LINEAR PROGRAMMERING

SVEN DAN@

1. Betegnelsen »linezer programmering« (engelsk: linear programming)
deekker over en swrlig teknik, som i den sidste halve snes ar er blevet
udviklet i U. 8. A. ved losning af en speciel type problemer inden for den
linewre algebra, nemlig sadanne problemer, som gir ud pa at spge mak-
simum eller minimum af en linearform under et antal linewre bibetingel-
ser, idet de variable kun m4a antage ikke-negative vardier.!

Det typiske programmeringsproblem ser saledes ud:

an Q12 Ain b

@21 x, + @2 Zot ...+ Tan z, = bs

a’;nl “;nz a’;nn by,
220, 2,20, ...,2,20

€1y +Coy+ . .. +Cx, = f = maksimum ,
eller p4 matrixform
(1) AX = B, X 2 0,2 ¢*X = f = maksimum ,

hvor matricen 4 har dimensionen m xn (m<n), og C* betegner den
transponerede vektor (en reekkevektor) til sgjlevektoren €, medens 0 er
nulvektoren.?

! Blandt de matematiske arbejder, der har haft betydning for udviklingen af teorien
for linexr programmering, ber nevnes T. Bonnesen—W. Fenchel: Theorie der konvexen
Kérper. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 3, Nr. 1. Julius Springer,
Berlin 1934, og Chelsea Publishing Co., New York 1948. — I ovrigt henvises til littera-
turfortegnelsen.

2. At en vektor er =0 (resp. > 0), skal betegne, at alle dens koordinater er = 0 (resp.
> 0).

8 I den specielle faglitteratur kaldes de enkelte sojlevektorer i matricen A ofte »aktivi-
teter« eller »processer, en terminologi, der knytter sig til visse (skonomiske) anvendelser;
a’erne kaldes da »aktivitetsniveauer« (activity levels) eller »procesintensiteters.
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Det gor ingen principiel forskel, om man i (1) skal sege minimum af
linearformen f, idet dette er ensbetydende med at bestemme maksimum
af —f=(—0)*X.

I mange praktiske anvendelser har betingelserne form af linezre
uligheder, saledes at (1) bliver erstattet af

(2a) AX £ B, X 20, ¢*X = f = maksimum .

Dette tilfeelde reduceres let til ovenstaende type (1), idet man supplerer de
sstrukturelle variable« z,, ,, . . ., x, med m srestvariablec! z,", z,’, ..., z,’,
som reprasenterer differenserne mellem den storste og den mindste side
i de respektive uligheder. Nar bibetingelserne skrives pé& vektorform,
bliver der altsa til de n »strukturelle vektorer« (sgjlevektorerne i 4) fajet
m »restvektorer«® som koefficienter til de indferte restvariable. Hrvis
ulighederne har formen < som i (2a), bliver restvektorerne de m enheds-
vektorer, medens de bliver disse enhedsvektorer med negativt fortegn,
hvis ulighedstegnene vender den modsatte vej. Man kan komme ud for
problemstillinger, hvor de restvariable indgar med koefficienter 0 i
linearformen f, men sadanne problemer vil vi ikke medtage i den folgende
fremstilling.

Et problem af typen (2a) kan altsa skrives som
(2b) AX+EX'=B, X2 0, X' 2 0, C*X+0*X’ = f = maksimum ,
medens problemet
(3a) AX 2 B, X 2 0, C*X = f = minimum
kan omformes til
(3b) AX—EX' =B, X2 0, X' 2 0, (—C)*X+0*X’' = —f = maksimum ,

hvor E er enhedsmatricen med dimension m xm. I begge tilfeelde er
opgaven fort tilbage til et problem af typen (1), og ethvert linezrt
programmeringsproblem kan derfor formuleres pa folgende made: Til
et system af linesere ligninger at finde en ikke-negativ lesning, som
maksimerer en linearform i de i ligningerne indgaende variable.

2. Maksimumsproblemer af denne karakter kan &benbart ikke lgses
ved traditionelle metoder. Det, som gor, at der overhovedet kan blive
tale om et (endeligt) maksimum for linearformen, er kravet om, at de
variable — herunder ogsd de restvariable — kun mé& antage ikke-

1 engelsk: slack variables, pseudovariables.
2 engelsk: slack vectors, disposal activities.
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negative vardier; men et sidant maksimum lader sig ikke bestemme pa
sedvanlig vis ved benyttelse af partiel differentiation.

Problemstillingen kan illustreres ved det simplest mulige tilfelde, hvor
der er 2 variable og kun 1 bibetingelse:

%1+ ATy = b
(4) £, =0, 2, =0

€1y +Coy = f = maksimum ,

\

og hvor a,, a, og b samt mindst et af c’erne er +0. Lad os her antage,
at de alle er positive. Det gelder da om blandt de mulige lgsninger! —
dvs. de talsaet (z;, x,), der tilfredsstiller betingelsesligningen og samtidigt
er ikke-negative — at finde en, som giver maksimum af f (en optimal
losning?). En mulig lesning er f. eks.

(5) 2 =0, 2y =—;
Qg

en anden er

(6) ;= —, %, =0.

Desuden vil enhver linearkombination af disse to med positive koeffi-
cienter, der har summen 1, veere en losning, altsd
0b (I-0)

(7) Xy = —, Ty =
a Ay

0<06<1,

og andre muligheder er der ikke.
Den optimale lgsning kan nu bestemmes ved, at man tager udgangs-
punkt i et af mulighedsomradets endepunkter, f. eks. i lgsningen (6), og
undersoger, hvorvidt det vil give en storre veerdi for f, om man fra dette
punkt bevager sig ud gennem mulighedsomradet (dvs. ger z,>0 pa
bekostning af ;). Vi lgser da betingelsesligningen m. h. t. z;:
b a,
Xy =———12,,
@y
og indsaetter i linearformen:
b a
(8) =CL_|_(02_CJ__2);U2_
a, a

Denne bliver herved udtrykt som funktion af z,. For z,=0 far vi den
lgsning (6), vi tog som udgangspunkt. Det afgerende for, om vi kan fi

1 engelsk: feasible solutions.
2 ogsa kaldet »et optimalt programc; deraf navnet »programmerings.

'R
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en »bedre« lgsning ved at gare x, positiv, vil nu veere fortegnet for ko-
efficienten til x, i (8). Hvis denne er negativ, vil enhver positiv veerdi
for z, give lavere verdi for f; dette betyder, at f er storst for xz,=0,
eller med andre ord, at lgsningen

er en optimal lgsning (og den eneste sidanne). Er den navnte koeffi-
cient =0, vil f veere konstant, nar z, varierer, og enhver mulig lgsning
(1, z,) vil veere optimal. Er endelig koefficienten til x, positiv, vil f
vokse, nar , gges pa bekostning af x, ; safremt x, kunne vokse i det uende-
lige, ville f ikke have noget endeligt maksimum, men kravet om, at x,
ikke m4 blive negativ, setter en grense for veeksten. Denne greense nas,
som man ser af betingelsesligningen, for x,=b/a,, og den optimale lgs-
ning bliver altsa i dette tilfeelde

z, = 0, x2=£, f=9£
2 @y

Disse resultater kan man let anskueliggore ved grafisk afbildning
(fig. 1). Bibetingelsen fremstiller i et x,z,-diagram en ret linje, men kravet
. om ikke-negativitet begraenser mu-

2 lighedsomradet til at veere den del
} af linjen, som ligger i 1.kvadrant
(inklusive akserne), dvs. linjestyk-
ket AB. Linearformen fremstiller
en skare parallelle rette linjer med
AT+ 0Ty = b heeldningskoefficient — ¢, /c,, enlinje
for hver veerdi af f; gennem hvert
punkt pa AB gar der en af disse
linjer, og den, som ligger lengst
»mod nordest« i diagrammet, repree-
senterer den maksimale veerdi af f.
Svarende til de 3 fornevnte tilfeelde,
hvor koefficienten til x, i (8) var negativ, 0 eller positiv, vil linjeskaren
veere stejlere end 4B, parallel med 4B eller mindre stejl end denne
linje, og optimum vil i overensstemmelse hermed henholdsvis indtreeffe
i B, veere ubestemt pa 4B eller indtreeffe i 4. Det sidste tilfelde er vist
pa fig. 1.

Hyvis bibetingelsen i stedet havde varet en ulighed af formen

C1Z1+ €%y = fpax

0 B\

Fig. 1

(9) 0%+ a2y < b,




LINEZR PROGRAMMERING 125

ville mulighedsomradet have veret hele trekanten 4BO pa fig. 1, men
for det optimale punkt ville der foreligge ngjagtig de samme 3 mulig-
heder som for. Erstatter vi (9) med

(10) ' a, %, +agy+2, = b,

hvor z," er en restvariabel, vil — med den beliggenhed, der er vist pa
figuren — den optimale lgsning blive

2, =0, 2,=—, 2/ =0, f=—.
2 @
Forst nar der optrader flere bibetingelser i problemet, kan man fi en
optimal lgsning, hvor en restvariabel er 0.

Fig. 1 illustrerer, hvorledes den optimale lgsning fremkommer som et
»hjornemaksimum¢, bade nar bibetingelsen er en ligning, og nir den er
en ulighed; i begge tilfeelde har man et konvekst mulighedsomrade
(linjestykket AB resp. trekanten ABO), og det optimale punkt bliver
et af omradets hjerner — bortset fra det specielle tilfeelde, hvor lgsningen
ikke var entydig og ethvert punkt pa AB var optimalt.

Hvad der ovenfor er sagt om tilfzeldet med én ulighed mellem z, og
x,, udvides let til et hvilket som helst antal ulighedsbetingelser, der métte
vaere palagt disse variable; pa fig. 2 nedenfor, svarende til 3 sidanne
uligheder, er mulighedsomradet den
konvekse polygon ABCDO, og det
optimale punkt vil alt efter forholdet
mellem ¢, og ¢, blive et af hjornerne
A, B, C eller D (i specielle tilfeelde
med flertydig lgsning dog ethvert
punkt pa et af linjestykkerne AB,
BC eller CD).

z,

~
A

3. Vi skal nu i det folgende se,
hvorledes man kan ni frem til en O D\
numerisk lgsning af det generelle line-
sere programmeringsproblem.

Fig. 1 omhandler, nar bibetingelsen
har formen (9), og en restvariabel er indfert som i (10), et problem i 3
variable z;, z, og #;’. I punkterne A4, B og O er to af de variable =0,
i alle andre punkter derimod hejst én af de variable. Fig. 2 repreesen-
terer pa lignende made et problem i 5 variable, nemlig 2 strukturelle
(%, og x,) og 3 restvariable:

Fig. 2
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@117 + Ayp%s + 2y =b,
(11) 9171 + Q9% + = b,
(g1 %y + Agoa +ay = by.

For henholdsvis z,"=0, z,’=0 og x;'=0 fremstiller de tre bibetingelser
linjen gennem A og B, linjen gennem B og C og linjen gennem C og D.
I punkterne 4, B, C, D og O er to af de variable =0, i 4 {. eks. 2; og z,’,
medens de 3 andre er #0. I alle andre punkter af polygonen (muligheds-
omradet) ABCDO er hgjst én variabel =0.

I begge de betragtede eksempler med restvariable er siledes et hjerne
karakteriseret ved, at der er lige s4 mange af de variable =0, som der er
bibetingelser, dvs. 1 pa fig. 1, 3 pa fig. 2. Efter det foran omtalte ind-
treeffer maksimum i de nevnte tilfeelde — hvis det er entydigt — i et
hjornepunkt, siledes at det optimale punkt md soges blandt de mulige los-
ninger, som netop indeholder m wvariable +0, hvor m er antallet af bibe-
tingelser. Selv nar den optimale lgsning ikke er entydig, kan der dog altid
findes et hjernepunkt, der er optimalt.

Det ovenfor fremhaevede kan — med en lille nuancering — udvides
til at gelde generelt, idet vi kan vise fglgende for vort formal vigtige
setning:

TrorREM 1. Ndr et lineeert programmeringsproblem med m betingelses-
ligninger © n variable (struktur- og eventuelle restvariable), hvor m <n,
har (mindst) en optimal losning, vil der altid findes en sidan losning, hvor
hajst m af de variable er =+ 0.

Lad linearformen antage sin maksimale veerdi for r af de variable
=+ 0, medens de gvrige n —r variable alle er 0. Dersom 7 <m, er teorem 1
opfyldt »af sig selve; lad os dernaest antage r >m. Vi kan altid nummerere
x’erne saledes, at den forelagte optimale lgsning bliver

(@gs @y v vy Bpy Xy v oo X)) = Ay A9y o205 4,0, ..., 0),

hvor alle 4;>0. Vi har da, idet 4,, A4,, ..., 4, er de tilsvarende sgjle-
vektorer fra den til problemet horende matrix A4,

A+ Akt ...+ 44 =B
AA>0,4,>0, ..., 4, >0
61/11+62)»2+ LR +crlr = fmax .
Idet antallet r af vektorer A, er storre end deres dimension m, vil de veere

linesert afheengige, dvs. der eksisterer et egentligt talset y4, ya, - - -, ¥,
saledes, at
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A1+ Agyet+ ..+ Ay, =0,

og vi kan yderligere opnd, at mindst et af y’erne er > 0.
Vi danner nu forholdene

e
2'1, 123"') Ar’

det storste af disse — der vil veere >0 — betegnes 0. Man indser da let, at

4 14 Vr
Al(ll— 91> +A2(12— ;) +...+A,</1,,_5) - B,
dvs. at talsmttet

Vi,
(12) ,.—5’ G=1,2...,7)

tilfredsstiller ligningssystemet (bibetingelserne). Idet

ng 0, 4, >0o0g 0>0,
A
har vi y
-z,

og ifolge definitionen af 6 er mindst ét af disse tal =0.

Vi har med andre ord fundet en ikke-negativ lgsning (12) til bibe-
tingelserne, som indeholder faerre end r variable 0. Det skal nu yder-
ligere vises, at denne lgsning er optimal (ligesom den, vi gik ud fra),
altsa at

Cl (}‘1 —%> +62 (}.2 _ZOE) + DRI +C7. (AT "‘%)

= 01}.1+C2},2+ . +C,.Zr (= fma,x)
eller
Ciy1teayet .- +Gy, = 0.

