of mathematics has been
carried too far in the Danish schools. He brings forward his ideas by applying the

logical scheme
A>B|B->4

B—~4 |45
(where the bar denotes negation) to the problem of geometrical loci and—for
comparison—to some statements of ordinary conversation.

Concerning the pedagogical presentation, particularly of geometry, the author
thinks that more emphasis should be laid on the geometrical intuition, for instance
by continuous variation in the generation of geometrical loci. Exceptional cases
are also handled more naturally this way, instead of by a separate and often differ-

ent treatment. Too many details can obscure the beauty of mathematics for an
average high school student.

SIGURKARL STEFANSSON: A theorem on the diameters of a parabola,
with applications. (Danish.)

Referring to the parabola of fig. 1 p. 189, it is shown that the relation OA-0OB =
OP:OP, (=0P?) holds for the distances along an arbitrary chord through O to
the parabola. The same relation holds if O is the mid-point of RR;. This result is
used to perform simple constructions of the focus and axis of a parabola deter-
mined by points and/or tangents, in a total number of four.

RoLr NEVANLINNA: Gauss and the non-euclidean geometry. (Swedish.)

The article is a mainly historical account of the contributions by Gauss, Bolyai
and Lobatjevskij to the development of hyperbolic geometry. As a background,
earlier criticism of the parallel-axiom by Lambert and Saccheri is mentioned,
together with contributions by Schweikart and Taurinus. The first significant
publications on hyperbolic geometry are due to Lobatjevskij (1826) and inde-
pendently to Bolyai (1831). However, Gauss had reached the same results much
earlier, without publishing anything. His notebooks and letters, from which many
quotations are given, make this clear.

The article also gives a short account of the differential geometry of Gauss,
with particular emphasis on the non-euclidean aspect. Finally, the works of Rie-
mann and Hilbert are mentioned briefly.

[229]



INNHOLDSFORTEGNELSE

ANDERS BAacER: Roringscirkler og potenssummer....................
Viceo BRUN: Blomsterstov og Arkimedespolyeder...................
SvEN DANG: Lineser programmering. ........ v,

Fr. FaBrIcIUS-BJERRE : Nogle setninger af J. Hjelmslev om plane, vind-
skeeve og sfeeriske firkanter......... .. ... . . i i i i,

30— 35
20~ 23
121--138

139-148

[230]

Davip Foa: Om »stringent teenkning og preegnant udtrykstorme. ... ... 177-188
SoromoN W. GoromB: Properties of consecutive integers............. 24— 29
Lavmex HurtHEN: Vad dr operationsanalys?........................ 87--101
JoHANNES LoHNE: Anskuelig fremstilling av summeformler........... 85— 86
Rorr NEvANLINNA: Gauss och den icke-euklidiska geometrin.......... 195-209
N. E. NorLu~ND: Tanker om tre videnskaber........................ 5- 19
ARNE PLEWEL: Om delning av konvexa figurer...................... 149--151
AxE PremsrL: Ivar Fredholm. . ... o.ovt v 65 75
SIGURKARL STEFANSSON: En s@tning om parabeldiametre med anven-

AelSer. oot e 189-194
JOHN Orav STUBBAN: Aksiomatisk grunnlag for den euklidiske geometri 76 - 84
Bokmeldinger

Jor KENNEDY ADAMS: Basic statistical concepts (ArRNLJOT HovLAND) 102

C. B. ALLENDOERFER — (. O. OARLEY: Principles of mathematies (LEx-

NART SANDGREN) .« o ot ettt ettt ettt ettt ae ettt 36

EmiLe BorReL — ANDRE CHERON: Théoric mathématique du bridge a

la portée de tous (ALF GUDBRANDSEN)....o.vvniniineininvenenn .. 103
D. van DanTzic : The function of mathematics in modern society and its

consequences for the teaching of mathematics. — L. N. H. BunT: The

teaching of mathematics to students between 16 and 21 years of age in

the Netherlands (KAY PIENE). . ....... ... it 152
Davip Foa: Matematik for landinspektorer og skovbrugere (Jons. Ost-

017 23 TP 104
H. Gask: Ordinéira differentialekvationer (ErLiNg FOLNER)........... 104
A. O. GELroND: Ganzzahlige Losungen von Gleichungen (ErnsT S.

SELMER) . ¢ttt vttt ettt ettt et et 37

Worreane Haack: Elementare Differentialgeometrie (OTTAR YTREHUS) 152

H. HaApwicER: Altes und Neues iiber konvexe Korper (W. FENcHEL).. 105

Dick Wick HALL - Guinrorp L. SPENCER I1: Elementary topology

(OLOF HANNER). « + o vttt ittt it it e e i i 213

BurToxn W. Jongs: The theory of numbers (BENGT SToLT). . ... 0\ !\, 214

R. KocHENDORFFER: Einfiihrung in die Algebra (Kite FENCHEL).. ... 154

Paur LorenzeN: Einfiihrung in die operative Logik und Mathematik

(Ko E. AUBERT) c ottt ittt 107

Bruce E. MESERVE : Fundamental concepts of geometry (P. O. NErRrRUP) 210



INNHOLDSFORTEGNELSE 231

Homer E. NEWELL, JR.: Vector analysis (S. BERTIL NILSSON)........ 155
W. W. SaAwyER: Prelude to mathematics (Vieco BRUN).............. 156
KarL ScrtrTe: Index mathematischer Tafelwerke und Tabellen (CARL-
BERIK FROBERG) . ¢t ottt ittt enntenieinnnenaeenns 38
KarL STRUBECKER: Differentialgeometrie, I (LAURI P1MI&).......... 39

I. M. WinocrADOW: Elemente der Zahlentheorie (SiGMUND SELBERG) 212

Mottatte boker.. ... 40, 109, 157, 215
Oppgaver
Oppgaver til losning. ... i 44, 113, 162, 220
LoSnINger. . oottt e 46, 114, 163, 222
ERsamensoppgaver. .. ... 169
Nasjonale prisoppgaver for gymnasiaster.................oo..... 55, 225
Internordiske prisoppgaver.......... .. .. i i 51, 166
Kronikk. ... oo e 57, 175

Summary in English. ... o oo 63. 119, 175. 229




NORDISK MATEMATISK TIDSKRIFT
Bind 4 (1956), hefte 1-4.

Fr. Bagges kgl. Hofbogtrykkeri, Kebenhavn.




