





IVAR FREDHOLM

AKE PLEIJEL

Denna biografi har sammanstallts med hjalp av Nils Zeilons nekrolog i Acta Mathematica
54 och med anvindning av de anteckningar av Erik Holmgren, som finns deponerade
pé Institut Mittag-Leffler. Stora partier har praktiskt taget oférandrade 6verforts
fran Zeilons artikel.

Fredholms samlade verk har nyligen utgivits av Mittag-Leffler-institutet. Volymen
inleds med Zeilons biografi 6ver Fredholm.

»C’est 13 une des découvertes les plus remarquables qui aient été faites
en mathématique« skriver Henri Poincaré i ett uttalande om Fredholms
fundamentala upptéckt pa integralekvationernas omrade. Och séllan har
en matematisk upptéckt blivit s& snabbt berémd inom fackkretsar och
framfor allt sa snabbt utnyttjad for dmnets vidareutveckling som Fred-
holms. Fa ar efter sin tillkomst har den en given plats bland de stora
héndelserna i matematikens historia.

Stilla och tillbakadragen, allvarlig till sin liggning och stindigt mén
om att utvidga sitt vetande i olika riktningar var Fredholm fullsténdigt
likgiltig for yttre dra. Utanfor kretsen av matematiker och matematik-
intresserade forblev han ocksé okénd dven i hemlandet. Genom yttre om-
stindigheter och genom sina vida intressen engagerades han tidigt i ar-
bete pa olikartade uppgifter. Detta i férening med hans utpriglade strii-
van efter fullindning gjorde att andra ofta fére honom sjilv kom att
skorda resultat av hans grundliggande och fruktbirande initiativ.

Erik Ivar Fredholm féddes i Stockholm den 7 april 1866. Fadern var
affirs- och industriman kénd bl. a. genom inférandet av den férsta elek-
triska gatubelysningen i Stockholm och var #ven initiativtagare till var
forsta elektromekaniska verkstad, som blev moderbolag till ASEA. Det
ligger nira till hands att f6rmoda att Fredholm av sin far #rvde sitt starka
intresse for tekniska problem och mekaniska konstruktioner. Modern,
som var f6dd Stenberg, tillhérde en familj med rika konstnirliga och
litteréira intressen, och fran henne #rvde Fredholm sin inneboende konst-
niirliga smak och denna stréivan efter fullkomlighet, som var si mirk-
bar i allt han féretog sig, inte minst i hans vetenskapliga arbete.
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Efter studentexamen blev han forst elev vid Teknologiska institutet i
Stockholm, men de tekniska studierna blev kortvariga. Redan féljande
ar, 1886, inskrevs han som student vid Uppsala universitet. Stockholms
hogskola, vars mest berémda elev han skulle bli, var vid denna tid under
Mittag-Lefflers ledning matematikens hogborg i Sverige. Men den var
&nnu ett rent forskningsinstitut utan rétt att utdela akademiska exa-
mina.

Till den fridfulla virlden i Uppsala tringde ryktet om Poincaré. »Teo-
rien for de fuchsiska funktionerna #r en av de vackraste upptéckter som
nigonsin gjorts. Poincaré &r utan tvivel en av vér tids mest framsta-
ende matematiker. Man kan énnu vinta mycket av honom — han &r
endast 34 ar — forutsatt att hans produktion inte sinar.« Dessa rader
skrevs 1888, och samma é&r aterviinde Fredholm som nybliven magister
till sin hemstad for att fortsitta sina studier vid Stockholms hogskola.
Matematiken kom i férsta rummet, men Fredholms intresseinriktning
gjorde att han ocksd fortsatte sina studier i fysik. Under experimental-
fysikern Knut Angstroms ledning deltog han i 6vningslaborationer och
fran hostterminen 1889 finns bevarade anteckningar fran bolometriska
métningar, som han da utférde. Studierna i fysik avbrots emellertid,
vilket Fredholm senare vid flera tillfillen beklagade. D4 han 1893 blev
licentiat i Uppsala ingick dock fysiken som tredje &mne i hans examen.

1 kretsen av elever, som samlades kring Mittag-Leffler, tilldrog sig Fred-
holm snart uppmirksamhet. Bland hans kamrater frén denna tid mérk-
tes Edvard Phragmén, Ivar Bendixson, Helge von Koch, och fran Fin-
land Ernst Lindelsf m. fl. Redan fran bérjan intog Fredholm en sir-
stillning genom sitt utpréglade intresse for den teoretiska fysiken. Den
torsta matematiska avhandling som han redigerade under julferierna 1889,
bér ocksé spar av hans dubbla intresseinriktning. I detta forstlingsarbete
ges ett intressant exempel pé en potensserie, vars konvergenscirkel &r
naturlig griins foér den analytiska funktion serien representerar. Genom
en transformation overférdes studiet av serien pi ett problem rérande
viirmeledningsekvationen, och det var sambandet med den teoretiska
fysiken, som sérskilt intresserade Fredholm. Det transformerade pro-
blemet 1ostes med en sats av Sonja Kovalevski, som for ovrigt vid
denna tid var professor vid hogskolan.

Redan omedelbart efter aterkomsten till Stockholm tycks Fredholm
ha haft tjinstgoring vid liviorsikringsbolag, vilket formodligen far ses
mot bakgrunden av den forindring i familjens ekonomiska stillning som
orsakades av faderns konkurs. Under en tid tycks Fredholm ha haft for
avsikt att ge sig in pa lirarbanan. Han genomgick salunda provar 1896.
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Det ena av de stora problemkomplex som Fredholm skulle komma att
dgna sig &t angrep han for forsta gangen i doktorsavhandlingen, som
ventilerades i Uppsala 1898 och tva &r senare publicerades i Acta Mathe-
matica under titeln »Sur les équations de I’équilibre d’un corps solide
élastique«. W. Voigts arbeten hade aktualiserat intresset for kristallernas
egenskaper och gjort det tydligt att studiet av dessa borde leda till en
visentligt fordjupad kinnedom om de elastiska krafternas natur. Redan
langt tidigare hade Kelvin matematiskt behandlat inverkan av en kraft
anbringad i en punkt av ett isotropt medium. Fredholm stillde sig upp-
giften att pa liknande sétt studera anisotropa medier. Det gillde da
speciellt att finna singulira integraler motsvarande dem, som i Kelvins
understkningar spelade samma roll som funktionen 1/r i potentialteorien.
Doktorsavhandlingen inleds med en elegant hirledning av homogena
singuléra 16sningar av graden —1 till en lineiir differentialekvation med
konstanta koefficienter av formen

7 0 0 0© 0
T A AU = ’
<8x oy 8z>

dér f(&,u, {) dr ett homogent polynom. Med hjilp av dessa singulira
lésningar studeras sedan elasticitetsteoriens randvérdesproblem.

Med hénsyn till Fredholms kommande matematiska verksamhet r
det intressant att i ett forsta utkast till doktorsavhandlingen lisa: »Jag
har f6rs6kt utvidga Neumanns metod fér att visa existensen av en 16s-
ning till jimviktsekvationerna, men utan att lyckas bevisa konvergensen
av de erhallna serierna.«

Aret efter doktorsdisputationen publicerar Fredholm i Comptes Rendus
des Séances de I’Académie des Sciences en artikel dir den ovan angivna
differentialekvationen #r sjilvindamal och polynomet f(&, 7, {) antas
definit. Han observerar, att de singulira integralerna r linedrt samman-
satta av derivatorna till en fundamentallgsning. I utforlig form trycktes
denna artikel forst 1908 i Rendiconti del Circolo Matematico di Palermo
och innehaller utom konstruktionen av fundamentallssningen ocksa
vackra samband mellan denna och vissa Abelska, integraler.

Aret efter doktorsdisputationen och utnimningen till docent vid Stock-
holms hégskola skulle i Fredholms liv och i matematikens historia bli ett
av de mest betydelsefulla. Han tillbringar varen i Paris tillsammans med
studiekamraten fran Stockholm, Ernst Lindelsf. Denna hans férsta och
i egentlig mening enda studieresa gav mdjligheter till personlig och vir-
defull kontakt med den matematiska krets, till vilken han linge kint

b*
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sig dragen. Han foljde Poincarés, Picards och Hadamards forelisningar.
Hans franska, som frén borjan var foga flytande, tycktes honom snart
tillrickligt bra for att han skulle kunna gora visit hos den matematiker
han beundrade mest. Han berittar att Lindelof, som redan avlagt detta
besok, hade funnit Poincarés faordighet pinsam. Men, tillagger han,
yeftersom jag var beredd pa mojligheten att f& prata mest sjilv, lyckades
visiten ganska bra«. Man kan inte forneka att de som senare kom att be-
s6ka Fredholm ibland maste beklaga att de inte forberett sig p4 samma sétt.

Hans brev hem till familjen talar ocksd om hans otvungna och hjért-
liga relationer till unga kolleger, Painlevé som han kinde frin konfe-
rensen i Stockholm 1895, Borel, Hadamard och andra. Aret 1899 var allt
annat #n lugnt i Paris och de matematiska diskussionerna fick sékert
manga ganger ge plats for dispyter om dagshindelser av brinnande ak-
tualitet. For en man s& nyfiken pa kulturens olika aspekter som Fred-
holm saknade Paris inte heller andra intressen. Bland de 7000 tavlorna
i »le Salon« lyckades visserligen endast »agra violetta karlar p4 grona
hastar« vicka hans beundran, men musiken intresserade honom mera. I
Chatelet firade man femtioérsjubileet av Chopins dod och vid regelbundna
musikaftnar hos den gamle matematikern Lemoine lyssnade Fredholm
4ill kammarmusik och Bach-concertos. Men trots att han inte heller
glomde vare sig kabaréer eller Sarah Bernhardt i Kameliadamen, kom
dock matematiken i férsta rummet och i Paris »stér den pa en hogre
niva #n nagon annanstans«. D& han den 19 maj 1899 skriver att han
yunder den sista tiden icke sett eller hort mycket (i Paris), men att han
framfor allt funderat 6ver matematiska problem« s& kan man forutskicka
att han avser de sa viktiga fragor inom teorien for integralekvationer,
sver vilka han slutligen hade kommit till klarhet. Visserligen avslutades
Parisvistelsen med inlimnandet av den férut omnémnda Comptes Ren-
dus-artikeln, men bland Fredholms efterlimnade papper finns en forsta
redogorelse for hans upptéckt pa integralekvationernas omrade och denna
4r daterad »Paris, varen 1899«.

Den 8 augusti samma &r skrev han, omedelbart efter aterkomsten till
Sverige, ett brev till Mittag-Leffler dér han meddelar sin upptickt.

»Jag dr for nirvarande sysselsatt med nagra undersékningar, som &ro
af ganska stor betydelse for alla med Dirichlets problem analoga upp-
gifter inom den matematiska fysiken.

Som vissa resultat dfven fran matematisk synpunkt éro af intresse ber
jag hiir att f4 meddela nagra af dem.

Lat f(x, y) vara en kontinuerlig funktion af de reella variablerna z, y
definierad t. ex. for sddana x och y som ligga mellan 0 och 1. Det pro-
blem, som jag da behandlar &r i sin enklaste form foljande.
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Att finna en funktion @(x) som satisfierar »integralekvationen«

1
p@)+2\f@ 9y = via)

0

dér 2 dr en arbitrir parameter och y(x) en gifven funktion.

Man kan bevisa att 16sningen till denna ekvation i allménhet existe-
rar och att den ar lika med kvoten mellan tvinne bestindigt konver-
gerande potensserier i A. Dessa potensserier kunna framstéllas under en
témligen elegant form. Néimnaren ir till ex. ett uttryck af foljande form

o },’” 1 1
D :ngﬁ(s) . s)f(xl...xn)dxl...dxn,
dar
f(xl’ m1)’ f(xl’ xz), s f(xls xn)
_ f(xm xl): f(xz, xz)’ tee f(x2> wn)
fly ... w,) =

f(xm xl)! f(xm xz), et f(xn’ xn)

Konvergensen kan bevisas med hjilp af en determinantsats, som jag ej
sett anford nagonstides och som lyder pa foljande sitt

2 2 . 2 2 2
......... < Vag+ad+ ... Fag,? Vg + a5+ . .. +a,2. ..

Apq...0Q . 2 P 2
nl nn ]/anl +a,2+ .. Fa,n

Ar f det storsta absoluta beloppet af f(x, y) s& #r enligt determinant-
satsen tydligen koefficienten for A* mindre &n

o

n!

men limes f6r nte roten ur denna #r lika med noll och séledes serien D
en hel funktion. Det fall d& f(z, y) blir odndlig har jag dnnu ej fullstin-
digt lyckats att behandla.«

De anteckningar om upptéckten, som nedskrevs i Paris 1899, innehaller
pa forsta sidan ett bevis for determinantsatsen utfort med differential-
kalkyl. Fredholm kinde till satsen redan 1896 ty i utkastet till forelés-
ningar i variationskalkyl han holl detta ar dr den inférd som Gvnings-
exempel. Men d& han 1900 publicerade det forsta arbetet om integral-
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ekvationer, visste han, att determinantsatsen, som blivit s4 bekant genom
sin betydelse fér Fredholms teori, hade bevisats férsta gangen av Hada-
mard 1893.

De sju smé oktavsidor, som upptas av avhandlingen fran 1900, »Sur
une nouvelle méthode pour la résolution du probléme de Dirichlet«, Ofver-
sikt af Kongliga Svenska Vetenskaps-Akademiens Forhandlingar, 57,
innehéller redan det viisentliga av teorien f6r Fredholms ekvation déri in-
begripet alternativsatsen liksom &ven tillimpningen p& det (tva-dimen-
sionella) potentialteoretiska problem, som var dess utgangspunkt.

I brev till Fredholm tackar Lindelof fér separat av arbetet: »Till en
boérjan vill jag tacka dig for din senaste uppsats om Dirichlets problem,
hvilken synes mig vara en perla. Jag har blott emot den att du alldeles
for mycket koncentrerat densamma, . . ..« Lindelofs kritik &r férklarlig ty
i avhandlingen finner man ingen anvisning om den slutledningsprocess,
som lett fram till Fredholms formler som grénsfall av 16sningsformlerna
for linedra ekvationssystem med dndligt ménga obekanta. Efter tva korta
Comptes Rendus-noter publicerades det slutgiltiga arbetet tre ar senare i
Abelbandet av Acta Mathematica. Framstéllningen dr hiir p4 samma, séitt
syntetisk, men teorien &r kompletterad i vissa viktiga avseenden. Ana-
logien med #@ndliga lineéra ekvationssystem har gjorts fullstindig genom
inférandet av motsvarigheterna till underdeterminanter av hogre ord-
ning. Vidare behandlas det for anvéindningarna och speciellt f6r Dirichlets
problem i tre dimensioner viktiga fallet d& kdrnan f(x, y) blir oéndlig
av viss ordning pa diagonalen x=y.