Antag, at dette ikke var tilfeeldet; vi kunne da finde et tal u siledes, at

ey +eayat . oo +6y,) = calpyr) +ealpys) + - - -+ (uy,) > 0

eller, idet vi adderer X'c,A; pa begge sider af ulighedstegnet,
j=1

(A pyy) +Colda+pye) + - (bt py,) > Cdytehat . G4,

Idet (4;+ uy;) ses at tilfredsstille bibetingelserne for ethvert x, og man
altid kan velge |u| si lille, at (4;+uy;) bliver ikke-negativ for alle j,
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vil dette sige, at der eksisterede en mulig lgsning, der gav en storre veerdi
for f end vor oprindelige, optimale lgsning. Dette er abenbart en mod-
sigelse, og hermed er optimaliteten af (12) godtgjort.

Vi har altsd i (12) fundet en optimal lgsning, som indeholder feerre
end r variable 0. Da vi kan fortsette med denne reduktion, s& leenge
A’erne er linezrt afhzngige, ender vi med en optimal lgsning, hvor hgjst
m variable er 0. Hermed er teorem 1 bevist.

4. Vi er nu i princippet i stand til numerisk at lgse det i teorem 1
omtalte linesere programmeringsproblem — hvis det vides at have en
lpsning. Vi setter pa alle teenkelige mader n —m af de variable lig med 0

i betingelsesligningerne, lgser de ( " fm) = (:;) systemer af m ligninger

med m ubekendte, som derved fremkommer, og indsetter hver af disse
»basislgsninger« i linearformen, der skal maksimeres. De af systemerne,
der ikke har en ikke-negativ lgsning, behgver vi ikke at bekymre os om
(en del af dem kan i gvrigt ofte udskilles pa forhand ved inspektion),
men vi ved fra teorem 1, at hvis problemet har en optimal lgsning, ma
en af basislgsningerne ogsa vare optimal. Det er, som vi har set, muligt,
at den optimale lgsning indeholder feerre end m variable % 0, men sadanne
rdegenererede tilfzelde vil automatisk komme frem under proceduren, idet
der vil fremkomme et eller flere nuller i basislgsningen. (For m=2 vil
dette kunne ske, nar hgjre side af ligningssystemet er proportional med
en af sgjlevektorerne i systemets venstre side.)

Fremgangsmaden kan illustreres ved felgende simple eksempel:

] 2z, +4x, = 5 oller 2z, + dx;—z,’ =35
(13) 2,4+ 32, + x5 = 4 22, + 32, + x4 —xy = 4
220, 20, 3,20, 2°20, 2’ =0
l 4z, 4 224+ 32, = g = minimum .

Vi setter forst x;=2x,"=x,"=0 og kalder dette at velge de to andre variable
z, og z, — eller de dertil svarende sojlevektorer i koefficientmatricen 4 — som
basis. Vi far herved ligningssystemet

22y = 5, 2x,+3x, = 4,
der har lesningen 5
¥ =3, @ = —%;
denne er ikke en mulig lesning til programmeringsproblemet, eftersom z, er nega-
tiv, og den kan derfor lades ude af betragtning. Benytter vi i stedet x; og x; (forste
og tredje sojlevektor) som basis, dvs. setter vi w,=x,"=z," =0, far vi

22,4+ 4x; = 5, 2x,4x; = 4;
heraf findes

|
|
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som indsat i linearformen giver

P& denne méde finder vi alle teenkelige basislosninger; der er ialt 10 ligningssyste-
mer at lose. Resultatet fremgér af folgende oversigt:

Basis Lesning g¢ Basis Lesning g
(@ %) (3, —%) — (25, @) (3, —5) -
(@, 25) (55 3) 28 (@y, ") ingen lesning —
@y ) (] 4% (25, ;") (4, 11) 12
(X)) (2, =1) — (25, 5") %9 ——111-) -
(4, 25") (3, 1) 10 (1", 57) (—5, —4) -

Verdien af linearformen g er kun beregnet for de positive losninger. Den laveste
veerdi af g ses at fremkomme for basis (z,, 2;):

(14) T =ip =% 9=7%

forudsat at en optimal lesning eksisterer, udger (14) en sddan lesning.

5. Nar m og n vokser, bliver denne procedure hurtigt uoverkommelig;
der bliver for mange og for store ligningssystemer at lgse. Man har ud-
viklet forskellige metoder, der formindsker regnearbejdet veaesentligt;
den hyppigst anvendte — den sakaldte simplex-metode — er en generali-
sering af den, vi benyttede ovenfor til at lgse det trivielle problem (4),
hvor der kun var 2 variable og 1 bibetingelse. Princippet i simplex-
metoden er, at man tager udgangspunkt i en vilkarlig basislgsning og
undersgger, hvorvidt man kan forbedre denne ved at ga videre til en
anden basis, og s& fremdeles, indtil man nér en basislgsning, hvor linear-
formen antager sin optimale veerdi.

Vi vil betragte det generelle programmeringsproblem (1) og begynder
da med en opdeling af matricen A i en basis 4,, bestdende af m linesert
uafhangige sojlevektorer, og A4,, der bestar af de gvrige n—m sojlevek-
torer. Der kan veere savel strukturelle som restvektorer i bade 4, og
A,. Vektorerne X og C opdeles tilsvarende. Vikan da skrive (1) pa formen

A, X, + A,X, = B
(15) X;20 x,20
C*X, + C,*X, = f = maksimum .

Lgser vi betingelsesligningerne m. h. t. X; — hvilket er muligt, da basis-
vektorerne er antaget linezert uafhengige —, far vi
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(16) X; = 47 B- 4,74, X,

der indsat i linearformen giver f som funktion af X,:
(17) f = C’l*Al_lB-!- (Cz* — Cl*Al—lAz)Xz .

Medens den i det foregéende afsnit beskrevne procedure svarede til, at
vii (17) pa forhand satte X, =0 og derved fandt den til basen 4, hgrende
basislgsning 4;-1B (og gennemforte beregningen for alle teenkelige baser),
betragter vi nu X, som variabel. Vi antager, at 4,~!B er en mulig lgs-
ning (4,71B20). Er nu

(18) Co*—C*A;714, £ 0,

vil f antage sin maksimale verdi for X,=0, saledes at lgsningen

X, = 4,"'B, X, =0, f = C;*4,”'B
er optimal.

Betingelsen (18) for optimalitet i en basislosning kaldes »simplex-
kriteriet«. (Hvis linearformen skal minimeres, mé ulighedstegnet i (18)
naturligvis vendes.)

Hvis man har held til straks at sl ned pa en basis, for hvilken (18)
er opfyldt, er problemet dermed lost, og vi slipper for at lose flere af de

(17;) ligningssystemer. Lad os dernsst antage, at simplex-kriteriet ikke

er tilfredsstillet for den betragtede basis, altsa at der findes en positiv
koordinat i (18); den tilsvarende variabel i X, kaldes z;. Dersom nu
A;71B >0 (og altsd ikke blot =0), kan vi — idet de andre variable i X,
forbliver lig 0 — give «; en s lille positiv verdi, at X; i (16) stadig er
> 0. Herved bliver verdien af linearformen sterrel. Hvis f har et endeligt
maksimum, kan x; imidlertid ikke vokse ubegreenset; for eller senere
nar man et punkt, hvor en af de variable i X; kommer ned pé 0. (Hvilken
der farst bliver 0, fremgar ved inspektion af (16).) Dette punkt repree-

1 Om simplex-kriteriet (18) har vi hermed bevist felgende: Dersom basislosningen
A;"1B er 2 0, er betingelsen (18) tilstrackkelig til at sikre, at der foreligger maksimum af linear-
formen f. Dersom A, 71B > 0 (og ikke blot = 0), er den ncewvnte betingelse ogsd nodvendig.

Er derimod en eller flere koordinater i 4;7'B lig med 0, séledes at basislesningen inde-
holder ferre end m variable = 0, kan reesonnementet ovenfor ikke fores igennem, og man
viser let ved eksempler, at der godt kan foreligge maksimum for f, selv om nogle af sim-
plex-koefficienterne i (18) er positive.

Vi ser i det folgende bort fra problemer med saddanne »degenererede« lgsninger (hvor
simplex-metoden mé modificeres for at kunne anvendes). Det betyder da ingen yderligere
indskreenkning, at vi har antaget de m vektorer i A4, linesert uafhengige (séledes at 4,
kunne inverteres); thi da vi har forudsat, at ligningssystemet 4,X,=B kan loses, ville
en lineszer afhengighed mellem de n®vnte vektorer medfere eksistensen af en degenereret
lesning.
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senterer en ny basis, fremkommet af A4, ved, at en af dennes sgjlevektorer
er blevet erstattet med en sgjlevektor fra 4,. Den nye basis undersgges
nu ved hjxlp af simplex-kriteriet; er dette ikke tilfredsstillet, fortsaetter
man pa samme méde til en tredje basis, og s fremdeles. Da f bliver
storre, for hver gang man skifter basis, vil man aldrig under denne pro-
cedure kunne komme tilbage til en basis, der er blevet forladt pa et tid-
ligere stadium af beregningerne; da endvidere antallet af mulige baser
er endeligt, folger heraf, at metoden vil fore frem til en optimal lgsning
(forudsat at en sadan eksisterer) i et endeligt antal trin.

Det er klart, at dette indebarer en enorm lettelse af det praktiske
regnearbejde, sammenlignet med den procedure, der gar ud p at beregne

samtlige (:;) basislgsninger. Simplex-metoden gor det muligt for os at

arbejde os systematisk igennem dem uden at behove at regne dem alle
ud, og man vil ofte veere i stand til — ved inspektion eller ud fra specielt
kendskab til det konkrete problem — at velge en udgangsbasis, der
ligger 54 »ner ved« den optimale lgsning, at man kan na frem til mélet
i lobet af meget f& trin. Man skal heller ikke, hver gang der skiftes basis,
begynde forfra med at lose et helt ligningssystem ; man kommer fra den
ene basislgsning til den nwste ved simpelt hen at benytte en af lignin-
gerne i den forste lgsning til at udtrykke den variabel, der skal ind i
basen, ved den, der skal kastes ud (og dem, der skal forblive uden for
basen), og indsette det fundne i de andre ligninger og i linearformen.

Til illustration skal vi regne os gennem taleksemplet (13) ovenfor ved hjzlp af
simplex-metoden!. Problemet var

2z, +dx, — 2, =5
22, + 3z, + 25 —xy =4
2,20, 2,20, 2320, 2,720, 2,20
l 4z, + 2z + 3x; = g = minimum .

(19)

Lad os vezlge x, og x,” som udgangsbasis; vi skal da lgse ligningssystemet m. h. t.
disse to variable og inds®tte resultatet i linearformen. Vi far

z = 5 — 2oy + o)’
(20) z,’ = 14 3w,—3x3+ 2,
g = 10+ 2x,— 5z + 22, ,

der for @,=x,;=x,"=0 giver den positive basislesning z, =2, z,"=1.
Simplex-kriteriet er ikke opfyldt, idet x; har negativ koefficient i den sidste
ligning (20). Man vil altsd kunne gere g mindre ved at gere x; positiv. Imidlertid

1 Ved numerisk lgsning af sterre linemre programmeringsproblemer stdr man sig ved
at anvende de szrlige regneskemaer, der er konstrueret til formélet (»the simplex tableau«);
se f. eks. litteraturfortegnelsen [2].
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ser man af de to ferste ligninger (20), at (for x, =x,” = 0) vil bade z, og z,” aftage for
voksende #; og blive 0, forst 2, (for #;=1}) og derpé z, (for x;= ). Vi kaster der-
for x,” ud af basen til fordel for z,, sdledes at den nye basis kommer til at bestd
af z; og v;. Af den mellemste ligning (20) findes
(21a) 2= % + mt+ie/ -4,
og indsatning heraf i de to andre ligninger (20) giver

@, = L — 2, — La)' + 3w,

(21b)
g = 72557-—-— 3x2+%m1'+ ngl .

Heller ikke her er simplex-kriteriet opfyldt, idet =, har negativ koefficient i den
nederste ligning (21b). Lader vi (for z,"=,’=0) x, vokse ud fra 0, vokser z,
ogsd, men x, aftager og bliver 0 for #,=11. Vi udskifter derfor #; med x,. Af den
overste ligning (21b) findes
(22a) Ty = %% — iz, — 5%+ 3y,
som ved inds®tning i de to andre ligninger (21) giver
2y = 5 —1o+ Lo’
(22b) 3 ¢ —2hT g 1/ ,

g = 4%+ + 5w + By’

Her er simplex-kriteriet tilfredsstillet, og vi finder for x,=x,"==z,’=0 den op-
timale losning

(23) T, =

an

1 — 5 — 67
» %=1 §=1y-

=

Dersom vi — ved et tilfeelde eller ud fra visse formodninger — havde valgt
x, 0g x5 som udgangsbasis, var vi straks i forste skridt kommet til ligningerne (22)
og dermed til losningen (23).

6. Linexre programmeringsproblemer af typerne (2) og (3) har den
interessante egenskab, at der til ethvert problem af den ene slags svarer
et problem af den anden, der i en vis forstand kan betragtes som det
forstes spejlbillede, bade hvad opbygning og lgsning angér. Dette forhold
kaldes dualitet, og de to problemer siges at vare dualer (eller dualpro-
blemer). Dersom det ene problem indeholder » strukturelle variable og
m betingelsesuligheder:

(24a) AX £ B, Xz 0, C*X = f = maksimum ,
vil dualproblemet bestd af m strukturelle variable med n betingelses-
uligheder:
(25a) A*Y 2 C, Y20, B*Y =g = minimum .
For at give en pracis formulering af den dualitetsscetning, der geelder

om disse to problemer, omskriver vi (24a) og (25a) ved indferelse af
restvariable til
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(24b) AX+EX =B, X220, X' 20, C*X = f = maksimum

og
(25b) A*Y—E, Y =C, Y

1\

0, Y =20, B*Y =g = minimum,

hvor E, og E, er enhedsmatricer af henholdsvis m’te og n’te orden. Til
enhver strukturel variabel x; i det forste problem svarer da en betingel-
sesligning med restvariabel y;’ i det andet, og til en strukturel variabel
y; i det sidste problem svarer analogt en betingelsesligning med rest-
variabel z,’ i det forste. De to problemers variable bliver pa denne made
parret sammen, siledes at hvert par bestar af to variable, der bade
tilhgrer modsatte problemer og er af modsat art. Dualitetssetningen
kan nu formuleres pa fglgende made:

TrOREM 2. De to duale problemer (24) og (25) korresponderer siledes, at

1° den optimale basis © det ene problem udgores af de variable, hvis til-
svarende variable ikke tilhorer den optimale basis i det andet problem;

2° vaerdien for en variabel © den optimale basislosning for det ene pro-
blem er numerisk lig simplex-koefficienten for den tilsvarende variabel
i det andet problem;

3° den maksimale verdi af linearformen f er lig den minimale veerds
for linearformen g.

