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TANKER OM TRE VIDENSKABER

N. E. NORLUND

Foredrag holdt ved et fellesmode i Dansk Matematisk Forening
og Dansk Geofysisk Forening i anledning af professor Nerlunds 70-ars fodselsdag.

Jeg vil begynde med at takke de to indbydende foreninger for den
venlige opfordring til at tale her i aften.

De grene af videnskaben, som jeg i szrlig grad har haft lejlighed til
at beskeftige mig med, er astronomien, matematiken, geodesien og til
dels ogsa fysiken, for s vidt som visse geodetiske mélinger har en rent
fysisk karakter. Jeg skal tillade mig at sige nogle ord om de tre forst-
navnte videnskabers rolle i vor erkendelse.

Intet kan vaere mere oplgftende og betagende end om natten, nar him-
len er skyfri, at betragte stjernernes vrimmel. Man far en levende falelse
af, hvor lille og ubetydelig man selv er, og det kan for nogle vaere gavnligt.
Den franske matematiker Henri Poincaré har skrevet nogle gribende linier
om astronomiens rolle, og da det vistnok ikke kan siges bedre, vil jeg
tillade mig at gengive dem:

Les Gouvernements et les Parlements doivent trouver que I’Astrono-
mie est une des sciences qui cotitent le plus cher: le moindre instrument
colite des centaines de mille francs, le moindre Observatoire cotite des
millions; chaque éclipse entraine & sa suite des crédits supplémentaires.
Et tout cela pour des astres qui sont si loin, qui sont complétement
étrangers & nos luttes électorales et n’y prendront vraisemblablement
jamais aucune part. Il faut que nos hommes politiques aient conservé
un reste d’idéalisme, un vague instinct de ce qui est grand; vraiment je
crois qu’ils ont été calomniés; il convient de les encourager et de leur bien
montrer que cet instinct ne les trompe pas, et qu’ils ne sont pas dupes
de cet idéalisme.

On pourrait bien leur parler de la marine, dont personne ne peut
méconnaitre I'importance, et qui a besoin de 1’Astronomie. Mais ce
serait prendre la question par son petit coté.

L’Astronomie est utile, parce qu’elle nous éléve au-dessus de nous-
mémes; elle est utile, parce qu’elle est grande; elle est utile, parce qu’elle
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est belle; voila ce qu’il faut dire. C’est elle qui nous montre combien
I’homme est petit par le corps et combien il est grand par 1’esprit, puisque
cette immensité éclatante ol son corps n’est qu'un point obscur, son
intelligence peut ’embrasser tout entiére et en gotiter la silencieuse har-
monie. Nous atteignons ainsi & la conscience de notre force, et c’est 14 ce
que nous ne saurions acheter trop cher, parce que cette conscience nous
rend plus forts.

Det er astronomien, som fgrst har leert os, at der findes love. Pa grund-
lag af Tycho Brahes observationer fandt Kepler og Newton den sldste
og den simpleste af alle naturlove, som styrer planeternes bevagelser.
Her pa jorden rader ikke den samme harmoni som i himmelrummet.
De feenomener, som vi kan iagttage, er langt mere komplicerede, ofte
tilsyneladende modstridende. Nar det alligevel er lykkedes til en vis grad
at beskrive mange feenomener ved andre love end den Newtonske, har
det betydet meget, at man har haft astronomiens ophgjede forbillede at
se hen til. Det var denne, som gav os det farste exempel pa en differen-
tialligning, som beskriver himmelmekanikens bevagelser. Uden dette
exempel havde videnskabsmeendene maske leenge tovet med at tage fat.
Under en altid skyet himmel havde det veret tifold vanskeligere at
kaempe sig ud af middelalderens morke og frigere sig for den aristoteli-
ske filosofis overveeldende indflydelse. Det er endvidere veerd at legge
meerke til, at i videnskaben finder man aldrig den i det borgerlige liv
hyppige vending: Denne lov glder ikke for Fargerne.

Astronomien har lert os, at naturlovene ikke er lokale, varierende fra
et sted til et andet, som de borgerlige love. Naturlovene er evige og
uforanderlige. De fjerneste dobbeltstjerner bevaeger sig i keglesnit som
vore egne planeter.

Jeg overgar nu til en gren af videnskaben, som i forgangen tid pi sere-
fuld made har veret repraesenteret ved vort universitet, men som der-
efter i et langt tidsrum var uden forbindelse med dette, indtil den i de
sidste artier atter har faet en tilknytning til vor hejeste lereanstalt. Jeg
teenker pd geodeesien, og jeg skal sige nogle ord om denne videnskabs
formal og om de bidrag, der fra dansk side er givet til dens wud-
vikling.

Af beretninger fra oldtiden kan vi se, at geodaesien er en af de ®ldste
videnskaber. Vi horer f.ex. om de @gyptiske harpedonapter dvs. tov-
spendere, der havde som opgave efter Nilens periodiske oversvemmelser
at udmale det frugtbare land for derved at sikre, at hver mand fik det
grundstykke, der tilkom ham. Af disse praktiske malinger opstod, siger
Herodot, den geometri, som senere kom til Grekenland. I geometrien
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har man ved abstraktion simplificeret den praktiske videnskabs opgaver,
s& at navnet geometri, der betyder jordmaling, er kommet til at betegne
en formel videnskab, der har fjernet sig sterkt fra de anvendelser, som
den skyldte sin tilblivelse. Som en utaknemlig sgn har geometrien i den
grad fornzgtet sin oprindelse, at den ikke vil vedkende sig de n®vnte
mere praktiske opgaver, og disse har ikke kunnet finde nogen plads inden
for geometriens rammer. Det er da giet omvendt af, hvorledes det plejer
at gi, den mindre beromte fader har mattet soge navneforandring, og
som betegnelse for de videnskabelige opgaver, jeg nu skal omtale, har
man konstrueret et nyt navn geodesi, der betyder jorddeling. Men i geo-
dsesien har man ogsd ved abstraktion simplificeret de praktiske opgaver,
og nogle forfattere har ladet sig forlede til at betegne denne videnskab
som en abstrakt naturvidenskab. ) ,

Man deler geodasien i to afsnit, som man med en noget uheldig be-
tegnelse kalder den hgjere og den lavere geodzsi. Indholdet af den sidst
naevnte kan kort karakteriseres som en geometrisk beskrivelse af jordens
overflade. Denne beskrivelse kan enten gives ved tal eller ved billeder.
Man opnér storst nejagtighed ved den talmsessige beskrivelse, der for et
system af udvalgte punkter giver koter og koordinater, f. ex. geografisk
lzzngde og bredde eller retvinklede koordinater. En sterre overskuelighed
og en for mange formal fyldestgorende ngjagtighed opnés gennem den
billedlige fremstilling ved kort, der giver en projektion af en del af
jordens overflade i formindsket mélestok. Den tredje dimension, hgjden
over havoverfladen, gengives enten ved niveaukurver, trukket gennem
punkter med samme hgjde, eller ved bakkestreger, toner, skygger, og
man har naet en stor kunstnerisk fuldkommenhed i gengivelsen af ter-
rainets relief.

Denne geometriske beskrivelse er imidlertid ikke s let at tilvejebringe,
som det ved ferste gjekast kunne synes, fordi de genstande, der skal
afbildes, er s& store, at vi ikke kan overse dem, og tillige fordi der i
resultatet kreeves en ikke ringe nejagtighed af hensyn til de praktiske
anvendelser. .

Disse omsteendigheder medfgrer, at der ved de grundleggende malinger
i geodesesien kreves en overmade stor ngjagtighed pd rundt regnet en
milliontedel af den stgrrelse, der méales, medens man i de fleste andre
omrader af videnskaben som regel er glad ved at opna en ngjagtighed pa
et par procent. Man kan angribe de geodztiske problemer pa flere for-
skellige mader, men hvordan man end vender eller drejer dem, s& steder
man stadigt p4 denne samme fundamentale kendsgerning, at méilengjag-
tigheden skal veere ca. en milliontedel. Dette bunder dybt i sagens natur,
men en sidan ngjagtighed ligger p4 den yderste grense af, hvad der kan
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realiseres. Den kan kun opnas ved anvendelse af en meget stor omsorg
og som resultat af komplicerede beregninger.

Men vi stegder ogsd pa en anden vanskelighed, som jeg skal illustrere
ved et exempel. Hvis man sperger om, hvor i denne sal dette vandglas
befinder sig, s& er svaret let at give, thi man behover blot at male vand-
glassets afstand fra veeggen i nord og fra veeggen i gst samt dets hgjde
over gulvet. Disse tre tal eller koordinater angiver pd entydig méade
vandglassets plads, og hvis jeg flytter det, s kan man med sterste lethed
genfinde dets tidligere plads ved hjewlp af de tre koordinater.

~ Men hvis jeg nu velger en genstand i Arhus og sperger om dens belig-
genhed i forhold til denne sal, sa er svaret ikke si let at give, thi nu
kan vi ikke umiddelbart male afstanden til den udvalgte genstand, men
m4 tage vor tilflugt til indirekte methoder, og det forer til en betydelig
komplikation.

Velger vi f. ex. Arhus Universitet og sperger, for at simplificere lidt,
om dets beliggenhed i forhold til Kegbenhavns Universitet, s& ligger det
nxr at svare ved at angive afstanden mellem de to universiteter og for-
bindelsesliniens retning. Men hvad mener vi i dette tilfzelde med afstan-
den ? Er det leengden af den rette linie, som forbinder de to universiteter ?
Nej, thi den gir gennem jordens indre og er utilgengelig for direkte
maling. Er det den korteste vej pa jordens overflade? Abenbart heller
ikke, thi Danmark bugter sig i bakke-dal, og den korteste vejs leengde
ville i hoj grad vere afhengig af, hvormange bakker vi tilfeeldigvis
métte passere.

En tilsvarende vanskelighed meder vi, nar vi skal til at forklare, hvad
vi mener med retningen af forbindelseslinien mellem de to universiteter.
Vi kan ikke maéle retningsvinklen direkte, vi mé indskyde en rekke inter-
mediere punkter. Men de retningsvinkler, som kan maéles i de interme-
diere punkter, ligger i forskellige planer. Hvorledes kan vi heraf aflede
den sggte retning ? Det er indlysende, at vi méa have noget fast, til hvilket
vi kan henfgre de sterrelser, som vi kan male. Det er ikke nok at sige:
afstand og retning det ved vi jo s& omtrent hvad er. Thi hvis vi vil undga
en yderst farlig fejlophobning, s mé vi kunne tilleegge disse to fundamen-
tale begreber en ganske preecis mening. For at opna dette mé vi have en
flade, pa hvilken vi kan projicere de punkter, der skal bestemmes.

I det exempel, som jeg forst nevnte, havde vi ingen vanskelighed ved
at finde os til rette. Det drejede sig om at lokalisere en genstand i denne
sal. Arkitekten har her givet os de forngdne koordinatplaner, nemlig
salens veegge og gulv.

Men i det andet exempel har vi ikke fra naturens hand faet noget til-
svarende, vi mé skabe det ved en abstraktion. Nar vi vil stedfseste gen-
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stande her pa jorden, ligger det ner at henfere dem til jordens overflade.
Men denne flade er alt for kompliceret til, at vi kan benytte den som
koordinatflade, og forgvrigt er det jo den lavere geodzsis og geografiens
opgave at beskrive selve denne overflade. Vi m4 altsi nedvendigvis have
noget andet, som vi kan henfere den til eller afbilde den pa. Nar et bjerg
angives at veere 1000 m hgjt, s& ma man komme overens om, hvad det er,
bjerget rager 1000 m op over, for at dette udsagn kan f4 en przcis mening.

Her treder nu den hgjere geodeesi hjelpende til, idet den ved en ab-
straktion indferer en ideel jordoverflade, som den virkelige jordoverflade
ved projektion afbildes p&. Den hgjere geodzsi er derfor en matematisk
disciplin, som handler om denne tenkte flades egenskaber, om lengden
af en geodetisk linie gennem to punkter pa fladen, ogsa kaldet punk-
ternes afstand, om vinkler malt pi fladen etc. Den hgjere geodeesis
forste opgave er da bestemmelsen af jordens form.

Dette problem fik allerede i oldtiden en forelgbig lesning, idet Pytha-
goras hevdede, at jorden er en kugle, og Eratosthenes bestemte dennes
storrelse. Han havde nemlig bemerket, at ved sommersolhverv faldt
solens straler lodret ned i en brond ved Syene, medens de samtidigt i
Alexandria dannede en vinkel med vertikalen pa 73°. Afstanden mellem
Syene og Alexandria anslog Eratosthenes til 5000 stadier, og han afledte
af denne den forste gradmdling en verdi for jordens radius, der kun af-
viger 159, fra den sande veardi.

Man havde siledes i oldtiden en ret god forestilling om jordens form,
og dette er si meget mere beundringsveerdigt, som pastanden om, at
jorden er en kugle, egentlig stir i modsatning til det, som den umiddel-
bare iagttagelse leerer os. Nar vi star ved strandbredden og kaster blikket
ud over det abne hav, si ser vi p4 grund af refraktionen, at horizonten
heever sig op over os, s& at vi tilsyneladende befinder os i det dybeste
- punkt af en hulformet skal. Derfor benyttede man ogsi, navnlig i seldre
tid, udtrykket den haje so, the high seas eller altum mare som betegnelse
for rum sp. Og i endnu hgjere grad forekommer jordoverfladen os skal-
formet, nar vi i en flyvemaskine haever os hgjt op. Men videnskaben lerer
os det modsatte af det vi ser: kugle i stedet for hulform.

Nar vi vandrer hen over det faste land, ser vi endvidere, at dette belger
op og ned, bjerg afveksler med dal pi en hgjst uregelmzessig made. Alle
disse ting som vi ser, den fysiske jordoverflades form i det sm&, behand-
les i geografien og topografien. Disse afvekslende former swtter vor fantasi
i beveegelse, og de kan henrykke os ved deres skanhed og rigdom, men
det er en endnu mere sublim tanke, at det hele ogsa har en form i det store,
over for hvilken bjergkeder og havdybder kun fremtraeder som neesten
umerkelige afvigelser. Denne form i det store, der altsi er i tilsyneladende
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modstrid med vore umiddelbare iagttagelser, ma da veere et resultat af
andre og mere dybtliggende erfaringer, der tvinger os til den slutning,
at skinnet bedrager os. Det er i virkeligheden en uhyre sum af tanke-
arbejde, der ligger koncentreret i pastanden om, at jorden er en kugle
med en diameter pa 12800 km. Dette tankearbejde er et ngdvendigt led
i dannelsen af vort fysiske verdensbillede. I dette billede mé jorden
indtage den vigtigste plads, thi den er den planet, hvorpa vi lever og der,
og alle vore forestillinger er knyttet til de jordiske f&nomener. Enhver,
der gnsker at danne sig en opfattelse af den ham omgivende verden, som
gar,ud over, hvad de mest nerliggende iagttagelser giver, kan ikke komme
uden om spergsmalet om jordens form. Og man vil ikke kunne nojes
med en omtrentlig besvarelse, thi jeg har allerede fremhavet, hvorledes
vore sanser skuffer os, og nar man heever sig op til noget, der ligger sa
ganske uden for vor umiddelbare forestillingsevne som et legeme af
jordens dimensioner, si mi man basere sig pa et exact reesonnement,
hvis man ikke vil risikere at na til et helt falsk billede. Men jeg har end-
videre pavist, at i den videnskab, der giver en ordnet gruppering af de
ting, vi ser pa jorden, er det en fundamental forudsatning for fortolk-
ningen af de malinger, vi kan anstille, at vi kender jordens form.

Det er da ikke et videnskabeligt raffinement, men en tvingende ngd-
vendighed, at vi forsgger at give et praecist og udtemmende svar pa
sporgsmélet om jordens form.

Er det nu rigtigt, at jorden er en kugle? I det 17. og 18. drhundrede
begyndte man at beskeftige sig mere indgaende med besvarelsen af
dette spergsmal. Picard og Cassini fader og sen udferte deres bergmte
gradmaling i Frankrig, og de fandt heraf, at jordoverfladens afstand fra
jordens centrum var sterre i Nordfrankrig end i Sydfrankrig. Heraf slut-
tede man, at jorden ikke er en kugle, men har form af en oval tilspidset
ved polerne. Dette resultat vakte stor opsigt, fordi det stod i modstrid
med den af Newton kort forinden fremsatte teori om den universelle
tiltreekning. Newton gik ud fra, at den matematiske jordoverflade matte
veere en flade i hydrostatisk ligevegt, og at kraften, der pavirker et
overfladeelement, er resultanten af tiltrekningen af samtlige massedele
og centrifugalkraften. Han kom derved ad beregningens vej til, at jordens
overflade matte vaere en omdrejningsellipsoide fladtrykt ved polerne.

En stor strid opstod mellem tilhsengerne af Newton og Cassini, og
hele den dannede verden tog ivrigt del i striden. Jordens form var blevet
provestenen for den universelle tiltreekningslov. Det franske Akademi
besluttede da at gore slag i sagen, og det sendte de to bergmte geodaeter
Maupertuis og Clairaut til Lapland for dér at udfere en gradmaéling, der
ved sammenligning med den franske kunne give svaret. Resultatet blev,
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at Newtons teori fandt sin bekreftelse, og Voltaire formulerede da en af
sine bidende sarkasmer: sMaupertuis a aplati les poles et les Cassinis¢.
Noget senere skrev Voltaire i sin Discours sur la modération fglgende vers:

Vous avez confirmé dans des lieux pleins d’ennui
Ce que Newton connut sans sortir de chez lui.