Senare, vid den forsta skandinaviska matematikerkongressen i Stock-
holm 1909, uttalade sig Fredholm om den tankeging som lett fram till
hans upptéckt. Efter att ha talat om Fouriers och Abels inversions-
formler och Sonines och Hankels arbeten, som anslét sig till dessa, dver-
gick han till Dirichlets problem och piminde om de tre klassiska lsnings-
metoderna till detta. Sérskilt framho6ll han Neumanns metod som den
»som hade synts honom ha de stérsta méjligheterna att kunna tillimpas
pa allménnare problem«. Och 6vergaende till det betydelsefulla arbete i
Acta Mathematica 20, dir Poincaré gjort det troligt att Neumann-
serien var en meromorf funktion av 1, siger han: »D4 jag funderade 6ver
dessa resultat fragade jag mig om det faktum att ¢ dr en meromorf funk-
tion av 1 inte méste vara en f6ljd av den linedira formen av den ekvation
som definierade . Det forhallande att utvecklingen av ¢ konvergerar
for alla virden pa A i fallet med Volterras ekvation gav ett starkt stod
at tanken att teorien foér funktionalekvationen II (Fredholms integral-
ekvation) borde vara ett gréinsfall av den vanliga teorien for lineéira ekva-
tionssystem. Sedan jag en gang fatt denna idé, underlidttades mina under-
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sokningar mycket genom min kollega Helge von Kochs arbeten om o#énd-
liga determinanter.«

Bade av det ovan citerade brevet till Mittag-Leffler och av anteck-
ningar bland Fredholms efterlimnade papper synes framgs att han redan
varen 1899 hade riktlinjerna klara fér den behandling av icke-begréin-
sade kirnor, som han framlade férst 1902 i den andra av nyssnimnda
Comptes Rendus-artiklar. Drojsmalet med det slutliga utarbetandet
sammanhinger sikerligen med de ogynnsamma omsténdigheter under
vilka han arbetade efter aterkomsten fran Frankrike.

I ett brev fran Paris férhor han sig om mojligheterna till ndgon an-
stillning, som kunde ge honom tid att vidareutveckla sin teori. Speciellt
téinkte han formodligen pa professuren efter Fogelmarck vid Tekniska
hogskolan, som emellertid Bendixson senare fick. Platsen skulle ha passat
Fredholm utmirkt med tanke pa hans intresse for matematikens tillimp-
ningar och for tekniska problem. Senare uppmanades han av Mittag-
Leffler att speciminera for en professur i Kristiania. Men Fredholm var
da redan djupt engagerad i den organisation av det svenska livi6rsikrings-
visendet, som han skulle komma att dgna en s8 stor del av sitt liv. Efter
aterkomsten fran Paris hade han blivit amanuens i civildepartementet
med uppgift att forbereda inrittandet av riksforsikringsanstalten, dér
han senare, 1905, blev byradirektor, vilket dock knappast minskade
hans arbetsborda. Efter att ha limnat denna befattning blev han 1905
livforsikringsbolaget Skandias aktuarie. Lindelof skriver samma ar till
honom: »Det dr nu s& att »vita brevis, ars longa« och jag tycker forsik-
ringsviisendet kunde reda sig med en mindre duktig karl &n Du«. Fred-
holms intresse for forsikringsvisendets problem upphérde emellertid icke
och han har pa detta omrade utfort ett banbrytande arbete framfor allt
da det gillde att stilla livforsikringsverksamheten pa en vederhéftig
matematisk bas. Han utarbetade viktiga dédlighetstabeller f6r de skan-
dinaviska linderna och hans anmirkningsvért enkla formel for det s.k.
aterkopsvirdet dr ofta citerad och allmént anvénd.

Det har redan nimnts att Fredholms intresse tidigt riktades mot den
matematiska fysiken. Han gav tydligt uttryck at sin forkérlek i detta
avseende da han viigrade delta i konkurrensen om en professur i ren mate-
matik vid Lunds universitet 1905. I brev till Mittag-Leffler motiverar
han sitt stillningstagande genom att papeka att han icke onskade be-
fattningen ifraga »da jag stindigt haft till mitt fornimsta mél att soka
bidraga till utvecklingen af mekaniken och den matematiska fysiken.
Ar 1906 erholl han den professur i rationell mekanik och matematisk
tysik vid Stockholms hogskola varifrian han sedan skulle verka.

Fredholms teori for integralekvationerna blev snabbt kind. Det forsta
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foredraget i utlandet om den hélls varen 1901 av Erik Holmgren i det
matematiska seminariet i Géttingen, som da leddes av Hilbert. »Dieser
Tag war entscheidend fiir eine lange Periode in Hilberts Leben und einen
betrichtlichen Teil seines Ruhmes« skriver Otto Blumenthal i Hilberts
Gesammelte Werke, band 3. Och i ett brev till Fredholm berittar Linde-
I6f frdn Gottingen: »... Holmgren féredrog nyss pd matematiska semi-
nariet din metod att 16sa Dirichlets problem och Hilbert blev sa fortjust
att han genast bad att fa lana din uppsats ... samt direfter 15t Holm-
gren nésta seminarium foredraga en gang till 6ver samma dmne. Det ir
verkligen en fan sa fin metod ...« Redan féljande ar bérjade doktors-
avhandlingar om integralekvationer utférda av Hilberts elever att komma
ut for att efter fa ar uppgé till nira dussintalet.

Géng efter annan ser man i Fredholms efterlimnade papper hur han
pé viktiga punkter féregriper den utveckling som blev en s& snabb fljd
av hans grundliggande insats. Med tvekan beslst han sig for att delta i
Pariskongressen 1900. Fore resan skriver han till Mittag-Leffler: yHirmed
dr ju en viss risk férenad ty sannolikt lyckas jag ej 6vervinna alla sva-
righeter som hindrar mig f6r nirvarande och da finns alltid den sanno-
likheten att bland auditoriet somliga finns som ser mer #n jag sjilv.«
Annu var hans metod inte bekant och héndelseforloppet blev annor-
lunda &n han fruktat. I sitt kongressféredrag, som han aldrig publicerade,
gav han den hirledning av de grundliggande formlerna som Hilbert
senare aterupptéckte och tryckte 1904 i den férsta av sina kidnda Mit-
teilungen. Den efter Picard uppkallade singulira integralekvationen med
kirnan e—l==v! finns behandlad i Fredholms efterlimnade anteckningar
langt innan den studerades av Picard 1910 och 1911. Fran 1902 finner
man den sats med vilken Hilbert senare studerade kirnor som ir ofind-
liga p& definitionskvadratens diagonal: Hir saknas emellertid bevis och
ofta stannar Fredholms undersékningar fran dessa arbetsfyllda ar vid
utkast och idéer. En méngd undersckningar av fall da hans teori icke
dr anvindbar, men resolventen anda blir meromorf finns utférda. Spe-
ciellt kan ndmnas studiet av kérnor av typen f(x —ay), 0 < < 1, varvid
integrationsintervallet #r reella axeln. Vidare finner man spekulationer
6ver Neumann-Poincarés problem vid omraden med hérn och spetsar
och &ven utkast férebddande inférandet av kontinuerliga spektra.

I bérjan av sin professorstid uppmanades Fredholm av Teubnerfor-
laget att skriva en lirobok om integralekvationer. For detta dndamal
var han tjinstledig fran sin professur hostterminen 1906 och utkast till
boken finns bevarade. Men d& Fredholm erfor att Hilbert samtidigt ar-
betade med en liknande uppgift och di efter 1906 en rad lirobocker i
dmnet kom ut avstod han fran fullfsljandet av uppdraget.
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I Frankrike befistes Fredholms renommé genom det starka stodet av
Poincarés auktoritet. Genom att 1908 tillerkdnna honom Ponceletpriset
fogade franska vetenskapsakademien hans namn till namnen pa matema-
tikens och fysikens mest framstaende foretradare. Salunda hade fore
honom J. R. Mayer, Clausius, Kelvin och Hilbert mottagit detta pris,
som s4 sillan utdelas till utlinningar. Invitationer fran lirda samfund
bérjade stromma in, ofta, det maste erkdnnas, for att bli begravda i
hans lador. Efter Fredholms déd fann man bland hans papper en samling
av shdana utmirkelser, varom ingen i Sverige, inte ens hans néirmaste
nagonsin hort talas.

Det dr helt naturligt att Fredholm under sina féreldsningar vid Stock-
holms hogskola med férkérlek talade om de viktiga delar av den klassiska
matematiska fysiken, som utgjorde huvuddmnet for hans vetenskapliga
arbete. Ar 1908 hélls salunda de forsta forelisningarna i Sverige 6ver den
Fredholmska teorien for integralekvationer och dess fysikaliska tillimp-
ningar. Inriktningen av hans vetenskapliga produktion hindrade emeller-
tid icke att han foreldste Gver néistan alla omraden av den aktuella fysi-
ken. Fredholm var inte i populdr mening en glinsande foreldsare. Han
talade med en allvarlig och monoton rost och det hinde att han gjorde
riknefel pa svarta tavlan. Men detta betydde foga. I sjilva verket var
hans kurser disponerade med ett séllsynt mésterskap och han behir-
skade framfor allt den svara konsten att meddela sina elever denna kénsla
for enheten och det visentliga av en teori, som s klart kommer till synes
i hans egna skrifter.

Fredholms totala produktion dr inte stor d4 den méts i antal tryck-
sidor. Fullbordandet av ett manuskript var for honom ett arbete av det
slag som nedliggs av en konstnir, som icke tal nagon ofullkomlighet i
utmejslingen. D& han for femte eller sjitte gdngen redigerar materialet
till doktorsavhandlingen sdger han »jag lyckas nu skriva tva sidor om
dagen«. Hans trigna arbete ledde till en framstéllning, som var beun-
dransvérd genom sin klarhet och innehallsrika korthet, men arbetssittet
medforde att dragen av det inre intuitiva utarbetandet suddades ut och
mer eller mindre betydelsefulla detaljer ofta gick foérlorade. Hans per-
sonlighet dr pa nagot sitt dold bakom sjilva fullindningen av hans verk,
i vilket han med séllsynt kraft band vidstrickta kunskaper till en och
samma idé. Men i grund och botten var Fredholm nagot helt annat &n
den exklusive teoretiker man far bilden av di man enbart liser hans
skrifter.

Vi har redan ndmnt hans banbrytande praktiska insats pa livfor-
sikringsvisendets omrade och dven nimnt hans levande intresse for tek-
niska problem. Hans auktoritet anlitades ocksé ofta vid bedémningen av
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arbeten av teknisk-teoretisk natur och han behandlade sjélv problem
av detta slag. Zeilon berdttar att han sett en borrmaskin som var kon-
struerad enligt Fredholms berikningar och som fungerade utmirkt. Men
Fredholms tekniska intresse var ingalunda av enbart teoretisk natur.
Mistare i att hantera fil, 16dkolv och den lilla svarv, som han latit in-
stallera i sitt arbetsrum, var han ocksé en skicklig finmekaniker.

Efter 1910 intresserade han sig mycket for Kelvins undersckningar om
integration av differentialekvationer med tekniska hjédlpmedel. Han fére-
satte sig att sjélv konstruera maskiner fér numerisk 16sning av vissa diffe-
rentialekvationer, kanske stimulerad hértill av skénheten och precisionen
hos den integraf och den harmoniska analysator han anskaffat till sin
institution. Det dr inte bekant for vilken ekvation den maskin var avsedd,
som Fredholm byggde, men man vet att den under varierande ini-
tialvillkor kunde dra vackra och exakta integralkurvor. Senare demon-
terade Fredholm maskinen, utan tvivel i avsikt att bygga om den for en
annan ekvation. Han tycks inte ha limnat tillrickliga anvisningar for
att man skall kunna rekonstruera den.

Déremot finns bevarad en liten maskin, som Fredholm konstruerade
for graveringen av spektralgitter. En linkmekanism, driven av en liten
hydraulisk motor, styr automatiskt en diamantspets 6ver en glasplatta
och den precision med vilken apparaten arbetar &r beundransvérd. Fred-
holms intresse for spektralteorien eller allménnare f6r atomfysiken var
emellertid av betydligt dldre datum. Han hade pa ett tidigt stadium in-
sett betydelsen av Wiens och Plancks arbeten om den termiska stril-
ningen och i anslutning till ett vilkidnt arbete av Ritz hade han i en av-
handling fran 1906 visat att limpligt valda integralekvationer gav upp-
hov till spektralformler av Balmers och Rydbergs typ.

Fredholms ur teoretisk synpunkt si eleganta formler f6r losningen av
integralekvationer &r f6ga anvindbara da det giller praktisk numerisk
rikning. Medveten om detta dgnade Fredholm mycket arbete &t upp-
giften att finna och underska speciella fall da kalkylerna &r explicit
genomforbara. Fran tidigare ar kan bl. a. ndmnas hans l6sning av
Neumann-Poincarés problem fér en ellips. Trots pastétningar fran Linde-
16fs sida blev detta arbete aldrig publicerat. Efter en ling period av
tystnad, som bérjar 1910 och under vilken Fredholms huvudintresse
synes ha varit studiet av mekaniska integrationsmetoder, atervinder
han till sina undersékningar om explicit l6sbara integralekvationer. Den
problemkrets han studerar i sina tre sista avhandlingar fran tiden 1920-25
finns utforligt beskriven i Zeilons biografi och skall inte bertras néir-
mare hir. M4 det vara nog sagt att det av Fredholms efterlimnade papper
framgér vilket oerhort arbete han nedlade pa dessa fragor.
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Mycket musikalisk hyste Fredholm ett brinnande intresse framfor
allt f6r Bachs musik. Fast han inte var pianist, sokte han gérna pa pianot
fram temata och stimmor fran Bachs kontrapunktiskt sd komplicerade
kompositioner. P4 sitt sista lager upplevde han ocksd glidjen att slut-
ligen hora samtliga 28 fugor ur Wohltemperiertes Klavier. I sin ungdom
hade han lirt sig spela fl6jt, men ersatte pa éldre dagar detta instrument
med fiolen. Redan som barn hade han sjilv byggt sin forsta fiol av ett
kokosnotskal. Instrumentet, som fortfarande finns kvar, liknar en av
dessa langskaftade arabiska violiner med skarp och nasal ton.

Musiken gav honom inte bara vederkvickelse, utan stimulerade ocksé
pa annat sitt hans intresse. Liange hade, teoretiskt och praktiskt, de
tekniska finesserna och den gatfulla akustiska fullindningen av hans
instrument sysselsatt hans tankar. Hans sista arbete blev aldrig full-
bordat. Kvar finns endast nagra fragment, nagra blad med kalkyler och
kortfattade, svartydda anteckningar jimte teckningen av en idealiserad
fiol. P4 denna #r dragna en serie kurvor, for vilka approximativa ekva-
tioner finns angivna. Betydelsen av kurvorna framgar inte. Antingen kan
de tinkas ange nodlinjer for elastiska vibrationer eller sammanbinder de
punkter didr materialet har samma tjocklek. Det dr emellertid tydligt att
Fredholm hade stillt sig uppgiften att med teoriens och erfarenhetens
hjilp tringa in i de gitor, som ligger forborgade i konstruktionen av
detta fullindade instrument.

De s3 gripande och férbryllande bladen ger pa ett egendomligt sitt
en syntes av Fredholms liv. I dem avspeglas de stora drivkrafterna, som
verkade i honom, i dem ser vi liksom i Fredholms hela livsverk de sam-
lade anstringningarna av en matematiker och fysiker som samtidigt var
musiker och konstnir.

Fredholm avled den 17 augusti 1927,



AKSIOMATISK GRUNNLAG
FOR DEN EUKLIDISKE GEOMETRI

JOHN OLAV STUBBAN

I denne artikkelen skal vi gi et lite utsyn over den sikalte euklidiske
geometri, som er identisk med den vanlige elementergeometri slik vi
leerer den i skolen. Vi skal i korte trekk vise hvilke aksiomer som ligger
til grunn for denne geometrien, og ved et par eksempler vise hvilke kon-
sekvenser det medforer om en foretar visse endringer i aksiomene. Det
er ikke her meningen & drive grunnlagsteoretiske dreftinger, betrakt-
ningene er helt elementere, og det kreves ingen spesielle forkunnskaper.
Hensikten er & gi tidsskriftets lesere — i forste rekke kanskje gymnasias-
ter — et lite innblikk i hvilket viktig omrade av matematikken studiet
av aksiomene i virkeligheten er.