Har man lgst det ene problem, er dermed ogsé losningen til det andet
givet; de to problemer udger et samhgrende par. Nar man skal lose et
programmeringsproblem, kan man derfor valge, om man vil behandle
selve dette problem eller dets dual; det vil i regelen veere mest praktisk
at veelge det, der har farrest bibetingelser.

For vi gar over til et almindeligt bevis for teorem 2, vil vi betragte dets anven-
delse p& taleksemplet (13) ovenfor; dette har som dual maksimumsproblemet

2y, + 2y, = 4 2y + 2y, + 4,
3y, = 2 eller 3Ys + 1y, =2
(26) 4,4+ ¥y, = 3 4y, + Ys +y’ =3

Y120, 420, ¥ 20, 5’ 20, y' =0
5y, + 4y, = f = maksimum .

I minimumsproblemet udgjorde z, og z; den optimale basis; ifelge 1° skal da den
optimale basis for (26) bestd af y;, ¥, og y,". Leses betingelsesligningerne m. h. t.
disse 3 variable, far vi

Y = T%'I‘l—l-zyzl—%ya'
(27) Yo = ‘;‘2; - %yz,
v'= 3+ Fv'+iv,
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og linearformen bliver
(28) f= %“‘Tl%yzl"ii‘yaf .

Det ses, at simplex-kriteriet er tilfredsstillet, og for y,’=y,"=0 far vi den opti-
male losning

(29) V1= Y=3% v’ =3, f=%

I overenstemmelse med 2° er veerdierne for Y1 Y2 08 Yy, 1 (29) lig med koefficien-
terne til @, @,” og z; i den nederste ligning (22b), og veerdierne for x, og x, i(23)
er numerisk lig koefficienterne til y,” og y,’ i (28). Endelig er, stemmende med 3°,
den maksimale veerdi af f i (29) lig med den minimale veerdi af g1i(23).

Vi skal nu give et almindeligt bevis for dualitetsteoremet!. Den til
(24b) herende matrix (A4, E;) spaltes ganske som i afsnit 5 i matricerne
A; og Ay, hvor 4, er den optimale basis (af dimension mxm), og A,
bestar af de gvrige, her n, sojlevektorer. Som tidligere kan der forekomme
bade strukturelle vektorer og restvektorer i savel A4; som A4,, og sgjle-
vektorerne i 4; kan antages linesert uathengige. Problemet (24) kan da
skrives pa den tidligere benyttede form

A,X,+ A4,X, = B
(30) X120, X,20
C*X; + C*X, = f = maksimum ,

og som dengang far man

(31) Xy = A,7'B—-4,714,X,
og
(32) [=C*A,7 1B+ (C,* — C*4,714,)X, .

Da basen 4, er antaget optimal, vil den ved (31) bestemte basislgsning
A;7'B vare positiv (smlgn. fodnoten) og koefficienten til X, i (32)
ikke-positiv (smlgn. fodnoten side 130).

Det til (24) svarende dualproblem (25) kan med de betegnelser, der er
benyttet ovenfor, skrives

A*Y—E, Y, =q
A*Y —E,Y, = C,
Y20, ¥,'20, 7,20

B*Y = ¢ = minimum ,

(33)

1 Vi ger dog, som hidtil, den indskrsenkende forudsatning, at den optimale basislos-
ning indeholder netop m variable =0, altsd at losningen ikke er »degenererct«; ellers
ville vi ikke kunne fere beviset med anvendelse af simplex-kriteriet. — Det folger ikke
heraf, at setningen kun gezlder, nir den nevnte forudssetning er opfyldt.
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hvor ¥,’ og Y, er vektorer bestdende af restvariable, og E; og E, er
enhedsmatricer af henholdsvis m’te og n’te orden. Vi har her ikke blot
— i overensstemmelse med (25b) — skrevet betingelsesligninger op
svarende til de n strukturelle vektorer i A4; og A,, men ogsd for de m
restvektorer, der er indeholdt heri. Dette sendrer dog ikke problemet;

thi da koefficienterne til de restvariable z,’, z,’, ..., z,, i linearformen f
er nul, vil de sidstneevnte ligninger have formen

(34) 1'yj_1'yk, =0 (.7 = 1,2, -:m),

og disse ligninger identificerer blot ¥y, ¥s, - - -, Y, med m af de n+m

indferte restvariable y,’. Dette medforer imidlertid, at vi kan lade ¥ gé
helt ud af spillet og betragte (33) som et problem vedrerende vektorerne
Y, og Y, alene. For gennemforelsen af beviset er det mest praktisk at
finde Y af den ferste ligning (33), hvilket giver

Y = (4%)710 + (A%) Y,
og indsxtte dette i den anden ligning og i linearformen g. Herved fas

(35) Y, = _(Cz“Az*(A1*)_1 Cl)+A2*(A1*)_1Y1,
g = B*(A*)71C + B*(A4%)71 Y.

Formen af disse sidste ligninger svarer til, at vi i problemet (33) i dets
reducerede form har valgt ¥,’ som basis og derfor udtrykt sivel denne
som g ved ¥,". Da B*(4;*)1=(4,"'B)*, ser man, at koefficienten til
y,’ i linearformen g — efter transposition — er lig den optimale lgsning
for X, i (31), altsa positiv, saledes at simplex-kriteriet for minimum af
g for ¥,'=0 er opfyldt. Den minimale veerdi for g bliver

gmin = B*(A4,*)71Cy = (C*4;7'B)* = fmax .

Omvendt er den optimale lgsning for ¥,’ i (35), svarende til ¥;'=0,
lig med koefficienten til X, i (32) med modsat fortegn (og transponeret),
altsd ikke-negativ.

Der er siledes etableret en sammenparring af koordinaterne for X;
og ¥, samt for X, og ¥,’. Ifelge ligningerne (34) kan nu m af koordina-
terne i ¥, og Y,’ — nemlig de, der svarer til de m restvariable i X;
og X, — ombyttes med koordinaterne i Y; hvis den k’te variabel i X,
eller X, er en restvariabel z;’, svarer dertil den k’te variabel i Y, resp.
Y,’, og denne variabel vil ifglge (34) netop vere lig med y;. Sammen-
parringen bliver altsd den, der er omtalt i teorem 2, og idet de tre pa-
stande 1°, 2° og 3° er godtgjort ovenfor, er teorem 2 hermed bevist.
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Vi vil illustrere den benyttede fremgangsméde ved et eksempel. Antag, at vi
har problemet
x4 22y + )" = 2
4z, + x, +z, =6
220 220 220 x =20

b2, + 2, = f = maksimum .

(36)

Den optimale basis udgeres af «, og x,"; vi far nemlig ved lesning m. h. t. disse to
variable:

@ = § —to,—1xy
(87) z'= % — %wz + 1y’
| f = Y= jo— oy
Dualproblemet bliver, ndr det skrives p& formen (25b):
Y1+ 4y —yy’ =5
2y1+ ys -y =1

(38a)
120, 9,20, y,"20, y' =0

2y, + 6y, = ¢ = minimum .

Fremstillet med 4 bibetingelser, svarende til (33), bliver det samme problem

it 4y, —yy =5
291+ Ys -y =1
(38b) Y1 —ys =0
Ya =y =0
120 920 ¥’ 20 y' =20, y,'=20, y/ =0

2y, + 6y, = g = minimum ,

hvor den 1. og den 3. bibetingelse svarer til 4,*¥ — E,; ¥,"= ¢,, den 2. og den 4. til
A,*Y —E,Y,’=C,. I henhold til bevisferelsen ovenfor skal vi da finde Y= (y,, ¥,)
af den 1. og den 3. ligning, hvilket giver

V=9 Y2 = §+in 1y -
Indferes dette i den 2. og den 4. ligning samt i linearformen, fas

’

Yo = v+ %3/3,
(39) Yy = Y = %ya’
9 =22+3y"+3vs' .

I det foreliggende eksempel havde det dog veaeret naturligere at indsette y, =1vy,’
og Y,=y, 1 de to overste og den sidste ligning (38b), hvorfra man let kommer
videre til (39).

Ligningerne (39) svarer — bortset fra betegnelserne y;" og y,” for y, og y, —
til, at vi i (38a) velger y, og ¥, som basis og udtrykker disse — samt g — ved ¥,
og y,’. Sammenparringen af de variable i (36) og (38) bliver (z;, ¥,"), (Za ¥5’),
(2, y1=y5") og (%', y=1,"), og det ses, at de i teorem 2 nmvnte pastande er
opfyldt.

-

+
+

Bot B
=
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Vi har ovenfor udelukkende betragtet dualproblemer af formen (24)
og (25), hvor alle bibetingelserne — for indferelsen af restvariable —
havde karakter af uligheder. Ogsé nar dette ikke er opfyldt, kan man
tale om dualproblemer; men der kan da ikke etableres fuldstendig
symmetri mellem dem, idet der ikke gelder ligninger svarende til (34).
Vi skal ikke g& neermere ind herpa.

7. Den problemstilling, som karakteriserer lineser programmering, og
de metoder, der er blevet udviklet til losning af sddanne problemer, har
vist sig at have meget stor praktisk betydning p& en rekke forskellige
omrader. Navnlig kan et stort antal skonomiske problemer formuleres
og loses ved hjelp af lineser programmering. Dette henger sammen med,
at det generelle problem, som er den gkonomiske videnskabs genstand,
principielt gar ud pa at sege et optimum under bibetingelser, idet al
gkonomiseren bestar i at finde frem til den bedst mulige udnyttelse af
knappe ressourcer under givne teknologiske og andre vilkar. Kriteriet
pa optimalitet kan f. eks. vere, at profitten er maksimal, eller at om-
kostningerne er mindst mulige. Der er normalt mere end én made at ud-
nytte ressourcerne pé; hvor de forskellige muligheder fremtrader som
alternative lgsninger til et system af linesre relationer mellem et antal
variable, der skal veere ikke-negative for at have mening (f. eks. de
producerede meengder af et antal varer, eller de produktive indsatser,
der medgar ved fremstillingen), og profit eller omkostninger kan ud-
trykkes som en linearform i disse variable (med priserne som koeffi-
cienter), kan den gkonomiske model udtrykkes som et linesert program-
meringsproblem.?

Programmeringsanalysen har da ogsé sine rgdder dels i visse linezre
modeller inden for den gkonomiske teori, dels i militeert forsknings-
arbejde med lgsning af organisationsproblemer, og den er i de senere ar
blevet anvendt til losning af et ret stort antal praktiske opgaver, fra den
enkelte virksomheds eller husholdnings gkonomiske problemer? til gko-
nomisk planlegning for et helt samfund3.

1 Det er interessant at bemerke, at dualproblemet i de fleste sddanne modeller har vist
sig at have en ganske bestemt, skonomisk relevant tolkning.

2 En rekke litteraturhenvisninger findes i [4] I, p. 116.

3 I sidste tilfzelde kan man komme ud.for programmeringsproblemer af et ganske anse-
ligt omfang, med flere hundrede variable og et stort antal bibetingelser; det kan da vere
hensigtsmaessigt at bruge andre metoder end simplex-metoden ved den numeriske lasning.
Den enkelte virksomheds gkonomiske problemer er oftest af mere beskeden sterrelse; i
et problem, som er behandlet af forf. (S. Dane: Linear Programming in Ice Cream Making,
Nordisk Tidsskrift for Teknisk @konomi nr. 43 (1955)), forekommer der séledes 14 vari-
able (alle strukturelle) med 7 bibetingelser.

Nordisk Matematisk Tidskriit. — 10
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NOGLE SATNINGER AF J. HJELMSLEV
OM PLANE, VINDSKAVE OG SFARISKE FIRKANTER

FR. FABRICIUS-BJERRE

For en del ar siden overgav professor J. Hjelmslev mig et gammelt
manuskript og opfordrede mig til at se nermere pa enkelthederne deri.
Manuskriptet indeholdt nogle setninger om to plane firkanter ABCD
og A,B,C.D,, der har samme omkreds, og hvor summen af tilsvarende
sider er konstant. Tillige fandtes udvidelser af disse s@tninger til vind-
skeve og til sferiske firkanter. I den fglgende fremstilling af Hjelmslevs
setninger handler de tre forste afsnit om plane firkanter, de to sidste
om henholdsvis vindskeve og sfeeriske firkanter.

1. Lad der i en plan vere givet 4
punkter 4, B, C og D, af hvilke ikke
tre ligger pd samme rette linie (fig. 1).
Ved firkanten 4 BCD skal i det folgende
forstas den figur, der dannes af de 4
liniestykker 4B, BC, CD og DA.
Disse liniestykker kaldes firkantens
sider og betegnes henholdsvis a, b, ¢
og d. Liniestykkerne AC=e¢ og BD=f
kaldes firkantens diagonaler. Firkanten kan veere konveks eller ukon-
veks, og modstiende sider kan skezere hinanden.

Mellem de 6 lengder a, b, ..., f gelder forskellige uligheder. Saledes
tilfredsstiller diagonalen e trekantsulighederne for trekanterne 4BC og
ADC, d.v.s.

(1) la—bl <e<a+b, |c—d <e<c+d,

Fig. 1

og analoge uligheder gelder for f.

Har man omvendt givet 5 liniestykker a, b, ¢, d og e, for hvilke ulig-
hederne (1) gezlder, vil man kunne konstruere trekanterne A BC' og ADC
med den felles side AC, og der vil da i almindelighed veare to firkanter
ABCD med siderne a, b, ¢, d og diagonalen e, idet de to trekanter kan

10* [139]
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leegges pa hver sin side eller p4 samme side af AC*. Ulighederne (1) er
saledes nodvendige og tilstreekkelige for eksistensen af (mindst) en fir-
kant ABCD. :

Af (1) udledes for siderne ulighederne

(2a) la—b| < c+d, lc—d| < a+b.

Indferes for firkantens omkreds betegnelsen 2s, ses disse uligheder at
veere skvivalente med

(2b) s—a >0, s—b>0 s—c>0, s—d>0.

Har man omvendt givet 4 lengder a, b, ¢ og d (med summen 2s), der
tilfredsstiller ulighederne (2), vil de to intervaller (la—b], a+0b) og
(lc—d|, ¢+d) have et interval I felles, hvis nedre grense er det storste
af tallene |a—b| og |c—d|, og hvis gvre graense er det mindste af tallene
a+b og c+d. Velges e i dette interval, vil samtlige uligheder (1) veare
opfyldt, og a, b, ¢ og d kan da vere sider i en firkant (med diagonalen e).
Betingelserne (2) er siledes ngdvendige og tilstreekkelige for eksistensen
af firkanter med siderne a, b, ¢ og d.