Disse sidste ord var uretferdige, og Voltaire var sikkert for klog til, at
han ikke skulle have forstaet det. De méa opfattes som et udtryk for hans
lunefuldhed og mangel pa madehold. Thi videnskabens opgave er jo
netop at prgve, om en opstillet teori bekreftes ved erfaringen eller ikke.
Kun ad denne vej kan videnskaben afslore for os den harmoni, som
rader i naturen. Teori og experiment er derfor uadskillelige i natur-
videnskaben. At tilsidesatte det ene for det andet ville veere meningslast.
Taget hver for sig ville teorien vare tom og experimentet blindt. Begge
ville veere uden interesse.

Man har da heller ikke villet ngjes med det ene af franskmendene
anstillede experiment. I den felgende tid blev der i mange forskellige
lande udfert gradmalinger, der tilsigtede at give et bidrag til beregningen
af de to bestemmende elementer i jordens form, nemlig radius ved squator
og fladtrykningen. Det viste sig nu, at man fandt forskellige veerdier i
forskellige lande, og jo mere maletekniken forfinedes, jo mere blev det
abenbart, at afvigelserne ikke kunne skyldes observationsfejl. Under
forsggene pa at sammenfatte alle disse malinger til et hele udvikledes
iagttagelsesleeren og sandsynlighedsregningens streenge principper, sa at
man derigennem fik et exact mal for de uundgéelige observationsfejls
indflydelse og en palidelig bestemmelse af de reelle afvigelsers storrelse.
Det blev nu klart, at omdrejningsellipsoiden kun var at betragte som en
approximation til den virkelige matematiske jordoverflade. Denne sidste
flade er for forste gang blevet defineret pa en tilfredsstillende made af
den tyske matematiker Gauss, s& at man nu ikke lengere risikerer, at
forbedrede malinger tvinger til at sndre begrebets indhold, saledes som
vi har set, at det to gange var sket. Gauss definerede den matematiske
jordoverflade som den flade, der overalt star vinkelret pa tyngdekraftens
retning og som gar igennem et fast punkt i havoverfladen ved middel-
vandstand. Denne flade kaldes geoiden, og alle hojder males som hgjder
over geoiden, fordi det geometriske nivellement som bestemmende ele-
ment benytter lodliniens retning. Geoiden er altsd en flade, som overalt
er horizontal. Da overfladen af en stillestiende veedske indstiller sig
vinkelret pa lodlinien, s4 ville altsd geoiden vaere sammenfaldende med
det blikstille hav, hvis der ingen ebbe eller flod og ingen stremninger i
havet var.
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Geoiden folger den fysiske jordoverflade i store treek, men har dben-
bart et langt mere regelmeessigt og glat forleb end denne. Ikke desto
mindre er geoiden meget for kompliceret til, at vi kan teenke pa at finde
et simpelt matematisk udtryk for denne.

Vi vil da kun kunne angive geoiden ved at henfere den til eller afbilde
den pa en anden og simplere flade. Men en sidan hjelpeflade behgver vi
ogsa for overhovedet at blive i stand til at udnytte vore stedbestemmelser,
det vil sige underkaste dem en matematisk behandling. Hvis man nem-
lig ville henfore dem til geoidefladen, s& ville vi fares til s& komplicerede
formler, at det ikke ville veere overkommeligt at regne med dem. Som
hjeelpeflade benytter man den ellipsoide, som slutter sig nermest til
geoiden. Denne kaldes spheroiden. De nyeste malinger tyder pa, at
spheeroiden er en treakset ellipsoide, hvilket er s& meget mere overra-
skende, som efter Poincaré’s og Darwin’s undersggelser kun omdrejnings-
ellipsoiden er en ligevagtstigur, medens den treaksede ellipsoide er instabil.

Geoiden bglger op og ned i forhold til spheeroiden. Under de store hgj-
lande heever geoiden sig indtil hundrede meter over sphzroiden, og pé
visse steder i verdenshavet senker den sig til en tilsvarende dybde.
Dette er ikke s4 lidt, nir man betenker, at et nivellementspunkts hgjde
bestemmes med millimeters ngjagtighed.

Imidlertid er man for tiden ikke i stand til at bestemme sphoeroiden
med en fyldestgerende ngjagtighed, fordi det kun er en lille del af jordens
overflade, som er godt opmalt. Man mé derfor indfgre endnu en tilnzr-
melse og benytte den sakaldte referensellipsoide i stedet for spheeroiden,
og som sidan veelger man en ved de for naevnte gradmélinger bedst
muligt bestemt ellipsoide, som inden for et mindre omride slutter sig
ganske godt til spheeroiden. Det er da til referensellipsoiden, man hen-
forer de geodatiske malinger. Men ulykkeligvis benytter Danmark en
referensellipsoide, Tyskland en anden, Frankrig en tredje, England en
fjerde o.s. v. Forst for nylig er man enedes om en fxlles ellipsoide til
videnskabeligt og til militert brug. Men de store kortveaerker hviler sta-
digt pa de nationale ellipsoider. Dette betyder, at tallene i de pageldende
lande taler et forskelligt sprog, men naturligvis kan de oversattes. En
sadan oversattelse kreever et stort arbejde, men det er pd den anden
side indlysende, at veerdien af de allerede udferte geodeetiske malinger
ikke forringes af den omstendighed, at man til sin tid bliver nodsaget
til at underkaste dem en fornyet bearbejdelse, nir man har fundet en
bedre referensellipsoide, end man nu har.

Jeg vender nu tilbage til den simple opgave, som jeg begyndte med at
nwevne, nemlig stedbestemmelser her pa jorden. Lgsningen af denne op-
gave er forudsstningen for, at vi kan give en ordnet og ngjagtig beskri-
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velse af den relative beliggenhed af de ting, vi ser pa jordens overflade.
Men De vil se, at den lgsning, vi er naet til, er ejendommelig. Nar vi vil
angive et punkts beliggenhed, s& mé vi hertil have tre koordinater. De
to koordinater er vi fortrolige med under navnet leengde og bredde. Disse
fas ved at projicere punktet pa referensellipsoiden og pi denne udmaéle
leengde og bredde. Men referensellipsoiden er en abstrakt matematisk
flade, og de malinger, der tjener til dens bestemmelse, har egentlig til
forudsetning, at vi allerede kender den, sa at opgaven kun kan lgses
ved en rxkke successive approximationer. Den tredje koordinat, hgjden
regnes ud fra en helt anden flade, geoiden, hvis forlgb i forhold til sphze-
roiden eller referensellipsoiden vi ikke kender.

Vi fores da til en ny problemstilling, nemlig den opgave at bestemme
bade geoiden og spheroiden, og dette problem kan atter kun lgses ved
en rakke successive tilnermelser pa grundlag af et stort antal malinger
fordelt over jordens overflade. Ved behandlingen af disse vanskelige op-
gaver tvinges man til at indfere endnu en hjwlpeflade, den sakaldte
niveauspheroide, der er en tilnermelsesflade til geoiden, der omtrent haever
og senker sig lige ofte i forhold til denne inden for kontinenternes omrade.
Niveausphezroiden er en algebraisk flade af 14. grad, der slutter sig ret
ngje til en ellipsoide, den bglger op og ned i forhold til denne, og den
storste afvigelse mellem de to flader overstiger ikke 17 m. Vanskeligere
er det at bestemme geoidens kontinentale undulationer i forhold til
niveausphsroiden. For nogle decennier siden udkom der flere store ar-
bejder desangdende, hvori det hevdes, at hojdeforskellen mellem de to
sidstnaevnte flader nar en storrelse af 2800 m. Dette resultat ser bestik-
kende ud, men det er fremkommet ved en urigtig fortolkning af det
matematiske grundlag for alle disse betragtninger. Hojdeforskellen mel-
lem de to flader vil ikke kunne overstige 100 m. Af den sidste bemzrkning
vil De forstd, hvor langt man endnu er fra at veere naet til en endelig
losning af de omhandlede problemer.

Nar man tager i betragtning de store bjerghgjder og havdybder, som
den fysiske jordoverflade udviser, s4 ma man egentlig overraskes over,
at de kontinentale geoideundulationer ikke er stgrre end anfert. Men
dette beror pa, at de synlige overskud og underskud af masse i jord-
skorpen i betydelig udstraekning er kompenseret ved underskud og over-
skud i de dybere lag. Med andre ord under oceanerne befinder sig lag af
en storre teethed og under kontinenternes hgjdeplateauer lag af en ringere
teethed end den normale. I en dybde af ca. 120 km finder man en flade
saledes beskaffen, at vertikale prismer af samme tveersnit mellem denne
flade og den fysiske jordoverflade indeholder samme masse, hvor man
end vealger prismet.
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Det viser sig nu, at en underspgelse af denne sidstnzvnte flade er et
nodvendigt led i bestemmelsen af geoiden. En sddan undersogelse af
jordens isostasi giver os tillige et sére interessant indblik i de geologiske
kreefters natur og det seculere forlgb af forandringerne i jordskorpen.
Jordens indre giver efter for stadigt virkende krzafter. Bestraebelsen efter
isostasi medferer udligningsbeveegelser, som tilvejebringer hydrostatisk li-
gevaegt. Udligningen foregar ved forskydninger af masserne i jordens indre.

Alle de her nzvnte undersggelser baseres pa de geodwetiske méalinger.
Blandt disse er navnlig gradmalingerne af stor betydning. En gradméling
foretages efter det forn@vnte allerede af Eratosthenes benyttede princip.
Man udvelger to langt fra hinanden beliggende punkter pd jorden og
bestemmer dels deres linezere afstand udtrykt f. ex. i meter, dels deres
vinkelafstand ved astronomiske stedbestemmelser i de to punkter. Men
hvis punkterne ligger f. ex. 1000 km fra hinanden, sa ville det vare en
ganske uoverkommelig opgave at direkte maile afstanden mellem dem.
Man benytter derfor en indirekte methode, idet man i et jevnt fladt
terrain udvelger en basis af en leengde pa nogle fa kilometer, og man
udmaler omhyggeligt denne basis. Dernsst forbinder man basisliniens
endepunkter og gradmaélingsbuens endepunkter med et net af trekanter,
hvis vinkler man alle maler. Man er da i stand til af basis leengde at
beregne alle trekantsidernes lengder og deraf atter gradbuens lengde.
Man vil da ogsa med fordel kunne foretage astronomiske stedbestemmel-
ser i en del af trekantpunkterne, og man forbinder disse ved et nivelle-
ment. Denne proces, som man kalder triangulation, bliver siledes den
grundleggende methode i geodzesien.

Der gives imidlertid ogsd en helt anden methode til bestemmelse af
jordens form. Denne methode, der er lettere at praktisere, bestar i at
male tyngdekraftens storrelse i et stort antal punkter fordelt over jor-
dens overflade. Hvis jorden var en homogen kugle, s& ville man overalt
finde samme veerdi for tyngdekraften, men man finder meget forskellige
veerdier. Af hvad jeg allerede har sagt, vil De let indse, at ndr man
kender en lineszer afstand f. ex. radius ved @quator, sa kan man af diffe-
renserne mellem tyngdekraftens storrelse i forskellige egne beregne jor-
dens form.

Jeg vil nu kort omtale de bidrag, der fra dansk side er givet til geodee-
siens udvikling. Jeg betegnede for triangulationen som den grundleg- .
gende methode i geodewsien. Denne arbejdsmethode er ikke blot af af-
gorende betydning for behandlingen af de vanskelige og dybtliggende
problemer, som jeg nu sidst omtalte, men den er det ogsa for den opgave,
som jeg forst nevnte, nemlig for kortleegningen. Vi har alle set gamle
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kort, som giver et i hgj grad fortegnet billede af det pigzldende land.
Sadanne kort er tilvejebragt ved stykkevis opmaling af mindre omrader
uden faste holdepunkter, og de forskellige sméa omrader er derefter fgjet
sammen til et sterre kort. Ved en sadan fremgangsméde vil de uundgde-
lige malefejl summere sig op, og man vil f& et ganske falsk billede. Den
methode, man skal benytte, er den omvendte af den her skitserede. Man
bedskker forst et storre landomriade med et net af store trekanter, og
disse fylder man atter ud med mindre trekanter, indtil man fir et til-
streekkelig teet system af fixpunkter. Mellem disse triangulatorisk be-
stemte fixpunkter kan man da uden fare udfgre kortleegningen stykkevis.
Triangulationen bliver altsd det faste skelet, hvorpa kortet bygges op.

Triangulationens princip er dels dette, at man for at bevare ngjagtig-
heden gar fra de store former til de sma og ikke omvendt, dels at man
hovedsagelig baserer sig p& vinkelmdlinger og kun bestemmer en enkelt
eller nogle f4 basislinier. Man har tillagt hollzenderen Snellius wren for at
have opfundet den triangulatoriske methode, og han har herom skrevet
et beromt verk: Eratosthenes Batavus, men jeg har for nogle ar siden
pavist, at det i virkeligheden er en dansk mand, som for forste gang har
gjort brug af denne methode. Denne mand er ingen ringere end Danmarks
store vidtbergmte astronom Tycho Brahe.

Tycho Brahe tegnede et kort over Hven, som var baseret pd en tri-
angulation mellem et stort antal punkter pi gen. Han udferte ogsé en
stortriangulation mellem Uranienborg, Vor Frue Kirke, Roskilde Dom-
kirke, Kgge, Malmg, Landskrona, Lund, Helsingborg, Helsingor o. s. v.,
og han malte en basis p4 Hven mellem St. Ibs gamle kirke og Uranien-
borg. Efter Frederik IIs ordre blev der ogsd malt en anden basis mellem
Helsinggr og Helsingborg den 27. januar 1585, da det salte hav var dek-
ket af is, som skrevet star. Tycho Brahe og hans elever foretog endvidere
astronomiske stedbestemmelser i et stort antal punkter i Jylland, p&
Fyen, Sjzlland og i Skane. Det var planlagt at konstruere et kort over
hele Danmark, og i et interessant brev, som Tycho Brahe sendte Anders
Serensen Vedel, anbefaler han at benytte den triangulatoriske methode,
men disse planer blev ikke realiseret.

Tycho Brahes arbejder blev dog ikke uden indflydelse pa geodwsiens
udvikling i vort land. I det 17. &rhundrede er flere geodaetiske veaerker
blevet udgivet i Danmark, og mend som Longomontanus, Rasmus
Bartholin, Hans Lauremberg og Ole Romer beskeftigede sig med topo-
grafiske arbejder. Blandt dem, der er blevet pavirket af Tycho Brahe,
vil jeg swrlig nevne Johannes Mejer, som udarbejdede et udmerket
kort over Slesvig og Holsten, der udkom i 1652. Efter at vere blevet
udnzevnt til kgl. matematiker gik Mejer med utrattelig energi i gang med
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en kortlegning af hele Danmark og konstruerede omtrent 300 kort over
de forskellige landsdele. Det var en nasten ufattelig stor preestation for
en enkelt mand uden medhjzlpere. Johannes Mejers kort over Danmark
blev forst udgivet under den sidste verdenskrig af Geodswtisk Institut i
et stort stateligt veerk i 3 bind. Disse kort udger en rig kilde til kundskab
om vort land p& Christian IVs tid.

I 1757 overdrog Videnskabernes Selskab den matematiske professor
Peder Kofod at konstruere et kort over Kobenhavns omegn. Ulykkeligvis
dode Kofod 4 ar senere, men det arbejde, han havde pabegyndt, blev
indledningen til en stort anlagt geodeetisk méling, som strakte sig over 80
ar og udfertes pa Videnskabernes Selskabs initiativ. Et net af trekanter
blev udstrakt over hele Danmark, og p4 grundlag af disse konstrueredes
et kort i malestokken 1:20000, som blev udgivet i 1:120000. Sjelen i
dette store foretagende var Thomas Bugge, som var professor i matema-
tik og astronomi ved Kebenhavns Universitet. Disse pa et tidligh tids-
punkt konstruerede kort nad med rette stor anseelse, og de dannede i
lange tider grundlaget for vort lands topografi.

Bugge havde til hensigt at benytte den under hans ledelse udferte
triangulation til en szrlig dansk gradmaling, men han blev for sent op-
merksom pa, at de benyttede trekanter var for smé og for uregelmassigt
formede og den opnaede ngjagtighed derfor ikke tilstreekkelig stor. Denne
plan matte derfor opgives.

Det blev da overdraget til Bugges efterfolger som professor ved uni-
versitetet Hans Christian Schumacher at udfere en sadan gradmaling.
Schumacher lgste denne opgave med stort talent, og han blev den forste
direktor for den danske Gradmaling, som oprettedes 1816. Frederik VI
nzrede stor interesse for sagen, og han udrustede Schumacher med rige-
lige midler til arbejdets gennemforelse.

Schumachers gradmaéling vandt stor paskennelse, og den kom til at
danne forbilledet for tilsvarende arbejder i udlandet, som udfertes af
Bessel, Struve og Gauss. Dette geelder navnlig om den af Gauss ledede
hannoveranske gradmaling, der er en direkte fortsettelse af den danske,
og man ma antage, at det var Schumachers pavirkning, som fik denne
beromte matematiker til at beskaftige sig med de undersggelser, som
skulle fa en s& stor betydning for den teoretiske geodeesi.