Det vil vaere kjent for alle som overhodet har syslet med matematikk,
at Buklid (ca. 300 f. Kr.) var den forste som i nevneverdig grad gjorde
forsgk pa & skape en strengt systematisk oppbygging av geometrien. For
oss kan kanskje resultatet synes & lide av atskillige mangler, men nar en
tar i betraktning at matematikken pa Euklids tid besto i en temmelig
uordnet mengde mer eller mindre tilfeldige setninger, m4 vi nok erkjenne
at det byggverk han skapte — til tross for dets svakheter — avtvinger
var dypeste respekt og beundring.

Det Euklid forst og fremst si helt klart, var at matematikken er en
logisk vitenskap, der setning folger pa setning i en slutningsrekke, idet
hver enkelt av dem bevises pa4 grunnlag av foregiende setninger. N3
sier et gammelt ordtak at »av intet kommer intet«, og ved logisk utled-
ning av matematiske setninger ma en ha visse setninger som det ikke
kreves bevis for. En slik setning som godtas uten bevis, kalles en grunn-
setning eller et aksiom (eéiwue), og samlingen av de aksiomer som danner
grunnlaget for en bestemt teori, kalles teoriens aksiomsystem. Det greske
ordet aksiom betyr bl. a. »moe selvinnlysende¢. Buklid selv brukte imid-
lertid ikke dette uttrykket. Han skilte p4 den ene side mellom aksiomer
som kan betraktes som generelle logiske regler, og som han kalte »al-
minnelige forestillinger« (xowai &wvoiar), og pd den annen side spesielle
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geometriske setninger som han kalte »postulater« (airijuere). Til den
forste kategori hgrer f. eks. folgende regel: Nar hver enkelt av to ting
er lik en tredje ting, er de to forste innbyrdes like. Og som eksempel
pa et postulat kan nevnes det sikalte parallell-postulat, som vi skal
komme nzrmere tilbake til siden.

Nar man av de setninger som en gitt teori bestar av, velger ut de
som en vil stille opp som aksiomer, kan dette utvalget gjores p4 mer enn
en mate. Tidligere — og derfor ogsd hos Euklid — ble utvalget foretatt
med henblikk pa & fi et system av mest mulig selvinnlysende aksiomer.
Selve ordet aksiom viser dette. I vare dager tar en imidlertid ikke lenger
slike hensyn, idet en na foretar utvalget med det mal for gyet & skaffe
seg et hensiktsmessig aksiomsystem. Men hvordan aksiomene enn velges,
forlanges det at de skal oppfylle visse krav, og disse er:

I. Aksiomene skal vere uavhengige av hverandre.
II. Aksiomene skal vere motsigelsesfrie.

Det forste kravet betyr at det innenfor aksiomsystemet ikke skal
forekomme noe aksiom som kan utledes av de gvrige og bare av disse.
Hvis nemlig en setning i aksiomsystemet kan bevises, er den jo — ifelge
definisjonen pa aksiom — ikke noe aksiom. Imidlertid er det klart at
det ikke er til noen som helst skade for selve teorien om ett eller flere av
aksiomene er avhengig av de gvrige. Krav I har derfor i virkeligheten
bare prinsipiell betydning.

Krav II betyr at vi ut fra det valgte aksiomsystem ikke skal kunne
utlede en setning og samtidig den stikk motsatte setningen. Det er inn-
lysende at en ikke pad noen mate kan sla av pa dette kravet.

De svakheter som senere undersgkelser har avslort ved Euklids ak-
siomsystem, bestar ikke s& mye i forsyndelser mot krav I ovenfor (krav
II er selvsagt oppfylt) som i det faktum at BEuklid gjer bruk av en del
stilltiende forutsetninger som rettelig burde veert stilt opp som aksiomer
sammen med de andre.

Noen streng kritikk av Euklids aksiomsystem ble ikke forsgkt feor
Max Pasch vinteren 1873/74 holdt en rekke forelesninger om dette
emnet. Disse forelesningene ble utgitt i 1882 (Vorlesungen iiber neuere
Geometrie). Senere har det vart satt opp flere aksiomsystemer for geo-
metrien, men det system som for ettertiden er blitt stdende som det
klassiske, er det som Hilbert stilte opp i 1899 i sin bergmte bok Grund-
lagen der Geometrie. Hilbert stilte opp aksiomer som gjelder bade for
plan- og romgeometrien, men for enkelhets skyld innskrenker vi oss her
til bare & betrakte planet.
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Hilberts aksiomer! (for planet) ser slik ut:

I. Insidens-aksiomer.

1) Gjennom to punkter gar det alltid en og bare en rett linje.
2) Pa enhver rett linje gis det alltid minst to punkter.
3) Det gis et punkt som ikke ligger pa en gitt rett linje.

II. Mellom-aksiomer.

1) Nér et punkt B ligger mellom to punkter A4 og O, sa ligger de tre
punktene pé en rett linje, og B ligger ogsd mellom C og A.

2) Nar 4 og B er gitt, gis det alltid minst ett punkt C slik at B ligger
mellom 4 og C.

3) Av tre punkter pi en rett linje gis det aldri mer enn ett som ligger
mellom de to andre.

4) Hvis 4, B og C er tre punkter som ikke ligger pa en rett linje, og
a er en rett linje som ikke gir gjennom noen av de tre punktene,
og hvis a inneholder et punkt som ligger mellom A og B, s& vil
ogsé inneholde et punkt som enten ligger mellom A og C eller
mellom B og C.

P& grunnlag av aksiomene I+ II kan en na bevise en del setninger (vi
skal ikke bevise dem her) som i sin tur tjener som grunnlag for inn-
foring av en del begreper, som inngér i senere aksiomer.

Ved et linjestykke AB forstar vi den delen av den rette linje gjen-
nom A og B som inneholder 4 og B samt de punktene som ligger
mellom 4 og B.

Ved en trekant ABC forstar vi linjestykkene 4B, BC og CA4 tilsam-
men. Linjestykkene kalles sidene og punktene 4, B, C hjornene.

Pé en rett linje a er gitt tre atskilte punkter O, 4 og B. Visier at 4
og B ligger pa samme side av O hvis O ikke ligger mellom A4 og B,
og at A og B ligger pa hver sin side av O hvis O ligger mellom A og B.

Ved en strile med et punkt O som begynnelsespunkt forstar vi den
delen av en linje gjennom O som inneholder O samt alle de punktene
som ligger pa samme side av O. Punktet O deler derfor linjen i to straler
slik at O alltid ligger mellom et punkt ps den ene strilen og et punkt
pé den andre, sifremt punktene er forskjellige fra O.

To straler med felles begynnelsespunkt kalles en vinkel. Stralene kalles
vinkelens ben og begynnelsespunktet dens toppunikt.

I planet er gitt en rett linje a og to punkter 4 og A’ som ikke ligger pa
a. Hvis linjestykket A4’ ikke inneholder punkter som ligger pa a,

1 Ifelge 7. utg. av Grundlagen der Geometrie.
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sier vi at 4 og A’ ligger pa samme side av a. Hvis linjestykket derimot
inneholder et punkt pa a, sier vi at 4 og A’ ligger pé hver sin side av a.

ITI. Kongruens-aksiomer.

1) Nar A og B er to punkter pa en rett linje @, og A’ er et annet punkt
pé en annen rett linje a’ (lik eller forskjellig fra a), s& finnes det pa
a’ p4 en gitt side av A’ et punkt B’ slik at AB~A'B’.

2) Hyvis seks punkter 4, B, 4', B’, A", B" er gitt slik at AB~A'B’
og A'B'~ A" B", sa er ogsi AB~A"B".

3) Hvis B ligger mellom A og O, hvis videre B’ ligger mellom 4’ og
¢, og hvis endelig AB~ A’B’ og B0~ B'C’, s4 er ogsdh AC=A'C'".

4) Hvis en vinkel med vinkelben a, b er gitt og dessuten fra et punkt
O en strale a’, s finnes det pa en gitt side av a’ fra O en og bare en
strale b’ slik at Z(a, b)~ £(a’, b').

5) Hvis en for to trekanter ABC og A'B'C’ har at AB~A'B,
AC~A'C"og LBAC~ £LB'A'C’', sd har en ogsaat LABC~ L A'B'C’.

IV. Parallell-aksiomet!.

Gjennom et punkt utenfor en gitt rett linje a gar det ikke mer enn
én rett linje som er parallell med a.

V. Kontinuitets-aksiomet?.

P4 en rett linje a er gitt to punkter 4, og B og pa en rett linje a’
to punkter C' og D. Da eksisterer det et naturlig tall n slik at nir
Ay, Ay, ..., A, er punkter pd a som oppfyller betingelsene: A4,
ligger ikke mellom 4, og B, og 4; 1 4;2CD for i=1,2, ..., n, si
ligger B mellom 4, og 4,,.

Enhver matematisk setning gir utsagn om visse begreper som dels er
elementer og dels relasjoner mellom disse. Slike elementer er f. eks.
punkt, linje, vinkel, tall, likning, osv., og som eksempel pa en relasjon
mellom elementene punkt og linje kan nevnes insidens mellom dem,
dvs. at punktet ligger pa linjen (eller at linjen gir gjennom punktet).
De elementer og relasjoner som inngér i en teori, ma — sa vidt det er
mulig — defineres. Men i en definisjon kan en ikke unngéa & gjere bruk

1 Dette aksiomet er i realiteten det samme som Euklids parallellpostulat, som lyder
slik: Hvis to rette linjer @ og a’ i samme plan overskjeres av en tredje linje b, og de inn-
vendige vinkler p# samme side av b tilsammen er mindre enn 2R, vil @ og o’ skjzwre hver-
andre (nar de forlenges tilstrekkelig) p& den siden av b der de nevnte vinkler ligger.

2 Dette aksiomet kalles ogsd ofte Archimedes’ aksiom.
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av andre begreper, og pa samme méate som en ma bygge pi et antall
setninger som ikke bevises (aksiomene), ma en ogsd bygge pad visse
begreper som ikke defineres. Disse kalles grunnbegreper, og det er klart
at de vil forekomme i aksiomene. Disse grunnbegrepene bestar av grunn-
elementer og grunnrelasjoner.

P4 liknende vis som det star oss fritt & velge aksiomene innenfor
mengden av setningene i en gitt teori pa flere mater, kan ogsd grunn-
begrepene gjores til gjenstand for varierte valg. Saledes definerte Euklid
f. eks. bade punkt og linje, mens Hilbert ikke definerer noen av dem.
Han betrakter dem altsa som grunnelementer. Veblen?® satte i 1904 opp
et aksiomsystem (A system of axioms for geometry) der han innforer
punktet som grunnelement, men innforer samtidig slike relasjoner mel-
lom punkter at det blir mulig for ham & definere begrepet rett linje.

Ettersom grunnbegrepene ikke er definert, har vi selvsagt a priori
atskillig frihet nar det gjelder & tillegge dem de forskjelligste betydninger.
Og det viser seg ogsa at det ikke behover & beere galt avsted om en lar
grunnbegrepene skifte betydning. Et velkjent eksempel pa dette er jo
bruken av dualitetsprinsippet i projektivgeometrien: Nar en lar punkt
bety rett linje og omvendt, og en samtidig foretar visse ngdvendige
spraklige modifikasjoner, far en som resultat en fullgod geometri, og det
er en av projektivgeometriens eiendommeligste egenskaper at den »nye«
teorien er identisk med den opprinnelige. En oppnér ikke annet enn en
permutasjon av setningene.

Vi skal betrakte et eksempel der vi gir grunnelementene punkt og rett
linje og grunnrelasjonene mellom, kongruens og parallellitet i Hilberts
geometri en annen betydning enn den tilvante. For & skille tydelig mel-
lom de nye begrepene og de opprinnelige, skriver vi de nye med anfor-
selstegn, altsa »punkt«, »rett linje«, »mellom¢, skongruens« og »parallell,
mens vi skriver punkt, rett linje, mellom, kongruens og parallell rett og
slett nar disse begrepene har sin opprinnelige betydning.

Vi fikserer na et bestemt fast punkt O i planet. Ved »punkt« forstar
vi ethvert punkt som er forskjellig fra O, og ved »rett linje« forstar vi
enhver rett linje gjenmom O samt enhver sirkel gjennom O.

At »punktet« B ligger smellom« »punktene« 4 og C definerer vi pa to
mater (fig. 1) alt etter arten av »linjen« AC: 1) Hvis AC er en linje
gjennom O, og hvis ett av punktene O og B ligger pa linjestykket AC,
mens det andre ligger utenfor, s& sier vi at B ligger »mellom« 4 og C.
2) Hvis »linjen« AC er en sirkel gjennom O, sier vi at B ligger »mellomg
A og C hvis Bligger pa den av de to sirkelbuene 4C som ikke inneholder O.

1 Amerikansk matematiker av norsk slekt.
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PN
Det nye »kongruens«-begrepet definerer vi slik: La AB betegne av-
standen mellom 4 og B. Hvis vi da har gitt »punktene« X, Y, X', Y’,

Fig. 1

bestemmer vi (fig. 2) pa linjene OX, OY, OX’, OY' »punktene« X,, ¥,,
X,, Y, slik at

-~ —— - —— —— — ——
0X-0X, = 0Y-0Y, = 0X'-0X, = 0Y'-0Y,’

lik en pa forhand fastlagt konstant (40). Hvis nd XY ,=X,'Y/, s& er
ogsd XY > X'Y' (her er ~ symbolet for »kongruens«). For de »rette

7] Y, Y
Fig. 2

linjene« a, b, a’, b’ skal gjelde at Z(a, b)~ £(a', b’) hvis sirklene eller lin-
jene a og b skjerer hverandre i O under samme vinkel som sirklene eller
linjene a’ og b’.

To »rette linjer« sies & veere »parallelle« ndr minst en av dem er en
sirkel gjennom O, og de bergrer hverandre i O (fig. 3).

Hyvis en vil ha strevet med & gjennomgé alle Hilberts aksiomer, idet
en hele tiden gjor bruk av de nye begrepene »punkte, »rett linje«, »mellomg,
»kongruens« og »parallell, vil en finne at alle aksiomene oppfylles. Dette
kan en ellers innse direkte. Foretar man en inversjon med hensyn pa O,

Nordisk Matematisk Tidskrift. — 6
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vil »punkt« og srett linje« ga over i punkt og rett linje, og en ser lett at
relasjonene »mellom¢, »kongruens« og »parallell« transformeres over i de
vanlige mellom-, kongruens- og parallell-relasjonene.

Fig. 3

Denne siste betraktningsmaten viser oss dessuten at vi har neersagt
ubegrenset mulighet til & konstruere nye »geometrier« ved simpelthen &
overfore de vanlige grunnelementene, og i samsvar hermed ogsé de
vanlige grunnrelasjonene, til nye begreper ved en valgt transformasjon.
Ettersom de opprinnelige grunnbegrepene oppfyller Hilberts aksiomsy-
stem, vil ogsa de nye grunnbegrepene gjere det, og det vi egentlig far
fram ved en slik transformasjon, er i virkeligheten ikke annet enn en ny
modell av Euklids geometri. Dette leder oss til folgende definisjon av
Euklids geometri:

Ved en plan euklidisk geometri forstdr vi en geometrisk leerebygning, der
to grunmelementer (som wvi kaller punkt og rett linje), og dessuten visse
grunmnrelasjoner mellom disse (som vi kaller insidens, »melloms, kongruens
og parallellitet) oppfyller de krav som er gité i Hilberts akstiomsystem.