Nar e gennemlgber intervallet I, vil der fremkomme uendelig mange
firkanter med de givne sider. En enkelt af disse betegnes i det folgende
med F, hele samlingen med (F). Man kan let danne samlingen ud fra en
enkelt firkant F, idet denne teenkes at vere en leddet stangfigur.

2. Vi vil nu ga over til at undersoge de i indledningen omtalte fir-
kanter. Lad F veere en firkant med siderne a, b, ¢ og d og omkredsen
2s og F; en firkant med siderne a,, by, ¢; 0g d, og omkredsen 2s;. For de
to firkanter skal der gelde ligningerne

(3a) a+a; =b+by =ctop =d+d;, 25= 28y -

Af disse ligninger ses, at de tilsvarende sider har summen s=s,, saledes
at
(3b) a, = s—a, by =s8=b, ¢ =s—¢ d, =s—d.

Omvendt kan (3a) afledes af (3b), saledes at de to ligningssystemer er
xkvivalente.

Det er nu let at se, at dersom F er en wilkdrlig firkant med siderne
a, b, ¢ og d, og man af (3b) danner stykkerne aj, b, ¢, 0g dy, Vil disse altid
kunne veere sider i en firkant F,. Thi stykkerne er ifglge (2b) positive,
og endvidere er

1 T det tilfeelde, hvor trekant ABC er kongruent med trekant ADO, altsd hvor a=d

og b=c, fremkommer kun een firkant.
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(4) §1—0; =8—0; =a >0,

d. v. s. de til (2b) svarende betingelser er opfyldt.

Adderes og subtraheres de to forste ligninger i (3b) og ligeledes de
to sidste, kommer man til et nyt system af ligninger, der er sekvivalent
med (3a) og (3b), nemlig

a,+b, =c+d, ¢ +dy =a+b,

3
(8¢) 4—b, = b—a, ¢—dy=d—c.

Af disse ligninger folger, at det interval I, som gennemlobes af diago-
nalen e, i firkant F;, er det samme som det interval I, som gennemlgbes
af diagonalen e i firkant F'.

Til en given veerdi k i intervallet I=1I, svarer to firkanter F og to
firkanter F,, for hvilke diagonalerne e= e, =k. Lader man nu den firkant
F, der deles (ikke deles) af diagonalen e, svare til den firkant F;, der
deles (ikke deles) af e;, har man dermed oprettet en enentydig forbindelse
mellem firkanterne i samlingerne (F) og (F,). To firkanter F' og F, siges
at veare tilsvarende, hvis de hgrer sammen i denne korrespondance.

3. Vi skal nu opstille nogle s@tninger om tilsvarende firkanter.
SamrNiNG 1. I tilsvarende firkanter F og F, er de to andre diagonaler
BD og B,D, ogsd lige store, altsi f=f;.

For denne setning anfarer vi to beviser, det forste uden, det andet med
anvendelse af analytisk geometri.

Seetningen bevises forst ved anvendelse af den (bekendte) relation,
der findes mellem de 6 afstande mellem 4 punkter i en plan, altsd mellem
de 6 leengder a, b, ..., f i firkant F. Relationen kan udledes pa folgende
méde. Lad os betegne vinklerne BAC, CAD og DAB (fig. 1) med hen-
holdsvis «, B og y. Disse vinkler tilfredsstiller en af ligningerne

& =p+y, f=v+x y=a+p a+f+y = 360°.

Af disse ligninger findes cosx = cosp cosy +sinf siny, der atter kan om-
skrives til
(5) cos?o + cos?f + cos?y — 2 cosx cosff cosy—1 = 0.

Udtrykker man nu cosx, cosf og cosy ved siderne i de tre trekanter

BAC, OAD og DAB, altsa benytter formlen cosx=(a?+e*—b?)/2ae og
analoge, og indsetter i (5), fas efter reduktion den sogte relation

(6) €2f2(62 +f2) — 62‘]“2((12 + b2 + 02 + dZ) + 62(62 — 62)((1/2 — d2)
+f2(a2— b2)(d2 — ¢2) + (a%c® — b2d®)(a? + 2 —b2—d?) = 0.
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Ligning (6) kan siges at fremstille forbindelsen mellem diagonalerne
e og f 1 en firkant med givne sider a, b, ¢ og d. Har man tillige givet
diagonalen e, finder man af (6) to verdier for f (f2), hvoraf den mindste,
henh. stgrste svarer til det tilfeelde, hvor trekanterne ABC og ADC
ligger pa samme, henh. hver sin side af diagonalen AC.

Ligning (6) har nu den egenskab, at den ogsd udtrykker forbindelsen
mellem diagonalerne e, og f, 1 firkanterne Fy, idet man kan vise, at hver
enkelt af koefficienterne i (6), der er funktioner af a, b, ¢ og d, er lig med
det tilsvarende udtryk i a,, b,, ¢; og d,. Saledes ser man, at

(7) a2 +b2+c2+d? = a4+ b2 +c2+d?,

nar man benytter formlerne (3b). For at vise det tilsvarende for koeffi-
cienterne til €2 og f2 er det lettest at oplose dem i faktorer og anvende
(3¢). For det sidste leds vedkommende viser man let ved (3b), at

(8) a6, +b,dy = ac+bd,
og derefter kan man ved (3b) eller (3c) vise, at
(@16, —bydy) (@2 +¢2—b2—d,?) = (ac—bd)(a®+c2—b2—d?) .

For firkanterne F' og F, er yderligere forudsat, at e, =e, hvoraf fglger,
at f og f; bestemmes af samme ligning. Da firkanterne desuden er til-
svarende, siledes at de begge enten deles eller ikke deles af de ligestore
diagonaler, ma man ogsd have f=f;. Dermed er sztningen bevist.

Vi gar derefter over til det andet bevis. Da e, =e, kan vi flytte firkant
F, saledes, at A, falder i C og C, i A. Tillige serger vi for, at D; kommer
til at ligge pa samme side af AC som B. Da firkanterne er tilsvarende,
vil punkterne B; og D enten begge ligge pa samme side af AC som B
og D, eller begge pa den modsatte side (fig. 2).

Af formlerne (3c) ses nu, at B og D, ligger pa en ellipse med 4 og C
som braendpunkter, og at det samme gelder B; og D. Af (3c) fremgar
videre, at B og B, ligger pd samme hyperbel (hyperbelgren) med 4 og
C som brendpunkter, og at det samme geelder D og D,. Den krumlinede
firkant BD,;DB, begrenses da af dele af konfokale ellipser og hyperbler,
der skerer hinanden under ret vinkel, og det geelder nu om at vise,
at i dette »krumlinede rektangel« er diagonalerne BD og B,D; lige
lange. '

Vi indferer et retvinklet koordinatsystem XY med X-aksen pa dia-
gonalen AC og begyndelsespunktet O i diagonalens midtpunkt. I dette
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koordinatsystem kan de 4 konfokale keglesnit fremstilles ved ligninger
af formen

(9)

Pt gt
hvor p2—¢q2=0A?2, og hvor de til ellipserne gennem B og D;, henh. B,
og D svarende parameterveerdier #;, henh. ¢, ligger i intervallet (— oo, 7%,
mens de til hyperblerne gennem B og By, henh. D og D, svarende pa-
rameterveardier t,, henh. ¢, ligger i intervallet (¢2, p?). Koordinaterne til
punktet B betegnes (5, ¥y,), idet B er bestemt ved de sakaldte vellip-
tiske koordinater« t; og t,, og pa analog méde betegnes koordinaterne
til de tre andre vinkelspidser B;, D og D; (smlgn. fig. 2).
For at bestemme koordinaterne til B indsattes ¢, og ¢, i ligning (9),
hvorefter man ved lgsning af ligningerne finder
2 2 2 2
(10) Typ? = ® —t;) (pzjz_) , Yt = (q——*t;l)ﬁg,‘:@
P —q °—p
Analoge udtryk findes for koordinaterne til de andre punkter. Der-
efter fas til bestemmelse af diagonalen BD:

(11) BD? = (15— %34)*+ (Y12 — Ysa)? = OB*+0D?— 2(5%5, + Y12Ys4) -

Af (10) fas
OB? = 2,2 +y® = PP+ —t— 1,
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saledes at OB%2+0D? er symmetrisk i de 4 parametre ¢, &y, 5, ;. Idet
man kommer fra B og D til D; og B; ved ombytning af indices 2 og 4,
har man

(12) OB2+0D? = OB?+0D,? .

Endvidere ses af (10) og analoge, at savel x;,%s,% som y;,%y5,® er sym-
metrisk i de 4 parametre. Da punkterne B og B, ligger pa samme hyper-
belgren, mé x,, 0g %3, have samme fortegn, og det tilsvarende ma gelde
for x,, og x,. Da punkterne B og D, er placeret pd samme side af 4C,
vil y,, og ¥, have samme fortegn, og det tilsvarende vil gelde for ¥,
0g Y45 Mellem abscisserne og ordinaterne for de 4 punkter B, B;, D og D,
ma da geelde ligningerne

(13) L19%3q4 = L14%03 » Y12Y31 = Y14Y2s -

Af ligningerne (11), (12) og (13) felger nu, at BD=B,D,, hvorved
setning 1 pany er bevist.

Med den pa fig. 2 angivne beliggenhed af de givne firkanter F' og Iy,
hvor det kommer an pa at bevise ligestorheden af diagonalerne i et
krumlinet rektangel, begrenset af dele af konfokale ellipser og hyperb-
ler, er setning 1 velkendt under navnet Ivory’s setning' (for konfokale
ellipser og hyperbler). Det kan bemserkes, at ethvert sadant krumlinet
rektangel i forbindelse med braendpunkterne bestemmer to firkanter, der
er tilsvarende i samlingerne (F) og (#,). Thi med figurens betegnelser
gelder ligningerne (3c), diagonalerne AC og 4,0, er lige lange, og de to
firkanter har samme beliggenhed i forhold til den felles diagonal.

Ved hjelp af de ovenfor anforte formler kan man vise andre seetninger
om tilsvarende firkanter F' og F,. Saledes bestemmes medianen m i tre-
‘kant OBD fra punktet O ved den bekendte formel

4m? = 2(0B*+0D?) — BD?.

Da nu ligning (12) gelder, og BD = B,;D,, m4 medianen i trekant OB,D,
ogsd have lengden m. Idet O er midtpunktet af den felles diagonal
AC= 4,0, har man dermed bevist

SmrNING 2. I tilsvarende firkanter F og F, er afstanden mellem diago-
nalernes midtpunkter den samme.

Seetningen kan ogsé vises ud fra formlen

(14) 4m? = a?+b2+c*+d2—e?—f2,

1 Se f. eks. W. Blaschke: Analytische Geometrie, Basel 1954, s. 112.
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der udtrykker afstanden mellem midtpunkterne af diagonalerne i en fir-
kant med siderne a, b, ¢, d og diagonalerne e, f. Ifglge (7) er kvadrat-
summen af siderne den samme i firkanterne F og F,, og da tillige e=e¢,
og f=fi, er setningens rigtighed bevist.

Ordinaterne y,, 0g ¥, er hgjder i trekanterne ABC og ADC med den
felles grundlinie AC. Betegner man med 7' og 7" arealerne af disse tre-
kanter og med 7', og T, arealerne af de tilsvarende trekanter A4,B,C;
og A,D,C,, felger af anden ligning i (13), at

(15) T =1.71,,
altsa geelder

S&TNING 3. Produktet af arealerne af de to trekanter i firkanten F, der
har en diagonal feelles, er lig med produktet af arealerne af de tilsvarende
trekanter ¢ firkanten F.

For tilsvarende firkanter F og F; gaeider ligning (8). Da desuden e=e,
og f=f1, har man ved anvendelse af Ptolemzeus’ setning og dens om-
vendte:

SETNING 4. Dersom to tilsvarende firkanter er konvekse, vil de enten begge
veere indskrivelige eller begge ikke indskrivelige i en cirkel.

4. Vi betragter herefter vindskeve firkanter, d.v.s. firkanter, hvis
vinkelspidser ikke ligger i samme plan. Lad F og F, vare to vindskeve
firkanter, hvis sider a, b, ¢, d og a,, by, ¢;, d, tilfredsstiller ligningerne
(3), og hvor desuden diagonalerne AC=e og A4,0;=e, er lige lange.
Dersom det yderligere gelder, at kantvinklerne v og v; langs de lige lange
diagonaler er lige store, siges firkanterne at veere tilsvarende. Man kan
abenbart danne tilsvarende vindskeeve firkanter af tilsvarende plane fir-
kanter ved at dreje trekanterne ACD og A,0;D, samme vinkel ud fra
deres udgangsstilling om henholdsvis AC og 4,C,.

Vi viser nu forst, at setning 1 gelder for tilsvarende vindskeeve firkanter.
Firkant F tenkes anbragt i et retvinklet koordinatsystem X YZ siledes,
at diagonalen AC falder pa X-aksen med midtpunktet O i koordinat-
systemets begyndelsespunkt, og punktet B ligger i XY-planen. Ko-
ordinaterne til B betegnes (s, %49, 0). For kantvinklen v=0 betegnes
koordinaterne til punktet D (som ovenfor) med (g4, Y5, 0). Nu drejes
trekant 40D vinklen v om AC, hvorved D far koordinaterne

(%34, Ysa COSY, Ygq SINV) .
Diagonalen BD i den vindskave firkant 4ABCD bestemmes nu ved

BD? = (15— %3)% + (412 — Y34 COS V) + (Y34 8In0)? ,
eller
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(16) BD? = OB2+ 0D?— 2(215%34 + Y15Y34 COSDV) .

Derefter flyttes firkant F, saledes, at 4,C; falder i CA4 og punktet D,
i XY-planen til samme side for AC' som punktet B. Opstilles nu den til
(16) svarende formel for B,D,, og anvendes de i nr. 3 opstillede formler

(12) og (13), er det klart, at dersom kantvinklerne v og v, er lige store,

har man BD = B;D,. Dermed er setning 1 bevist for tilsvarende vind-
skeaeve firkanter.

Tillige fremgar heraf, at dersom BD=B,;D,, vil omvendt v=wv;. Der
geelder da den setning, at dersom siderne i to vindskeeve firkanter til-
fredsstiller ligningerne (3) og tilsvarende diagonaler er lige store, vil
kantvinklerne langs tilsvarende diagonaler ogsa veere lige store.

