NAGRA ELEMENTARA FUNKTIONALEKVATIONER
oca HILBERT’s FEMTE PROBLEM

HANS RADSTROM

1. Vi skall betrakta de tva ekvationerna
(A) flp, v) = f@)+f()
(B) ?(p@, v), 2) = ¢(2, ¢y, 2)) .

I ekv. A &r ¢ en given funktion av tva variabler och f en s6kt funktion
av en variabel. I ekv. B &r ¢ en sokt funktion av tvi variabler.

De tva ekvationerna har vissa intressanta samband som vi skall ut-
reda. Vi far samtidigt anledning att nigot berdra det femte av de be-
romda problem, som Hilbert stéllde vid Pariskongressen ar 1900. Vara
resultat ger ocksa l6sningen av detta problem for det enklaste fallet, d&
dimensionstalet dr ett.

Artikeln innehéller inga visentligt nya resultat utan dr skriven i avsikt
att ge en elementdr inledning till en intressant problemkrets i teorien fér
topologiska grupper. De 6vningsuppgifter, som &r inlagda hir och var,
ha svar i slutet av artikeln. Det édr inte nédvindigt att 16sa dessa upp-
gifter for att kunna f6lja framstéillningen.

2. Vi borjar med att ge nagra vilbekanta exempel pa ekvationer av
typen A.

Ex. 2.1: flx+y) = fx)+f(y).

Cauchy bevisade att om f &r en kontinuerlig reell funktion av-en reell
variabel som satisfierar 2.1 f6r alla reella x och y si ar f(x)=konst .
Man kan ocksé bevisa (beviset skall genomféras i nr 8) att om f 4r defi-
nierad endast i ett intervall innehallande origo, och om f satisfierar 2.1
for alla 2 och y i detta intervall sidana att ocksé z+y tillhor intervallet
s dr f(x) =konst-z i intervallet. Om man diremot tar ett intervall som
icke innehaller origo s finns det ofta &ven andra losningar till ekvationen.
(Se ovningsuppgift 2.)

Ex. 2.2: f@y) =f@)+f(y).
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Denna ekvation karakteriserar pa ett liknande sitt logaritmfunktionen,
ty varje kontinuerligt f som satisfierar 2.2 for alla positiva z och y ar av
formen f(x) =konst-logz. Liksom i ex. 2.1 giller resultatet ocksa for ett
dndligt intervall forutsatt att detta innehaller talet 1.

z+y
1—2y

Ex. 2.3: f( ) = f@) +f@) -

Man igenkénner additionsteoremet for arctg:
z+
arctg 2 arctg x4 arctg y.
1 -2y

Om man hir med arctg forstar funktionens huvudgren ir formeln giltig
endast om xy <1, silunda t. ex. om |#| < 1 och |y| < 1. Det kan visas att
varje kontinuerlig funktion f som satisfierar 2.3 for alla  och y sadana
r+

att |z| <1, |y| <1 och
1—2y

<1 dr av formen f(z) =konst-arctgz.

Som framgar av exemplen 2.2 og 2.3 dr det i allminhet omdjligt att
finna kontinuerliga 16sningar till ekv. A definierade for alle reella tal (om
man bortser fran den triviala losningen f identiskt =0). Det blir dirfor
nodvéndigt att formulera problemet att 16sa A pa, foljande séitt: Bestim
f1ett visst intervall sa att A &r satisfierad sa snart z, y och ¢(z, y) tillhér
intervallet. Exemplen visar att om man skall kunna vinta sig att 10s-
ningen skall vara unik s néir som pa en multiplikativ konstant si bér
intervallet innehélla ett visst tal e som var 0 i ex. 2.1 och 2.3 samt 1
iex. 2.2. En nirmare diskussion (som vi ej utfor hér) av hur det férhaller
sig i det allménna fallet med godtyckligt ¢ visat att talet e bor ha egen-
skapen att g(e, z)=¢(z, ¢)==z for alla z i intervallet.

Vi stéller dérfér nu féljande

LOSNINGSPROBLEM FOR EKV. A: Lat ¢ vara en given funktion av tva
variabler definierad d& dessa bégge tillhér ett givet intervall 7. Antag
vidare att det finns ett tal e i I sidant att g(e, x)=o(z, e)=x for alla z i
I. Bestim varje funktion f av en variabel, definierad i I , icke identiskt

=0 och sadan att
[ y) = f@)+f(@)
giller sa snart «, ¥ och g(x, y) tillhér I.