Hva den euklidiske geometri egentlig innebzrer, far en forst den rette
forstaelse av nar en enten sloyfer ett eller flere av Hilberts aksiomer eller
erstatier dem med andre (som da selvsagt ikke mé veere av en slik natur
at en senere kan utlede nettopp de aksiomene som ble sjaltet ut). Med
sine 14 aksiomer gir Hilberts system rik anledning til allehande varia-
sjoner. Det spors imidlertid om det overhodet kan komme noe fornuftig
ut av et aksiomsystem som er oppstatt som resultat av vesentlige en-
dringer i Hilberts system. Det vil selvsagt fore for langt 3 detalj-behandle
disse tildels vanskelige problemer her. Vi far ngye oss med & betrakte
det tilfellet som historisk har sterst interesse, og som har hatt den aller
sterste betydning for den geometriske forskning. Det gjelder de kon-
sekvenser det har, at en manipulerer med parallell-aksiomet (Euklids
femte postulat).

Gjennom alle tider har dette aksiomet veert gjenstand for matemati-
kernes spesielle interesse. Muligens fordi det er mindre innlysende enn
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de gvrige aksiomene, har en uvilkérlig fglt trang til 4 bevise pastanden i
aksiomet. Utallige er da ogsa de »bevis« som har sett dagens lys. Imidler-
tid led de alle sammen av en og samme mangel. De bygget nemlig —
enten stilltiende eller uttrykkelig — pa forutsetninger som i bunn og
grunn var likeverdige med parallellpostulatet.

Det var forst i det nittende drhundre at problemet om parallellaksio-
mets bevisbarhet ble definitivt lost, og den som aller forst loste floken
var Gauss (1777—1855). Han fant nemlig p4 & erstatte parallell-aksio-
met med dets motsetning: Gjennom et punkt utenfor en rett linje gar
det alltid mer enn en rett linje som er parallell med den forste. Med ut-
gangspunkt i denne nye pastanden bygget han si geometrien opp fra
grunnen av, idet han hadde en av folgende to muligheter som mal:
1) Enten ville han for eller senere komme fram til en selvmotsigelse, og
dermed fa konstatert at hans aksiom var galt og folgelig Euklids riktig.
2) Eller motsigelsen ville utebli slik at det nye aksiomet forte til en ny
»geometri« som nok ville vise seg & vare vesensforskjellig fra den tilvante,
men som logisk sett ville veaere holdbar. Og dette ville i sin tur bety at
Euklids femte postulat hverken kunne bevises eller motbevises. Men
uansett hvilket av disse to tilfellene skulle vere mulig, ville iallfall
spersmélet om aksiomets bevisbarhet veere lost.

Det viste seg at det resultat Gauss kom til, var tilfelle 2. Imidlertid
var det med dette som med s& mye annet av det Gauss gjorde, han lot
vere & offentliggjore disse epokegjorende resultatene. Senere kom
Bolyai (1802—1860) og nesten samtidig med og uavhengig av ham
Lobatsjefski (1793—1856) pa den samme ideen som Gauss, nemlig &
erstatte parallell-aksiomet med dets motsetning. Disse to kom da ogsé
til de samme resultatene, og ettersom de publiserte sine oppdagelser for
Gauss’ etterlatte papirer med de samme teoriene ble funnet, kaller en
den nye geometrien for Lobatsjefski-Bolyai’s geometrs. Vanligvis kalles
den imidlertid hyperbolsk geometri. Betegnelsen ikke-euklidisk geometri
brukes ogsé, men den er ikke entydig da den brukes om enhver geometri
som er oppstatt pd grunn av endringer i Hilberts aksiomsystem.

Vi skal ikke her komme nzrmere inn pa den hyperbolske geometri,
men bare nevne — som et eksempel pa hvordan denne geometrien av-
viker fra den euklidiske — at vinkelsummen i en trekant alltid er mindre
enn 2R. Nermere bestemt er differensen mellom 2R og vinkelsummen
proporsjonal med trekantens areal.

Ovenfor har vi vist hvordan en for den euklidiske geometri kan lage
modeller ved & gi grunnbegrepene ny betydning. P4 liknende mate kan
en ogsé lage seg modeller for ikke-euklidiske geometrier, og vi skal her
se pa en enkel modell for den hyperbolske geometri.

6*
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La a veere en rett linje i planet. Ved et »punkt« forstar vi na et punkt
pé en pa forhand fiksert side av linjen a. En »rett linje« er enten en halv-
sirkel med sentrum pé a eller en strale vinkelrett pa a og med begynnel-
sespunkt pa @, og som ligger pi den samme siden av a som »punk-
tene«. Vi skal ikke gjennomgi denne »geometrien« i detalj og derfor
heller ikke definere hva vi forstar ved grunnrelasjonene »insidensg,

P

a

Fig. 4

ymellom¢ og »kongruens«. Imidlertid er det betraktninger over parallell-
aksiomet som har ledet til den hyperbolske geometri, og det er derfor
naturlig at vi stanser opp litt ved parallell-begrepet. I denne modellen
vi betrakter, sier vi at to srette linjer« er »parallelle« nar de ikke skjeerer
hverandre. Denne fundamentale egenskapen samsvarer fullt ut med den
tilsvarende egenskap ved parallelle linjer i Euklids geometri. Det er
ogsi lett & se at den definerte »parallellitet« medfgrer at det gjennom
et »punkt« utenfor en srett linje« gir mer enn én »rett linje« som er
sparallell« med den forste (se fig. 4).

Til slutt skal vi nevne at allerede for bade Gauss, Bolyai og Lobat-
sjefski hadde jesuitpateren Saccheri (ca. 1730) funnet den hyperbolske
geometri. Nar han allikevel ikke har fatt sren av & regnes som oppdage-
ren av det forste eksempel pa4 muligheten av en ikke-euklidisk geometri,
henger det slik sammen: Som sine etterfglgere bygget Saccheri ogsé pa
parallell-postulatets motsetning, og han kom ogsa til de samme resul-
tater som Gauss, Bolyai og Lobatsjefski. Men de besynderlige egenskaper
ved den nye geometrien skapte konflikter i hans sjel. P4 den ene side
hadde han verden omkring seg, den hadde Varherre skapt, og i den
gjaldt Euklids aksiomer. Den nye geometrien hadde han selv skapt,
folgelig var den menneskeverk. Og som den troende katolikk han var,
s& han ingen annen vei ut av dette dilemma enn & forkaste sin egen teori
som falsk. Og som en naturlig konsekvens av dette sluttet han at Euklids
geometri var »riktige.



ANSKUELIG FREMSTILLING AV SUMMEFORMLER

JOHANNES LOHNE

1. Formelen for summen av de n forste naturlige tall:

n(n+1
1+2+3+...+n=—~(—2~—),

ses lett ved & sette sammen to kon-
gruente »trappefigurer«, som vistifig. 1.

2. Den tilsvarende formel for kva-
drattallene:

nn+1)2n+1
1z+zz+32+...+ne=l+_)é_)

kan illustreres pa lignende mate: Et
rektangel med sider 2n+1 og n(n+1)
bygges opp av seks omrader som hvert
har arealet 12+42%4 ... +4n2 Fire av
omradene er innbyrdes kongruente,
likesd de to gvrige. Fig. 2 illustrerer oppbyggingen for n=4, og inne-
holder i sitt indre de tilsvarende figurer for n=3, 2 og 1.

En annen figur til illustrasjon av samme formel er rekonstruert av

e ¢ 6 o o o .|
e 6 & o o o O-O]_
e 6 o o o ¢ o .TL

n+1
Fig. 1
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n(n+1)
Fig. 2
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J. E. Hofmann (smlgn. O. Becker: Grundlagen der Mathematik, s. 37).
Hans figur kan imidlertid ikke utvides for voksende n uten & endre pa
de byggesteiner som allerede er lagt.

3. Geometrisk enklere blir illustrasjonen av formelen for kubikktallene :

n(n+1)>2.

13424334+, 403 = ( 2

Formelen innbyr til & lage et kvadrat av fire like sett kubikktall, som
illustrert i fig. 3 med n=4.

4
38
23
¥ 7’
= .
& o o o o
o o0 o
e © o 0 ¢ o 0 o o
®© 6 o/ 0 0|0 o o
© © o o © o0 o o
® 6 0 o/ 6 06 00 0 ©0 00 o o o
® & & 0|0 0 o 0/0 0 © 0(0 ¢ o o
® &6 0 0|0 & 0 0 0 0 & 0|0 0 0o o
® O 0 0|0 o & 0 0 0 © 0|0 0 o0 o
n(n+1)

Fig. 3



VAD AR OPERATIONSANALYS?

LAMEK HULTHEN

Den mest kiinda definitionen av begreppet operationsanalys (OA) kom-
mer fran Morse och Kimball [1], vilka definiera OA som en vetenskaplig
metod att forse exekutiva organ med kvantitativt underlag f6r deras
atgirder. Ordet operation forekommer hér alltsa i den allménna bety-
delsen verksamhet eller funktion. Mera utfcrligt skulle man kunna be-
teckna OA som en rationell orsaks- och sambandsanalys av saddana for-
lopp, dir ménniskor, maskiner och organisationer &ro verksamma, sdsom
militira konflikter, trafik, produktion, ekonomiska skeenden, och i denna
analys spelar sannolikhetsbegreppet en liknande fundamental roll som i
den moderna teoretiska fysiken. Det dr dérfor inte si 6verraskande, att
de banbrytande insatserna i OA under det andra varldskriget [2, 3, 4]
gjordes av fysiker, t. ex. P. M. S. Blackett och E. J. Williams i England,
P. M. Morse i U. S. A. Man kan nog utan att géra nadgon »roverstatement
kalla Blackett for den moderna operationsanalysens upphovsman, dven
om det funnits ansatser tidigare (Lill 1889 [5], Lanchester 1916 [6]).
Savitt kint skrev han ocksd de forsta anvisningarna for OA-mén (1941)
och rubricerade d4 deras arbete som »Scientific Analysis of Operations«
eller »Operational Research« [7].

De metoder, som man anvinder inom OA, dro himtade frin matema-
tiken och den matematiska statistiken, fysiken, kemien, biologien, ex-
perimentell psykologi, kort sagt: matematik och naturvetenskap. Det &r
allts4 inte metoderna, som dro nya, utan deras anvindning. Ett visent-
ligt drag dr samspelet mellan teori och experiment, till vilket man da
givetvis riknar insamling av observationer och erfarenheter. Att statistik
och sannolikhetskalkyl spela en grundliggande roll vid behandlingen av
det empiriska materialet, har forut sagts, men det maste framhévas,
att man ofta kan komma ganska langt med réitt elementdra metoder,
vilket ocksd ett par av de fsljande exemplen torde visa. Det visentliga
fér en OA-man &r inte att behirska subtila matematiska metoder, utan
formagan till kritisk rationell analys av féreliggande data och héndelse-
forlopp.

[87]
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Solandt [8] framhaller som typiskt f6r OA, att den studerar en organi-
sation 1 arbete och beskriver dess metod ritt och slitt som en systematisk
anvindning av sunt fornuft (jir Goodeve [3]). Det dr egentligen omdojligt
att ge en allmén beskrivning av, hur en OA-mans arbete gar till, men
vi skulle efter Solandt kunna stélla upp foljande schema, som ibland kan
ha tillampning. Det &r alldeles fundamentalt, att man gor klart for sig
vad som &r

1. syftet med operationen eller verksamheten. Nista steg blir da att finna

2. ett mdtt pa verksamhetens effektivitet. I manga fall kan detta vara

svart, men har man vil funnit ett sidant méatt, s kan man i all-
méinhet ocksa finna

3. en metod att studera vad som paverkar effektiviteten. Det sista

steget blir sedan att pd grundval av dessa studier rekommendera

4. en digdrd, for att forbittra effektiviteten.

Det finns manga exempel pé vikten av att analysera, vad man egent-
ligen vill med en viss verksamhet. Nar engelska amiralitetet under andra
virldskriget fragade OA-ménnen, hur man skulle kunna sénka flera
tyska u-batar, nojde sig dessa icke med den givna problemstéllningen,
utan papekade, att vad man i ddvarande lige borde striva efter var,
icke att sinka s& manga u-batar som mdojligt, utan att f& s4 mycket ton-
nage som mdojligt over Atlanten. Vi kidnna alla den metod, som an-
vindes for att na detta syfte: konvojmetoden. Den har flera aspekter,
som &r typiska for OA, och vi skall dérfor dréja nagot vid den.

Som bekant bérjade fartygsforlusterna genom massanfall fran u-batar
bli sdrskilt kdnnbara 1942. Konvojernas medelstorlek var 40 fartyg,
och man hade vanligen 6 & 7 eskortfartyg per konvoj — det hade behovts
fler, men det fanns inte fler. Men det fanns i varje fall en sak, som kunde
varieras, och det var konvojens storlek. En undersokning av alla kon-
vojer, som seglat 6ver Atlanten fran 1941—1942, visade féljande resul-
tat [7]:

Konvojens storlek % forlorade fartyg
< 40 fartyg, medeltal 32 2,5%,
> 40 » » 54 1,1%

En enklare sammanfattning av ett statistiskt material kan knappast
tinkas, och &ndé ger det en upplysning av stérsta vikt. En ndrmare
granskning visade, att antalet forlorade fartyg per konvoj var ungefir
detsamma, oberoende av om konvojen var stor eller liten. Antalet
eskortfartyg hade da varit i stort sett detsamma f6r bade smé och stora
konvojer, och de anfallande u-batsflockarna hade inte heller varierat
mycket i storlek.
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P4 denna punkt kan nu limpligen den teoretiska analysen sitta in:
hur kan det komma sig, att férlusterna bli relativt mindre i en stor kon-
voj &n i en liten? Svaret pa fragan — eller rittare en del av svaret —
kan man fi genom ett enkelt geometriskt resonemang. Antag, att en
konvoj om 40 fartyg técker en yta, fér enkelhetens skull en cirkelytal,
med radien 1} sjomil =2400 m, och att eskorten haller sig 2 sjémil=
3600 m utanfér denna cirkel
(fig. 1). Eskortradien blir
ds 6000 m, och den om-
krets, som eskorten skall
ticka, 27-6000 m.,

Om vi nu 6ka konvojen
till 80 fartyg, sa tar den
upp dubbelt s& stor yta,
men konvojradien blir bara

]/5 génger s& stor som férut:

2400-)/2 m=3400 m. Med
oférandrat  eskortavstand
3600 m Dblir eskortradien
7000 m och den stricka,
som eskorten skall técka,
27-7000 m. Det betyder,
att 7 eskortfartyg kunna Fig. 1

vintas skydda en konvoj

om 80 fartyg lika effektivt som 6 eskortbatar skydda 40 fartyg.

Men, invinder nagon, en u-bat, som bryter genom eskortkedjan, har
ju flera fartyg att skjuta pa i en konvoj om 80 &n i en konvoj om 40.
Det #r visserligen sant, men u-baten har endast ett begrinsat antal
torpeder, kanske 6, och en viss triffsannolikhet f6r varje?.