Seetningerne 2 og 3 kan uden videre overfores, hvorimod seetning 4 ikke
har nogen tilsvarende for vindskave firkanter. Derimod kan man om
disse vise en anden egenskab. En vindskev firkant med siderne a, b,
¢, d og diagonalerne e, f bestemmer et tetraeder med modstédende kanter
a og ¢, b og d samt e og f. Idet hojden i tetraedret fra D og hgjden i side-
fladen ACD, ogsi fra D, har forholdet sinv, ser man, at tetraedrets
volumen kan findes af formlen

TT sinv
(17) =F—,
e
hvor 7' og 1" som tidligere betegner arealerne af trekanterne ABC og
ADC. Med anvendelse af (15) folger da, at tilsvarende vindskeeve firkanter
bestemmer tetraedre med samme volumen. Setningen folger ogsa deraf, at
venstre side af (6) for det nevnte tetraeder er lig med —144V?2, og denne
funktion af de 6 kanter er uforandret ved overgang til firkanten F,.

5. Vi vil til sidst undersgge, i hvilket omfang de opstillede ssetninger
kan overfores til sfeeriske firkanter.

Med sedvanlige betegnelser gelder for sfwriske firkanter ulighederne
(1), hvor man forudsetter de sfeeriske afstande mindre end 180°. Disse
betingelser er ngdvendige, men ikke tilstraekkelige for eksistensen af en
sferisk firkant med siderne a, b, ¢, d og diagonalen e, idet man tillige
ma kreve, at summen af siderne i hver af de to trekanter ABC og ADC
er mindre end 360°. P4 kuglen far man da, at betingelserne

(18) e < 360°—(a+b), e < 360°—(c+d)

i forbindelse med (1) udger de gnskede ngdvendige og tilstreekkelige be-
tingelser.

Mellem siderne finder man derefter, at der foruden ulighederne (2a)
mé geelde
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(19) la—b] < 360°—(a+b), la—b] < 360°—(c+d)

og analoge for |c—d|. Den forste af ulighederne (19) er ensbetydende
med, at @ og b begge er mindre end 180°, hvilket er forudsat, mens den
anden ulighed, i forbindelse med den tilsvarende for |c —d|, taget sammen
med (2b) giver

(20) 0° < s—a < 180°
og de analoge.
Omvendt ser man nu — som i nr.1 —, at ulighederne (20) og analoge

giver tilstreekkelige betingelser for, at der findes en sferisk firkant med
siderne a, b, ¢ og d. Det interval I, som diagonalen e kan gennemlgbe,
har uforandret som nedre grense det storste af tallene |a —b| og |c—d],
mens gvre grense er det mindste af tallene a+b, c+d, 360°—(a+b),
360°— (c+d); denne gvre graense er hgjst 180°.

Vi vil herefter vise, at hvis F er en sferisk firkant med siderne a, b,
¢ og d, kan man af stykkerne a,, b, ¢; og d;, bestemt ved ligningerne (3),
altid danne en anden sferisk firkant F; med disse stykker som sider.
Thi ifelge (20) ligger de 4 stykker mellem 0° og 180° og da s;—a;=0a
ogsé ligger i dette interval, vil de til (20) svarende betingelser for firkant
F, veere opfyldt. Af ligningerne (3c) folger som tidligere, at diagonalerne
e og e, i firkanterne F' og F; gennemlgber samme interval I.

Med hensyn til gyldigheden af de i nr. 3 beviste seetninger for sferiske
firkanter har man, at sewining 1 gelder for tilsvarende sferiske firkanter,
idet den som neevnt s. 144 er ensbetydende med Ivory’s seetning, der
vides at geelde ogsd for konfokale sferiske keglesnit. Man kan ogsa op-
skrive et bevis, hvor man benytter den til (6) svarende relation mellem
de 6 sferiske afstande mellem 4 punkter pad en kugle. Denne relation
fas af (5), idet man i den sferiske trekant ABC har

cosb —cosa cose
cosx =

sing sine

Indseetter man dette og de analoge udtryk for cosf og cosy i (5), frem-
kommer den sggte relation. Beviset forlober derefter ganske som i planen.

Scetning 2 geelder © almindelighed tkke pd kuglen. Til bestemmelse af
afstanden m mellem midtpunkterne af diagonalerne i firkant F har man
den til (14) svarende formel

cosa + cosb + cosc + cosd

e
COS — COS —

(21) 4 cosm =

Velger man nu en (nedvendigvis ukonveks) firkant F med omkredsen
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2s=360°, og hvor summen af sidernes cosinusser er forskellig fra nul,
vil tilsvarende sider i F og F; have summen 180°, og dette vil ifglge (21)
ogsé gelde de tilsvarende afstande m og m;. Da man ikke kan have
m=m,=90°, gelder setning 2 saledes ikke for firkanterne F og F;.
Saetning 3 kan ikke umiddelbart overfores til kuglen, men man kan dog
opstille en setning, der udtrykker en lignende egenskab ved tilsvarende
ofseriske firkanter, som setning 3 udtrykker for de plane. Med betegnel-
serne pa fig. 1 udtrykker formel (15), at produktet af udtrykkene ab sin B
og ¢d sinD er uforandret ved overgang til firkant F;. Det viser sig nu,
at pa kuglen vil produkterne af de stilsvarende udtryk« sina sinb sin B
og sinc sind sin D veere uforandret ved overgang til F;. Beviset gennem-
fores derved, at man efter kvadrering udtrykker cos B og cos D og derved
ogsé sin? B og sin?D ved siderne i de to sferiske trekanter ABC og ADC.
Man kommer da til et trigonometrisk udtryk i a, b, ¢, d og e, hvor man
ved anvendelse af ligningerne (3c) let ser, at det ikke sendres ved over-
gang til F;. — Man kan give dette en geometrisk fortolkning, idet man
indforer kuglens centrum O og dens radius 7. Volumenet af pyramiden
(tetraedret) O—ABC kan da udtrykkes ved 4r® sina sinb sin B. Sxetning 3
kan herefter overfores, idet man erstatter de indgaende arealer med volu-
menerne af de ved trekanterne og kuglens centrum bestemte tetraedre.
Endelig viser vi, at setning 4 geelder pd kuglen. Ved beviset i planen
har vi benyttet, at betingelsen ac +bd = ¢f er ngdvendig og tilstrekkelig,
for at en konveks firkant med siderne a, b, ¢, d 0g diagonalerne e, f er
indskrivelig i en cirkel. Til denne betingelse svarer pé kuglen

. a.c b .d e f
(22) gin— sin—+sin—sin— = sin—sin — ,
2 2 2 2 2 2
der kan omskrives til
a+c a—c b+d b—d e . f
(23) — cos —— =+ €08 —Cos + cos = 2sin—sin—.
2 2 2 2 2 2

Ifelge (3b) er a;+¢;=b+d, a;—¢;=c—a, 0g analogt for b, +d;; altsé
vil venstre side af (23) ikke forandres ved overgang til firkant F,, og da
e=e, og f=f,, gelder setning 4 ogsa for sfeeriske firkanter.

Hermed har vi vist, i hvilken udstraekning de i nr. 3 opstillede szt-
ninger kan overfgres til sferiske firkanter. Der kan ogsi veere tale om
andre generalisationer. Siledes kunne man betragte vindskeeve sfariske
firkanter beliggende i et tredimensionalt sfeerisk rum (en hyperkugle),
eller man kunne undersgge, hvorvidt setningerne kan overfores til fir-
kanter i en hyperbolsk plan eller i et hyperbolsk rum. Vi vil dog ikke
g4 ind pa overvejelser vedrgrende disse nye generalisationer.
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ARNE PLEIJEL

I ett tidigare arbete (Uber die Teilung von ebenen konvexen Bereichen
durch Sehnen, Math. Scand. 2:1 (1954)) har jag visat foljande sats:
Om ett plant konvext omrdade av en riit linje delas i tvd delar sd, att forhdl-
landet mellan ytans delar dr k och forhdllandet mellan omkretsens delar g,

sd galler olikheten
1+2k—q =2 0,

och konstanten 0 kan hér icke ersittas med ndgot aldrig sd litet positivt tal.

I foreliggande uppsats vill jag visa foljande enklare sats: Delar man
ett plant konvext omrdde medelst en rit linje 1 sd, att avstdndet mellan
med 1 parallella stodlinjer till omrddet av nimnda linje delas i ett uppgivet
forhdllande m, sd giller foljande olikheter for forhdllandena k och q mellan
ytans och omkretsens delar:

m2
om+1 7"

A

kE < m24+2m

2 1.
po— <q<2m+
Vidare vill jag visa foljande sats: Om en tredimensionell konvex kropp
delas av ett plan E sd, att avstindet mellan med E parallella stodplan till
kroppen av E delas 1 forhdllandet m, sd galler for forhdllandena k och q
mellan volymens och ytans delar foljande olikheter:

m3
Sm2+3m+17

A
=
A

< m3+3m243m

m2

- 2
oAt amrl < q<mP+4m+2.

Fér att bevisa den forsta satsen betecknar jag de tva stodlinjer, som
ar parallella med I, med I; och l,. Den punkt (ev. en av de punkter),
som [, har gemensam med omradet, betecknas med ¢ samt skidrnings-

[149]
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punkterna mellan ! och omradets begrinsning med P; och P, Kon-
struerar jag nu en triangel QR; R, s, att ett horn ligger i @, sidan R, R,
utefter I, och sidorna QR; och QR, gir genom P, resp. P, sa &r det tyd-
ligt, att for denna triangel storheten m har samma vérde som for den
ursprungliga figuren medan bade k och ¢ minskats (om man i forhal-
landena siitter delen pa samma sida som [, i téljaren). Detta giller obe-
roende av figurens utseende, om punkterna @, P; och P, samt linjen [,
4r givna. For triangeln &r det emellertid litt att uttrycka k och g im
och jag far for triangeln:
m2
tTam+ 1’
och detta uttryck ér tydligen undre grinsen for k for godtyckliga kon-
vexa omraden. Den 6vre grinsen for k far jag genom att utbyta k mot
1/k och m mot 1/m s& att olikheterna
m?
— =<k £ m24+2m
2m +1
giller.
Vidare giller for triangeln:

g, = P,Q+P,Q S P.Q+P,Q
'~ P,R,+P,R,+R,R, ~ PR +P,R,+QR,+QR,’

Nu ér P,Q=m-P,R; och P,Q=m-P,R,, vilket insatt i ovanstéende ger
olikheten
m

> e,
7 m+ 2

Genom att utbyta ¢ mot 1/g och m mot 1/m far jag den omviinda olikheten
qg < 2m+1.

Crénserna for k uppnas tydligen for alla trianglar, som skérs av en
parallelltransversal. Grinserna for ¢ kan inte uppnés, men man kan
komma dem hur nira som helst genom att lita vinkeln @ i triangeln
vixa mot 7.

For att bevisa den andra satsen betraktar jag en sluten konvex kropp
K, vars begrinsningsyta ir O och som innesluter volymen V. Ett plan &
skiir kroppen lings en (plan) konvex kurva C och delar avstindet mellan
de med E parallella stodplanen E; och H, i foérhallandet m (fran H,
riknat). Lat @ vara en punkt i den gemensamma delen av O och Hj.
Nu konstruerar jag en kon med basytan i E,, toppen i @ och mantelytan
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gdende genom C. For konen dr k och ¢ mindre &n f6r den ursprungliga
kroppen medan m behaller sitt virde. Fér konen har jag

m3

kxon = ————— <
on 3m24+3m+1

Genom att utbyta k& mot 1/k och m mot 1/m far jag alltsa for den ur-
sprungliga kroppen:
pringie PP k < m3+3m2+3m .

Vidare har jag for konen:
Y

Y 1)2 B 1)2’
(m+1p_, Bntl)

m2 m2

Gxon =

didr B #r den av C inneslutna ytan och Y den avskurna toppkonens
mantelyta. Nu dr B< Y, vilket ger
m2

> >,
g £ xon m24+4m+2

och motsvarande 6vre grians q <2m?+4m+1.

Likhetstecknen i olikheterna for k giller for alla koner, som skirs
med plan, parallella med basytan. Grinserna for ¢ kan aldrig uppnas,
men man kan komma dem hur néira som helst, om rymdvinkeln i konens
topp nérmar sig 2.

Nu ger olikheten fér k& omedelbart m <1+ 3k. Sittes detta in i den
andra olikheten for g, far jag

q < 18k2+24k+7 .

Detta ar sikerligen icke den bista mojliga olikheten, men den visar,
att ¢ 4r begrénsad, nir k &r givet.
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En amerikansk kollega beskriver Nederland som landet der matematikk-
leereren er konge. Det er sikkert ikke mange land der vart fag har en sa
sterk posisjon, det veere seg i skole, universitet og samfunnet i det hele.
Her blir det stilt store krav til elever og lerere. La oss bare minne om at
det i Amsterdam fins et »Matematisk Sentrum« med ca. 80 medarbei-
dere, som patar seg oppdrag av forskjellig slag, gir undervisning og som
i det hele prover & bygge bro mellom matematikerne og fagets forbrukere.

Om dette og mye annet forteller de to skriftene nevnt ovenfor, som ut-
gjor 1. og 2. hefte i en serie utgitt av den nederlandske underkomité av
den internasjonale matematikkundervisningskommisjon (CIEM). van
Dantzigs fengslende oversikt er forresten ogsa trykt i L’Enseignement
Mathématique I, 1-3. I Bunts skrift finner vi pensa og tallrike eksamens-
oppgaver fra forskjellige skoler og hgyskoler som i hey grad vil interes-

sere nordiske matematikkleerere. .
Kay Piene

Worreane Haacok: Elementare Differentialgeometrie. (Lehrbiicher und
Monographien aus dem Gebiete der exakten Wissenschaften, math.
Reihe, 20.) Verlag Birkhduser, Basel, Stuttgart, 1955. 84239 S., 12 Fig.
Brosch. SFr. 18.70, ganzl. SFr. 22.00.

(Innholdsfortegnelse i NMT, denne &rgang, s. 110.)

Forfatteren gir i denne boka en framstilling av differensialgeometrien
for kurver og flater i det tredimensjonale euklidiske rom. Han foretar
ikke noen generalisering i retning av riemannsk geometri eller steorre
dimensjonstall. Heller ikke bruker han noe annet koordinatsystem enn

[152]
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det rettvinklete kartesiske. Framstillingen blir derfor forst og fremst
anskuelig, og jeg tror det skal vere vanskelig & finne en enklere og klarere
innforing i dette emnet, enn den som her er gitt.