Schumacher naede ikke at fuldfere sit verk. Han dede i 1850, og den
endelige bearbejdelse af hans gradmaling blev udfert af hans efterfolger,
den kendte statsmand og geodset Andr, om hvem direkter dr. Andersen
for nylig har udgivet et interessant vark.

De stadigt stigende krav til nejagtighed sivel som de fra generation
til generation voksende gnsker om at bringe flere enkeltheder ind i de
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topografiske kort bevirker, at et kortveerk, som pé et vist tidspunkt er
fyldestggrende, i en senere tidsalder mé fornyes. Siledes er det gaet i
de fleste lande og ogs& her i Danmark.

Videnskabernes Selskabs kort var ved deres fuldfgrelse allerede for-
@ldede, desuden var de ret fattige pa detailler, og de manglede fuldstaen-
digt den ene dimension, hgjdeangivelserne. Det blev derfor ngdvendigt
at genoptage kortleegningen. Dette arbejde blev overdraget til General-
staben, hvis topografiske afdeling oprettedes i 1842. Generalstaben gik
med stor iver i gang med den stillede opgave, og den lgste denne pa en
fortjenstfuld méde. Generalstaben udgav et fuldsteendigt kort i 1:20000
over hele Danmark savel som kort i mindre mélestokke. Disse kort har
‘vundet stor paskennelse og givet Danmark en smuk plads p4 kartogra-
fiens omréade.

Den videnskabelige geodesis tarv blev samtidigt varetaget af Grad-
malingen, men der var noget kunstigt og for arbejdet uheldigt i denne
deling i to selvstendige institutioner. Desuden var det til radighed sta-
ende personale utilstreekkeligt, s at de topografiske kort ikke kunne
ajourferes i forngdent omfang og de videnskabelige arbejder ej heller
fremmes i den udstreekning, som man matte gnske. Under disse omsteen-
digheder besluttede Rigsdagen i 1928 at forene Gradmélingen og General-
stabens topografiske afdeling til en under Krigsministeriet henhgrende
institution, der fik navnet Geodetisk Institut, og samtidigt forpgedes
personalet.

Schumachers mere end 100 ar gamle triangulation er ikke mere tids-
svarende, og en del punkter er giet tabt. Geodaetisk Institut har derfor
som sit forste arbejde udfert en grundleggende triangulation af 1. orden
~ over hele Danmark, der er foretaget pd en sidan made, at den for alle
tider vil veere fyldestgerende. Dette store arbejde er bragt til afslutning,
og det danske trekantsnet er blevet forbundet med det svenske over
@Jresund og med det tyske ved en rekke store trekanter over Ostersgen.
Alle Generalstabens koordinater hviler pa en ganske kort basislinie pa
Amager, hvis nuvaerende lengde afviger meget steerkt fra den, Schuma-
cher fandt, og som er den, der er benyttet. Geodsetisk Institut har derfor
med den sterste omsorg malt 5 nye basislinier fordelt over landet. Den
ngjagtighed, der derved er opnédet, udger 10~ af den malte lengde,
medens trekantsvinklerne er malt med en ngjagtighed af } buesekund.

Der er ved denne nye triangulation, som efterhanden er blevet for-
teettet, skabt et fortrinligt grundlag for alle fremtidige opmalinger i
Danmark, idet man nu for forste gang er i en sddan situation, at enhver
ny opmaéling tjener til en forbedring af de forhdndenvserende kort, fordi
den henfgres til et for hele landet falles koordinatsystem.

Nordisk Matematisk Tidskrift. — 2
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I Island har Geodzetisk Institut i mange ar udfert topografiske arbej-
der, delvis ved hjxlp af fotogrammetrisk opmaling fra luften. For 10 &r
siden udgav institutet et pragtfuldt kortveerk over Island omfattende alle
@ldre kort og resultatet af den nye opméling i form af kort i 1:100000
over hele landet. I indeveerende ar har institutet udfert en ny 1. ordens
triangulation i Island under benyttelse af de bedste moderne hjwlpe-
midler, sasom geodimetre og helikoptere, de sidstneevnte var stillet til
radighed af U. S. A.

P4 Gronland er siden 1927 et storstilet kortlegningsarbejde blevet ud-
fort, som nzeppe noget andet land kan opvise mage til, under s vanske-
lige ydre forhold. Institutet har da ogsi sat nogle af sine bedste kreefter
ind p& dette kreevende foretagende. En triangulation er blevet udstrakt
fra Kap Farvel til Thule omfattende mere end 16 breddegrader, og mere
end 200 store kortblade over bade Vestgrgnland og @stgrenland er blevet
udgivet.

P4 Feergerne blev i 1954 en helt ny triangulation foretaget. Selv om vi
saledes har vist de nordlige lande megen opmerksomhed, har vi alligevel
ikke forsgmt hjemlandet.

Vort store topografiske kortveerk over Danmark er bedre ajourfert,
end det nogensinde har varet, og institutets tekniske afdeling er vel
udrustet til at magde de store krav, der stilles.

Endvidere er et nyt pracisionsnivellement blevet udstrakt over hele
Danmark, og dette er suppleret med hydrostatiske nivellementer over
Store Belt og Qresund, de sidste med stotte af Carlsbergfondet. Et 18
km langt meget snzvert ror blev udlagt pé bunden af Store Belt, og det
lykkedes at overfere koten fra Fyn til Sjelland med stor ngjagtighed.
Methoden er siden blevet anvendt i andre lande.

Danmark er desuden blevet forsynet med et teet net af tyngdestationer,
som giver et veerdifuldt bidrag til bestemmelse af geoidefladens forlgb.
Ogsd her skylder jeg Carlsbergfondet tak for en bevilling til anskaffelse
af de forngdne gravimetre.

Jeg vil nu forlade geodesien og gé over til matematiken, som er det
fag, der star mit hjerte nermest.

Men da der er si mange ikke-matematikere til stede her i aften, skal
jeg fatte mig i stor korthed.

Matematiken er abenbart af en noget anden karakter end naturviden-
skaberne. Matematiken er en skabende kunst. Matematiken er den kunst
at benzevne forskellige ting ved et og samme navn, vel at meerke ting, som
er forskellige ved det, som er uveasentlig, nemlig deres indhold, men
identiske i det, som er veesentlig, nemlig deres form. Det er matematike-




TANKER OM TRE VIDENSKABER 19

rens kunst at opdage de dybtliggende analogier, som gjet ikke ser, men
som tanken kan udrede. Et lignende synspunkt finder vi udtalt allerede
hos Pythagorzerne, som betragtede formen som tingenes veesen. Bag
ved de mange vekslende feenomener sggte de at finde den herskende lov,
som udtrykkes ved formelle relationer mellem storrelsen og tal. Pytha-
goras gjorde derfor tallet til alle tings princip, idet han heevdede den
bergmte sentens ingene er tal. Der ligger en dyb sandhed i denne gamle
pastand, som kort og knapt udtrykker at, ikke tingene selv, men rela-
tionerne mellem tingene er det eneste, som vi kan tillegge objektiv
veerdi.

Men matematiken er som sagt frem for alt en skabende kunst. Ud fra
visse primitive postulater og axiomer skaber den en reekke komplicerede
og fine begreber, som ofte har vist sig nyttige ved studiet af naturen.

Hvis De vil tillade mig endnu et citat, s vil jeg minde om nogle
andfulde ord af den beromte franske matematiker og filosof Blaise Pascal.
Han taler om I’esprit de géométrie et I’esprit de finesse.

En I'un, siger Pascal, les principes sont palpables mais éloignés de
I'usage commun, de sorte qu’on a peine & tourner la téte de ce coté-la,
manque d’habitude; mais pour peu qu’on I’y tourne on voit les principes
& plein; et il faudrait avoir tout & fait 'esprit faux pour mal raisonner
sur des principes si gros qu’il est presque impossible qu’ils échappent.

Mais dans l’esprit de finesse, les principes sont dans 1’'usage commun
et devant les yeux de tout le monde. On n’a que faire de tourner la téte
ni de se faire violence. Il n’est question que d’avoir bonne vue mais il
faut ’avoir bonne, car les principes sont si déliés et en si grand nombre
qu’il est presque impossible qu’il n’en échappe.

Og Pascal tilfgjer med fin ironi:

11 est rare que les géomeétres soient fins, et que les fins soient géométres,
4 cause que les géométres veulent traiter géométriquement ces choses
fines, et se rendent ridicules voulant commencer par les définitions et
ensuite par les principes ce qui n’est pas la maniére d’agir en cette sorte
de raisonnement.

Et les esprits fins, au contraire, ayant ainsi accoutumé de juger d’une
seule vue, sont si étonnés — quand on leur présente des propositions ol
ils ne comprennent rien, et ol, pour entrer, il faut passer par des défini-
tions et des principes stériles, et qu’ils n’ont pas accoutumé de voir ainsi
en détail — qu’ils s’en rebutent et s’en dégotitent.

Mais les esprits faux ne sont jamais ni fins ni géomeétres.
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Pappos beretter at Arkimedes har konstruert tretten halvregulsere
polyedre, det vil si polyedre som er begrenset av regul®re polygoner,
som ikke alle har samme sideantall. Nummer atte av disse polyedrene
som er nevnt hos Pappos er begrenset av tolv regulere femkanter og
tyve reguleere sekskanter. I Keplers Harmonia Mundi finner en den teg-
ningen av dette polyedret som er
gjengitt her (fig. 1). Kepler har gitt
det navnet truncus icosiédros. Det
kan nemlig fremkomme ved & kutte
av hjornene i et ikosaeder, hvor jo
fem regulare triangler mgtes i hvert
hjorne. Av de tretten halvregulere
polyedrene som alle er avbildet i
Harmonia Mundi er vel dette det
vakreste. Det skiller seg ikke sveert
meget fra kuleformen. Det har (ved
Trosvik verk i Brevik) fatt praktisk
anvendelse ved utvalsning av me-
tallplater for & danne kuleformede

Fig. 1 beholdere. Man har forst skaret til

12 femkantete metallplater og 20

sekskantete og sa satt dem sammen til et slikt Arkimedespolyeder. Det
hele er blitt valset ut til kuleform.

Varen 1955 fikk jeg hos botanikeren Ove Arboe Hoeg se noen avbild-
ninger av blomsterstev i J. Fritzsches »Uber den Pollen« fra 1837 slik
som Fritzsche har sett det i sitt mikroskop. To av disse avbildninger,
nemlig av blomsterstovet til Gomphrena globosa (fig. 2) og Chrysanthe-
mum carinatum (fig. 3) viste en eiendommelighet av matematisk interesse.

P34 overflaten av disse pollenkornene ser en nemlig et nett av femkanter
og sekskanter. Rundt en femkant ser en fem regulere sekskanter. Ved

[20]
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pollenkornet av Chrysanthemum er fordelingen helt »arkimedisk¢. Rundt
en sekskant er annenhver polygon femkantet og annenhver sekskantet.
Hgeg opplyser for gvrig at Fritzsches tegninger nok m4 ha veert temme-
lig idealisert (sammenlign Svein Manum: »Noen bemerkninger om pollen-
korn av Gomphrena globosa og Chrysanthemum carinatums, Blyttia,
Oslo 1955).

Tig. 2 Fig. 3

Det ligger nzr & tro at det ma veere en eller annen sammenheng mellom
disse to pollenkornenes utseende og dette halvregulwere polyedret til
Arkimedes. Kanskje er det ett eller annet ekstremalfenomen som ligger
til grunn — et trykk- eller strekkfenomen f. eks. Jeg har pa ingen méate
véaget & forsgke noen forklaring pé en slik sammenheng, men jeg har satt
meg som mal & vise at en enkel naturprosess — fremkalt ved trykk —
kan fore til et lignende fenomen.

Av en breddeig tok min kone og jeg ut 32 kjegleformete legemer av
samme storrelse. Disse ble plasert inne i en hulkule av metall (en globus
som var delt i to halvkuler langs ekvator) slik at alle toppunktene i
kjeglene var samlet ved kulens sentrum. Forst plaserte vi en kjegle pa
bunnen av den nedre halvkulen, ved »sydpolen«. S stillet vi seks andre
kjegler rundt denne. Hadde disse seks kjeglene vert stillet rundt en
kjegle pa et plan istedenfor i en kule, ville det akkurat veert plass for
alle seks slik at alle de sirkelformete grunnflatene ville tangere grunn-
flaten til den indre kjeglen. Her i kulen blir det ikke plass til det. Vi
plaserte derfor forst tre kjegler hvis grunnflater tangerte den forst opp-
stillete kjegles grunnflate, slik at avstanden mellom de tre tangerings-
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punkter ble like store. S& ble mellomrommene utfylt med tre nye kjegler
som da ikke kom til & tangere den forste kjeglen. S& ble seks nye kjegler
lagt i hakkene mellom disse seks. Slik fortsatte vi inntil den 32te kjeglen
ble stukket med spissen rett ned mot kulens sentrum (fra nordpolen av).
Fordelingen av kjeglene vil da sees av fig. 4 hvor metallkulen er tenkt
gjennomsiktig og sett rett nedenfra, slik at den midterste sirkel har sitt

Fig. 4 Fig. 5

sentrum i »sydpolen«. Etter at alle kjeglene var plasert ble den gvre halv-
kule av metall fgyet til den andre. Nar sé deigen utvidet seg pa grunn
av gjeringen ble kjeglene av trykket omdannet slik at grenseflatene
mellom dem ble plane og hele kulen ble kompakt. Etter at kulen var
satt inn i stekeovnen og halvkulene fjernet etter stekingen s& man pa
brodets overflate 12 femkanter og 20 sekskanter (begrenset av storsirkel-
buer). Fordelingen var riktignok ikke overalt »arkimedisk«. Men dette
var helt ut tilfelle omkring den nederste kjeglen som var oppstillet ved
ssydpolen«. Dette ser en pé fig. 5 hvor »arkimedesbrodet« er fotografert
rett nedenfra. Likheten mellom pollenkornet til Gomphrena globosa slik
som Fritzsche har tegnet det og dette bredet er ganske sldende!

Nar Arkimedesbradet som regel vil komme til & fremvise 12 femkanter
og 20 sekskanter, selv om fordelingen av dem ikke er rarkimediske, er
dette forklarlig.

For tegningen av et nett pa en kule gjelder Eulers formel

f—k+h =2.
Her betyr f antall flater i nettet, ¥ antall kanter og % antall hjerner.
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Denne Eulers formel far en interessant form nar nettet er slik at det i
hvert hjorne motes tre og bare tre kanter. La da

ny veere antall trekanter i nettet ,
n, vere antall firkanter i nettet ,

0.8.V.
Antall flater blir lik antall trekanter pluss antall firkanter o. s. v., alts&
f = ngtng+ng+... .

Antall kanter i en trekant er tre og i en firkant fire o. s. v. Legger vi
disse tallene sammen far vi det dobbelte antall av kanter, fordi hver
kant tilhgrer to flater:

k= 3(3ng+4n,+5ns+...).

Antall hjerner i en trekant er ogsi tre og i en firkant fire o.s. v.
Legger vi disse tallene sammen far vi det tredobbelte antall hjerner,
fordi hvert hjorne tilhgrer tre flater, etter den forutsetning vi har gjort:

h = §(3ng+4n,+5ns+...).
Settes verdiene av f, k og k inn i Eulers ligning far en
3ng+2n,+ns+0-ng = 124-n,+2ng+3ne+4. .. .

Som en ser er antall av sekskanter i denne formelen multiplisert med
null. Hvor stort antallet av sekskanter i nettet er, er derfor likegyldig.
Hyvis nettet bare inneholder femkanter og sekskanter vil formelen bli

ny = 12,

Antallet av femkanter ville da bli 12 uansett hvor mange sekskanter
nettet inneholder. Da vi har brukt 32 kjegler ved bakningen ma det
derfor bli 20 sekskanter & se pa overflaten, sdfremt da ikke andre mange-
kanter enn femkanter eller sekskanter skulle forekomme. Men ved vére
forsgk har dette som regel ikke vert tilfelle.



PROPERTIES OF CONSECUTIVE INTEGERS

SOLOMON W. GOLOMB

The best-known result about the divisibility properties of consecutive
integers asserts:

TarorEM 1. There are arbitrarily long runs of composite numbers.

The standard proof says that (n+1)!+k is composite for the n conse-
cutive values corresponding to k=2,3,...,n+1. A more economical
construction is to use

( Hp) -k k=mn+l,mn,...,2; p prime.
p=n+l
Thus, to find nine consecutive composite numbers, instead of starting
with 10!=3628800, one may begin with 2-3-5-7=210, the product of
all the primes up to 10; and the nine consecutive composite numbers are
200, 201, 202, ..., 208.

The notation (a, b)=n means that n is the greatest common divisor of
a and b. If (a,b)=1, a and b are called relatively prime.

This article is concerned with a systematic procedure for proving
results about consecutive integers. The basic tool is the following lemma,
which seems to have been generally overlooked heretofore.

TaeoreM 2. If
A, = am+by, Ay = am+by, ..., 4 = a;n+ by

are k arithmetic progressions such that (a;, a;)=1 if 144 (in other words,
the numbers a,, ag, . . ., @; Must be pairwise relatively prime), then there
exist k comsecutive integers c+1,c+2, ...,c+k such that c+j is in Aj,
for j=1,2, ..., k.