En annan férdel med de stora konvojerna kan belysas med ett ex-
empel fran sommaren 1943. Man hade d& 11 grupper av eskortfartyg for
att folja de olika konvojerna pé nira hall. Dessutom héllos tre grupper
i reserv for undséittning till anfallna konvojer. Genom att minska kon-
vojernas antal med en tredjedel kunde man minska néreskortgrupperna
fran 11 till 8, medan undsidttningsgrupperna ckade fran 3 till 6. Det

1 Nedanstdende éverliggning galler i princip &ven for en langstrackt ellips eller vilka
likformiga konturer som helst; det framgér emellertid indirekt av resonemanget, att
cirkelformen ar den fordelaktigaste ur skyddssynpunlkt.

2 En forfattare erinrar om analogien med en jagare, som lossar sin bossa mot en flock
ander; han féller inte fler, om det &r 80 i flocken, &#n om det ar 40. Om jémfoérelsen ar all-
deles riktig, skall jag lata vara osagt, men den &r i varje fall typiskt engelsk.
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betyder alltsa, att chansen for att en anfallen konvoj skulle f& undsétt-
ning praktiskt taget 3-dubblades, eftersom antalet undséttningsgrupper
per konvoj 6kade fran 2 till §.

En trivial men vésentlig aspekt pad konvojproblemet dr féljande: for
att en u-bat eller u-batsflock skall kunna anfalla, maste den férst upp-
ticka konvojen. Hur foérhaller det sig dd med sannolikheten fér upp-
tickt? Antag, att en u-bat jagar i ett omrade med ytan A4, dir det i
genomsnitt finns n fartyg eller fartygsgrupper slumpvis férdelade. For-
utsitt for enkelhets skull vidare, att den optiska rickvidden dr R,
d. v. s. att utkiken ser allt, som passerar inom ett avstdnd! R. D4 u-baten
gatt en distans d, har den alltsd s6kt genom ett omrade av storleken

2Rd
2R-d (fig. 2), och bor da i genomsnitt ha sett — " av de fartyg (resp.

grupper av fartyg), som befinna sig dir. Man bor d& ocksd komma ihag,
att den effektiva réickvidden blir ndgot stérre mot en konvoj, eftersom
konvojen har en viss utstrickning (exempelvis en radie a) och det ricker
med, att u-baten uppticker ett av de ytter-
sta fartygen i konvojen. Rickvidden blir

da R+aist f. R.
Tag ett numeriskt exempel: i ett omrade
A 1000 x 1000 sjomil finnas 100 fartyg spridda
over hela omridet. En u-bat scker dver
2R en stricka av, 1at oss siga 150 sjomil per
dag, och ser allt inom 10 sjomil. Medel-

d antalet upptickter blir d&

150-20

7 .100 = 0,3;
1000- 1000

den uppticker alltsa ett fartyg i genom-

snitt var tredje dag. Vi g& nu till det mot-

satta extremfallet och anta, att alla 100

Fig. 2 fartygen dro samlade i en konvoj, som da

enligt vad vi forut sade har en radie av

2 sjomil, utan eskort; rickvidden blir d& 12 i st. f. 10. Chansen for
upptickt blir

150-24 36 1

1000-1000 ~ 1000 280

3

1 Observera, att endast erfarenhet eller experiment kan bestimma R, eller rittare
sannolikheten f6r upptéackt som funktion av det kortaste avstandet till den linje, lings
vilken féreméalet ror sig. Jamfor den sid. 98-100 (fig. 6) omnémnda undersékningen ang.
upptéckt av flygplan.
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d. v. s. en upptéckt pd 9 méanader, vilket gor uppgiften ganska hopplos
ur u-batens synpunkt. Delar man upp konvojen i 2 om 50 fartyg, som gé
helt oberoende av varandra, blir chansen fo6r upptickt praktiskt
taget dubbelt s& stor — alltsd ytterligare ett argument for de stora kon-
vojerna. ‘

Denna enkla uppskattning av sannolikheten for upptickt dr ett ty-
piskt exempel pa vad Blackett [7] kallar a priori-metoden: den innebir
att man gor en teoretisk analys av problemet a priori, d. v. s. i stort sett
utan anvidndning av empiriska data. Denna metod &r av sirskild vikt
vid analys av militédra problem i fredstid, d& man helt naturligt har be-
gransad tillgdng till praktiska erfarenheter av nya vapen, ny taktik
0.8.V.

Innan vi limna konvojproblemet, vill jag géra tva anméirkningar.
Den ena giller u-batarnas taktik mot konvojerna: den laga upptickts-
sannolikheten forbéttras inte s& mycket, om lat oss sdga 10 u-batar jaga
tillsammans, men dédremot, om de jaga var for sig. Chansen for upptickt
blir da praktiskt taget 10 ganger storre. Den bésta taktiken blir da:
spana var for sig, men samlas, innan en upptickt konvoj anfalles.

Den andra anmérkningen giller konvojernas storlek. Det bésta skyddet
mot u-batarna erhalles med stora konvojer, men gér man konvojerna
alltfor stora, kan man riskera, att exempelvis forlusterna i vintetid vid
konvojens samling blir en sa stor oligenhet, att man maste viga den mot
risken av fartygsforluster genom u-batsanfall. Véntetid betyder ju for-
lorad tonnagetid. Detta problem méaste rimligtvis ha beaktats pa ett
eller annat sétt, men mig veterligt finns det ingenting publicerat om det.
Jag nojer mig med att skissera, hur en sddan berikning kan goras:
Antag att konvojen bestir av N fartyg, som samlas t. ex. 10 per dag.
Tiden for samlingen blir da ;5N dagar, den genomsnittliga vintetiden
for ett fartyg ;5N dagar, och den totala tidsforlusten N:LN = N2
dagar. Antag vidare, att cykeln lastning—o6verfart—lossning—aterfart
tar 10+ 20+ 10+ 20=60 dagar. Om da ett fartyg for varje cykel far en
vintetid pa 60 dagar, sa blir det bara hélften s effektivt ur transport-
synpunkt. 120 dagars vintetid blir d& ekvivalent med 1 fartygsforlust.
Man bor vidare ta hinsyn till, att forlust av ett fartyg med last d4r mera
kannbar dn forlust av enbart fartyg; tag t. ex. virdet av fartyg med last
i genomsnitt = 5 fartyg. Vid en séinkning gér man dé i medeltal en forlust
ekvivalent med 3 fartyg (barlast pa aterresan). Antar man dessutom,
i 6verensstimmelse med tidigare citerade erfarenheter, att en konvoj vid
en fird over Atlanten i genomsnitt forlorar 7 fartyg, oberoende av kon-
vojens storlek, s blir den totala procentuella férlusten per konvoj om
N fartyg genom sidnkningar och véntetid
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3l N

¥ 2400
Betraktat som funktion av konvojstorleken N har detta uttryck sitt
minimum fér N =)/7200; om I~ 1, blir det optimala N-viirdet alltsa
80 & 90 fartyg?.

Man kan emellertid stélla fragan, om det hir anvinda kriteriet, att
den procentuella forlusten skall vara si liten som mojligt, r det mest
indamalsenliga.

- Om man exempelvis ér beredd att ta niagot storre forluster for att pa
kortare sikt fa 6ver s& mycket tonnage som mojligt, skulle i stéllet £6l-
jande kriterium komma i fraga. Antag M fartyg disponibla, uppdelade
pa konvojer om N st. (antalet konvojer alltsd M /N). Antalet fartyg,

M
som kommer fram, blir M — —1I, och tiden, som en resa tar for ett

fartyg 60+..N dagar. Om kvoten

!
-5 N-1
M- - 20M-——
N 1200N + N2
6O+§6

maximeras, fas N ~ ]/1200l, eller, om I~ 1, N ~ 35.

Jag skall hiir ocksa berdra en metod, som Blackett [7] dopt till varia-
tionsmetoden — en benimning som ur matematisk synpunkt inte &r all-
deles lyckad. Den borde hellre heta metoden med partiella derivator eller
nagot dylikt. Antag att vi ha nigon storhet y, som kan betyda utfallet
av en viss operation och beror pa olika variabler x,, z,, ..., %,, som
kunna vara t. ex. insatsen av olika vapen eller truppslag. Utfallet y &r
i allméinhet en mycket invecklad funktion av variablerna z,, z,, ...,
som #r omdjlig att bestdmma generellt, men man kan ofta fa en foére-
stillning om, hur funktionen varierar i ett visst variabelomrade genom
att anvinda den kinda utvecklingen

y+Ay = f(xg, 29, .. .) —aiAxl-{- —aJiAx2+ ey
0z, 0%
dér det i allménhet &r tillrdckligt att ta med de linedra termerna, om
variationerna Aw; inte dro alltfér stora. Genom att dndra en variabel i
taget, kan man f& en férestillning om de partiella derivatornas storlek,
t. ex. om endast x, varieras:

6l N
1 Betraktar man hela cykeln blir uttrycket N -+ 1200 och resultatet oférandrat.
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of " Ay

— A —

~ ’
or, Ax,

och kan sedan forutsiga, vad en annan #ndring av x,, fortfarande inte
alltfér stor, skulle ge f6r resultat.

Man kan sedan genom att halla z,; konstant och variera z, f& en fére-
stillning om niista partiella derivata

o A
o, Az,

Di man kinner dessa bada partiella derivator approximativt, kan
man tydligen ocks3 fa reda pa, vad en samtidig variation av z; och z,
skulle ge, nédmligen

of

Ayl,zfv P
1

Az, + —af— Az, .
0%y

Lat oss ta ett exempel fran affirslivet: en foretagschef vill veta, om
hans reklamkostnader iro ritt avvigda och fordelade. Forsiljningen y
ir en funktion av manga variabler, men i det hér fallet intressera vi oss
endast for, 1at oss siga kostnaderna for tidningsreklam x; & ena sidan,
for distribution av trycksaker och reklamartiklar #, & andra sidan. Han
varierar d& en av dessa kostnader i taget, och kan sedan av de resultat
han far, sluta sig till, vad en viss samtidig #ndring i #, och z, skulle ge
for resultat. Det bor framhéallas, att bestdimningen av Ay, etc. maste
ske med kritik och omdome: har vederbsrande valt t. ex. maj ménad
for sitt experiment med exempelvis Skad tidningsreklam, s& bor han
jimféra inte bara med april och juni innevarande ar, utan ocksd med
april, maj och juni féregdende ar. Man maste alltid vara pa sin vakt mot
variationer i utfallet, som bero pa4 andra orsaker #n den for tillfdllet
aktuella variabeldndringen.

Ett av de mest omtalade exemplen pa OA fran det andra virldskriget
ar E. J. Williams’ analys av taktiken vid flyganfall mot u-batar. Varen
1941 var situationen den, att antalet sinkta u-batar inte stod i rimlig
proportion till insatsen av flyg med sjunkbomber — den senare analysen
visade, att chansen fér en verksam trdff med en sjunkbomb mot en
u-bat var av storleksordningen 1 pa 1000! Sjunkbomberna voro vid denna
tid instillda for detonation pa 30 m djup. Anledningen var rent spring-
teknisk: experterna hade papekat, att explosion pa stérre djup gav
kraftigare verkan och storre rdckvidd. Trots att detta i och for sig var
alldeles riktigt, visade Williams’ analys, att just det stora detonations-
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djupet var anledning till den daliga tréffprocenten. Huvuddragen av
hans utredning voro fsljande:

U-baten dyker med en vertikalhastighet av ungefir 0,6 m/sek. For att
komma ner till detonationsdjupet maste den alltsa ha varit under dyk-
ning i 50 sek. Sitter man
sjunkbombens rickvidd el-
ler verkningsradie till 6 m,
s4 maste u-baten alltsid ha
T 30m gykt 4(?—60 s.fakunder .fére

etonationen for att befinna

Fig. 3 60sek sig pa ett djup, dir sjunk-

bomben kan ha nigon effekt

(fig. 3). Det var tydligen av vikt att f4 svar pa foljande fragor: I vilket

lage befann sig en u-bat i allméinhet, nir den anfélls av ett flygplan ?

Hur lang tid hade den varit under dykning ? Bearbetning av erfarenheter
fran faktiska anfall ledde till foljande statistik:

U-batens situation Antal fall
vid anfallet %
synlig 34
varit under dykning
hégst 15 sekunder 27
dito 15—30 sek. 15
dito 30—60 » 12
dito > 60 » 12

Detta betyder, att knappt ;. av u-batarna befann sig pa ett sadant
djup, 30+ 6 m, att de kunde paverkas av en sjunkbomb. Men hértill
kommer, att det omride, inom vilket u-baten kan befinna sig, riknat
fran dykvirveln, 6kar mycket kraftigt med dyktiden, ungefiar med tredje
potensen av denna. U-baten kan ju variera sin hastighet i bade horison-
tell och vertikal led, den kan gira o. s. v. (se fig. 4).

I den tillgingliga litteraturen har jag inte funnit négra siffror for
denna del av berikningen, men 1t oss anta, att u-batens horisontal-
hastighet under dykningen #r hogst 5 m/sek. Efter 60 sek. dr u-baten
da att finna inom en horisontell yta med lingd-dimension 300 m och
tvirdimensionen kanske 200 m. Om u-batens egna dimensioner &ro
65 % 6 x 4 och sjunkbomben har en verkningsradie pa 6 m, s blir alltsa
den yta, inom vilken man maste triiffa fér att u-baten atminstone skall
14 en skada i skrovet, ungefir 65 x 18 m, och chansen f6r att man skall
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65-18
300-200
0,02. Eftersom dessutom endast en knapp tiondel av u-batarna befann
sig pd ritt djup, blir chansen for en traff 6verhuvudtaget endast 1 pé
500 (jfr den forut citerade siffran 1 pa 1000, som géllde en »successful kill«).

Resultatet av Williams’ analys blev alltsad: den gamla taktiken for-
utsatte, att u-baten vid tidpunkten for anfallet befann sig pa ett djup,
som var ritt osannolikt (Z10%,) och
dessutom innebar, att u-biten var
lokaliserad inom ett stort omrade
och darfor svar att triffa. I stillet
borde man inrikta sig pa att u-baten
skulle vara synlig eller nyss ha
borjat dyka; detta var sannolikare
(~ 609%,) och dessutom var méalet da
beldget inom en mycket mindre yta.
Den praktiska rekommendationen ~. | ]
blev att minska detonationsdjupet 40 sek-zon [~ g

~

for sjunkbomben — Williams angav 60 s;/;.-z-o—n_]

6 m som lampligaste djup. Den nya
taktiken ledde ocksa till ett starkt
okat antal sidnkningar, trots att
sjunkbombens verkningsradie minskades genom det reducerade detona-
tionsdjupet. Lustigt nog forklarade den tyska krigsledningen de ckade
u-batsforlusterna med att engelsménnen infért en ny, betydligt kraf-
tigare sjunkbomb!

traffa riatt inom den yta, dér u-baten kan finnas blir ungefér

~ 4
~ -
S -

AN

Fig. 4

Ett beromt exempel pa »a priori-metoden« utgér Lanchester’s n2-lag
[6]. Antag, att tva styrkor A och B bekdmpa varandra genom nagon form
av beskjutning. Bada styrkorna antagas bestd av ett mycket stort antal
enheter, och varje enhet i 4 beskjuter ett visst antal enheter i B, och
omvint. Under ett tidsintervall dt har en enhet i A en viss sannolikhet,
sig odt, att forsitta en enhet i B ur stridbart skick. Finns det n , enheter
i A4, s& kunna dessa alltsd pa tiden df eliminera i genomsnitt n  odt
enheter ur B-styrkan, dir antalet &r ng.