Innenfor denne avgrensing (boka er bare pa vel 200 s.) har forfatteren
valgt & folge to hovedlinjer:

Pa den ene side utvikler han kurve- og flateteorien pa den méaten som
vina vel kan kalle klassisk, etter manster av Gauss og Monge, og kommer
da fram til slikt som Meuniers sats, krumningslinjene, Dupins indika-
trise, asymptotiske linjer osv. Til dette er gjort konsekvent bruk av
vektorregning, og derfor dpner boka med et lite kapitel om vektorer.
Forresten har en vel na lov til &4 g ut i fra at vektorregning p& forhand
er kjent av en leser som sgker til en bok som denne.

Nar det gjelder de Gaussiske derivasjonslikninger i flateteorien og
likningene for de geodetiske linjer, ville jeg personlig foretrekke & skrive
Christoffelsymbolene med ett tall oppe og to nede, slik f. eks.:

1
12)°

i stedet for den vanlige maten som ogsa forf. felger:
12
Nt
fordi det forste er mere tilpasset til formalismen i tensorregningen med
dens kovariante og kontravariante indekser. Dette er et pedagogisk spers-
mal, og naturligvis bare en bagatell, serlig i denne sammenhengen,
fordi tensorbegrepet jo overhodet ikke innferes hos forf.

Av hensyn til den praktiske nytten ved kartprojeksjoner o.l. er det
tatt med et noe utferligere kapitel om konform avbildning.

Parallellitet etter Levi-Civita innferes ved behandlingen av geodetiske
linjer. S& en skjonner at flateteorien er framstilt sa fullstendig som en
kan forlange.

Etter dette far vi sa det hele om igjen, i det forf. gjennomfarer Cartans
tanke med »das begleitende Dreibein¢, og viser at denne siste metoden
kan yte det samme som den forste, ja mer. Denne parallellforing av begge
metodene er det verdifulleste ved boka, det er dens egentlige idé. Og det
er gjort pa en meget klar og inspirerende mate. Derfor har boka mye &
gi ogsé til den som kjenner den elementere differensialgeometri pa for-
hand.

Ved utviklingen av denne siste teorien innferes som hjelpemiddel

begrepet Pfaffske former, og et lite kapitel gir det ngdvendige om hvor-
dan en regner med dem. Dette var vel i og for seg ikke pakrevet for &
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komme fram til vilkdrene for integrerbarhet i flateteorien, men det er
vel verd & ta umaken med & tilegne seg dette forst, fordi det betyr en
stor forenkling av de regninger en ellers matte gjore.

I tilslutning til denne Cartanske metoden ender boka s& med noen
kapitler som fgrer ut over det elementeere. Det er eksistenssetningen og
mulighetene av & bgye en flate uten at den strekkes eller skrumper
sammen. Disse er skrevet mere som et oversyn over de problemer en
der kan arbeide med, enn som kapitler i en lerebok. De virker som en
avsluttende oppfordring til leseren om & gjore seg kjent med noe av inn-
holdet i den lange litteraturlista, som boka er forsynt med.

Tilsist ma nevnes at boka ikke inneholder en eneste oppgave, og det
ma en vel beklage, serlig om den skal brukes til selvstudium.

Ottar Ytrehus

R. KoCHENDORFFER: Einfiihrung in die Algebra. (Hochschulbiicher fiir
Mathematik 18.) Deutscher Verlag der Wissenschaften, Berlin, 1955.
124316 S. DM 47.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 159.)

Forfatteren har sat sig det mal at ggre studerende fortrolig med de af
algebraens grundleggende begreber og resultater, som p& den ene side
ma regnes som en matematikers uundveerlige verktej, og hvis beher-
skelse p4 den anden side er forudssetningen for en dybere indtrengen i
den hgjere moderne algebra. I sin udmerkede fremstilling har han valgt
en form, der ligger mellem den klassiske behandling af stoffet og den
helt moderne »Bourbaki-stil«. Han forudseetter kun kundskaber fra gym-
nasiet, elementerne af den linezre algebra og fortrolighed med de reelle
tals opbygning. De abstrakte begreber som gruppe, ring, legeme, »Bewer-
tung« indferes i tilslutning dertil som udvidelser af kendte begreber og
eksempler. Gennemregnede eksempler illustrerer setningerne og ud-
dyber teorien. En rekke opgaver til lgsning er tilfgjet i slutningen.
Skent bogen i det veesentlige folger kendte forbilleder, bade hvad stof-
valg og beviser angér, er den pa grund af den valgte fremstillingsmade
meget lettere leest end andre nyere bgger pa samme omrade.

De behandlede emner fremgar af indholdsfortegnelsen. Skent det kun
drejer sig om en »indledning i algebraen¢, far leseren kendskab til de
fleste af algebraens grene. Og det er forbavsende, hvor meget forfatteren
far sagt om hver enkelt pa bogens godt 300 sider. At idealteorien ikke
er behandlet, skyldes, som forfatteren naevner i forordet, at der forventes
en bog om denne i samme serie.
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Man savner méske i bogen en lidt mere fyldig litteraturfortegnelse over
bade bgger og originalafhandlinger, der kan fare leeseren videre i studiet
af de omhandlede teorier. F. eks. burde vel Burnside’s gruppeteori og
Jacobson’s bgger om algebra nevnes. Endvidere bemerkes, at den til-
fojede trykfejlsfortegnelse er ret ufuldstendig. Bortset fra disse mindre

mangler kan bogen anbefales pa det bedste. Kéte Fenchel

Howmer E. NEWELL, JR.: Vector analysis. (International series in pure
and applied mathematics.) McGraw-Hill Book Co., New York, Toronto,
London, 1955. 114216 pp. sh. 41/6.

(Innholdsfortegnelse i NMT, denne &rgang, s. 41.)

Huvuddelen av denna lirobok upptas av en till omfinget timligen
ordinér kurs i tredimensionell vektoralgebra och vektoranalys, dari
inbegripet elementéir potentialteori. Sdrskilt utforligt behandlas krok-
liniga koordinater, varvid ocksa reciproka basvektorsystem infores; man
kommer hér praktiskt taget in pa tensorkalkyl. Steget over tas dock
aldrig, och transformationsegenskaper forbigis sa gott som helt i boken.
I stiillet ligges vikt vid att understryka en vektors karaktir av fysika-
lisk eller geometrisk storhet.

Bokens sista tredjedel dgnas at tillimpningar, delvis i form av en
systematisk men koncentrerad genomgang av det elektromagnetiska
faltet, utgiende fran Maxwells ekvationer. Ett sidant kapitel tycks i
ménga vektorlirobocker ha blivit ndgot av en tradition, som vil nistan
overlevt sig sjilv nu nér alla moderna framstéllningar av elektrodyna-
miken utnyttjar vektoranalys. Kapitlet dr emellertid liksom boken i
ovrigt vilskrivet ock kan vara nyttigt.

Det framgér av denna summariska oversikt — och papekas i férordet
— att innehéllet ar tillrattalagt for fysikern och teknikern snarare én
for den rena matematikern. Detta &r ingen ovanlig malsittning for en
lirobok i vektoranalys, eftersom d&mnet hor till de delar av matematiken
som &r eller borde vara fortrogen mark inte minst for en fysiker. En
fraga som liroboksforfattaren da har att ta stillning till skall hir dras
fram, némligen den om den matematiska stringensen. Vid fysikaliska
tillimpningar ér det framfor allt av vikt att ha vant sig vid rikning med
vektorer och att ha fatt en kinsla for den &skidliga inneborden av bild-
ningar som div och rot. Det dr inget tvivel om att ett ingdende sysslande
med matematiska detaljer kan skymma sikten och verka onodigt av-
skrickande pa icke-matematikern, medan exempelvis en universitets-
student med matematikundervisningens krav i firskt minne litt finner
mera losliga resonemang otillfredsstillande.

11*




156 LITTERATUR

Forfattaren har hir valt en, som det synes, rimlig medelvig. Efter
ett bevis av den typ som dr vanlig i teoretisk fysik underlater han inte
att tillmotesgd matematikern genom att papeka de punkter dir beviset
behover kompletteras for att bli matematiskt stringt. Detaljerna limnas
ofta som ovning at lisaren, vilken bl. a. har ett 20-sidigt kapitel med
repetition av begrepp, metoder och satser i differential- och integral-
kalkyl att falla tillbaka pa.

Utvigen att komplettera framstéllningen med ovningsexempel an-
viandes ocksa i andra fall flitigt; texten ér i gengild ganska koncis. En
ambitios ldsare far dirfor bereda sig pa en viss sjidlvverksamhet — en
fordel for den som verkligen vill lira sig nagot. Ibland kunde man dock
onska storre fyllighet, som nér ett virvelfritt fdlt skall visas ha vissa
andra egenskaper och utan kommentar forutsittes ha kontinuerliga
derivator i ett enkelt sammanhéngande omrade. Det vilkinda mot-
exemplet da forutsidttningen inte dr uppfylld skulle hér vara instruktivt.
Ett par liknande obetydliga anmérkningar: integraluttrycket (5.1) kan
latt missforstas, och en formulering pa sid. 162 tycks innebédra att den
fullstéindiga induktionslagen inte skulle folja ur de grundlidggande filt-
ekvationerna. Det bestdende intrycket dr emellertid avgjort positivt,
vartill i hog grad bidrar den rediga uppstillningen och utstyrseln. En
bra sak #r att de talrika dvningsuppgifterna &r forsedda med svar,
tyvérr dock endast i bokens huvuddel och inte nér det giller bevis.

S. Bertil Nilsson

W. W. SawyEgRr: Prelude to mathematics. An account of some of the
more stimulating and surprising branches of mathematics, introduced by
an analysis of the mathematical mind, and the aims of the mathematician.
(Pelican Books A327.) Penguin Books Ltd., Harmondsworth, 1955.
214 pp. sh. 2/6.

(Innholdsfortegnelse i NMT, denne argang, s. 112.)

For & gi et inntrykk av hva forfatteren har villet gi i denne boken,
skal jeg forspke & la ham selv fortelle det ved en del karakteristiske
sitater:

»When we generalize a result, we make it more useful. It may strike
you as strange that generalization nearly always makes the result simpler
t00.¢

»Very often, one of the greatest difficulties of learning is not a logical
difficulty at all. One sees every step, and admits that the proof is logical,
but one is left with an obstinate feeling of not really knowing what the
new result is, what it is all about.«
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»How are we to look for functions that will do what we want? In such
cases, it is usually wise to take the simplest possible example and ex-
amine it carefully for hints of what happens in the more complicated
cases.«

»The main difficulty in many modern developments of mathematics
is not to learn new ideas but to forget old ones.«

»In a good proof, an illuminating proof, the result does not appear as
a surprise in the last line; you can see it coming all the way.«

Jeg tror disse sitatene er tilstrekkelige til & vise bokens tendens.
Forfatteren har statt overfor den vanskelighet at han har gnsket & gjore
boken lettlest og elementer, samtidig som han har villet gi viderekomne
visse vink, serlig slike som ferer fram til nyere tanker i matematikken.
Disse vinkene kan kreve ganske store kunnskaper, som nar forfatteren
hevder at over 95 prosent av de funksjoner som idag studeres av fysiske,
tekniske og endog matematiske studenter, kan dekkes av symbolet
F(a, b; c; x), symbolet for den hypergeometriske rekke. Likesa nir han
pastar at symbolet A2V inngar i minst et dusin forskjellige vitenskaps-
grener, gravitasjon, lys ete. Men stort sett vil boken kunne leses ogsd av
folk med sm& matematiske forkunnskaper. Savidt jeg kan forsta vil sveert

mange kunne ha glede av & lese boken. .
Viggo Brun

MOTTATTE BOKER
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331.

Ludwig Bieberbach: Einfihrung in die Theorie der Differentialgleich-
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DM 26.80.
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OPPGAVER TIL LOSNING

Lesninger av oppgavene 90-93 sendes til oppgaveredakteren, professor R. Tambs
Lyche, Holmengrenda 7, Holmen, Oslo. Slike lgsninger vil bli trykt i et felgende
hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lesning av hver
oppgave. Lesninger av oppgaver i dette hefte ma veere sendt innen 1. november 1956.

De ovrige oppgaver i dette hefte er enklere, og losninger av dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen lgsning.

90. Med hjelp av setningen om at to polynomer med felles nullpunkter
er like p& en konstant faktor ner, skal en bevise multiplikasjonssetningen

for determinanter.
Helge Twerberg

91. A &r en reell matris (dvs. en matris med reella element). Visa, att
nodvindiga och tillrickliga villkoret for att det skall finnas en positivt
definit symmetrisk matris G, sddan att GA ir symmetrisk, dr att alla
egenvérden till A dr reella och att egenvektorerna spinner upp hela

rymden.
Lars Hiérmander

92. Funksjonen
[e0) zfn
F(z) =

n=1 1 +z2n

er reguler for |z| < 1. Vis at koeffisienten a,, i rekken
F(z) = X a,z2m
m=1
aldri er negativ. Dersom m har primtalloppspaltingen

m = 2'p,"t. .. p g, L g,

der py, ..., p; er primtall av formen 4h+1, mens q,, ..., ¢; er primtall
av formen 4443, s& er
L+(=1  1+(=1)

a,, = 1) ... 1)- s
m = (%+1) (¢ +1) B 5

slik at a,, da, og bare da, er null dersom m er delelig med en odde (ulike)

potens av et primtall av formen 47+ 3.
R. Tambs Lyche

[162]
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93. Berikna
{(m+1)

1 2n

Mg

n

C.-E. Fréberg

94. Idet s, betegner siden i en reguler n-kant indskrevet i en cirkel
med radius 1, skal man vise nedenstédende to formler:

Spop = Vz—]/2+ Vot ... +)/2+)2, p

hvor der pa hgjre side ialt er p to-taller, og

= VoV 2sVor .. o) 2415

hvor der pa hgjre side er eet tre-tal og (p—1) to-taller.