This can be proved directly, using Euclid’s algorithm, but is much
easier to obtain as a corollary of the »Chinese Remainder Theorem,

[24]
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which says: »If a,,a,, ..., a; are pairwise relatively prime, and s,
Sy « . ., 8, are any integers whatever, then there is a number ¢ such that
¢ = 8 (moda,), ¢c =8, (moda,), ..., ¢c =s,(moday).

In fact, there is exactly one such number ¢ between 1 and J= Ila;.«

=1
(The notation »s=¢ (mod m), invented by Gauss, simply meané that
s—t is divisible by m.)

For example, to find a number ¢ which is even, which is divisible by 3,
and which leaves a remainder of 4 when divided by 5 — in other words,
which satisfies ¢=0 (mod 2), ¢=0 (mod 3), and ¢=4 (mod 5), one may
use ¢ = 24; and this is the only possible choice between 1 and 2-3-5=30.

Proor or TaEOREM 2: By the Chinese Remainder Theorem, there
exists a number ¢ such that

¢ =b—-1(moda,), ¢c =b,—2 (moda,), ..., ¢ =b,—k (moday) .

Thus ¢+j=b; (mod a;), and c+j belongs to the arithmetic progression
A;j=am+b;, for j=1,2, ..., k. This completes the proof.

The Chinese Remainder Theorem tells more — namely, that it is pos-
sible to choose ¢ between 1 and J = [/ a; in exactly one way. If the order
in which the k progressions are taken does not matter, then there are k!
distinct choices of ¢ between 1 and J.

Several new proofs can be given for Theorem 1, based on Theorem 2.
For example, in Theorem 2, let a;=p,; ;-p,;, and b;=0, for j=1,
2, ..., k, where p;, p,, ... is the sequence of prime numbers. Then ¢ +j
is a multiple of a;, and has at least two distinct prime factors. Hence
c+1,¢+2, ...,¢c+k are all composite. In what follows, however, Theo-
rem 2 will most often be applied to situations where the numbers
@y, @y, ..., a; are all primes, or powers of primes.

The Mobius function p(n) may be defined as follows: If n is divisible
by any perfect square greater than 1, then u(n)=0. Otherwise, if n is a
product of k distinct primes, then u(n)=(—1)¥, which is either +1 or
—1 according as » has an even or an odd number of prime factors. By
convention, u(1)=1. Note that u(n)=0 if and only if n is divisible by at
least one of the numbers 4, 9, 25, 49, ..., where these are the squares
of the prime numbers. Table I shows u(n) for all » up to 50.

It may be noted that —1 occurs three times in a row as u(29), u(30),
and u(31); and again three times as u(41), u(42), and ©(43). Also, 1 occurs
three times in a row as u(33), x(34), u(35); and 0 occurs three times in
a row as u(48), u(49), and x(50). It is natural to wonder how many times
in a row u(n) can have the same value. Since every fourth number is
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n o pn) n o p(n) n o p(n) n pn) n o pn)
1 1 11 -1 21 1 31 -1 41 -1
2 -1 12 0 22 1 32 0 42 -1
3 -1 13 -1 23 -1 33 1 43 -1
4 0 14 1 24 0 34 1 44 0
5 —1 15 1 25 0 35 1 45 0
6 1 16 0 26 1 36 0 46 1
7 -1 17 -1 27 0 37 -1 47 -1
8 0 18 0 28 0 38 1 48 0
9 0 19 -1 29 -1 39 1 49 0

10 1 20 0 30 -1 40 0 50 0

TaBLE I

divisible by 4, u(n)=1 and u(n)= —1 can each occur at most three
consecutive times. But what about u(n)=0% A. Wintner [The Theory
of Measure in Arithmetical Semi-Groups, p.14] gives a very complicated
construction to prove the following result:

TaroREM 3. There are arbitrarily long sequences of consecutive integers
c+1,¢+2, ...,c+k, such that

ule+1l) = p(e+2) = ... = plc+k) =0.

Proo¥: Consider the k arithmetic progressions 4n, 9n, 25n, ..., PiEm,
where p, is the kth prime number. Since (p;% p;?)=1 if i =], Theorem 2
applies (with all b,=0), and there is a number ¢ such that c¢+1 is di-
visible by 4, ¢c+2 by 9, ¢c+3 by 25, ..., c+k by p,*; and the assertion
follows.

The numbers actually obtained by this construction are considerably
smaller than by Wintner’s method. Even more important, the proof just
given can obviously be modified to yield the result: There are arbi-
trarily long sequences of non-kth-power-free integers. This fact is not
suggested by Wintner’s proof.

Note also that Theorem 3 furnishes yet another proof for Theorem 1.

Euler’s function @(n) is usually defined as the number of integers not
exceeding n which are relatively prime to n. Thus ¢(6) =2, because 1 and
5 are the only numbers, among 1, 2, 3, 4, 5, 6, which have no factor
except 1 in common with 6. It is known that in general,
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1
o = n1(1-2),
pln p
where the product is extended over all the distinct prime divisors p
of n. Thus ¢(6)=6(1—%)(1 —4)=6-%-3=2. Also, if p is prime, ¢(p)=p—1,
because 1, 2, 3, ...,p—1 are all relatively prime to p. The formula

1
gives @(p)=p (1——) =p—1. The values of ¢(n) for n <20 are included
p

in Table II.

Dirichlet’s Theorem says that there are infinitely many primes in every
arithmetic progression an +b, provided that ¢ and b are relatively prime.
For example, among the numbers 11, 21, 31, 41, 51, 61, ..., all of the
form 10n + 1, there are infinitely many primes.

The following appeared as a problem in the American Mathematical
Monihly a few years ago:

THEOREM 4. Given any integer M, there are arbitrarily long runs of

consecutive integers ¢+ 1,¢+2, ..., c+k, such that
pc+1) = p(c+2) = ... = g(c+k) = 0 (mod M),
where ¢ is Buler’s function. (That is, p(c+1), p(c+2), ..., p(c+k) must

all be divisible by M.)

Proor: By Dirichlet’s Theorem, there are infinitely many primes in
the arithmetic progression Mn + 1. Pick any & of them — thus

¢ = Mn,+1, qo = Mny+1, ..., q = Mn,+1.
Then
1 1 1
plag;) = aqj(l—w) 7 (1——) =a(g;—1) I <l—~>
95/ pla p pla p
P+gj P+gj

is divisible by ¢;—1, regardless of the value of a; and since g;—1=Mn,,
p(ag;) is divisible by M for all j=1, 2, ..., k. Therefore, form the arith-
metic progressions

A, = aqy, 4y = agy, ..., Ay = agy,
and use Theorem 2 to find a number ¢ such that
c+1 =a,q;, c+2 = ays, ..., c+k = ayq; -
(Theorem 2 applies, because (g;, ¢;)=1 if ¢+j.) Then

plc+1) = p(c+2) = ... = p(c+k) = 0 (mod M) .
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Theorems 3 and 4 are basically similar, and they suggest a pattern to
which Theorem 2 readily applies. This pattern may be worded as follows:

Given any two integers M and k, there is a run of consecutive integers
¢+1, ¢c+2, ..., c+k such that fle+1), fle+2), .. ., f(c+k) are all div-
isible by M, where f is a fixed arithmetic function.

This is certainly not true for all arithmetic functions f, but has been
shown to hold for f(n)=g(n) (Euler’s function) and for f(n)=pu(n) (the
Mébius function). Other examples include f(n) = o(n), and f(n) =d(n).

_ -
| |
no | o) “ o(n) \ dmy | \ o) | olm) | dm)
1 1 1 1 11 10 12 2
2 1 3 2 12 4 28 6
3 2 4 2 13 12 14 2
4 2 7 3 14 6 24 4
53 4 6 2 15 8 24 4
6 2 12 4 16 8 31 53
7 6 8 2 17 16 18 2
8 4 15 4 18 6 39 6
9 6 13 3 19 18 20 2
10 4 18 4 20 8 42 6
TasLE IT

By definition, o(n)= Xd, the sum of all the divisors of n. It is easy to
show that din

it n = ITpf, then o(n) = II(1+p;+pl+ - +p),

piln piln
where both products extend over all the distinct prime divisors p; of n.
TurEorREM 5. Given M and k, there is a number ¢ such that
olc+1) =o(c+2)= ... = o(c+k) = 0 (mod M) .
Proor: Using Dirichlet’s Theorem, let gy, @g» - - -» 4z D& ANY K distinet
primes in the arithmetic progression Mn—1; and let Q= ka ¢;- By Theo-

j=1
rem 2, choose R such that

R+1 = ¢2n,, B+2 = g.2n,, .o R+E = qi®ng;
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and let c=@ + R. Then c¢+j =@ + (R +j) is divisible by g; but not by g2,
because g; divides both @ and E+j, while ¢;* divides B+j but not @.
Since o(n)=II(1+p;+ . . . +p;%), o(c+j) contains the factor 1+ g;, for all
j=1,2, ..., k. Since ¢; belongs to the arithmetic progression Mn—1,
g;+ 1 is divisible by M, and the theorem is proved.

A very similar proof works for d(n), the number of divisors of n. (If
n=IIp®, then d(n)=Il(a;+1). It is not necessary to invoke Dirichlet’s
Theorem in proving the analog of Theorem 5 for d(n).)

It is a much more difficult matter to decide whether or not for every
number k there exists a number ¢ depending on % such that

dlc+1) =d(c+2) = ... =d(c+k).

For example, d(2)=d(3)=2; and d(33)=d(34)=d(35)=4; but the ques-
tion of the existence of arbitrarily long runs has not been settled. The
corresponding problem also exists for ¢(n) and o(n); but Theorem 3
gives the answer for u(m).

Theorem 2 is not the only important corollary of the Chinese Re-
mainder Theorem. Instead of ¢+1, ¢c+2, ..., c+k, it is possible to use
c+ty, c+ty, ..., c+1;, where ¢, t,, ..., ¥, are completely arbitrary.
However, the case of consecutive numbers is certainly the most interest-
ing.



RORINGSCIRKLER OG POTENSSUMMER

ANDERS BAGER

1. Lad a, b, ¢, s, T, R, v, vy, 7y, 7> Py, My, b, veere 13 positive tal, der
opfylder betingelserne

(1) 2s = a+b+c

(2) Tty = 8(8—¢), myr, = 8(s—a), 1,y = S(s—b)

(3) rr, = (s—=b)(s—c), 1y, = (s—c)(s—a), = (s—a)(s—b)
(4) T =rs = ry(s—a) = ry(s—b) = r(s—c)

(5) 2T = ah, = bhy = ch,

(6) abc = 4RT .

Det kan forudsxettes bekendt, at alle disse formler geelder, hvis a, b, ¢
betyder siderne i en (plan) trekant, s dennes halvperimeter, 7' dens
areal, R radius i dens omskrevne cirkel,  radius i dens indskrevne cirkel,
7, Ty, 7, Tadier i dens ydre roringscirkler og f,, %, h, dens hgjder (r, og
h, svarende til a, og analogt).

De relationer, vi nu ad rent algebraisk vej vil udlede af systemet
(1)—(8), gelder derfor i det omtalte specielle tilfzelde. Vi viser dog om-
vendt, at hvis (1)—(6) alle er opfyldte (positive verdier af de 13 vari-
able), da er a, b, ¢ sider i en trekant, og de gvrige 10 storrelser har de
angivne betydninger for denne trekant.

Mange af de formler, vi kommer til, er naturligvis alment kendte.
Adskillige af formlerne er bevist for forste gang i [2]. Nye er méske (31)
og (32).

Algebraisk set indeholder systemet (1)-(6) for udledelsen overflodige
formler. Vi vil til slut angive et minimalt delsystem, der er skvivalent
med det fulde system. Derved gar dog symmetrien tabt.

Af (4) sluttes T2=rr,s(s—a), hvorefter (3) og (2) giver

(7) T? = s(s—a)(s—b)(s—c)
(8) T2 = rrryre -

[30]
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Elimineres ved (4) T af (7) og (8), fas

©) oo Bme=bE=0) -, sls=b)s—0)
$§ s—a
&2 TaTch’ (s—a)2 _ @c
r

a

Ligesom her vil vi i det folgende af et szt indbyrdes analoge usymme-
triske formler kun angive den ene.

Af (1) folger straks
(10) (s—a)+(s—b)+(s—c) = s.

Multipliceres (10) med s, giver (2):
(11) Tyt Tpret 70y = 2.

Divideres (10) med 7', fas ved (4):

1 1 1 1
(12) —t—t— =,
T, Ty Te T
Af (1) folger let
(13) 2(s—a) = —a+b+c.

Divideres (1) og (13) med 27, fas ved (4) og (5):

(14) ol
hy hy hy, r
(15) LI
hy hy h, 1,

Bringes (12) pa hel form, fas
(16) TTgly F1TpT o+ 1T g = Talple -

Ifolge (1) er 2s2— (@ +b+c)s=0, hvoraf sluttes

(17) s(s—c)+(s—a)(s—b) = ab
(18) Ty +1r, = ab,
idet (18) folger ved (2) og (3). Analogt fas
(19) Ty —17, = §a%+b2—c?).

Ved addition af (18) og (19) til deres respektive analoge fas
(20) Poly+Tple+Tlq+ 17+ 11 +17, = ab+be+ca

(21) Pty + Tyl +Tolq—1Tg— 1y —17, = $(a%4+b6%4c?) .
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Ifolge (1) har man
1 + r c
s—a s—b (s—a)(s—b)
1 1 c

s—c¢c s 8(s—c)
Heraf fas ved (7) og (17) let

1 1 1 1 abc

s—a s—b s—c s T%
Multiplikation med 7' giver i kraft af (4) og (6):
(22) rat+ry+r,—1r = 4R .
Kvadreres (22), fas ved (21) den kenne formel
(23) r2+r2+r2+ri+a®+b%+c? = 16R%.
Ved (1) fas let formlen

2+ (s—a)2+ (s—b)2+(s—c)? = a®+b%+c?,
og heraf igen ved division med 7 ifglge (4) og (5):
1

(24) 1 + ! +
2 r2 n?

a2+b2+02 4 tL 4 N 4
T2 h B RS2

1
+._.
7
2. Seettes til afkortning

S = a?+b%2+c%,
kan (22), (23), (12) og (24) skrives pa den fewlles form
(25) rP+nP+rP+(—r? = P(R,8,T), p= 411,12,

idet P for p>0 er et polynomium i R, 8 og 7', for p <0 et sddant poly-
nomium divideret med en potens af 7'. Vi skal nu generalisere (25) til
alle hele p=0 og bestemme funktionen P.

Til indledning minder vi om, at hvis &y, &g, &3, &, er redderne i poly-
nomiet
(26) X440, X3+ a, X2+ a;X +ay,
da gwlder formlerne

=0y = X3+ &yt ogt g
@y = 010+ XqXg + X100y + Koty + KoKy + XgXyg
— Qg = 0ozt KXy0aiy + KXqKgX g+ KoXgy

Oy = Gq0aligiy .




RORINGSCIRKLER OG POTENSSUMMER 33

Saettes nu oy =7,, 6y =1y, xg="r,, x,= —7, Viser (22), (21), (16) og (8), at
(27) a, = —4R, a, = 18, a3 =0, a, = -T2,
og (26) gar over i
(28) X*—4RX3+38X2-12 .
Settes nu for p=1,2,3, ...
(29) Sp = P+ P +oxgP + oy,
da gelder for »potenssummerne« (29) den explicite formel (se [1], [3]):
— 1)PrtBetBstha — 1)
(30) s, = Z( ) P(Br+BatPs+p—1)
B1'Bs! B! B!

hvor man skal summere over alle kvadrupler (8,, f,, B3, fa) af hele, ikke-
negative tal, der opfylder betingelsen f, + 2f,+ 385+ 4f,=p. Endvidere
skal a,f tolkes som 1, hvis a;=p,=0.

I det tilfzelde, der interesserer os, er a;=0, hvilket bevirker, at alle
led med f;>0 forsvinder. Indsesettes veerdierne (27) i (30), og swxttes

Br=1, Ba=J, Ps=F, fas

(Bl) rP+rPrP(—r)p = )
1+2j+4k=p

alﬁl azﬁz a3ﬂ3 a4l34 ,

(=1Y@E+j+k—1)12%-p
iyl k!

RiSIT?

Heri er specielt for p=1 og p=2 indeholdt formlerne (22) og (23).
Yderligere fas eksempelvis for p=3:

TS+ +r3—1rd = 64R®—6R(a?+b%+c?).

Da r,, r,, r,, —7 er rodderne i (28), er 7,71, 7,71, 7,71, (—7)~! redderne
i polynomiet

Man har altsa i dette tilfeelde

S 4R 1
a =0, ay,= o2’ “3=ﬁ, a, = T
Inds®ttes disse veerdier i (30), og settes f,=1, f3=4, f.=Fk, fremkommer

(—1) (i +j+h—1)12%-ip RISE
i1k TR |

(32) 7y PAr P Ar, P (=) P = )
20+3j+4k=p

For p=1 og p=2 giver (32) de tidligere formler (12) og (24). Yderligere
fas eksempelvis for p=3:

Nordisk Matematisk Tidskrift. — 3.
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1 + 1 4 1 1 12R 24
rd 3 3 T hghyh,

3. Ifglge (2) er s —a, s—b, s —c positive, og (13) og dens analoge viser,

at
a<b+c, b<c+a, c<a+b.