Om éndringen i ny under tiden df kallas dng (—dng=1f6rlusten), sa
erhaller man tydligen fcljande differentialekvation:

dnB = —OénAdt N

och for A:s genomsnittliga forluster pa grund av B:s beskjutning far
man pa motsvarande sitt
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dér fdt¢ ar chansen for att en enhet i B under tiden d¢ skall eliminera en
enhet i A. Tydligen &ro « och g métt pa stridseffektiviteten hos en enhet
id, resp. B.
Genom att dividera de bada ekvationerna kan man eliminera df och
erhaller:
dng o ny

& dnB-dnA _ Oan2
dng B ng

, eller : = .
2
ng ny Pnrg

Denna ekvation séiger bl. a., att de relativa forlusterna dro lika stora, om
foljande villkor ar uppfyllt:
ang® = fng?.

A och B #ro da lika starka. Det riktiga mattet pa en stridande styrkas

effektivitet ar alltsd enhetens effektivitet, multiplicerad med kvadraten

pa antalet enheter. Om
any® > fng?,

s8 ar A starkare #n B och det forvintade resultatet av en drabbning

(= medelresultatet av ett stort antal sadana strider) blir, att A ned-

kimpar B, savida inte striden dessférinnan avbrytes, t. ex. genom att

B drar sig tillbaka.
Den forutnimnda differentialekvationen kan ocksa skrivas

ad(ng®) = pd(ng?),
och efter integration far man
(N 42—ny?) = B(Np*—ng?),

dir N, resp. Ny dr antalet enheter vid stridens borjan, och ny, ng
hinfora sig till en och samma senare tidpunkt. Om nu exempelvis 4
ar starkare &n B d. v. s.

aN 2 > N2,
s4 kan A vintas vinna striden, och han kan ur den nyss nimnda ekva-
tionen f& reda pa, hur stora forluster han maste rikna med for att full-
standigt nedkémpa B (ng=0). Svaret erhilles ur

(anZ = OCNA2_/3NB2,

dir n, nu betyder det antal enheter i A, som i medeltal kan vintas
atersta efter en fullstindig nedkdmpning av B.

Lat oss ta ett numeriskt exempel, som vi kalla »Nelson vid Trafalgar«
(efter en engelsk kollega). Nelson gar med 40 linjeskepp mot en fransk-




VAD AR OPERATIONSANALYS? 97

spansk flotta om 46 fartyg. Han dr vil i och for sig underligsen men
manovrerar si, att fransminnens linje klyvs i tva delar, och Nelson
kan koncentrera elden frin sina 40 skepp mot 23 av fransménnens. Vi
anta, att de olika linjeskeppen #ro likvirdiga och tillimpa Lanchester’s
lag for att berdkna, hur méanga engelska skepp », som kunna véntas
aterstd efter att de 23 franska satts ur stridbart skick. Vi fa

n? = 402-232 = 1071, n~ 33.

Forlusten skulle alltsd bli 7 fartyg — i verkligheten var den visst 5.
Efter en siadan inledning bér inte Collingwood ha svart att fullfélja
segern.

n2-lagen uppstilldes av F. W. Lanchester 1916 i ett numera klassiskt
arbete »Aircraft in Warfare« [6], men dess intuitiva anvidndning i krigs-
konsten #r férmodligen lika gammal som skjutvapnen (i betydelsen av-
standsvapen). Vid strid med handvapen man mot man kan situationen
vara sadan, att overligsenhet i antal inte kan utnyttjas, och da giller
snarare Lanchester’s s. k. lineéira lag.

Trafiken i det moderna samhillet utgor ett tacksamt filt f6r opera-
tionsanalys. Ett enkelt exempel: fran 1950 till 1951 dkade antalet bilar
i Sverige med 25%,, medan antalet bilolyckor ckade med 569%,. En for-
sikringsexpert uttalade, att den stora Okningen av olycksfrekvensen
finge tillskrivas de manga nya och ovana forarna. Bakom hans uttalande
lag tydligen den férestillningen, att antalet olyckor borde vara propor-
tionellt mot antalet bilar, under i &vrigt oférindrade betingelser. Ett
sddant antagande kan ju vara naturligt, ndr det giller olyckor, dir
endast ett fordon #r inblandat (typ dikeskorning pa grund av halt vig-
lag, for hog hastighet ete.). Men ett stort antal olyckor bestar ju i kolli-
sion mellan 2 fordon, och frekvensen av sadana olyckor bor snarare vara
proportionell mot antalet méten eller omkorningar &n mot antalet bilar
i och for sig. Hur varierar nu t. ex. antalet méten med antalet bilar?
Lat oss tdnka oss en lang och nagorlunda livligt trafikerad vig, dir det
under en viss tid kor n, bilar i den ena riktningen och n, i den andra.
Antalet moten blir d& i stort sett n,n,. Nu kan det ju vara ett rimligt
antagande att n, och n, var for sig #ro proportionella mot det antal
bilar, som finns i landet, under i &vrigt oférindrade betingelser, och
antalet méten mellan bilar blir d& proportionellt mot n? (motsvarande
giiller for omkérning). Det #r da strax litet mindre férvdnande, att an-
talet olyckor ckar med en faktor 1,56 =(1,25)2, nir antalet bilar okar
med faktorn 1,25.

Men 14t oss inte overdriva betydelsen av denna Gverensstimmelse,
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utan i stillet erinra oss den inte sa ovanliga typen av olycka: kollision
med motande bil vid omkérning. Dela in' de nyssndmnda n, bilisterna i
tvé grupper, en lingsam, antal /;, och en snabb, antal s;, och antag, att
alla de snabba bilisterna hinna kéra om alla de ldngsamma. Antalet
omkdrningar blir dé I;s,. Men chansen f6r att det skall intriffa en farlig
situation av ndmnda typ bor vara proportionell inte bara mot antalet
omkdrningar utan ocksd mot antalet métande bilar, tillsammans alltsd
l;81m5. Om vart och ett av dessa tre tal kan antas proportionellt mot
totala antalet bilar n, bor frekvensen av denna speciella typ av olyckor
(med 3 motorfordon inblandade) stiga proportionellt med %3, under i
ovrigt oforindrade betingelser. Resultatet av denna 6verliggning blir
sdlunda, att olycksfrekvensen O(n) inte kan vintas vara direkt propor-
tionell mot antalet motorfordon utan maste stiga betydligt snabbare:

O(n) = cym+con?+cynd .

Den starka okningen av olycksfrekvensen &r alltsa till stor del sren
automatike, som det heter nu fér tiden, vilket inte hindrar, att de ovana
forarna kunna ha spelat en viss roll i sammanhanget. Det som begrinsar
giltigheten av ovanstiende 6verliggning, dr kanske framfér allt psyko-
logiska faktorer, som t.ex. att storre trafiktithet framtvingar storre
forsiktighet hos forarna, vilket minskar koefficienterna (c, ¢y, ¢; ovan).
Hur stor denna mildrande effekt ér, kan endast en empirisk undersok-
ning avgora.

I framtiden komma sikert matematisk-naturvetenskapliga metoder
att anvindas pa samhillsproblem av mycket stérre vidd. En artikel av
Halsbury [9] 6ppnar intressanta perspektiv: han diskuterar bl. a. méjlig-
heten att med de metoder, som bruka bendmnas »linear programming«
bidra till att 16sa problemet om en rittvis och #ndamalsenlig inkomst-
fordelning i sambhéllet.

I det svenska forsvaret har operationsanalys i egentlig mening intro-
ducerats forst efter 1950, men den har redan givit viktiga resultat och
tenderar att f& allt storre betydelse, inte minst inom flygvapnet. Bland
de problem, som behandlats av dess OA-grupp, kunna efter vederborligt
tillstdnd f6ljande ndmnas.

Den optiska luftbevakningen skites av poster placerade i torn, helst
hogt beligna. For att en sidan bevakning skall bli effektiv fordras i ett
vidstrickt land som vart ett rdtt stort antal 1s (=luftbevakningssta-
tioner) och en motsvarande talrik personal. Uppenbarligen &ir det av
stor vikt att dessa ls férdelas pé ett dndamalsenligt sétt.

Om man ser bort fran terringens ojimnheter, bor man efterstriva en
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regelbunden fordelning, och det r da endast tva ytstrukturer, som kunna
komma i fraga: den kvadratiska och den hexagonala (fig. 5).
Antag, att det finns ett

o o o o o ()
storsta avstand R, bortom
vilket det &r omojligt for ett
normalt 6ga att se ett flyg- ° ° ° ° ° °
plan av viss typ. Lat oss /R IR
exempelvis stéilla fordran, ° o o o
att varje punkt pa kartan Fig. 5. Kvadratiskt och hexagonalt ytgitter.

skall befinna sig pa ett av-
stand <R frin dtminstone en gitterpunkt (Is).

I det kvadratiska fallet blir den ogynnsammast beligna punkten dia-
gonalernas skirningspunkt. Kvadratens sida far d& vara hogst R]/2, och
Is-tétheten blir da minst 1/2R2.

I det hexagonala fallet far den omskrivna cirkelns radie vara hogst =R
och triangelsidan B 1/5 Enhetsrombens yta blir %Rzl/g och minsta till-
latna téthet blir 2/3]/3R2.

Férhallandet mellan de minsta erforderliga téitheterna blir 4/3)/3=0,77
— det hexagonala ytgittret kriver salunda 239, mindre téthet &n det
kvadratiska, om man viljer det kriterium, som anférdes i borjan. I
praktiken blir det regelbundna monstret starkt modifierat av terrdngens
beskaffenhet, och den reella vinsten blir inte heller sa kraftig, men dven
om skillnaden i det behévliga antalet ls inte skulle vara mer &n 5 & 10%,
s& betyder det en stor besparing i materiel och personal.

inter Sommar

Fig. 6. Sannolikheten for upptéckt av viss flygplantyp p& lag hojd,
som funktion av dess kortaste avstand till observatoren.

il
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For att fa ett begrepp om den limpliga »gitterkonstanten« maste man
vidja till erfarenheten. En del experiment ha anstillts f6r att bestdimma
sannolikheten for upptickt av en viss flygplanstyp som funktion av det
kortaste avstdnd, pa vilket det passerar forbi resp. ls. Ur dessa forssk
kan man ocksd bestdimma sannolikheten for upptdckt som funktion av
avstdndet (positivt eller negativt) fran yttersta bevakningslinjen i en
viss Is-gruppering. Forsoken utférdes bade sommar- och vintertid under
i ovrigt sa lika betingelser som mdjligt. En del av resultaten aterges
utan skala i fig. 6. Skillnaden mellan sommar och vinter &r pafallande
trots att sikten i bégge fallen var sa god, att 6gats upplosningsférméga
kunde praktiskt taget helt utnyttjas. Forklaringen torde &tminstone
delvis ligga i horselns betydelse f6r upptéickten: under vinterférssken
stodo ls-posterna for kylans skull med pélskragarna uppfillda och 6ron-
skydden péa pélsmossorna nedfillda.

Det kan inte nog starkt framhallas, att den experimentella sidan av
OA ir lika viktig som den teoretiska. Liksom i den egentliga naturveten-
skapen dr det alltid erfarenheten, som har det sista ordet.

Spelteorien #r en gren av matematiken, som hor néra samman med
operationsanalysen och pa senare tiden blivit rétt mycket omtalad.

En utmirkt framstillning av spelteoriens grunder har redan givits i
denna tidskrift av E. Felner [10] (jfr ocksd McKinseys bok [11]). Jag
skulle hdr bara vilja understryka, att svarigheten i att tillimpa spel-
teorien praktiskt vanligen inte ligger pa den matematiska sidan, utan i
den virdering, som maste géras innan man kan stdlla upp en vinst-
matrix. Ett visst utfall av ett spel kan virderas helt olika i olika situa-
tioner, och féljaktligen kan ocksd den bésta »sstrategien« bli helt olika.

Det kan vara lampligt att sluta med en paminnelse om, att samma
begrinsning egentligen vidlader all operationsanalys. Resultatet av en
analys beror mer eller mindre kritiskt pa de forutsidttningar och virde-
ringar, som gjordes i dess bdrjan, och man maste dérfor stindigt vara
pa sin vakt emot alltfor vidlyftiga slutsatser.

LITTERATUR

[1] P. M. MorsE — G. E. KimBaLL: Methods of Operations Research. New York &
London 1951.

[2] J. G. CrowTHER — R. WHIDDINGTON: Science at War, kap. IT. London 1947.

[3] C. GoopEVE: Operational Research. Nature, March 13, 1948, pp. 377-384.

[4] P. M. MorsE: Mathematical Problems in Operations Research. Bull. Amer. Math. Soc.
54 (1948), pp. 602-621.




VAD AR OPERATIONSANALYS? 101

[5] E. Lir: Die Grundgesetze des Personenverkehres. Zeitschrift fir Eisenbahnen und
Dampfschiffahrt der dsterreichisch-ungarischen Monarchie, Heft 35 u. 36, 1889.

[6] F. W. LaANcHESTER: Aircraft in Warfare. London 1916.

[7] P. M. 8. BrackerT: Operational Research. The Advancement of Science V, nr. 17
(1948); idem, Operational Research, Recollections of Problems Studied, 1940-45.
Brassey’s Annual 64 (1953), pp. 88-106.

[8] O. SonaNDT: Observation, Experiment and Measurement in Operations Research.
Journal of the Operations Research Society of America (Jorsa) 3 (1955), pp. 1-14.

[9] EarL oF HaLsBURY: From Plato to the Linear Program. Jorsa 3 (1955), pp. 239-254.

[10] E. FoLNER: Elementer af von Neumann’s spilteors. NMT 1 (1953), pp. 115-126.

[11] J. C. C. McKinsgY : Introduction to the Theory of Games. New York 1952.

[12] McCroskEY & TREFETHEN: Operations Research for Management. Johns Hopkins
Press, Baltimore 1954.

Utom »Jorsa« hanvisas till den engelska tidskriften Operational Research Quarterly,
utgiven av the Operational Research Society, London.

Hafte 3, arg. 84, 1955 av den svenska »Artilleritidskrift« har helt dgnats operations-
analys.




BOKMELDINGER

JoE KENNEDY ApAwmSs: Basic statistical concepts. McGraw-Hill Book
Co., New York, Toronto, London, 1955. 16304 pp. sh. 41/6.

(Innholdsfortegnelse i NMT, dette hefte, s. 109.)

Forfatteren sier i forordet at boken er ment »primarily as a text for
a one- or two-semester course for students who have had little or no
previous calculus or statistics«. Han forutsetter siledes ikke kjennskap
til differensial- og integralregning.

I bokens 7 forste kapitler behandles endelige populasjoner og diskrete
sannsynlighetsfordelinger. Her presenteres leseren for en rekke av de
grunnleggende begreper fra matematisk statistikk. Savel intervallesti-
mering som statistisk hypoteseprgving med bruk av styrkefunksjon er
omtalt og belyst ved eksempler. Denne innfering er mulig selv om lese-
ren har smé matematiske forkunnskaper, si lenge en holder seg til ende-
lige populasjoner.

I de dernest folgende 7 kapitler behandles de vanligste kontinuerlige
fordelinger, og boken avsluttes med et kort kapitel om ikke-parametri-
ske statistiske metoder. Na er kjennskap til differensial- og integral-
regning ngdvendig, og forfatteren forklarer i et par avsnitt det han
mener er nedvendig & vite for 4 kunne folge med videre. Fremstillingen
far mer og mer karakter av oversikt, og setningen »we state without
proof« gir igjen stadig oftere. I Appendix B er riktignok noen av resul-
tatene utledet.