1\

2,

v

2,

Fr. Fabricius-Bjerre

95. Vis at

S

T (n— 2v)2 (?) = n-2",

; -1
biye o (7)= (")
= n+i\i P

-
I
o

96. Vis at

fun

LOSNINGER
82. Berikna viirdet av determinanten
0 sing sin2¢ ...sin(n—1)p
sing 0 sin ¢ ...sin(n—2)¢p
sin 2¢ sing 0 sin (n— 3)gp
sin(n—1)p sin(n—2)p sin(n—3)p ... 0
A. Pleijel

Losning: For brevity put

sin(n+1
n =—(,——)—(p, x = 2c08¢,
sin @
and define
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0 fo fi +iifaar
Jo 0 fo oo fue
Dn: f1 fo 0 ---fn—a

Jn1 oz fosg ... O

Let C, denote the r-th column of D, ; replace C, by C,—zC,_;+0,_,
and operate similarly on the n-th row. Making use of the formula

(*) fn = xfn—l_fn—2 s
we find that

0 fo o fua
Jo 0 .. fus O
D,=1| «covieiniiii
Jn-2 fu-s 0 2
00 ... 2 —2¢

Expanding the determinant in the right member with respect to the

n-th row, we get
.D - - 2an_1 - 4Dn_2 .

n

If we put D,=(—1)"2"1u,_, and replace n by n+ 1, this relation be-
comes ‘
(**) Uy = XUy_q— Uy «
Since D, = —1, D,= 2z, we have u,=1, u; =2. Thus comparing (**) with
(*) it is clear that u, =f,. Consequently it follows that

Dn = (- 1)n2n—1fn_1 .
Finally it is clear that

0 sing sin2¢ ... sinng
sin @ 0 sin ¢ o.sin(n—1)p
sin 2¢ sin ¢ 0 ... 8in(n—2)p
sinng sin(n—1)p sin(n—2)p ... 0

= (—=1)"2"1gsin"@sinng .

In particular note that
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0 1 2 n

0 1 —
2 1 0 ...n—2|=(=1Hr2"In.
n n—1n—2 0

L. Carlitz
Ogsé lost av Rolv Rasmussen.

84. La p og ¢ veere to gitte positive tall. For u >0 defineres en tall-
folge {c,} av positive tall ved

q
— 2 —
€1 = U Cpyp” = PCy+— .
Cn

Vis at .
lime, = &,
n—>0o0

hvor & er den positive rot i likningen

3 — 2 +q.
d peFa R. Tambs Lyche

Losning: Polynomiet P(z)=a®— pa?®—q har maximum for =0, mini-

mum for x=%p:
P(0) = —q = P(p) > P(3p) .

Ligningen 23=pa?+¢ har derfor pracis én positiv rod &>max (p, V&)
Det er da umiddelbart klart, at dersom lim ¢, eksisterer, er den netop
denne rod. Opgaven er derfor at pavise iterationens konvergens.

Vi viser forst eksistensen af et positivt tal N med den egenskab, at
¢, >p for n>N. Lad os antage c;<p; da er

q q

2 — 2

Cip1® = PCi+— Z 65+~
C;

Er nu ogsd ¢;,2< p? far man

2 > 2. ds o 29
Civa” Z Cinx +5= Cq +; ete.

Heraf folger eksistensen af et sidant N, at cy?> p?, og s& er ¢y, > pey > p?
ete., g. e. d.

Vi beviser nu iterationens konvergens ved eksistensen af et tal N,
for hvilket

C —C
mtl Mmook <1 for m—1>N.

Cn—Cp—1
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Lad ferst n veaere sa stor, at ¢,_; >p; da er

q
2 2 p- 1
Cpn+1—Cp _ Cn+1”—Cp _ Cnln—1 < ﬁ —_ <1
Cpn—Cp—1 (cn+1 + Cn)(cn - Cn—-l) Crn+11Cp 2]7 2
c'n+1'_cn> —q — —q S —q s 1

2 2 3
Cp—Cp—1 CnCn-1Cn+1 + Cn—-1Cn Cnln—1Cn+1 + PClp—1 +q q+ 229

Det valgte n er derfor tilstraekkelig stort. .
Henrik Meyer

Ogsé lost av H. Killingbergtre, Rolv Rasmussen og Helge Tverberg.

Oppgave 43 (Bind 2, s. 182) er blitt lost av H. Killingbergtre, men da lesningen
er temmelig vidleftig, ville den ta for stor plass i tidsskriftet.

INTERNORDISK PRISOPPGAVE

NMT bringer her den annen felles prisoppgave for gymnasiaster i alle nordiske land.
Oppgaveteksten er gitt badde p& norsk og svensk, med en dansk forklaring til en
enkelt glose i den norske tekst. Besvarelser kan selvsagt innsendes p& dansk,
norsk eller svensk. Det kreves lgsning p4 minst 4 av oppgavene.

Det vil bli delt ut en 1. premie p& 150 og en 2. premie p& 75 n. kr., eller tilsva-
rende belop i vinnernes egen valuta.

Besvarelsene vil bli bedemt av en komité innen NMT’s redaksjon. Et utvalg av
de beste oppgavelessninger blir offentliggjort i tidsskriftet.

Fristen for innlevering av besvarelser er 15. februar 1957. Oppgi navn, klasse
og skole. Lesninger sendes til redaksjonssekreteren, lektor E. Selmer, Mat. Inst.,
Blindern, Oslo, ledsaget av en erklering om at besvarelsen er selvstendig arbeid.

Vi henstiller til de nordiske gymnasieleerere d gjore flinke elever oppmerksom pd
prisoppgaven.

Norsk tekst:

1. P er et punkt pa en ellipse, og @ er sentrums projeksjon pa tan-
genten i P. Vis at den storste verdi av avstanden PQ er lik forskjellen
mellom ellipsens halvakser.

2. ABC er en gitt trekant og P et vilkarlig punkt i rommet. Vis at
3(PA2+PB?+PC?) 2 AB®+BC24CA2.
For hvilken beliggenhet av P gjelder likhetstegnet, ?

3. En trekant 4 BC er gitt. P4 siden BC ligger et punkt 4, og pa sidene
CA og AB analogt punktene B, og C,, slik at
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B4, CB, A0,
40=% Ba~" BT
1 1 1
Linjene 44,, BB, og CC, begrenser en mindre trekant inne i den gitte.

Beregn forholdet mellom den lille og den gitte trekants areal, uttrykt
ved «, f og y. Resultatet reduseres mest mulig.

4. Vis at funksjonen ) .

sinx x

er voksende for  mellom 0 og g Beregn ogsa lim y.
x—>0

5. En rekke tall er definert ved:
a, =1, a,=1,a3=2,a,=3,a;,=05, ..., Gpip = Q1+, ....

Summen av de n farste tall i rekken kalles §,,.
a) Beregn 8, uttrykt ved ett av leddene i rekken.
b) Vis at a,a, .9 —a,.2=(—1)"+%
: Ap41
¢) Beregn lim -

6. Det er gitt en konveks n-kant med folgende egenskaper:

a) To diagonaler er aldri parallelle.

b) Tre diagonaler gar aldri gjennom samme punkt, nar dette ikke er
et hjgrnel.

Hvor mange diagonalskjeringspunkter finnes det innenfor henholdsvis
utenfor polygonens omkrets ?

Svensk text:

1. P dr en punkt pa en ellips, och @ dr medelpunktens fotpunkt pa
tangenten genom P. Visa, att maximum av strickan P &r lika med
skillnaden mellan ellipsens halvaxlar.

2. ABC ir en given triangel och P en godtycklig punkt i rymden.
Visa, att 3(PA%+ PB2+ PC?) = AB*+BC*+CA®.
For vilket lige av P giller likhetstecknet ?

3. En triangel ABC dr given. P& sidan BC ligger en punkt 4, och pa
sidorna CA och AB analogt punkterna B; och C; s& att

1 Dansk: en vinkelspids.
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B4, CB, AC,
= (x’ = ﬂ, _—= ‘y .
A,C B A C,B
Linjerna AA4,, BB, och CC, begrénsar en mindre triangel inuti den givna.

Berdkna férhallandet mellan den lilla och den givna triangelns yta
uttryckt i o, § och y. Resultatet skall reduceras sa langt som mojligt.

4. Visa, att funktionen . .

y———..—._—

sinx =

7
ar vixande, d& z ligger mellan 0 och 7 Berékna dven lim y.
x—>0
5. En serie tal dr definierad genom:
oy =1 0a,=1,a3=2,a,=3,a;,=25,..., Gp9= 0,1+, ....
Summan av de n forsta talen i serien betecknas med S,,.
a) Berikna S, uttryckt i en av termerna i serien.
b) Visa, att a,a, .2 —a, 2= (— 1)+
a
¢) Beriikna lim I,
n—>oo p
6. En konvex n-horning ér given och har fsljande egenskaper:

a) Tva diagonaler #r aldrig parallella.
b) Tre diagonaler gar aldrig genom samma punkt, utom d& denna

ar ett horn.
Hur ménga diagonalskidrningspunkter finnas innanfér resp. utanfor

polygonen ?
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Nedenfor folger matematikkoppgavene til studenteksamen véiren 1956 p& de
matematiske gymnasielinjer i de nordiske land.

DANMARK
Matematik I.

1. P er et vilkarligt punkt p& parablen y?=px. Parabeltangenten i P skerer
X-aksen i punktet 4. PA forlenges ud over A4 til punktet B saledes, at AB=PA.
Parabelnormalen i P skerer X-aksen i punktet C.

Find ligningen for det geometriske sted for midtpunktet af BC, nir P gennem-
lgber parablen.

Angiv den fundne kurves art og dens beliggenhed i koordinatsystemet.

2. Af en forsamling p& 9 personer: 4, B, C, D, E, F, G, H og I skal velges et
udvalg bestéende af 4 medlemmer.
P& hvor mange forskellige mider kan udvalget sammensattes,
1) nér der kan velges frit mellem de 9 personer?
2) nér H og I ikke samtidig mé vaere medlemmer af udvalget ?
3) nar H og I ikke samtidig mé veere medlemmer, men A skal vaere medlem af
udvalget ?

3. Konstruer en trekant ABC af vinkel 4 og siden BC, nér det tillige er givet,
at v,: AB=p:q, hvor p og q er givne liniestykker. (v, betegner vinkel 4’s halve-
ringslinie).

Angiv mulighedsbetingelse.

Beregn trekantens ubekendte vinkler og sider, nir vinkel 4 =103°12,
BC=3,218, p=2 og g=>5.

Matemaiik I1.

1. Los ligningssystemet .
x+y =1

2(x® 4+ y3) = Bix2y?+40.
De komplekse vardier af « og y skal angives p4 formen a+ 45, hvor a og b er
reelle tal.

2. Undersog og tegn kurven
6
a1
Nordisk Matematisk Tidskrift. — 12 [169]

y = 2%
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Find ligningerne for de kurvetangenter, der er parallelle med linien
S5z—4y+10 = 0.

Find endvidere arealet af den i 1. kvadrant beliggende lukkede figur, der be-
grenses af kurven, linien =3 og den af de fundne tangenter, hvis reringspunkt
har positiv abscisse.

3. Et kvadrat A BOD med siden a er grundflade i en pyramide med toppunkt O.

Sidekanten OA, der er lig med a V2, er hojde i pyramiden.

Gennem diagonalen BD i grundfladen legges en plan, som er parallel med
pyramidens hojde OA4. Denne plan skerer sidekanten OC i punktet K.

Find overflade og rumfang af det konvekse polyeder, hvis hjernespidser er
A, B, D, E og O.

Find endvidere afstanden d (den korteste afstand) mellem linierne BE og 04,
og angiv beliggenheden af d’s endepunkter, idet der tillige enskes forklaring pa,
hvorledes d bestemmes.

FINLAND

Léngre kursen.

1. Skillnaden mellan tva positiva tal @ och b &r p % mindre én deras summa.
Hur ménga 9, &r a storre dn b?

2. For vilka virden pd « konvergerar den oéndliga geometriska serien

1+x—1+ " x—1\"
a1t ot 4+,

och vilken dr d& dess summa S(z)? Framstall grafiskt funktionen y==5S(z).
3. Bestéim a s&, att 16sningen till ekvationssystemet
(®—a—6)x+ (a2 —8)y = 2, 2(a*—a—6)x+(8—ad)y =1

satisfierar 4ven ekvationen

I

+

81 =~
L -~

Kontrollera resultatet.

4. Harled ekvationerna fér de cirklar, vilkas medelpunkter falla p8 linjen
2z + 3y = 4 och som tangera koordinataxlarna. Rita figur.

5. Bevisa det utvidgade pytagoreiska teoremet.

6. AB &r basen i en rektangel A BCD med hdjden k. Punkten P ligger ps AB:s
medelnormal och ps andra sidan om CD &n AB. Strickorna PA och PB samt si-
dorna BCO, 0D och DA begrinsa tre trianglar. Bestdm P:s avstand fran AB s,
att summan av dessa trianglars areor blir s& liten som méjligt.

7. Bissektrisen till en spetsig vinkel i en ridtvinklig triangel delar den motst-
ende sidan i férhéllandet 2: 3. Bestédm férhallandet mellan areorna av den i triangeln
inskrivna och den kring densamma omskrivna cirkeln. (Exakt virde och néirme-
virde med 3 decimaler.)
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8. Fran en punkt pad ytan av en sfir dro dragna tre lika ldnga, mot varandra
vinkelréta kordor i sfiren. Berdkna ldngden av dessa, d& sfirens radie=r.

9. Den i en triangel inskrivna cirkelns radie utgér fjardedelen av en av triangelns
hojdlinjer och denna i sin tur fjdrdedelen av triangelns perimeter. Berdkna trian-
gelns vinklar.

10. Visa, att funktionen sin®x+ costz + } sin® 2z alltid har samma vérde, obe-
roende av virdet pad x.

ISLAND
I

1. Gennem et fast punkt P(m, n) traekkes en ret linie, som skerer parablen
y?=px i punkterne R(z;, y;) og Q(x, y,). Parablens tangenter i B og @ skerer
hinanden i punktet S.

Bestem koordinaterne for punktet S og find dets geometriske sted, nir den rette
linie gennem P, R og @ drejer sig om P, medens R og @ bevaeger sig pd parablen.

2. Skitser kurven 1

Yy = ——.
Vl—x

Bestem ligningerne for kurvens tangenter i dens skeringspunkter med Y -aksen
og med linien z=$.
Beregn arealet af det omride, som begranses af disse tangenter og kurven.

3. Af et reguleert oktaeder med kanten a afskares 6 regulere pyramider ved
plane snit gennem midtpunkterne af de i hver hjornespids sammenstedende kanter.
Af en terning med kanten b afskeeres alle hjorner pa analog méade.

Beregn volumen og overflade af de resterende polyedre.

Afgor, om forholdet a/b kan bestemmes siledes, at resultaterne bliver identiske.

II.
1. Find den fuldstendige lesning til ligningen

3(1+tgw) = 5cos2x.