Der findes derfor en trekant med sider a, b, ¢, og (1)-(6) gelder med de
tidligere angivne betydninger af de 10 gvrige storrelser, og ogsd kun
med disse, da (1), (9), (4), (5) og (6) bestemmer s, 7, 74, Ty, Tes T, hg, My,
h,, R entydigt ved a, b, c.

Vi erstatter nu (1)—(6) med delsystemet

(I) 2s = a+b+c

(IT) role = S(s—a)

(I11) Ty = S(s—0D)

(IV) rr, = (s—0)(s—c)

V) rs = r (s—a)

(VI) T =rs

(VII) 2T = ah,, 2T = bhy, 2T = ch,
(VIII) abc = 4RT .

Division af (IT) og (III) giver let

(33) rp(s—b) = r(s—a).
Af (ITI) og (IV) fas analogt
(34) rs = r,(s—c) .

Multipliceres (33) med #, fas ved (IV):

rr, = (s—c)(s—a).
Ifglge (V) og (34) geelder

(35) ro(s—a) = rys—c).
Nar (35) multipliceres med ry, fas ved (II):

rory = S(s—c¢),
og multipliceres (ILI) med r, fas ved (V):

rr, = (s—a)(s—b).
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Hermed er godtgjort, at delsystemet (I)-(VIII) er sckvivalent med
hele systemet (1)-(6). Vi skal nu vise, at ingen ligning i systemet (I)-
(VIII) kan udledes af de gvrige. Dette gores principielt pa den made,
at man tilvejebringer et sddant sat veerdier for de 13 variable, at alle
ligninger panzr den betragtede gelder.

Lad forst den betragtede ligning vaere (VIII). Da R kun indgar i denne,
kan den ikke udledes af de gvrige. Vi kan dog slutte endnu mere: Lad
(A) veere en af ligningerne i systemet (I)-(VII), og lad der veere tilveje-
bragt veerdier for de 12 variable i dette system, der opfylder alle ligninger
paner (A). Vi kan da supplere op med en sidan veerdi af R, at (VIII)
ogsd geelder. Hermed er vist, at hvis (A) er uafhengig af de gvrige lig-
ninger i (I)~(VII), da ogsé af de gvrige ligninger i (I)~(VILI). Vi kan derfor
simpelthen fjerne (VIII) fra systemet i resten af beviset.

Da h,, by, ke hver kun optreder i 1 ligning, kan vi ogsa fjerne (VII).
Derpé optrader 7T kun i (VI), der s& kan fjernes, hvorefter (IT) og endelig
(IIT) kan udelades.

Tilbage er systemet (I), (IV), (V) med de 6 variable a, b, ¢, s, 7, 7,.
Settes a=b=c=6, s=8, r=1, r,=4, gelder (IV) og (V), men ikke (I).
Seettes a=r=2, b=c=3, s=r,=4, gelder (I) og (V), men ikke (IV).
Seettes endelig a=s=2, b=c=r=r,=1, gaelder (I) og (IV), men ikke (V),
og beviset er fuldfert.
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[2] K. W. FeuErBACH: Higenschaften einiger merkwirdigen Punkte des geradlinigen
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C. B. ALLENDOERFER—C. O. OAKLEY: Principles of mathematics. Mc-
Graw-Hill Book Co., New York, Toronto, London, 1955. 15+ 448 pp.
sh. 37/6.

(Innholdsfortegnelse i NMT 3 (1955), s. 170.)

Denna bok ér i forsta hand avsedd foér nyborjare vid amerikanska
sliberal arts colleges«. De traditionella matematikkurserna for dessa stu-
derande &r till innehall och omfattning jimférliga med de nordiska
gymnasiekurserna i matematik. Forfattarna till »Principles of mathema-
tics« d4r mycket kritiska mot dessa kurser och anser att de &r féraldrade
och att det dr hog tid att man dven pa detta stadium tar hinsyn till
den enorma utvecklingen inom matematiken under de senaste hundra
aren. Knligt deras asikt bor dven nyborjare kunna f& en viss forstaelse
for modern matematik om man i de elementéira kurserna infér moderna
betraktelsesidtt och begreppsbildningar. Som uttryck for dess reform-
idéer har »Principles of mathematics« intresse dven utanfor den krets
den egentligen #r avsedd for.

Forfattarna soker realisera sitt program bl. a. genom att inleda boken
med nagra kapitel, vilka skall tjina som introduktion till »abstrakt
matematiskt tinkande«. Aven i Sverige har pa universitetshall diskute-
rats om inte studenterna i samband med de elementira studierna i
matematik borde trinas nagot i formell logik, varigenom deras mate-
matikstudier skulle underlittas pa flera punkter. Det ricker kanske att
némna hur svirt manga studenter har att negera ett visst pastaende,
t. ex. att omtala vad det innebér att en funktion snte dr likformigt kon-
tinuerlig, for att motivera varfor man #r avgjort positiv till det forsta
kapitlet i foreliggande bok, i vilket de enklaste begreppen och satserna
i logiken genomgas. Kapitel 2, »The number system, accepterar man
ocksd, men mera tvivelaktigt 4r det om presentationen av grupp-,
kropp- og miéngdbegreppen i de foljande tre kapitlen dr sa virdefull.
Det kan t. ex. ifragaséittas om den ytliga behandling det hiir 4r fraga om
ger de studerande nagon forstaelse for modern matematik, vilket ju ér
ett av forfattarnas huvudmal.

[36]
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Efter dessa fem kapitel behandlas i sju kapitel det, som forfattarna
anser vara visentligt i de traditionella kurserna i »college algebrag, tri-
gonometri, analytisk geometri och »calculus«. Ofta intresserar sig for-
fattarna mera for den begreppsmissiga dn den tekniska sidan av teorin.
Salunda diskuteras funktionsbegreppet synnerligen grundligt i kapitel 6,
dir man ger en modern definition av funktion som en parmingd med
viss egenskap. Manga givande synpunkter framfores, men framstill-
ningen dr ganska omstiéndig och man undrar om nyborjare kan ha
intresse f6r ménga av de subtila detaljer, som behandlas. I de foljande
kapitlen genomgas utan krav pd stringhet speciella funktioner, analytisk
geometri m. m. Gransvirdesbegreppet diskuteras i kapitel 11. En nog-
grann definition av grinsvirde ges, men de flesta satser meddelas utan
bevis. Kapitel 12, »Calculus¢, inledes med en skiss av integraldefinitio-
nen, varefter foljer huvudsakligen obevisade satser om derivator och
integraler. I momentet om maxima och minima gores dven hir de i
elementéra lirobocker vanliga felaktiga pastdendena om derivatans tec-
ken i en omgivning av en extrempunkt. Aven om kapitel 12 endast
skall betraktas som en kortfattad introduktion till differential- och inte-
gralkalkyl, sa dr framstéllningen dnd4 alltfor urvattnad. T. ex. gores inte
négot forsok att definiera exponentialfunktionen e®, trots att derivatan
av sivil denna funktion som logaritmfunktionen meddelas. Boken av-
slutas med ett elementirt kapitel om statistik och sannolikhetskalkyl,
ddr knappast nigra av de tidigare utvecklade matematiska hjilpmedlen
anvéindes.

»Principles of mathematics« innehaller otvivelaktigt manga nya syn-
punkter av intresse for den elementdra matematikundervisningen.
Enligt recensentens uppfattning har forfattarna emellertid knappast
lyckats med sin foresats att ge visentliga drag av modern matematik.
Det forefaller synnerligen tvivelaktigt om nigot sidant over huvud

taget dr mojligt pa detta stadium.
Lennart Sandgren

A. O. GELFOND: (anzzahlige Lésungen wvon Gleichungen. (Blaschke,
Math. Einzelschriften 2.) Verlag R. Oldenbourg, Miinchen, 1954. 59 S.
Brosch. DM 7.80.

(Innholdsfortegnelse i NMT, dette hefte, s. 41.)

Den kjente russiske tallteoretiker Gelfond holdt i 1951 en serie popu-
lzere forelesninger over ubestemte ligninger ved Moskva-universitetet.
Forelesningene ble offentliggjort aret etter, og foreligger na i tysk over-
settelse.

Leren om de ubestemte eller diofantiske ligninger er et meget om-
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fattende emne, kanskje seerlig fordi stoffet i s& hoy grad ogsa appellerer
til amaterene p4 matematikkens omrade. Problemstillingen er nemlig
s lettfattelig: losning av ligninger i rasjonale eller seerlig i hele tall.
De fleste lerebeoker eller oversikter over teorien forutsetter imidlertid en
viss matematisk skolering, og derfor skulle Gelfonds meget elementere
bok ha en opplagt misjon.

Forfatteren utvikler forst elementene av kjedebrek-teorien, og bruker
dette til fullstendig lesning av ligningen ax+by+c¢=0 i hele tall. Etter
et avsnitt om Pytagoreiske trekanter kommer si en noksi inngiende
undersgkelse av den Pellske ligning 22— Ay?2=1. Forst behandles det

enkle talleksempel 4 =2, hvor kjedebrgken for VA far periodelengde 1.
S8 vises det at hvis ligningen overhodet er lgsbar, vil alle lgsninger
x—{—y]/Z veere potenser av en grunnlesning x0+y0]/z, og tilslutt blir
det bevist, gjennom en rekke skritt, at ligningen alltid er losbar. Det
blir derimot 7kke nevnt at kjedebregken for ]/Z alltid er periodisk, og at
grunnlgsningen av Pells ligning kan finnes ved hjelp av perioden. Selv
om et bevis for dette kanskje ville fore for langt, er det merkelig at et sa
interessant og elegant resultat er forbigatt i taushet.

Boken avsluttes med en kort omtale av ligninger av hgyere grad; her
er det selvsagt ikke mulig & gi bevisene. Thues sats er nevnt, og forfat-
teren viser meget instruktivt hvorledes den leder til problemet om rasjo-

nal approksimasjon av algebraiske tall. Etter en kort historikk om Fer-

mats ligning 2" + y®=2" gjennomfgres ulgsbarhetsbeviset for n =4, etter
den klassiske metode med »infinite descent«.

Alle gjennomferte bevis er meget grundige og krever bare smé mate-
matiske forutsetninger. Utvalget av stoff virker fornuftig, men kanskje
ikke serlig inspirerende. Man mé enske boken velkommen som en verdi-
full tilvekst til den populeere litteratur om ubestemte ligninger.

Ernst 8. Selmer

KarL ScHUTTE: Index mathematischer Tafelwerke und Tabellen. (Index
of mathematical tables.) Verlag R. Oldenbourg, Miinchen, 1955. 143 S.
Ganzl. DM 14.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 43.)

Den stora méngd tabeller, som framsprungit genom de senaste decen-
niernas utveckling inom den numeriska analysen och angrinsande om-
raden, har ocksé skapat ett behov av oversikter over tillgéingliga tabell-
verk. Under en f6ljd av ar har ddrvid det kédnda och omfangsrika arbetet
av Fletcher, Miller och Rosenhead, publicerat i London 1946, utgjort

standardverket i detta avseende, men det &r naturligt att man nu borjat-

a
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kidnna ett behov av en modernare uppslagsbok. Foreliggande arbete
utgor ett forsok i denna riktning.

Omkring 609, av innehallet omfattar matematiska tabeller, medan
resten utgores av tabeller fran olika tillimpningsomridden. Endast den
forra delen kommer emellertid att behandlas hér.

Forf. har sokt undvika dldre arbeten, speciellt sadana dér noggrann-
heten &r lag, men man far likvél intrycket, att materialet bort sovras
ytterligare. Systematiken #r bitvis foga konsekvent genomford. Fram-
for allt saknar man emellertid uppgifter om argument, intervall och
differenser, och vidare skulle det ibland inte skada med en antydan om
vederhiiftigheten. Den som nagon gang varit tvungen att anvinda
Hayashis tabell, en stark aspirant pa virldsméstartiteln i fradga om tryck-
fel, skulle nog vara speciellt intresserad av en dylik uppgift.

Det begrinsade utrymmet tillater endast ett fatal detaljanmérkningar.
Bland WPA:s tabeller 6ver naturliga logaritmer upptages endast en
volym utav fyra. Den fran samma hall emanerande tabellen 6ver arctgx
(1942) liksom en senare upplaga fran NBS (1953) tycks ha blivit bort-
glomda. 606 decimaler for ¢ resp. 808 for x éir inte lingre gillande virlds-
rekord; i MTAC har angivits 3000 for e och nyligen 3089 fér z. Savil
e som e~1 ges med 2500 decimaler i NBS tabell ver ¢*. Den komplexa
I'funktionen finns numera tabulerad dven i NBS Appl. Math. Series.
Bland litteraturen om matematikmaskiner saknar man bl. a. Bowden,
Faster than thought, och bland bocker om numeriska metoder bl. a.
Collatz’ verk om differentialekvationer. I atskilliga fall &r uppgifterna
om tryckort och tryckar felaktiga.

Anvind med omdome ger emellertid boken &atskilliga virdefulla upp-
lysningar, Atminstone sd linge det inte géller allt for komplicerade funk-
tioner, och som en »foérsta hjilp« kan den trots de patalade bristerna

rekommenderas.
Carl-Erik Froberg

KARL STRUBECKER : Differentialgeometrie, 1. Kurventheorie der Ebene
und des Raumes. (Sammlung Goschen 1113/1113a.) Walter de Gruyter &
Co., Berlin, 1956. 150 S., 18 Fig. DM 4.80.

(Innholdsfortegnelse i NMT 3 (1955), s. 118.)

Medels vektorkalkyl ges i foreliggande del I av en lidrobok i differential-
geometri den klassiska teorien for plan- och rymdkurvor.

Forutom plana kurvors baglingd, krokning, evoluta, evolvent och
oskulation mellan tvenne kurvor undersokas speciellt konvexa kurvor
(Eilinien) och kurvor med konstant bredd samt s. k. Zindlerska kurvor.
For rymdkurvor behandlas forutom deras flexion, torsion (Frenets form-
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ler) den oskulerande sfiren samt enveloppen till enparametriga ytskaror,
speciellt enveloppen till rymdkurvors oskulerande plan och normalplan,
s. k. torsionsytor. Det bor sirskilt framhallas att betraktelser utforas
éven for komplexa figurer: komplexa kurvor i planet och &nnu mera i
rymden, for isotropa plan och rita linjer, isotropa plan- och rymdkurvor.

Framstillningen &r god och klar samt underlittas av de behandlade

exemplen och goda figurerna.
P : & Lauri Pimid

MOTTATTE BOKER

R. Albrecht—H. Hochmuth: Ubungsaufgaben zur héheren Mathematik,
II1. Verlag R.Oldenbourg, Miinchen, 1956. 128 S., 39 Fig. Brosch.
DM 9.80.

Gewohnliche Differentialgleichungen erster Ordnung: Elementar integrierbare
Typen. Graphische Verfahren. Kurvenscharen 5-56 * Gewdhnliche Differential-
gleichungen hoherer Ordnung 57-101 * Systeme linearer Differentialgleichungen
102-116 * Partielle Differentialgleichungen erster Ordnung 117-121 * Vermischte
Aufgaben 122-128.

Paul G. Andres—Hugh J. Miser—Haim Reingold: Basic mathematics
for science and engineering. John Wiley & Sons, New York, 1955. 846 pp.
$ 6.75.

Numerical computations 1-43 * Simple algebraic operations 44-91 * Functions
and their graphs 92-132 * Trigonometric functions 133-180 * The graphs of the
trigonometric functions 181-221 * Simple properties of vectors 222-244 * Algebraic
operations 245-268 * Exponents and radicals 269-305 * Logarithms 306-353 * The
fundamental relations of trigonometry 354-384 * The oblique triangle 385-408 *
The j operator 409-440 * Linear equations and determinants 441-484 * Quadratic
equations and equations of higher degree 485-536 * The straight line 537-563 *
Circles and loci 564-591 * Equations of the second degree: The conics 592-622 *
Elements of solid analytic geometry 623-654 * The elements of differential calculus
655-699 * The elements of integral calculus 700-729 * Appendix 730-774 * Answers
to exercises 775-828 * Index 829-846.

Wilhelm Blaschke: Einfithrung in die Geometrie der Waben. (Elemente
der Mathematik vom hoheren Standpunkt aus, 4.) Verlag Birkhéduser,
Basel, Stuttgart, 1955. 108 S. Brosch. SFr. 15.25.

Kurvenwaben in der Ebene 9-55 * Flichenwaben 55-84 * Bemerkungen iiber

Viererwaben von Kurven in der Ebene 85-96 * Einiges iiber Kurvenwaben im
Raum 97-105 * Stichworte und Namen 106-108.
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R. Courant: Vorlesungen iber Differential- und Integralrechnung. Band
II: Funktionen mehrerer Verinderlicher. Dritte, verbesserte Aufl. Sprin-
ger-Verlag, Berlin, Gottingen, Heidelberg, 1955. 11+468 S., 110 Fig.
Ganzl. DM 36.00.