Etter hvert som den matematiske statistikk far storre og storre an-
vendelse innen naturvitenskapene, sosialvitenskapene, medisin m. m.,
blir det stadig fler som far bruk for & ha kjennskap til statistisk termi-
nologi, og hvordan problemene mé formuleres for & kunne behandles med
det matematisk-statistiske begrepsapparat. At forfatteren har tenkt seg
denne gruppe som lesere av boken, fremgar av Appendix A: »Some hints
on how to ask questions of mathematical statisticiansq.

Boken kan da ogsa anbefales alle som gnsker en kortfattet oversikt
over statistisk terminologi og tenkemaéte. Stoffet er oversiktlig og klart
fremstilt. Imidlertid tror jeg det er & frykte at leseren vil overse hoved-
pointene ved de statistiske teoremer pa grunn av besveer med & forsta

[102]
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den matematiske fremstilling, hvis han har si svake matematiske for-
kunnskaper som forutsatt i forordet. Arnijot Hoyland

Evine BoreErL—ANDRE CHERON: Théorie mathématique du bridge a la
portée de tous. (Monographies des probabilités 5.) 2me édition revue et
corr. Gauthier-Villars, Paris, 1955. 18--424 pp. fr. 2200.

(Innholdsfortegnelse i NMT 3 (1955), s. 170.)

For et par ar siden oppsto det i Norsk Bridgemagasin en sterre disku-
sjon om et bestemt bridgeproblem. I denne anledning fikk jeg forelagt
meg en rekke brev som redaktgren for magasinet hadde mottatt. Pro-
blemet var av en slik art at en skulle sannsynlighetsmessig beregne den
beste maten & spille en bestemt hand pa. Dette viste at sannsynlighets-
beregning i bridge i ganske stor utstrekning interesserte en stor del av
Norges bridgespillere. P4 den annen side viste brevene at norske bridge-
spilleres kjennskap til sannsynlighetsregning i bridge stort sett var be-
grenset til Culbertsons tabeller.

Uten da & ha lest den bok som né skal anmeldes, antydet jeg overfor
redaktoren at denne kunne tenkes & brukes.

Forfatterne behandler de forskjellige faser av et bridgespill:

1) Det & blande kortene.

2) For meldingene er begynt.
3) Det blinde utspill.

4) Spill og motspill.

Forfatterne har stort sett fulgt den linje at de har stilt problemene
generelt og s& ved eksempler behandlet spesielle problem. Ved endel
gvelse vil en lett kunne bruke teoriene pa de bridgespill en selv skal
behandle. Boken er skrevet pa en slik méte at en kan bruke den som
oppslagsbok uten & ha lest boken.

I forste og storste delen av boken er det matematiske formelapparat
og de matematiske resonnement redusert til et minimum. Dette gjor at
en kan lese og bruke de kunnskaper boken gir uten 4 métte kunne store
mengder med matematikk. For mere matematiske skolerte gjennomgas
teoriene i appendices. Bevisene virker ved gjennomsyn matematisk til-
fredsstillende.

Boken kan anbefales for:

a) Bridgespillere med interesse for sannsynlighetsregning i bridge.
b) Personer, som har et visst kjennskap til bridge og som egnsker &
finne eksempelsamlinger i sannsynlighetsregning.

Alf Gudbrandsen




104 LITTERATUR

Davip Foa: Matematik for landinspekiorer og skovbrugere. 2. udg. Den
kgl. Veterineer- og Landbohgjskole, Kgbenhavn, 1955. 391 s. D. kr. 32.00.

(Innholdsfortegnelse i NMT, denne &rgang, s. 41.)

Ved & lese gjennom innholdsfortegnelsen for boken far en det inntrykk
at det ma veere umulig & behandle hele den mengde stoff som er tatt med
pa sé liten plass. Det er derfor ikke uten spenning en begynner lesingen,
for &4 se hvordan forfatteren loser den vanskelige oppgaven. En skulle
vente at framstillingen ville bli springende nar si mange disipliner skal
behandles, men her ma en si at forfatteren pa en meget pen méate har
klart & smelte det hele sammen til en enhetlig framstilling.

Ved innfering av vektorregningen nytter forfatteren et venstrehands-
system. Her ville jeg langt ha foretrukket et hoyrehandssystem, for &
ha en framstilling som svarer til det en vanligvis finner ved anvendelser
av vektorregningen.

Avsnittet om kjeglesnitt og kjeglesnittsflater har en rekke meget pene
og instruktive figurer.

Nér det gjelder den relative vekt som er lagt pa de forskjellige emner,
vil det alltid vere plass for uenighet. Om det skulle vere tilfelle ogsa
for denne bok, regner jeg ikke det for noen nevneverdig innvending.

Gjennom alle kapitler merker en seg hvordan forfatteren har trukket
fram det vesentlige, mens spesialtilfeller er henvist til en mer beskjeden
plass.

I denne utgave er tatt med et kapitel om sannsynlighetsregning og
sannsynlighetsfordelinger, samtidig som en del kapitler er omarbeidet
fra forste utgave.

I tillegg til eksempler lost i teksten har boken en oppgavesamling ps
400 gvelsesoppgaver. Denne store og gode samling skulle vere en god
hjelp ved innarbeidelsen av de enkelte kapitler. Her savner jeg facit til
oppgavene. Det hadde utvilsomt veert en fordel & ha med.

Jeg vil karakterisere foreliggende utgave som en meget god lerebok.

Johs. Ostvold

H. Gask: Ordindra differentialekvationer. 2. uppl. (Lunds Matematiska
Sallskaps kompendier 3.) Lund, 1956. 45 s. Sv. kr. 8.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 109.)
Gennem dette lille hefte kan man paa behagelig maade stifte bekendt-
skab med elementer af de sedvanlige differentialligningers teori. I ind-

ledningen omtales praktiske problemer, der forer til differentialligninger,
og eksistens- og entydighedsspergsmaalet vedrgrende lgsningerne til en
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differentialligning af nte orden anskueliggores. Kapitel 1 behandler diffe-
rentialligninger af forste orden og giver nogle fysiske anvendelser. I
kapitel 2, der omhandler de linezre differentialligninger af nt¢ orden
med konstante koefficienter, startes med en helt elementer behandling
af tilfeeldet n=2, der er swrlig vigtigt for anvendelserne. I kapitel 3
bevises de klassiske entydigheds- og eksistenssetninger. Heftet slutter

med 45 gvelseseksempler og en tilhgrende facitliste. )
Erling Folner

H. HapwiGeR: Altes und Neues iber konvexe Korper. (Elemente der
Mathematik vom hoheren Standpunkt aus, 3.) Verlag Birkhéuser, Basel,
Stuttgart, 1955. 116 S. Brosch. SFr. 13.50.

(Innholdsfortegnelse i NMT 3 (1955), s. 116.)

Blandt de grene af geometrien, i hvilke man med relativt simple
hjzelpemidler kan né interessante og dybtgaende resultater, indtager de
konvekse figurers teori en fremtraedende plads. Mange anskuelige og faengs-
lende problemer vedrgrende plane konvekse figurer og konvekse lege-
mer tillader ret elementere, men ingenlunde trivielle lgsninger. Dette
omrade er let tilgeengeligt gennem en rakke boger, af hvilke ber nevnes:
W. Blaschke’s »Kreis und Kugel« (1916; ny udgave 1956) og T. Bonne-
sen’s »Les problémes des isopérimétres et des isépiphanes« (1929), end-
videre to russiske beger, nemlig en af L. Lusternik (1941) og en af I. M.
Jaglom og V. G. Boltjanskij (1951; en tysk udgave af denne mest ele-
menteere behandling, i form af opgaver, er annonceret), og endelig for en
del af indholdets vedkommende L. Fejes T6th’s »Lagerungen in der
Ebene, auf der Kugel und im Raum« (1953). Til disse fremstillinger med
hver sit serpraeg fojer sig nu Hadwigers lille monografi. Den tager et
vel afgreenset emne inden for teorien op til indgaende behandling og ferer
det frem til de nyeste resultater og dbne spergsmal.

Til et konvekst legeme knyttes som bekendt mangfoldige méltal, som
ikke sendres ved flytninger af legemet, f. eks. volumen, overfladeareal,
diameter (maximalafstanden mellem to af legemets punkter), den om-
skrevne kugles radius o.s.v. En central del af de konvekse legemers
teori beskaftiger sig med opgaver, der falder ind under folgende alminde-
lige problemstilling: Man betragter alle konvekse legemer, for hvilke et
(eller flere) méltal antager en given veerdi (givne veerdier). Man sperger,
hvilke indskrsenkninger dette medfgrer for veerdierne af et bestemt andet
maltal. Specielt interesserer man sig for dette maltals eventuelle storste
og mindste verdi og de legemer blandt de betragtede, for hvilke disse
veerdier antages. Resultaterne former sig som uligheder mellem méltal.
Betegner V voluminet og F overfladearealet af et legeme, udsiger f. eks.
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den isoperimetriske ulighed 36zV2< I3, at voluminet af et legeme med
givet overfladeareal F' er hgjst lig med voluminet af kuglen med samme
overfladeareal. Det centrale emne i Hadwigers bog er netop den nsevnte
problemstilling for de tre »fundamentale maltal« V, F og M. Her betegner
M, for legemer med kontinuert krummet overflade, overfladeintegralet
over middelkrumningen. Definitionen kan udvides til vilkarlige konvekse
legemer, hvor altsa f. eks. hjorner og kanter er tilladt; M viser sig i alle
tilfeelde at vaere 27 gange middelveerdien af afstanden mellem to parallelle
stotteplaner. Disse tre maltals seerlige betydning for teorien beror forst
og fremmest pa deres optraden i en formel for voluminerne af et konvekst
legemes sékaldte parallellegemer. Er K et konvekst legeme, og o et
positivt tal, forstds ved K’s ydre parallellegeme K, i afstanden o for-
eningsmeengden af alle kugler med radius g, hvis centrer hgrer til K.
For voluminet af K, har man da Steiners formel

V,=V+Fo+ Mo*+5mo®.

Forfatteren skriver det sidste led $Cg®, idet han af formelle grunde som
fjerde maltal indferer overfladeintegralet C' af den Gaussiske krumning,
hvilket for konvekse legemer jo altid har veerdien 4s. En karakterisering
af disse fire fundamentale maltal, som yderligere understreger deres sor-
stilling, skyldes Hadwiger selv. Er X(K), hvor K betegner et vilkarligt
konvekst legeme, et méltal, der afhseenger monotont af legemet og er addi-
tivt, da er det en linearkombination af de fire fundamentale méaltal med
ikke-negative konstante koefficienter. [ X (K) siges at veere monoton, nar
X(K')= X(K), dersom K’ er indeholdt i K, og at vere additiv, nar
X(K)=X(K,)+ X(K,)— X(K;,), hvor K, og K, betegner de dellegemer,
hvori K deles af en vilkarlig plan, og K, snitfiguren betragtet som (ud-
artet) konvekst legeme.]

Skent fremstillingen samler sig om undersggelsen af de fundamentale
maltal, bringer den et meget bredt udsnit af teorien, idet adskillige eldre
og nyere hjelpemidler og metoder til behandling af denne problemkreds
er medtaget. I forste kapitel giver forfatteren en oversigt over begrebs-
dannelser og resultater vedrerende konvekse legemers almene egenskaber,
deriblandt stetteplan og stottefunktion, Minkowskis addition af legemer
(desveerre med en fra den sedvanlige afvigende og uheldig betegnelse,
nemlig x istedet for +, der reserveres til betegnelse af foreningsmeengder,
skegnt U er kommet i brug herfor), parallellegeme, mal for afvigelsen
mellem to konvekse legemer, kontinuitet af maltal. Andet kapitel inde-
holder setninger om approksimation af konvekse legemer ved polyedre,
om Steiners symmetrisering og iser om effekten af en fglge af symme-
triseringer. Tredie og fjerde kapitel udger bogens kerne. Her indfgres de
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fire fundamentale maltal, og der bevises bl. a. den omtalte karakterise-
ring af dem. Dernsest behandles pa forskellige méder ulighederne mellem
dem, nemlig Minkowskis uligheder M2 > 4nF og F?>=3MV, den isoperi-
metriske og M3 >48z2V, der begge folger umiddelbart af de to farste,
forskellige skeerpelser af disse uligheder, diskussioner af lighedstegnene
og, tildels som hjelpemiddel, Brunn-Minkowskis setning. Blaschke har
bemserket, at der ma bestd endnu en, hidtil ukendt, ulighed mellem V,
F og M. En diskussion af dette spgrgsmal og de opnéede resultater af-
slutter fjerde kapitel. Det femte og sidste bringer en omtale af de mang-
foldige mader, pa hvilke de fundamentale maltal optreder i integral-
geometrien.

Bogens stil er knap. En del beviser er ret kortfattede og krever et
ikke helt ringe medarbejde fra leeserens side, hvilket dog lettes veasentlig
ved forfatterens praegnante og klare formuleringer. Leesere uden forkund-
skaber pa omradet vil utvivlsomt savne en omtale af de tilsvarende,
betydelig simplere, forhold for konvekse omrader i planen, og det mé
derfor tilrides dem at begynde studiet med en af de ovenfor nzvnte
bager. Den, der gnsker at treenge dybere ind i emnet og at stifte bekendt-
skab med de frugtbare ideer, som det er blevet beriget med i den senere
tid, vil fa et serdeles rigt udbytte af bogen og ved sammenligning med
eeldre fremstillinger og med afhandlinger konstatere mange smukke nye

drejninger og f kli .
Jnmng g foreniiger W. Fenchel

Pavr LorRENZEN: Einfihrung in die operative Logik und Mathematik.
(Die Grundlehren der mathematischen Wissenschaften 78.) Springer-
Verlag, Berlin, Géttingen, Heidelberg, 1955. 7+298 S., 1 Fig. DM 38.40,
ganzl. DM 42.00.

(Innholdsfortegnelse i NMT 3 (1955), s. 171-172.)

Denne boka representerer et noksé sjeldent fenomen innen matematisk
litteratur. Den er nemlig et vitenskapelig originalarbeide samtidig som
den i stor utstrekning m4 sies & veere forstaelig selv for ikke-spesialister.

Det forfatteren vil gi er intet mindre enn en ny begrunnelse av de
sentrale deler av -matematikken som aritmetikk, algebra, topologi og
analyse. Boka er delt i tre deler med overskriftene »Logik¢, »Konkrete
Mathematik« og »Abstrakte Mathematik«. Det er vanskelig pa noen f&
linjer & beskrive ngyaktig hvori Lorenzens nye begrunnelse bestar og
hvor den skal plaseres i forhold til tidligere retninger i grunnlagsforsk-
ningen. P4 mange mater kommer den kanskje nzrmest til Skolems rent
iinite« begrunnelsesméte, slik denne kom til uttrykk i hans rekursive
aritmetikk. Men Lorenzen er ikke s radikalt »finit« som Skolem var,
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idet Lorenzen f. eks. tillater kvantorer. Den del av matematikken som
Lorenzens undersgkelser angar er bare de omrader som kan fremstilles i
ren »kalkyl¢-form. Det vil si den del hvor matematikerens virksomhet
kan tenkes redusert til en skjematisk operering med figurer (symboler
pa et stykke papir) etter ganske bestemte regler. I bokens forste kapitel
er dette beskrevet utferlig i tilknytning til en rekke enkle eksempler pa
kalkylen. Nettopp fordi disse kalkylene ikke har noen vanlig matema-
tisk tolkning og er s4 meget enklere enn en ordiner matematisk kalkyl,
er de utmerket egnet til &4 belyse den rent formalistiske betraktnings-
maten som kommer til uttrykk ved det Lorenzen kaller »schematisches
Operierenc.