2. P er et punkt pé hyperblen 1
y=->
x

beliggende i tredie kvadrant. @ er et punkt pd den samme hyperbel beliggende i
forste kvadrant, saledes at differensen mellem disse to punkters abscisser er lig en
konstant 2. Lengden af liniestykket PQ betegnes med d.
Bestem koordinaterne for P og @ udtrykt ved k, ndr d er minimum.
Hvorledes skal & velges, for at minimumsveerdien af d skal blive mindst mulig ?
Afgor ved en geometrisk betragtning, om d kan have et ekstremum, nér P og @
begge ligger p& samme gren af hyperblen, idet deres abscissedifferens skal veere
konstant som fer. '
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3. a) Redderne i ligningen
224+ 3(1—14)z2—6 = 0

¥ B (> B

b) Ligesom for er « og f redder i ligningen ovenfor. Man swtter a+ f=np.
Bestem q og r séledes, at p, ¢ og 7 kan veere rodder i en algebraisk ligning af tredie
grad med reelle koefficienter, samtidig med at de tilfredsstiller betingelsen

er o og . Beregn

q = pr.
Skriv derefter denne trediegradsligning ps formen

2 +ax?+br+c=0.

NORGE

Reallinjen.

1. Skriv ned de forbindelser som vi har mellom rottene og koeffisientene i den
ordnede tredjegradslikning «®+ ax?+ bx + ¢ = 0.

Bruk disse forbindelser til & vise at nar de tre rotter i likningen danner tre ledd
som folger etter hverandre i en geometrisk rekke, er den ene av rettene alltid lik

3 — b
— Vc, og at den samme roten ogsd er lik — —.
a

Som eksempel velger vi ¢= — 64. Hvor stor er da den nevnte roten, og hva
blir de to andre rotter nar de uttrykkes ved a ? Hvilke verdier kan a ha nér rottene
skal veere reelle ?

2. I en halvkule med radius r er innskrevet en trekantet pyramide ABCT.
Pyramidens grunnflate ABC er en likebent trekant med grunnlinje BC. Grunn-
tlaten ligger i den sirkelflate som begrenser halvkulen, og slik at dens hjorner ligger
i sirkelens periferi. Toppunktet 7' ligger i normalen p4 sirkelflaten gjennom midt-
punktet av BC.

Kall avstanden fra 4 til BC for @, og regn ut volumet av pyramiden uttrykt
ved r og .

Nér r er konstant, har dette volum en maksimumsverdi for en viss verdi av z.
Bestem denne maksimumsverdi og den tilhgrende verdi av x. P&vis at den funne
verdi av volumet virkelig er en maksimumsverdi.

I det tilfelle at = 3, blir det lagt to plan gjennom den radien i halvkulen som
stdr vinkelrett pd halvkulens sirkelflate. Det ene av disse plan gar gjennom B,
det andre gir gjennom C. Beregn flateinnholdet — uttrykt ved » — av den del av
halvkulens krumme overflate som ligger mellom disse to plan og det plan som
inneholder sideflaten BCT'.

3. Ellipsen 4a%4-9y?=36 og den rette linje x=3 er gitt. Et punkt P pa den
rette linjen har ordinaten g. Hva er likningen for polaren til P med hensyn til
ellipsen? Vis at polaren gér gjennom et fast punkt 4, nar P flytter seg pé linjen,
og angi koordinatene til 4.

Punktet M(m, 0) er ogsé gitt. Finn likningen for det geometriske sted for skjoee-
ringspunktet mellom polaren til P og den rette linje gjennom M og P, nar P be-
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veger seg langs den rette linje # = 3. De kurvene som en far for forskjellige verdier
av m, gar alle gjennom A og M. Forklar hvordan en pa forh&nd kan innse at dette
er tilfelle.

Det geometriske sted far likningen:

422+ 3(83 —m)y2—4(m+3)x+12m = 0.

Gjor greie for hva slags kjeglesnitt denne likning framstiller for forskjellige
endelige verdier av m; en nevner da bare kurvens art uten & finne sentrum, akser,
akselengder o. 1. Hva for geometrisk betydning fir likningen nér en setter inn m=3?

SVERIGE
Realgymnasiet, allmdn kurs.

1. I ett likbent parallelltrapets ABCD ir sidorna AD och BC parallella. Hérnen
A, B och C #r belidgna i punkterna (0; 1), (0; 6) respektive (7; 7). Bestdm koordi-
naterna for hornet D.

2. I en parallellogram ABCD bildar métetalen fér sidorna AB och BC samt
diagonalerna BD och AC i nimnd ordning en geometrisk serie. Bestdm parallello-
grammens vinklar.

3. Konstruera kurvan y=a3—32% i dess huvuddrag. Genom origo gir tva
tangenter till kurvan, av vilka den ena &r z-axeln. Ange ekvationen for den andra.
Finns det ndgon tangent, som #r parallell med den sistnémnda tangenten? Ange i
s& fall 4ven dennas ekvation.

4. Basytan i en pyramid dr en kvadrat med sidan 6 cm. Tva sidokanter &r 5 cm
och tva 7 em langa. Vilka vinklar bildar pyramidens sidoytor med basytan ?

5. Vilket eller vilka villkor skall vinklarna 4 och B uppfylla, fér att likheten
sin A + sin B=sin (4 + B) skall gélla ?

6. Glenom origo i ett ridtvinkligt koordinatsystem drages en rdt linje L, som
bildar en vinkel v — ritknad i positiv led — med positiva a-axeln. Fran punkten
Ay(a; 0), dér @ dr en positiv konstant, filles normalen L’ mot L. Fran punkten 4,
drages vidare parallellt med y-axeln en linje, som skér linjen L i punkten A4,.
Fran punkten 4, drages parallellt med x-axeln en linje, som skér linjen L’ i punkten
A,. P4 detta sitt fortsiitter man och erhaller en serie punkter 4,, 4,, 4y, 45, ..., 4,,
s& beldgna att varannan ligger pé linjen L’, varannan pé linjen L, och att av
sammanbindningslinjerna mellan tv& pa varandra féljande punkter varannan &r
parallell med y-axeln, varannan med wx-axeln. Undersék for olika virden pd vin-
keln » mellan 0° och 180°, hur den brutna linjen 4,4,4,45...4, &r beskaffad,
nér n vixer obegrinsat. Ange speciellt, om punkten 4, nérmar sig till en bestdmd
punkt. Bestéim i s& fall ocksd koordinaterna for denna punkt.

7. Btt klotsegments kalott &r 165 cm?. Vilken form skall segmentet ha, for att
dess volym skall vara s& stor som mojligt, och hur stor ér d& volymen ? Underssk
dérjamte och askadliggér grafiskt, hur segmentets volym varierar, néir dess hojd
dndras.

8. Hérnet A i triangeln ABC ligger i punkten (a;0), didr a &r en konstant.
Hérnet B ligger i punkten (0; 1), medan hérnet ¢ genomléper x-axeln. Den kring
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triangeln ABC omskrivna cirkelns medelpunkt &r D. Bestim ytan av triangeln
ADC som funktion av abskissan fér punkten O, och undersék densamma fér olika,
vérden pd konstanten o med angivande av eventuella maxima och minima. Askad.-
liggdr slutligen, hur den ndmnda ytan varierar, genom att i olika koordinatsystem
och i stora drag upprita motsvarande kurva i de huvudfall, som kan sérskiljas.

Specialkurs.

1. Tv4 rektanglar har lika stora ytor. Den enas diagonaler ligger utefter asymp-
toterna till en viss hyperbel, och ett par motstdende sidor tangerar denna hyperbel.
I den andra rektangeln utgéres ett par motstéende sidor av samma hyperbels
parametrar. Bestdm vinkeln mellan hyperbelns asymptoter.

2. En parabels vertex ligger i punkten (2; — 4), och dess axel ér parallell med
y-axeln. Parabeln tangerar den réta linjen z+y=0. Bestim dess ekvation.

3. Bestédm konstanterna a och b i funktionen

ax?+3xz +b
§ = e T

axr—>b

H

sd att den motsvarande kurvan far asymptoterna xz+3=0 och r—y+4=0.
Upprita dédrefter kurvan.

4. Tva punkter, 4 och B, pd jordytan ér beligna diametralt motsatt varandra
pé& samma nordliga latitud. Visa, att fér den som skall flyga fran 4 till B blir
véigen kortare, om han féljer storcirkeln éver nordpolen, &n om han foljer parallell-
cirkeln. Ange éven, pd vilken latitud 4 och B skall ligga, for att skillnaden i flyg-
viig skall vara s stor som mdjligt. Jordytan antages vara sfirisk. — Det erfordras
inte men betraktas som en fortjénst, att man grafiskt askadliggér, hur den namnda
skillnaden varierar, nir latituden éndras.

5. Hn triangel har tva av sina horn i brénnpunkterna till en ellips och det tredje
i en punkt P pé ellipsen. Bestdm geometriska orten foér den i triangeln inskrivna
cirkelns medelpunkt, nér P beskriver ellipsen.

1
6. Visa, att kurvan y=asin— skér a-axeln odndligt manga ginger samt att
x

det mellan tvd successiva skérningspunkter finns en punkt, dér kurvan tangerar
endera av linjerna y =z och y= —a. — Det erfordras inte men betraktas som en
fortjdnst, att man uppritar kurvan i dess huvuddrag och séirskilt att man dirvid
studerar densamma, nir x —0 och x — + oo.

7. I en sfar med medelpunkten O och radien 1 lingdenhet ér 4B en diameter.
Utefter AB ligges en koordinataxel med O som origo, si att punkten A far ko-
ordinaten #=1. En rit cirkuldr dubbelkon med toppvinkeln 60° ligges med axeln
utefter 4B, s att dubbelkonens spets faller i en punkt P med koordinaten a Pa
AB eller dess forléngning. Uttryck som funktion av « den del av den koniska, ytan,
som faller inom sfiren. Studera denna funktion, och bestim speciellt dess even-
tuella maxima och minima. Upprita slutligen den motsvarande kurvan. — Det
erfordras inte men betraktas som en fértjinst, att man nirmare undersoker funk-
tionen och dess kurva fér virdena = + 1.




KRONIKK, SUMMARY 175

KRONIKK

UTNEVNELSER

Til professor i matematikk ved Norges Tekniske Hggskole, Trondheim:
Dr. philos. J. O. Stubban.

Til lektor i matematik ved Kebenhavns Universitet: Dr. phil. O. Schmidt.

Til amanuensis i matematik ved Aarhus Universitet: mag. scient. E. Thue
Poulsen.

Till laborator i numerisk analys vid Lunds Universitet: Fil. dr. C.-E. Froberg.

Till laborator i mekanik vid Kungl. Tekniska Hogskolan, Stockholm: Fil. dr.
S. Hjalmars.

Till docent i matematik vid Uppsala Universitet: Fil. dr. E. Y. Domar.

DODSFALD

Lektor E. Rennau, der fra 1947 var faglig medhjeelper i matematik hos under-
visningsinspekteren for de danske gymnasieskoler, er 10/7 1956 afgdet ved deden.

PRISOPGAVER FOR DANSKE GYMNASIEELEVER
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Danmarks tekniske Hgjskole, professor, dr. techn. Anker Engelund, og en gave
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Opgavernes tekst findes i NMT, denne argang, s. 55-56.

SUMMARY IN ENGLISH

SvEN Dang: Linear programming. (Danish.)

The general problem of ‘“linear programming” can be formulated as follows:

Find a set of non-negative numbers @;, @,, . . ., ,, which satisfy a system of linear
equations
(1) a1+ o+ ..o Fape, =b, (=1,2,...,m),

and for which the linear function
f = clx1—|—02x2—|— tre —I—ann

has a maximum (or minimum). The case of inequalities in (1) can be reduced to
the above form, by introducing the non-negative differences between the sides of
the inequalities as new ‘‘slack variables’’.
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After a geometrical treatment of the simple case m=1, n=2, the following
theorem is proved: If the general problem (with m<n) has an optimal solution,
then there ewists such a solution with at most m of the variables = 0. One procedure
for finding a solution is consequently to solve all possible systems of equations
with n—m of the variables =0, and calculate the form f for the resulting non-
negative solutions.

For actual problems, however, this procedure is extremely time-consuming.
The article also describes the so-called “simplex method”, which is a systematic
procedure for improving the result obtained by solving only one set of m equations
in m unknowns. Depending on the size of certain coefficients, one of the variables
is systematically replaced by another until an optimal value of f is reached.

To each maximizing problem in linear programming, there exists a “dual”
minimizing problem, where the structural variables of the former correspond to
the slack variables of the latter and vice versa. There is a close connection between
the optimal solutions of the two problems. The principle of duality is proved by
means of the simplex method.

Fr. FaBRICIUS-BIERRE: Some theorems of J. Hjelmslev on plane, skew,
and spherical quadrangles. (Danish.)

The article is based on an unpublished manuscript by J. Hjelmslev. With the
notation of fig. 1 p. 139, two plane quadrangles 4 BCD and A,B,0,D, are said to
be mutually corresponding if

ata; =b04+b =c+e = d+dy, a+b+c+d = @+bi+e+dy, e = e,

and if neither or both of the quadrangles are divided by the diagonals AC and 4,0,
The following theorems are proved for plane corresponding quadrangles:

1° The other two diagonals are also equal, that is f=f,. (Essentially equivalent
to the theorem of Ivory.)

2° The distances between the midpoints of the diagonals are equal.

3° If T and 7" denote the areas of the triangles A BC and ADC, then T7T" — .7/

4° Either both or neither of the quadrangles can be inscribed in a circle.

Skew corresponding quadrangles are defined in the same way, but with the
additional condition that the dihedral angles along the corresponding diagonals
e=e, are also equal. The theorems 1°-3° still hold. Further, the tetrahedra defined
by the vertices have the same volume.

Spherical corresponding quadrangels are also defined similarly, provided that
the sides are < 180°. The theorems 1° and 4° still hold, but not 2°. Theorem 8°
can be modified to hold in the spherical case, by replacing the areas of the triangles
by the volumes of the corresponding tetrahedra with a common vertex at the
centre of the sphere.

ARNE PLEWEL: On the partitioning of convex domains. (Swedish.)

A convex curve O between two parallel tangents is divided by a third inter-
mediate parallel, with a given ratio m between the distances to the tangents. If
the ratios between the two arcs of C and between the two parts of the area are q
and & respectively, then ¢ and % are limited in terms of m. Similar inequalities for
surface and volume are given when a convex body is divided by a plane section.