Vorbemerkungen iiber analytische Geometrie und Vektorrechnung 1-31 * Funk-
tionen mehrerer Verdnderlicher und ihre Ableitungen 31-98 * Ausbau und Anwen-
dungen der Differentialrechnung 98-187 * Integrale von Funktionen mehrerer
Verénderlicher 187-305 * Integration iiber mehrdimensionale Bereiche. Fortsetzung
305-364 * Anwendungen, insbesondere Differentialgleichungen 364-431 * Ver-
zeichnis der wichtigsten Formeln und Sidtze zu beiden Bianden 432-460 * Sach-
verzeichnis zum zweiten Bande 461-468.

David Fog: Matematik for landinspektorer og skovbrugere. 2. udg.
Den kgl. Veteriner- og Landbohgjskole, Kgbenhavn, 1955. 391 s.
D. kr. 32.00.

Aritmetik og algebra 1-16 * Elementer trigonometri og analytisk geometri
17-45 * Koordinatendringer. Elementere transformationer 46-56 * Keglesnit og
keglesnitsflader 57-78 * Sfaerisk geometri og sfwerisk trigonometri 79-90 * Kon-
tinuerte funktioner 91-101 * Differentialregning 102-124 * Integralregning 125
152 * Logaritme- og eksponentialfunktioner 153-161 * Rakketeori 162-187 * Inte-
grationsmetoder 188-199 * Kurveteori 200-216 * Funktioner af 2 variable. Flade-
teori 217-249 * Dobbeltintegral 250-258 *+ Nomografi 259-267  Differentiallig-
ninger 268-297 * Regning med tilnsermede tal. Fejlteori 298-334 * Opgaver 335
386 * Register 387-391.

A. O. Gelfond: Qanzzahlige Losungen von Gleichungen. (Blaschke, Math.
Einzelschriften 2.) Verlag R. Oldenbourg, Miinchen, 1954. 59 S. Brosch.
DM 17.80.

(Anmeldt i NMT, dette hefte, s. 37.)

Gleichungen mit einer Unbekannten 7-8 * Lineare Gleichungen mit zwei Un-
bekannten 8-17 * Beispiele von quadratischen Gleichungen mit drei Unbekannten
18-22 + Bestimmungen aller Lésungen einer Gleichung von der Form 22 — Ay? =1
23-34 * Allgemeiner Fall der quadratischen Gleichung mit zwei Unbekannten 34-45
* Gleichungen mit zwei Unbekannten von héherem als dem zweiten Grade 45-50 *
Algebraische Gleichungen von héherem als dem zweiten Grade mit drei Unbekann-
ten und gewisse Exponentialgleichungen 51-59.

Homer E. Newell, Jr.: Vector Analysis. (International series in pure
and applied mathematics.) McGraw-Hill Book Co., New York, Toronto,
London, 1955. 11216 pp. sh. 41/6.

Scalars and vectors 3-27 * A review of some mathematical concepts 28-46 *
Differentiation of vectors 47-54 * Divergence and curl 55-70 * The operator V
71-78 * Relationships involving V 79-82 * Curvilinear coordinates 83-104 =
General theorems and potential theory 105-128 * Miscellaneous applications 131—
140 * Motions in space 141-154 * A sketch of electromagnetic theory 155-197 *
Answers to exercises 199-207 * Index 209-216.
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Hans-Heinrich Ostman: Additive Zahlentheorie. Teil I: Allgemeine
Untersuchungen. (Ergebnisse der Mathematik, neue Folge, 7.) Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1955. 74233 S. DM 29.80.

Der Summenbegriff; allgemeine Eigenschaften 1-21 * Mengen mit Relativnullen
22-24 * Basismengen 24-26 * Zusammenhang mit DiopEANTischen Gleichungen
26-27 * FErRMAT-Indizes 27-28 * Verallgemeinerungen von X' 29 * Anzahlfunktion,
Kompositionen, Partitionen 29-69 * Die verschiedenen Dichtebegriffe 70-103 *
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Dichte 114-119 * Die arithmetischen (finiten) Dichten reduzibler Mengen 119-136
Die asymptotischen Dichten reduzibler Mengen 136-156 * Die Genauigkeit der
Abschitzungen 156-161 * Basen endlicher Ordnung 161-173 * Minimalbasen 173-
182 * Wesentliche Komponenten 182-189 * Weitere Zusammenhénge mit den
zugeordneten dyadischen Reihenentwicklungen 189-201 * Literaturverzeichnis 202
229 * Autorenverzeichnis 230-231 * Sachregister 232-233.

M. Schuler—H. Gebelein: Acht- und neunstellige Tabellen zu den ellip-
tischen Funktionen. (Mit deutschem und englischem Text.) Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1955. 244296 S., 11 Fig. Ganzl.
DM 58.00.

Vorwort—Preface V-IX * Inhaltsverzeichnis—Contents X #* Einfithrung-Intro-
duction XI-XXIV % Tab. I: Funktionen G(g%, 2) laufend nach z (mit Angabe
der zugehérigen Werte ¢ und 6) 1-52 * Tab. II: Funktionen G(g%, z) laufend nach
q* 53-80 * Zugehorige Werte ¢ und 0 zusammengestellt 81-82 * Tab. ITI: Funk-
tionen H(q3, z) laufend nach z (mit Angabe der zugehérigen Werte g und 6) 83128 *
Tab. IV: Funktionen H(q? z) laufend nach ¢3 129-156 * Zugehorige Werte g und 6
zusammengestellt 157-158 * Tab. V: Jacobische elliptische Funktionen laufend
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Modul 6 und dem Jacobischen Parameter g 281-296.

M. Schuler—H. Gebelein: Finfstellige Tabellen zu den elliptischen Funk-
tionen. (Mit deutschem und englischem Text.) Springer-Verlag, Berlin,
Gottingen, Heidelberg, 1955. 104114 S., 11 Fig. Ganzl. DM 29.60.

Vorwort—Preface V-X #* Inhaltsverzeichnis-Contents XI * Einfithrung-Intro-
duction 1-24 * Tab. I: Jacobische elliptische Funktionen laufend nach z mit An-
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gehorigen Werte 6) 75-90 * Tab. IV: Funktionen G(q, z) und H(g, ) laufend nach
g 91-106 = Tab. V: Tafel fiir die Umrechnung zwischen dem Legendreschen Modul
6 und dem Jacobischen Parameter ¢ 107-112 * Tab. VI: Tafeln der Koeffizienten
fir die Interpolation nach Everett 113-114.
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Karl Schiitte: Index mathematischer Tafelwerke und Tabellen. (Index
of mathematical tables.) Verlag R. Oldenbourg, Miinchen, 1955. 143 S.
Ganzl. DM 14.50.

(Anmeldt i NMT, dette hefte, s. 38.)

Vorwort 7-21 % Abkiirzungen 22-23 * Numerisches und praktisches Rechnen
24-32 * Logarithmen der natiirlichen Zahlen 33-43 * Logarithmen der Kreisfunk-
tionen 44-50 * Numeri der Kreisfunktionen 51-59 * Aus elementaren Funktionen
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136-141 * Index der Institute 142-143.

Claude E. Stout: Shop mathematics. John Wiley & Sons, New York,
1955. 114282 pp.

Part 1: Integers, fractions, decimals, gearing, cutting speeds and feeds 1-70 *
Part 2: Negative numbers, arithmetic of letters, powers and roots, area and vol-
‘ume, pythagorean theorem, simple equations and systems of equations 71-121 *
Part 3: Fundamentals of geometry and trigonometry, right and oblique triangles,
vectors, graphs 123-179 * Part 4: Logarithms, exponents and indices, use of
logarithmic tables, use of slide rule for the fundamental operations and for tri-
gonometric calculations 181-243 x Table of trigonometric functions 245-278
Index 279-282.

Hans Wittich: Neuere Untersuchungen iiber eindeutige analytische
Funktionen. (Ergebnisse der Mathematik, neue Folge, 8.) Springer-Verlag,
Berlin, Gottingen, Heidelberg, 1955. 44163 S., 31 Fig. DM 25.60.

Einleitung 1-4 * Theorie des Maximalgliedes von WIMAN-VALIRON 4-11 * Die
beiden Hauptsitze der Wertverteilungslehre 12-31 * Weitere Folgerungen aus den
Hauptsitzen. Erginzungen 31-53 * Umkehrung des zweiten Hauptsatzes §3-62 *
Anwendungen auf gewohnliche Differentialgleichungen 63-82 * Konforme und quasi-
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Losninger av oppgavene 74-76 sendes til redaksjonssekreteren innen 25. mai
1956. Slike lgsninger vil bli trykt i et folgende hefte i den utstrekning plassen til-
later, dog vanligvis bare den beste lesning av hver oppgave.

De ovrige oppgaver i dette hefte er enklere, og losninger av dem vil ikke bli
trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
redaksjonssekretwren, helst sammen med forslagsstillerens egen lesning.

74. Vis at

Otto Marstrander

75. Der er givet en konveks firkant ABCD med siderne a=AB,
b=BC, ¢c=CD og d=DA samt diagonalerne ¢=AC og f=BD. Vis, at
firkanten da og kun da kan indskrives i en cirkel, nar

e ad + be

[ abted”

Fr. Fabricius-Bjerre

76. I en sfeerisk trekant 4 BC med sider a, b og ¢ betegner r den sfze-
riske radius for den indskrevne cirkel, r,, 7, og r, de sferiske radier for
de ydre bergringscirkler (nabotrekanternes indskrevne cirkler) og R den
sfeeriske radius i den omskrevne cirkel. Idet s er trekantens halve peri-
meter, og

0 = }sina sinbsinC = }/sins sin (s —a) sin(s—b) sin(s—c¢) ,

skal man vise formlerne

[44]
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tgr tgr, tgr, tgr, = 62,
cotr,+ cotry +cotr,—cotr = 2tgR 1
tgr,+tgr, +tgr,—tgr = tg R (14 cosa+ cosb+cosc),
tgry, tgr.+tgr, tgr, +tgr, tgr, —tgr (tgr, +tgr, +tgr,)
= cosa + cosb + cosc — cosb cosc —cosc cosa — cosa cosb .

Herudfra danner man let den fjerdegradsligning, hvis redder er tgr,,
tgry,, tgr, og —tgr. De 4 anforte formler gar ved en passende grense-
overgang, hvor kuglens radius gar mod oo, over i formlerne (8), (12),

(22) og (21) i Anders Bagers artikel i dette hefte. .
David Fog

77. a) Bestdm synvinkeln fran en punkt till en rdtlinig stricka och
80k dess maximum och minimum, d& punkten ror sig lings en rit linje
eller en cirkel.

b) Bestédm den ort, fran vilken tva raka strickor synas under lika stora
vinklar.

Hj. Tallquist

78. a) Et punkt P kan bevege seg i det indre av en likesidet trekant.
Vis at summen av de vinkelrette avstander fra P til trekantens sider er
konstant.

b) I en trekant ABC er alle vinklene mindre enn 120°; P er et punkt i
trekantens indre. Vis, ved & nytte resultatet i a), at P4+ PB+PC

blir minst nar P ligger slik at en ser alle trekantens sider fra P under
vinkler pa 120°.

79. Skriver en 7/17 som dyadisk brek:

7
— = 0; 0110 1001 ...,
17

bestar perioden av 8 sifre slik at annen halvdel av perioden er »komple-
mentetq til forste halvdel (hvert av sifrene 0 og 1 er byttet ut med det
andre). Vis at ethvert rasjonalt tall mellom 0 og 1 som kan skrives p&
formen m/(27+ 1) gir en dyadisk brgk der perioden har 2 sifre, og annen
halvdel av perioden er skomplementet« til forste halvdel.

80. Sett N 2
v = I (1_"5)
n=1 n

og p=sinax/nz. Vis at for |z| <1 er

1 Se f. eks. Chr. Gudermann: Lehrbuch der niederen Sphdrik, Miinster 1835, 9. Abschnitt.
Her findes en omfattende samling formler, hvori indgér radierne i en sfwrisk trekants og
dens nabotrekanters indskrevne og omskrevne cirkler.
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x2
Py _ 14 ,
P N+«

der || <1 (jfr. Otto Marstranders losning i dette hefte av oppg. 66).

81. La nullpunktene i polynomet
f@) = gzt —a 2+ ... +(—1)"a,

VE®IE Ty, Tgy - - > T'n- Vis at det polynomet F(z) som har nullpunktene
72, To2, ..., Ty er

F(z) = Zazi%jxn_i_j— .2’azz'+1a‘2j+1xn_i—j—1 )

der summene utstrekkes over alle hele, ikke-negative ¢ og j, idet a;=0
for k>n.

LOSNINGER

66. Wallis’ formel kan skrivas pa formen

2 had 1
(- ).
T ol 4n

Visa, att for tillrickligt stora N géller

1 N 1 2 )
wasn s | (- 5s) 2| = 2w

Arne Pletjel

Losning : Vi setter

d 1 © ]
P I (15s) 5= 2 e

n=N+1 n=N+1
og far da -
P>1- 23 —>1-8,
n=N+1 4n?
eller Pg
1-P< S <——.
<8 < 1%
Videre blir ) . )
~ = 14— ) > 148,
P n:——ll\:ill( +4"2—1) z o

eller 1—P>PS. Na er
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S___%Z“",(]_ 1) 1

<~ \2n—1 2n+1/  4N+2’

Multipliserer vi derfor

PS
PS <1—-P < ——
1=-8

N
med [[ (1—1/4n?), far vi

n=1

1 N 1 2 2
———— (]_ —_ .__) —_— < —
(2N +1) 5 an?/ w a(4N+1)
for N> 1.
Otto Marstrander

67. Lat L och L’ vara lingden av en regulir polygon P, resp. av dess
ortogonalprojektion P’, d& projektionsvinkeln &r v. Visa att

oL’ >
2L z L (1+cos v). Magnus Tideman

Losning: La et linjestykke med lengden s ligge i P’s plan og danne
vinkelen ¢ med de to plans skjeeringslinje. Lengden av linjestykkets
projeksjon blir da

S : sin?g sin%v
s = s)/1—sin2p sin%v = s <1 - — ‘___> ,
1+ Vl —sin?@ sin?v
som gir
sin?¢p sin%v
sz s (1 —~-———(—p~—»-~~) = 3(1 — (1 —cosv)(1 —cos 2gv))
1+ cosv

(hvor likhetstegnet bare gjelder dersom sin?¢ er 0 eller 1), eller
28" = 8(1+cosv)+s(1—cosv)cos2yp .
Idet s er sidelengden til P, far vi da

n-l 2hr
2L' = L(1+cosv)+s(l—cosv) > cos2<<x+ —) ,
k=0 n
hvor n er antall sider i P, og « er vinkelen mellom en av sidene i P og
skjeeringslinjen. Da den siste summen som kjent er lik 0, far vi
2L" z L(1+cosv),

hvor likhetstegnet bare kan gjelde dersom P er et kvadrat med en side

parallell med skjeeringslinjen.
Otto Marstrander

Ogsé lest av H. Killingbergtre og Rolv Rasmussen.
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68. Polynomet P(x) har endast enkla nollstillen a, b, . .., m. Visa, att
om gradtalet av P(x) &r >pu+1, s& giller
- b " heltal och
—t—t...+——=0 t 2 0).
P’(a)+P’(b)+ +P’(m) (u heltal och = 0)

Lennart Busch

Losning: Da graden av z*(zx—a) er mindre enn graden av P(z), kan
x"(x—a)/P(x) utvikles i partialbrgker. Vi far da

' (x—a) B M

Multiplikasjon med x—b gir

) M (x—a) b*(a—b)
B = —lim =

z—b

De gvrige tellere i (1) bestemmes pé tilsvarende mate. Ved & innfore
verdiene av B, ..., M i (1) og deretter la  konvergere mot a, fis den
spkte formel
a” b* m*
—t ...
P Po) T Pm)

Otto Marstrander

Ogsd lest av Anders Bager, Bent Christiansen, Magnus Hegranes og Rolv
Rasmussen.

69. Vis at
g3 1 o3 7
S dw = — S P dr =t
o o—1 15 0 €% +1 120
Age Ramberg
Losning: Af identiteten
1 ek
=Tt e P e ——
er—1 e —1
folger umiddelbart
X kL0 Oox'ne—kz
g —dz = Zg are e dx + g ~dx .
0 em'—l =1 Y0 Y0 ez—l

De & forste integraler er bestemt ved
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k

k00
ZS greRdr = I'n+1) 3 A~
i=1 Y0 A=1
hvor I'(n+1) for hele n er lig n!. Af
x x
= <1
er—1 x? 23
x+ a +'3—! + ...
indses, at det sidste integral
00 T p—KT o8] Fn
S T i < S arlekedy = ()
o €©—1 o k

konvergerer mod nul for k — oco. Der galder derfor
0 m oo
S T dg = Dn+1) 3 2-@ = P+ 1)En+1),
o€ —1 A=1
hvor ¢(n+1) er Riemanns {-funktion.
De sggte integraler bliver herefter

Smj:dx _ e ==

b €2 —1 90 15
\'“_3'“‘__ =§°°_w_“’_ B = o) = 2
Jo o +1 Jo o —1 8J, e —1 8 15 120

Hans-Otto Tonder

Ogsd lest av Otto Borgersen. Lesninger er sendt inn av en rekke andre, men
de lider alle av den mangel at leddvis integrasjon av en rekke er utfert uten noen
motivering av dens tillatelighet.

70. I oppgave 49 ble det hevdet at rekken

o1
m) "

utstrakt over alle n som skrevet i titallsystemet ikke inneholder siffret 9,
er konvergent. Finn en gvre skranke for summen, helst s4 liten som mulig.