I annen del, »Konkrete Mathematik«, behandles i det vesentlige inn-
foringen av tallbegrepet. De naturlige tall fremkommer i Lorenzens
teori ved betraktning av »lengden« av symbolrekker og ved abstraksjon
utfra symbolrekker med like mange ledd. Innferelsen av rasjonale tall
byr ikke pa noe nytt. Men for 4 komme frem til de reelle tall og dermed
til analysen trengs forst en definisjon av mengdebegrepet, og her skiller
Lorenzens definisjon seg radikalt fra den mer ukritiske Cantorske defi-
nisjon. Lorenzens mengdebegrep baserer seg pa en teori for »Sprach-
schichten¢, som blant annet leder til at en i absolutt forstand i Lorenzens
oppbygging i det hele ikke far & gjore med annet enn tellbare mengder.
Det bemerkelsesverdige er at dette ikke synes & forhindre oppbyggingen
av analysen i noen vesentlig grad. Dette blir vist i detalj f. eks. nir det
gjelder derivasjon, malteori og Lebesgue-integrasjon. Denne annen del er
utvilsomt den mest tungleste i boka. Nar det gjelder den tredje del som
viser hvorledes den moderne matematikk — spesielt algebra og topologi
— innordnes i Lorenzens system, er denne relativt lettlest, spesielt for
en som er en del orientert om disse tingene pé& forhand.

Det er en ytterst interessant og til dels oppsiktsvekkende bok Lorenzen
har skrevet. Den vil selvsagt forst og fremst interessere logikk-spesialis-
ter, men den inneholder ogsa meget interessant stoff for en vanlig mate-
matiker, endog for en som ikke er noen spesialist p4 noe felt.

K. E. Aubert
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82. Berikna virdet av determinanten

0 sing sin2p  ...sin(n—1)p
sing 0 sing ...sin(n—2)p
D, = sin 2¢ sing 0 sin (n— 3)¢p
sin(n—1)p sin(n—2)p sin(n—3)p ... 0
A. Pleijel
83. La
f@) = 2" —a@2rt+ax"2— ... +(=1)"a, (ag = 1)
veere et polynom med nullpunktene 7y, o, ..., 7,. Vis at polynomet
F(z) = an— A1+ A2 — ... +(—-1)"4,
vil ha nullpunktene 3, 13, ..., r,3, dersom

AT = 2 A,[jkaiajak, r = ]., 2, ceey L
+j+h=3r
i<jsksn
Fori<j<k er Ay, =6 hvis i=j=k (mod 3), mens 4;;,= —3 i de ovrige

tilfelle. Videre er 4,;.=3, 4;;;=1.
vik we R. Tambs Lyche

84. La p og ¢ veere to gitte positive tall. For u >0 defineres en tall-
folge {c,} av positive tall ved

Nordisk Matematisk Tidskrift. — 8 [11 3]




114 OPPGAVER

q
€=U, Cp = Py +— .
c’n
Vis at .
lime, = &,
n—>oo

hvor & er den positive rot i likningen

3 — g2
= +q.
d pE+q R. Tambs Lyche

85. I et tetraeder betegnes lengdene av tre sidekanter som gar ut fra
et av hjernene, med a, b og ¢, og de tre vinklene mellom de samme kan-
tene med z, y og z. Vis at tetraedrets volum blir

$abc |/ 1+ 2 cosz cosy cosz — (cos2z + cos?y + cos2z) .
Y Y

Olav Bjorn Skaar

86. Prove
an¥® —1 = 0 (mod 4n?),

where n22, (a, 2n)=1, and ¢ denotes Euler’s function.

Martin Q. Beumer

87. a) Visa att orten for konstant synvinkel vid en parabel dr en
hyperbelgren.
b) Stk orten for lika stora synvinklar vid tva parabler.
Hj. Tallgvist

88. Vis at for alle naturlige tall m og n er

mm+1)(m+2) ... (m+n)
n!

et helt tall delelig med det minste felles multiplum for m, n + 1 og m+n.

89. Bevis identiteten

n

1 2n 1
22— = (=11
=1

i n+t )

LOSNINGER
37. Sett

1 1 1
S =ldgtede, op=ldod.tg (5=10y=0).
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Bevis identiteten

Py (”)Z(aﬁon_ﬁ2(3,—sn_,)2) — 6 (2n> P

y=0 \? n

R. Tambs Lyche

Losning: Idet n og » er hele tall, 0Sv=mn, definerer vi (vnx) ved

ny n!
<v,x) a 1+z)(2+2) ... v+z)(1-2)(2-2) ... (n—v—2x)

(onx) N (nn—x) - (1—x)(2—::)!... n—z)

Da blir (V”O) - (7:) en vanlig binomialkoeffisient.

forO<v<mn,

og

Av definisjonen folger

n n n—1
(1) ( >= ( ) for» > 0,
v, X v+x\rv—1,2

og

g (e = (o —a).

Idet p=0 er et helt tall, setter vi

(3) S, = :’; [(v?zx)z(wx)p + (v, n_x)z(v—x)p] :

Vi deriverer S, o to ganger, og ser da at venstre side av oppgavens
identitet blir .
Zn = k[Sn,O =0 °

I (3) setter vi v=n—pu og anvender (2). Vi far da

S (R (Y o [

n=n
eller

p
(4) Spp =2 (—1)P0 (2) 128y, p—q -

q=0

For p= 2 anvender vi (1) pa (3), og far
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n \> n \2

S = (o7 + =07 (o) ]+

n? 2[(

Setter vi her v=1+pu, s& far vi

2 2 p—2 _
) Sup = |(or,) e (") [0 3 (P72 0

Ligning (4) gir for p=1 og for p=3:

2
_ A\ —2
. )(1+v 1+2) +<

(6) 2Sn,1 = nSn,o
(7) 28, 3 = n38,, o— 3n?S,, 1+ 3ns, 5.

Ligning (5) gir for p=2 og for p=3:

n \2 n \2
902[(0, x) + (0, —x) } +n2Sn—1,0

n \? n\2 ,
(9) Sn,3 = ﬁ{((} .%') - (O _x> J +nz<Sn—1,0+bn—1,1) .

It

(8) Sn,2

Ligning (6) gir, nar » byttes om med n—1:
(10) 2Sn—l, 1= (n— 1)Sn-—l,() .

Av ligningene (6) til (10) finner vi etter eliminasjon av S 10 S,
8,3 0g 8,11, rekursjonsformelen

s 6x2<")2+( "y
( P = e |\, 2 0, —x)

423/ n \2 n \? 2n(2n-—1
) )
n® [\O, z 0, —x n?

Nar vi her deriverer to ganger og derpa setter z =0, far vi

Z = E+%"_(2ﬁf_l)2n_l .

n? n?
Ved induksjon bevises da lett at X, er lik hoyre side av oppgavens
identitet.
Den metode som er brukt til 4 utlede (11) er hentet fra en artikkel av
Tor B. Staver i Norsk Matematisk Tidsskrift, 4 hefte 1947.

Otto Marstrander
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50. Den ubestemte ligning ax®+by®+c2*=0 er selvsagt alltid losbar
nar f.eks. a+b=c, med z=y=1, z=—1. Vis at ligningen alltid er
mulig for enhver modul (smlgn. NMT 3 (1955), s. 52-53), nar

a?+b2 = c?,

altsa nar koeffisientene er Pytagoreiske tall.
Ernst S. Selmer

Da ingen losninger er innkommet, gjengir vi oppgavestillerens eget forslag:

Losning: Vi mé undersgke forholdene modulo 9 og modulo de primtall
r=38h+1 som gar opp i koeffisientene. Vi kan forutsette at a, b og ¢ er
parvis innbyrdes primiske.

La rlc; vi setter x=a, y= —b, z vilkarlig, og far

awd+ by + e = at—bt = (a2+b?)(a?—b?) = c*(a*—b%) = 0 (modr),

altsa er ligningen mulig modulo 7.
Vi kunne ogsa ha satt x=b, y=a, altsd

aa®+ byt +c2® = abd+ba® = ab(a?+b%) = 0 (mod 7).

Dette gir imidlertid ingen egentlig ny lgsning, for p. g. a. r[c?=a®+b? er

554 (mod r)
Hvis r|a (f. eks.), setter vi pA samme mate y=b, z= —c, eller ogsa
y=c, z=—b.
Forholdene modulo 9:
Da
2 = 0 eller +1 (mod 3)
ettersom

t

I

0 eller +1 (mod 3),

ser vi av a®+b2=c? (mod 3) at vi m4 ha 3|a eller 3|b, men 3+c. Laf. eks.
3|a, 3+4b, 3+c, altsd b* = ¢% (mod 9) .

Men herav fglger b= + ¢ (mod 9), og den gitte ligning er mulig modulo 9

med

x=0, y=1, z= F1(mod3).

74. Vis at

Otto Marstrander
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Losning: For at skaffe en rekkeudvikling af f(x)=(Arc sin x)? dannes

x 2
, f/(x) = 2 Arc sin -

() = 2 Arc sin z- + .
F'(@) 1— 22 (1—z2) 1—2a?

Dette viser, at f(x) er det partikulere integral til differentialligningen

d? d
( 2) _y_w y =2 s
de® “dx
der bestemmes ved linieelementet (z, ¥, y')=(0, 0, 0).
Saettes .
k=0
fas

be

[(k+1)(k+2) g, — k2aylak = 2,

B
Il
o

der med (z, y, y')=(0, 0, 0) giver
22.42.62 .. (2n—2)?

U =0, =0,0=1, a5, =0 o0g a,,= 345 on

Herefter ma
o 22.42.62 | 2n — 2)2
(Arcsin )2 = a2+ ) & ) z2m
o 3:4:5...2n

safremt potensraekken er konvergent. Dette er, da den har en kvotient-
raekke til overreekke, ialtfald tilfzldet for |z| < 1.
Saettes x =1, fas

2 Sl o 1
36 zné: @n)! %£1n2(2n)'
n

Hans-Otto Tonder

Ogsé lost av Rolv Rasmussen, Ragnar Johs. Solvang og K. Hove Storhoug.

75. Der er givet en konveks firkant ABCD med siderne a— AB,
b=BC, ¢c=CD og d=DA samt diagonalerne e=AC og f=BD. Vis, at
firkanten da og kun da kan indskrives i en cirkel, nar

ad + be

e
f ab+cd’

Fr. Fabricius-Bjerre
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Losning: Da firkanten er konveks, vil f avta nar e vokser og a, b, ¢ og
d er konstante. Da vokser e/f nar e vokser, og kan derfor ikke ha verdien
(ad +bc)[(ab+cd) i mer enn det tilfellet som er identisk med felgende:

Nar firkanten er innskrevet i en sirkel, er sin A =sin C, og sin B=sin D.
Av likningene for firkantens flateinnhold,

Had+bc)sind = }(ab+cd)sinB,
og for sirkelens diameter, e/sin B=f/sin 4, far en e/f=(ad + bc)/(ab +cd).
H. Killingbergtro

Ogsé lost av Chr. Andersen, C. Stan Andresen, Jarl Chr. Dyekjzr, K. Zeuthen Heidam,
Henrik Meyer, Flemming P. Pedersen, A. V. Peljo og Hans Rischel.

RESULTAT AV PRISTAVLINGEN FOR SVENSKA GYMNASISTER
(Uppgifterna i NMT 3 (1955), s. 180-181.)

Sammanlagt inkommo 13 svar, ddrav ett utom tédvlan. Forsta och andra pris
delas lika mellan Ulf Ottoson, Kommunala gymnasiet, Malmé och Rolf Hallstrom,
Hogre allminna liroverket for gossar & Sodermalm, Stockholm, vilka alltsa er-
halla 75 kronor vardera. Dessutom utdelas extrapriser i form av gratisprenumera-
tioner p4 NMT till féljande: Ivo Tammaru, Katedralskolan, Lund och Torsten
Ehlin, hal, Falun (2 argangar vardera) samt Olof Dahl, Vasa hal, Géteborg, Lars
Otto Nilsson, hal fér gossar, Malmé, Tord Holmstedt, hal for gossar, Hailsingborg
och Johan Martin-Léf, hal & Ostermalm, Stockholm (1 argéng vardera).

SUMMARY IN ENGLISH

AxE PrrwEL: Ivar Fredholm. (Swedish.)

A biography of the Swedish mathematician Ivar Fredholm (1866-1927), in con-
nection with the publication of his collected papers by the Mittag-Leffler Insti-
tute in Stockholm. The article is partly based on the paper by Nils Zeilon: “Ivar
Fredholm” (Acta Math. 54, 1930). In addition to an account of Fredholm’s life,
the main ideas of his fundamental results in the theory of integral equations are
explained.

JouN Orav STUBBAN: Axiomatic foundation of the euclidean geometry.
(Norwegian.)

After a few historical remarks on Euclid’s original system of axioms, it is stressed
that every such system should consist of independent and consistent axioms. As

an example, Hilbert’s famous system of axioms for the (plane) euclidean geometry
is given in full.
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In addition to the axioms, there are certain basic elements and relations (chosen
differently in different systems) that can not be defined. Within the same system,
the basic elements (e.g. point and line) and relations (congruence etc.) may be
given a different interpretation. As an example, Hilbert’s system of axioms is
“translated” by a transformation of reciprocal radii of the ordinary euclidean
plane.

A non-euclidean geometry results when one or more axioms of the euclidean
system are deleted or modified. A famous example is the hyperbolic geometry of
Gauss, Lobatsjefski and Bolyai, where the parallel-axiom is deleted. A few remarks
concerning this geometry conclude the expository article.

JOHANNES LOHNE: Graphical illustration of summation formulae.
(Norwegian.)

n
The well-known formulae for 2™ (m=1, 2, 3) are illustrated graphically in
figs. 1-3 pp. 85-86. z=1

Lamex HuLraéN: What is operational analysis? (Swedish.)

Operational analysis (OA) is defined as a scientific method for providing exe-
cutive departments with a quantitative basis for their decisions. It is important to
establish the purpose of the operation, a measure for its effectiveness, a method to
study how different factors influence the effectiveness, and finally recommendations
for improvement.

The following examples of OA are treated: 1° U-boat warfare, especially the
optimal size of convoys to minimize losses and/or waiting time in harbour. During
the last war, convoy losses were much reduced by increasing the size of each
convoy. 2° Blackett’s “method of variation”, estimating the size of each partial
derivative. 3° William’s analysis, during the last war, of aircraft attack on sub-
marines. The effect of depth charges was considerably increased by detonation on
& much smaller depth. 4° Lanchester’s “n2-law’ of warfare: The effectiveness of a
force in an artillery duel is really proportional to the square of its armed strength.
“Nelson at Trafalgar” is given as an example. 5° An application of OA to traffic
problems is mentioned. The rate of car accidents must be expected to grow much
faster than the number of cars in an area. 6° The author reports of certain tests
on aircraft detection by sight, performed by the Swedish airforce. The probability
of detection turns out to be greater in Summer than in Winter (fig. 6 p. 99), in
spite of almost identical visibility conditions. The difference is explained by the
winter-caps, which reduced the possibility of additional sound-detection.