R. Tambs Lyche

Nordisk Matematisk Tidskrift. — 4
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Losning: La s vaere rekkens sum. Da er

T+ (&+. .+ + ot
O R R R

S =

FEH(E+ . S st tase) T (sooe T - Fasss) -

s< (4. +3) (Q+S+E&r2+..)=0+...+H10= 275 .

Lavere blir grensen nar en ogsd regner ut L+ ... 4355 som multi-
pliseres med (1+%5+ (55)?+ . ..). Dette produkt addert til 14+...+3%

ir grensen 23,26 (avrundet oppover).
gl & ( PP ) H. Killingbergtro

Oppgaven er ogsd lost av Anders Bager, som gir en gvre skranke 28 og dessuten
en nedre skranke 17. Otto Marstrander gir gvre skranke 26,81 (som synes & skyldes
en regnefeil, idet den burde vare 27,2 etter den brukte metode). Henrik Meyer
angir 27,2 som gvre og 18,2 som nedre skranke. RolvRasmussen gir (10%/(10"— 9™)8,
gom ovre skranke, idet s, betyr summen av alle ledd i rekken med inntil n sifre i
nevneren. — Ved utregning av leddene til og med 1/888 er resultatet, med forbehold
om regningens riktighet, 22,943 <s< 22,951.




DEN FORSTE INTERNORDISKE PRISOPGAVE

Som omtalt i NMT 3 (1955), s. 126, indkom der ialt 15 besvarelser pé den inter-
nordiske prisopgave. Peter Winge, Kobenhavn, fik tildelt forste premie (en rejse
til Island med ophold i Reykjavik), medens Helgi Jénsson, Reykjavik, Per Wenner-
berg Karlsson, Kgbenhavn, og Asmus L. Schmidt, Ribe, Danmark, fik premier i
form af pengebelob.

I det folgende skal der nu ved uddrag af de premierede besvarelser gives en
behandling af opgaverne (teksten findes i NMT 2 (1954), s. 128-130). Uddragene

er dog i enkelte tilfzelde forkortet og let bearbejdet. Regnar Norgil

1. Vi betragter korden AB og lader den i teksten navnte linie veere
parablens ledelinie ! (fig. 1). AB projiceres p4 [ i A,B; og dens midtpunkt
M i M, der er midtpunktet af 4,B,. Punktet M 1 er endvidere skeerings-
punkt mellem den til AB herende diameter d og !; d skeerer parablen i
et punkt R, der er roringspunkt for en med AB parallel tangent ¢, og
M, er spejlbilledet af breendpunktet F i ¢. Linien M 1" er altsd vinkelret
pé ¢ og felgelig ogsa pa AB. For en vilkarlig trekant ABC, der er ind-
skrevet i parablen, gelder derfor, at nar man projicerer sidernes midt-

1 punkter pé ledelinien og fra de fremkomne
A, A_~  projektioner fwelder vinkelrette pa de
respektive sider, vil disse tre linier gi
gennem samme punkt, nemlig parablens
brendpunkt.

R M Erstattes nu ledelinien med en vilkarlig
M ¢ linie l, vinkelret p4 parablens akse, ses

F ved en parallelforskydning, at de tre i
/ opgavens tekst neevnte linier vil g& gennem
samme punkt af parablens akse, og at
dettes afstand fra I, er }p, hvor p er pa-
rablens parameter.

2. Vi tegner en linie /, vinkelret pa den
givne akseretning (fig. 2). De tre punkter
Fig. 1 4, B og C forbindes, og midtpunkterne

u [51]
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Fig. 2

c

akseretning

M og N at AB og AC pro-
jiceres pa I, i M; og N,. De
vinkelrette fra M, og N; pa
henholdsvis 4B og AC skee-
rer da ifglge nr. 1 hinanden
i et punkt S, der ligger pa
parablens akse i afstanden
1p fra l,. Den sogte parabel
mé derfor kunne frembringes
af en parabel med ledelinie [,
og breendpunkt § ved en pas-
sende parallelforskydning i
aksens retning.

A projiceres pa I, i 4, og
midtnormalen til 4,8 ske-
rer A, A i D. Parallelforskyd-
ningen mé da have storrel-
sen DA, og den fgrer § over

i den sogte parabels breendpunkt F (og I; over i dens ledelinie 7).

Af det ovenstaende folger, at der findes en og kun een parabel, som er
omskrevet om en given trekant ABC og har en given akseretning (der
ikkke er parallel med nogen af trekantens sider); thi — med betegnelserne
ovenfor — vil den eneste mulighed veere den parabel, som har ledelinie

" 1 og breendpunkt F. Denne parabel gar
ifglge konstruktionen gennem 4, og ved
hjeelp af den i nr.1 viste setning ses
den ogsa at g& gennem B og C.

3. Ved benyttelse af setningen, at
to tangenters skeeringspunkt og midt-
punktet af den korde, der forbinder
roringspunkterne, ligger pa en ret linie
parallel med parablens akse, ser man,
at de tre tangenters skeeringspunkters
projektioner pa en linie I, vinkelret pé&
den opgivne akseretning vil vaere de i
nr. 1 nevnte midtpunkter af kordernes
projektioner pa I;.

! 1
Qs 4’3
C
Q ; \\ R,
akseretning

Fig. 3

Konstruktionen kommer da til at forlobe saledes (fig. 3). Skeerings-
punkterne 4, B og C projiceres pa I; i henholdsvis 4,, B; og 0,. Lad' 4,
falde mellem B, og C,. Fra 4, afseettes ud til hver side pa I, et liniestykke
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af lengden B,C,, siledes at 4, bliver midtpunkt af det fremkomne linie-
stykke @,¢;. Afsetter man nu stykket @,C; fra C; ad I, mod B; (eller
@sB, fra B, ad [, mod (), far man et punkt @;, og de tre punkter Q,,
@, og @, er projektionerne pi I/, af de tre reringspunkter. Linier gen-
nem @y, @, og @, parallelle med akseretningen skeerer nu tangenterne i
deres rgringspunkter R,, R, og R; med parablen, og dennes akse og
brendpunkt kan fastlegges som i nr. 2.

4. Alle besvarelser bygger pa ganske simple analytiske regninger, og
de skal derfor ikke medtages her.

2
5. Lad parablen y2=px vaere givet. I tre vilkarlice punkter y—l, R
p Yy =p g ge p » Y

2 2 .
(?ZZ—, yz) og (g'l, ya) af denne tegnes tangenter, hvis skeeringspunkter
p p

H

. Y1Y2 Y11+Ys YoYs Ya2t+Ys YY1 Ys+Yy
bliver (==, == =< 5 og
p

== *——) Skal disse punk-
P 2 p 2

ter ligge pa parablen
¥—b) = py(x—a),
mé man have

2 2
(Bis) -, (14-a), (B2 s) -y, (4-a),
2 P 2 P

2
(E0-0) - (20d)
14

Ved subtraktion elimineres forst a, derefter b, og man far p=4p,.

Det kan tilfgjes, at en betragtning ud fra nr. 4 af de to trekanter,
der dannes med vinkelspidser i henholdsvis reringspunkterne og tangent-
skeringspunkterne, ogsd bekvemt forer til resultatet.

6. Ifglge nr. 5 er parameteren p, for den parabel P,, der har den op-
givne trekants sider eller deres forleengelser som tangenter, 4 gange sa
stor som parameteren p; i den anden parabel P;, der gir gennem tre-
kantens vinkelspidser.

Nu velges (fig. 4) et punkt B pa P, (uden for P,), og tangenterne til
P, tegnes fra dette punkt; reringspunkterne kaldes R, og R,. Linien
BR, skerer i almindelighed P, i endnu et punkt C, fra hvilket der kan
tegnes endnu en tangent til P,; lad denne have reringspunktet R,.
Tangenterne R;B og R,C vil skere hinanden i et punkt 4, pa RyRy’s
diameter d, og lad skeeringspunktet mellem d og P, vere A.
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Fig. 4 Fig. 5

Teenker man sig nu (fig. 5), at 4, falder inden for Py, s& vil der ifolge
nr. 2 gennem A,, B og C' kunne tegnes en (og kun een) parabel Py med
den forelagte akseretning, og til bestemmelse af dennes halve parameter
(1ps) benyttes metoden fra nr. 1. Samtidig bestemmes til sammenlig-
ning p;. .‘

Trekant DES kommer til at ligge helt inden i trekant DES,; hojden
pa DE fra S er derfor mindre end hgjden pa DE fra S;, men den forste
hojde er lig 4p, og den anden lig }p,. Vi har altsd: p; < ps, hvoraf p, < 4p;.

Nar imidlertid P, og P, ligger, som de gor i forhold til trekant 4,BC,
har man ifglge nr. 5, at p,= 4p,, d.v.s. en modstrid — A, ligger altsd ikke
inden for P;.

Antagelsen, at 4, skulle ligge uden for Py, forer ligeledes til modstrid,
hvilket ses ved pa figuren at ombytte 4 og 4,. Punkterne 4 og A4, vil
derfor falde sammen, og den parabel, der kan tegnes gennem 4,, B og C,
er P, selv. For ethvert valg af B pa P, uden for P, (med enkelte undta-
gelser) vil man p4 den angivne méde kunne fa en trekant, hvis vinkel-
spidser ligger pa P;, og hvis sider eller deres forleengelser er tangenter
til P,. Der findes altsd uendelig mange trekanter af denne art.




PRISOPGAVER FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier i Danmark
udskrev i ar i lighed med tidligere ar prisopgaver for danske gymnasieelever og
kursuselever til studentereksamen. For den bedste besvarelse er udsat en premie
p& 100 kr., og der kan eventuelt uddeles ekstraprsemier.

Seertryk af opgaverne blev tilsendt samtlige gymnasieskoler og kurser i Dan-
mark. Indleveringsfristen udleb 1. april 1956.

Opgavernes ordlyd var felgende:

1. Lad A vere et vilkarligt punkt pa den rette linie, hvis ligning er
x=a, hvor a er en positiv konstant, og lad B vaere punktet (—a, 0).
Gennem A og B tegnes to pa hinanden vinkelrette linier, hvis skeerings-
punkt er P, og hvor AP =2a.

1) Find det geometriske sted for midtpunktet M af AP, nar A gen-
nemlgber linien z=a.

2) Underspg og tegn det fundne geometriske sted.

Gennem koordinatsystemets begyndelsespunkt O og punktet I tegnes
en ret linie [, hvis vinkel med z-aksen er ».

3) Find lengden af OM som en funktion af v, idet v dog teenkes for-

skellig fra g+ P,

P4 linien ! bestemmes et punkt @, saledes at 0Q-OM = 4a?.

4) Find det geometriske sted for @, nir M gennemlgber den i 2) fundne
kurve med undtagelse af punktet O.

5) Angiv dette geometriske steds art og beliggenhed i koordinat-
systemet.

2. Bevis, at
2p
S (1-2®)Pder = —— S (1—a?)p-1dy,
0 2p+1J,
hvor p er et vilkarligt tal storre end eller lig med 1.

Idet man derefter antager, at n er et positivt helt tal, skal man beregne

1 1
g (1—2%"dx og S (1—a?)"tde .
0

Yo
(58]
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3. En sferisk polygon kaldes reguler, nir alle dens sider er lige store,
og alle dens vinkler er lige store.

Hvilke verdier kan p have, nar en kugle skal dakkes helt af kongru-
ente regulere konvekse p-kanter, som ikke har indre punkter felles.

Idet » er antallet af regulere p-kanter, der steder op til hver af vinkel-
spidserne, skal man for hver mulig veerdi af p angive de veerdier, som 7
kan antage.

Bevis, at (p—2)(n—2)<4.

Beregn for hvert muligt veerdiset af p og n siden i den regulere p-kant.

4. T hver af vinkelspidserne af en trekant ABC er anbragt en partikel,
hvis masse angives ved samme tal som lengden af den modstdende side
i trekanten.

Find partikelsystemets tyngdepunkt.

Tre linewre stenger, der overalt har samme masse pr. lengdeenhed,
er anbragt som sider i en trekant.

Tind stangsystemets tyngdepunkt.

5. Idet
Qg By Bgy -« -5 Qs+« -

er en voksende talfelge, og
A, =agt+a;+ay+ ...+,
skal man vise, at hvis n>p=1, sd er
Au=dy Ayt

n p

Tdet « er et givet tal sterre end 1, skal man dernsest vise, at nir n og p
er to hele positive tal, hvor n>pz1, si er

Var—1 < Za-1).

n




14.2
14.3
21.3

14.4
16.5
19.9
10.10

7.11
21.11

5.12

17.10
18.10
19.10
19.10

19.1
23.2

13.3

20.4

14.9
16.9

21.9

20.10
18.11

KRONIKK

MOTEREFERATER FOR 1955 FRA DE
UTGIVENDE FORENINGER

DaNsk MATEMATISK FORENING.

E. Folner: Om nogle funktionsrum fra de ncstenperiodiske funktioners teort.

R. V. Kadison, New York: Certain aspects of spectral theory.

E. Andersen: Anvendelse af hulkortkalkulatorer ¢ den praktiske matematik
belyst ved et par eksempler.

G. Ancochea, Madrid: Géoméirie projective et algébre moderne.

J. Nielsen: En basis for undergrupper af fri grupper.

F. P. Pedersen: Om geodwtiske linier pd en torus.

K. R. Buch: Koproblemer ¢ matematisk behandling (Glim¢ fra de stokastiske
processers teort).

N. E. Norlund : Tanker om tre videnskaber.

H. Tornehave: Et bevis af Bogolioubaff for hovedsetningen for neestenperiodiske
Sfunktioner.

P. O. Neerup: Hjelmslevs kongruenslare som analytisk geometri.

FORENINGEN AF MATEMATIKLZRERE VED GYMNASIESKOLER OG
SEMINARIER I DANMARK.

D. Fog: Om »stringent tenkning og pregnant udtryksforms.

R. Petersen demonstrerede differentialanalysatoren.

W. Fenchel: Det isoperimetriske problem.

P. Mogensen og P. Rubinstein: Hvorledes kan man forme en undervisning ¢
differential- og integralregning for sproglige gymmasiaster? (Forhandling.)

FiNpANDS MATEMATISKA FORENING.

P. J. Myrberg: Automorfisista thetafunktioista [Om automorfa thetafunktioner].

K. Inkeri: Fermat'n vdittimastd ja ympyrakunnan luokkaluvusta [Om Fer-
mat’s hypotes och Klasstalet for den cyklotomiska kroppen].

R. Nevanlinna: Gauss ja epdeukliidinen geometria [Gauss och icke-euklidisk
geometrz].

G. af Hillstrom: Hzempel pd anvindning av Laplace-transformationer for
berdkning av sannolikhetsfordelningar.

A. Pfluger, Ziirich: Ein alternierendes Verfahren auf Riemannschen Flichen.

— Ein Approxzimationssatz fiir harmonische Funktionen auf offenen Rie-
mannschen Flichen.

P. Jordan, Hamburg: Mathematische Probleme der allgemeinen Relativitdts-
theorie. .

P. Kustaanheimo: Finiittisisti geometrioista [Om finita geometrier].

0. Frostman, Stockholm: Extremalproblem inom potentialteorien.

[57]
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FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

5.2 Arsméte i Riithim#ki. Férhandlingar och val. Programmet upptog ett indu-
stribesk och en diskussion om Léroverkskommitténs betdnkande an-
gdende den inre utvecklingen av liroverken. Inledaren U.Kuuskoski
berorde sdrskilt matematikens stéllning. Livlig diskussion, varvid rétt
stark kritik av beténkandet framférdes.

2-4.7 Forelisnings- och exkursionsdagar i Ulesborg (c:a 130 deltagare). Utbild-
ningen av liroverksldrare viktigaste friga péd programmet. Industribesok,
utflykt samt en fem dagars rundresa i Lappland. Férbundets 20-ars-
jubileum firades 2.7. Fér forsta géngen var representanter for broder-
forbunden i Danmark, Norge och Sverige nérvarande.

ISLENZEA STZERPFRAEDAFELAGID.

25.1 Trausti Einarsson: Tyngdemdling i Island.
15.3 Ari Brynjolfsson: Jordens magnetiske felt.
5.4 Dorkell Porkelsson: Nogle formler for trigonometriske rodder i algebraiske
ligninger.
1.11 Magnus Magnusson: Elementarpartikler.
13.12 Sigurkarl Stefansson: Parabler.

NorsSK MATEMATISE FORENING.

25.1 1. Johansson: Omkring limesbegrepet ¢ den matematiske analyse.
R. Tambs Lyche: Om en konvergent tallfolge.

23.2 Th. Skolem: Gauss, hans liv og arbeider.

22.3 0. Reiersol: Utledning av differensialligninger og differensligninger for bereg-
ning av funksjoner definert ved integraler. '

28.4 F.John, New York: Proper and improper problems for partial differential
equations.

4.10 E. B. Schieldrop: Et nytt prinsipp i mekanikken.
15.11 K. E. Aubert: En generalisert idealteors.
12.12 S. Selberg: Om noen nyere resultater © den additive tallteors.

NORSK LEKTORLAGS MATEMATIKKSEKSJON.

Om disse foredragene foreligger det melding fra de forskjellige kretser:
10.2 W. Mikalsen: Matematikken pd spraklinjene. (Bergen.)
24.2 H. Christoffersen: Grensebetrakininger © gymnasiematematikken. (Oslo.)
17.3 Rundebordkonferanse om rettesving i matematikk. (Bergen.)
24.9 Th. Gotharson, Karlskoga, og B. Rudberg: Algebraundervisningen pd de
lavere trinn. (Hamar.)
24.10 S. Stoesen, R. Bjercke og Th. B. Schyberg: Skolen og handelen. (Trondheim.)
31.10 Th. Gundersen: Praktisk regning. Overgangsproblemer folkeskole—realskole.
(Hamar.)
31.10 Q. Leinum: Bokforing som praktisk fag. (Trondheim.)
6.11 K. B. Sollesnes: Matematikken pd sprdklinjene. (Stavanger.)
7.11 K.XKure: Problemer s forbindelse med eksamensoppgaver ¢ matematikk. (Halden.)
8.11 K. Piene: Matematikkens plass 1 amerikansk skole og lererutdanning. (Oslo.)
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SVENSKA MATEMATIKERSAMFUNDET.
Moéte i Stockholm:

L. Hoérmander: Uppskatiningar med energiintegral for allmdnna partiella
differentialekvationer med konstanta koefficienter.

T. Ganelius: Om resttermen © en Taubersats for Laplace-transformer.

L. E. Zachrisson: »Markoff-spel« med tillimpningar pd duellproblem.

O. Hanner: Parallellforskjuining av konvexa mingder.

E. Ingelstam: Hills ekvation som grund for en hypotes om dgats firgseende.

L. Carleson och B. Kjellberg: Om anvindning av matematiska metoder pd
vissa trafikproblem.

Mote i Stockholm:

Y. Domar: Om majorantsatser for subharmoniska funktioner.
L. Hulthén: Vad dr operationsanalys?
O. Frostman: Om ett posthumt arbete av Carleman inom kinetisk gasteori.

Moéte i Stockholm:

B. Kjellberg: Majoranter till analytiska funktioner.
A’ Jensen, Kobenhavn: Matematiske problemer inden for telefonien.
S. Lyttkens: Resttermuppskatiningar vid Tauberteorem.

T. Ganelius: Resttermuppskattningar vid Tauberteorem vid Laplace-transfor-
mer.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Luxp.

16-17.4 Arsmoéte. Se referat i NMT, Bind 3, s. 77.
26-27.11 Hostmote, vilket dgnades &t elektroniken i skolan.

Foljande demonstrationer gjordes:

G. Leide: Elektronrirens allmdnna egenskaper.
E. Moller: Hlektronroret som oscillator.

O. Lundquist: Elektronriret som likriktare.

L. Stigmark: Mikrovdgor.

B. Persson: Moderna tillimpningar.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

7-8.1 Arsméte. Se referat i NMT, Bind 3, s. 7.

FORENINGSNYTT

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

P& arsmotet 5.2 1955 beslots att arligen anordna en pristédvling i matematik for
gymnasister liksom i de évriga nordiska linderna.

Forbundets styrelse godkédnde 17.3 1955 en skrivelse till Skolstyrelsen angéende
matematikens, fysikens och kemins tilltdnkta stéllning i de reformerade ldroverken
Forslag till skrivelsen hade uppgjorts av en sirskilt tillsatt kommitté.



60 KRONIKK

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

avholl sitt rsméte den 4-5 januari 1956 i Kemiska institutionens lokaler i Upp-
sala. Styrelse och arbetsutskott atervaldes. Efter drsmétet holls f6ljande foredrag:

C. Lonnqvist: Den nya satelliten.

J. Orring: Enhetsskolans kursplaner i matematik, fysik och kems (diskussion).

F. Hjerting och 8. Lindholm: Demonstration av fysikaliska skolforsok.

U. Kuuskoski: Nordiskt samarbete mellan matematik-, fysik- och kemildrare
(diskussion).

Rundvandring foretogs genom Kemiska institutionen med visning av cyklo-
tronen, elektronmikroskopet, ultracentrifugen och biokemiska avdelningen. Slut-
ligen avlades bestk vid Pharmacia likemedels-fabrik.

UTNEVNELSER

Til professorer i matematik ved Danmarks tekniske hgjskole: Docent, dr. phil.
S. Lauritzen og dr. phil. H. Tornehave.

Til professor i matematikk ved Universitetet i Oslo: Dr. philos. W. Ljunggren.

Til professor i anvendt matematikk ved Universitetet i Bergen: Dr. philos. 0.
Bjergum.

Till docent i matematik vid Lunds Universitet: Fil. dr. L. Hérmander.

OVERSIGT OVER CIEM’s UDVIKLING, NUVERENDE STRUKTUR
OG HIDTIDIGE VIRKSOMHED

1. Oprettelse og organisation af CIEM.

CIEM er oprettet af den internationale matematiske union (IMU), en viden-
skabelig union omfattende for tiden 29 lande. Hvert enkelt land er tilsluttet
unionen gennem en komité.

CIEM er at opfatte som en videreforelse og udvidelse af den internationale
matematikundervisningskommission (IMUK), som i &rhundredets ferste artier
under Felix Kleins ledelse ovede en betydelig indflydelse pé matematikundervis-
ningen verden over.

CIEM skal behandle alle sager i IMU, som angdr matematikundervisning, og
tage initiativ ved at opstille passende programmer, som kan fremme en sund ud-
vikling af matematikundervisningen pé alle trin og sikre offentlig anerkendelse
af dennes betydning.

Oprettelsen fandt sted ved den forste generalforsamling i IMU (Rom, marts
1952), hvor en forelebig kommission med professor Chatelet, Paris, som prasident
blev udpeget. Det forste mede i CIEM blev afholdt i Genua i oktober 1952. Her
udarbejdedes et arbejdsprogram for tidsrummet 1952-1954, og der udgik opfordring
til de enkelte lande til at tilslutte sig CIEM og udpege en forelebig delegeret med
bl. a. den opgave at nedsette for sit land en underkommission for matematik-
undervisning med henblik p& det foreliggende arbejdsprogram.

De endelige rammer for CIEM blev fastlagt ved den anden generalforsamling
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i IMU (Haag, september 1954). Herefter skal CIEM bestd af 10 delegerede valgt
af IMU, der blandt disse tillige udpeger preesidenten for CIEM, samt 2 delegerede
for hvert land (for tiden 15 lande) udpeget af dettes komité for IMU. Valgene gelder
for 4-8rige perioder. De lobende forretninger og tilretteleeggelsen af arbejdet vare-
tages af eksekutivkomitéen bestdende af praesidenten, 2 viceprasidenter, 1 sekre-
teer og yderligere 3 medlemmer. Paner praesidenten velges eksekutivkomitéen af
CIEM ved skriftlig afstemning.
For perioden 1955-58 har eksekutivkomitéen faet folgende sammensatning :
Praesident: H. Behnke, professor, Miinster,
Vice-praesidenter: G. Kurepa, professor, Belgrad,
M. H. Stone, professor, Chicago,
Sekreteer: J. Desforge, undervisningsinspekter, Paris,
Medlemmer: Ram Behari, professor, Indien,
E. A. Maxwell, professor, Cambridge,
K. Piene, rektor for Det pedagogiske seminar, Oslo.

II. CIEM’s virksomhed ¢ tidsrummet 1952—19564.

Efter det omtalte mode i Genua i oktober 1952 udgik til de delegerede for de
enkelte lande opfordring til
1. at lade udarbejde en rapport til belysning af »Matematikkens og matematike-
rens rolle i vor tid« til fremleggelse ved
2. at lade udarbejde en rapport om landets matematikundervisning for alders-
grupperne 16-21 ar til fremleggelse ved
3. at lade afsende et repraesentativt udvalg af leerebeger i matematik (og anden
matematisk litteratur) for aldersgruppen 16-21 &r som bidrag til en bog-
udstilling ved
den internationale matematikerkongres i Amsterdam i september 1954. Opfordrin-
gen gav som resultat 7 rapporter vedrerende 1. og 9 rapporter vedrerende 2., der
alle blev fremlagt ved korte foredrag under kongressen (i dennes sektion 7), samt
en meget righoldig udstilling af beger fra mange lande, som nu har féet plads i
Musée pédagogique i Paris. Rapporterne vedrerende 1. er trykt i »L’Enseignement
Mathématiques, 2¥me gérie, tome 1 (1955), side 92-191.
Ved et mode af CIEM’s eksekutivkomité i Paris i oktober 1954 blev bl. a. be-
sluttet:
a. De nationale underkommissioner opfordres til at publicere et verk i deres
land under titlen »Det videnskabelige grundlag for matematikundervisningen
i skolerne«.
b. De nationale underkommissioner opfordres til at fortsette overvejelserne
vedrerende »Matematikkens og matematikerens rolle i vor tid«.

III. CIEM’s virksomhed ¢ perioden 1956—-1958.

Resultater af CIEM’s virksomhed agtes fremlagt og dreftet ved den planlagte
internationale matematikerkongres i Edinburgh 1958. .

Det tyske underudvalg for CIEM har afholdt mede i Minster i juni 1955, hvortil
udenlandske interesserede var indbudt. Ved medet dreftedes planer om udsendelsen
af ot veerk af encyklopeedisk karakter om nyere fremskridt i matematikken af be-
tydning for matematikundervisningen i skolerne, efter de forelsbige planer om-
fattende 4 bind:
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Bd. 1: Axiomatik. Algebra
- 2: Geometri
3: Analysis
- 4: Angewandte Mathematik.

Droftelserne var serlig detaljerede vedrerende geometri-bindet.

Hvert kapitel af de enkelte bind tenkes skrevet af en skolemand og en universi-
tetsmand i fellesskab. Der gnskes i et vist omfang udenlandske medarbejdere.
Varket enskes udsendt inden Edinburgh-kongressen i 1958. Til fortsat dreftelse
af planerne indkaldtes til nyt mede i slutningen af november 1955.

I tilslutning til medet afholdtes »21. Tagung zur Pflege des Zusammenhangs
von Universitdt und Hohere Schule« ved universitetet i Miinster. Af programmet,
som omfattede 19 foredrag, kan fremhaves et foredrag af presidenten for CIEM,
professor H. Behnke, »Uber die augenblickliche Lage des mathematischen Unter-
richts«. Han omtalte heri, at matematikken ligesom fysikken i de senere ir har
gennemlebet en rig indre udvikling, samtidig med at faget er blevet af hastigt
voksende og stedse mere direkte betydning for vasentlige sider af samfundslivet.
Dette stiller store krav til undervisningen og dens udevere. Samtidig truer det
steerkt voksende behov for hejtuddannede, dels i de videnskabelige institutter,
som er genstand for en kraftig ekspansion, dels som medarbejdere ved praktiske
opgaver, pd det alvorligste skolernes forsyning med kvalificerede matematik-
fysik-lerere. I nogle lande, hvor udviklingen er szrlig vidt fremskredet, er situa-
tionen allerede katastrofal.

CIEM har i forbindelse med universitetet i Genéve arrangeret et symposium til
minde om Henri Fehr, grundleegger og redakter af det hejt verdsatte tidsskrift
»L’Enseignement Mathématique«, med titlen »L’enseignement mathématique au
niveau secondaire: ses fondements scientifiques et ses rapports avec ’enseignement
universitaire«. I tilslutning hertil afholdt eksekutivkomitéen et made, ved hvilket
man vedtog at foresld arbejdet i CIEM for perioden 1955-58 koncentreret om
forst og fremmest folgende tre punkter:

1. Matematikundervisningen for aldersgruppen under 16 &r.

2. Det videnskabelige grundlag for matematikundervisningen p& gymnasie-

niveauet (secondary schools).

3. Sammenlignende studier vedrerende begynderundervisningen i geometri.
Desuden betragtes »Matematikkens og matematikerens rolle i vor tid« som per-
manent emne til overvejelse. — Rapporter fra de enkelte lande vedrerende de
nevnte emner gnskes udarbejdet til matematikerkongressen i Edinburgh i 1958.

Neaste mede i eksekutivkomitéen afholdes 27. maj 1956 i Miinster i tilslutning
til et mede i den tyske underkommission, hvor de ovenfor nzvnte punkter 1.
og 2. skal debatteres, samt til »22. Tagung zur Pflege des Zusammenhangs von
Universitdt und Schule¢, organiseret af universitetet i Miinster.

En kongres om matematisk-naturvidenskabelig undervisning, ved hvilken
M. H. Stone reprasenterede CIEM, afholdtes i februar 1956 i Indien.

1V. CIEM’s organ.

Henri Fehr tilbed fer sin ded, at »L’Enseignement Mathématique« matte blive
det officielle organ for CIEM, et tilbud, som er blevet modtaget.

»L’Enseignement« vil bl. a. offentliggere artikler om matematiske fremskridt
af betydning for matematikundervisningen og artikler af didaktisk karakter.
Séledes vil rapporter udarbejdet ps& CIEM’s foranledning og foredrag holdt pa
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symposier arrangeret af CIEM kunne forventes publicerede i tidsskriftet. Tillige
vil tidsskriftet regelmeessigt bringe officielle meddelelser om CIEM’s aktivitet.

Udgivelsen er for en periode af fire ar sikret ved en bevilling fra universitetet
i Genéve. Tidsskriftets gkonomiske forhold videre fremover er under overvejelse.
Det er gnskeligt, at et stort antal matematikere og matematiklerere, skoler og
andre institutioner verden over tegner abonnement. Ved et omfang af ca. 300 sider
pr. drgang er abonnementsprisen 20 SFr. Hvis antallet af abonnenter i et land
overstiger 100, kan hver af disse abonnenter opné en rabat pa 259,.

Tidsskriftets sekretariat: Professor J. Karamata, Institut de Mathématique,
Université, Genéve (Suisse).

Den tidligere serie er afsluttet med bd. 40 (1953). Af den nye serie er netop
udsendt bd. 1, hefte 1-3, som bl. a. indeholder 7 artikler om »Matematikkens og
matematikerens rolle i vor tid«.

SUMMARY IN ENGLISH

N. E. NorLUND: Reflections on three branches of science. (Danish.)

The article contains a lecture given by the author at a meeting in honour of his
70th birthday. The three branches of science are astronomy, geodesy and mathe-
matics. The author begins by pointing out the importance of astronomy for the
development of the exact sciences, and concludes with a few affectionate words
on his own favourite subject, mathematics. The main part of the article is con-
cerned with geodesy, its history, problems and difficulties. Particular emphasis is
laid on the Danish contributions to the subject. The first known triangulation was
performed by the famous Danish astronomer Tycho Brahe, and Danish maps
have always been of a high international standard.

Vicao BrUN: Pollen grains and Archimedean polyhedra. (Norwegian.)
(The drawings referred to are found on pp. 20-22.)

The drawings of the pollen grains of Gomphrena globosa and Chrysanthemum
carinatum, published by Fritzsche in 1837 (figs. 2 and 3), show a striking simi-
larity to the Archimedean semi-regular polyhedron truncus icosiédros, bounded by
12 regular pentagons and 20 regular hexagons (fig. 1). To examine whether such
a shape can be explained as a pressure phenomenon, the author and his wife put
32 cones of bread-dough in a hollow metal sphere, with the tops of the cones at
the centre, and the bases arranged as in fig. 4. After raising of the dough and bak-
ing, the resulting “Archimedean bread” showed the typical features of the truncus
icosiédros (fig. 5), although not everywhere completely regular.

The occurrence of exactly 12 pentagons on the surface is made plausible by an
application of Euler’s polyhedral formula.

Soromon W. GoromB: Properties of consecutive integers. (English.)

Given any two integers M and k and a fixed arithmetic function f(n), does
there exist a run of consecutive integers ¢c+j4,j=1,2, ..., k, such that f(c+j)=0
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(mod M) ? It is shown that the Euler function ¢(n), and the sum o(n) of the divisors
of n, both represent functions with this property. The proofs make use of Dirich-
let’s theorem on primes in an arithmetic progression. It is stated that the same
property holds for the number d(n) of divisors of n, and that the proof of this is
elementary (not invoking Dirichlet’s theorem).

It is also shown, by an elementary argument, that there are arbitrarily long
sequences of consecutive integers for which the Mobius function u(n)=~0.

The proofs are all based on the following lemma, which follows easily from the
«Chinese remainder theorem’: If A,-=a7~n+b7~, i=L2,..., k, are k arithmetic
progressions such that (@ a)=1 if ¢4, then there exist k consecutive integers
c+1l,¢6+2,...,c+k such that ¢+j is in Aj.

AxDERS BAGER: Imscribed and escribed circles and sums of powers.
(Danish.)

Let a, b, ¢ denote the sides of a plane triangle, 2s the perimeter, T’ the area, 7
and R the radii of the inscribed and the circumnseribed circles, 74, 73, 7, the radii
of the escribed circles and h,, s h, the altitudes. These quantities satisfy a system
of fundamental equations (formulas (1)-(6) p- 30). Conversely, positive quantities
satisfying this system will have the above-mentioned meaning for a triangle of
sides a, b, c. Algebraically, the full system is equivalent to & reduced, non-symmetric
minimal set of equations ((I)-(VIII) p. 34).

From the given system (1)—(6), the author derives several other relations, many
of them well-known. Of particular interest are the two formulas (31) and (32) p. 33,
expressing the sum of powers rl+rP+rP+(—r)7 by E, T and S=a?+b%+c? for
all positive and negative integral exponents p.