Ovningsuppgifter: 1) Bestdm ett tal e s8, att @(e, ) =p(z, e) =2 samt gissa en
18sning till A definierad i en omgivning av e da

@) ¢y =aty—1; (b)) g2 y) = alev,
2) Lét f bestdmmas pa foljande sitt:
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@ om 2 S x =
f(x) = { godtyckligt om 3 < =z < 4
x om 4 <z <

Visa, att f(x+y)=f(x)+f(y) s& snart alla tre talen x, y och z+y ligger mellan 2
och 5.

3) Visa, att om f(x+y)=f(x)+f(y) s& snart x, y och z+y ligger mellan 2 och
6 och om f(r)=x d& 2 =<2 <3 sé dr f(x) =2 6verallt mellan 2 och 6.

3. Vi ger nu nagra exempel pa funktioner ¢ som satisfierar funktional-
ekvationen B:

Ex. 3.1: pr,y) = x+y
3.2: p(x, y) = xy
3.3: oz, y) = 1x—+xyy
3.4: P, y) = x+y+xy
3.5: p(x, y) = max(z, y)
3.6: plx,y) =«
3.7: p(x, y) = 17
3.8: p(x, y) = max(x,y, x+y).

En funktion ¢ av tva variabler kan ocksa betraktas som en operation,
som till tva tal x och y associerar ett tredje (, y). Som f6ljd hirav ar
det ofta lampligt att lita detta betraktelsesitt fa ett uttryck dven i
beteckningarna, s att man anvinder ett operationstecken, t. ex. o, och

skriver
(]9(.’1’), y) =Zoy.

Var funktionalekvation B antager med ett sidant skrivsitt formen

(Zoy)oz=wxo(yoz),

och vi ser att den helt enkelt uttrycker att operationen #r associativ.
L&t oss nu verifiera att de &tta exemplen verkligen ger associativa
operationer. Vad de tva forsta exemplen betriffar dr detta ju axiom i
teorien for reella tal och det ér alldeles trivialt i exemplen 3.5, 3.6 och 3.7.
De ovriga fallen behandlar man litt genom direkt utrikning av
( oy) oz och x o (y o z). Som exempel viljer vi 3.4:

@oy)oz = (+y+ay)+z+(@+y+ay)z = x+y+z+ay+azt+yz+ayz.

9%
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Eftersom z o (y o ) pa analogt sétt leder till samma uttryck &r associa-
tiviteten bevisad. Man observerar hir att de enda egenskaper hos addi-
tion och multiplikation som anvénts vid denna rikning ér deras kommu-
tativitet och associativitet samt multiplikationens distributivitet m. avs.
pé addition. Déarfor har vi p4 samma ging bevisat associativiteten for
varje operation uppbyggd som i ex. 3.4 av tva operationer vilka som
helst istillet for addition och multiplikation, bara de ha de nimnda
egenskaperna. En sddan operation ges i ex. 3.8 som erhallits ur 3.4 genom
att x -y ersatts med 2+ y och x +y med max (z, y). D& addition och maxi-
merande bigge ér bada associativa och kommutativa samt da distributi-
viteten dven giller:

z+max(y,z) = max(x+y, £+2),

sd foljer att dven 3.8 dr en associativ operation.

En funktion ¢(, y), definierad da = och y bigge tillhdr ett visst inter-
vall I, séiges satisfiera ekv. B i detta intervall om ekvationen giller for
alla z, y och 2z sddana att z, y, 2, (, y) och ¢(y, 2) alla ligger i I. Den mot-
svarande operationen o y séiges d& vara associativ i I.

Ovningsuppgift: 4) Bestdm alla (P hela reella axeln) associativa operationer av

formen
Toy = ax+by.

4. Vi atervinder nu till 16sningsproblemet for ekv. A s& som det for-
mulerats i nr 2, och vi antar i detta och nista nummer att den givna
funktionen ¢ har kontinuerliga partiella derivator av forsta ordningen
som overallt d& x och y tillhér det givna intervallet, I, &r skilda fran
noll. Vidare inskrianker vi oss till att underséka lsningar som &r deri-
verbara overallt i I. Om f &r en sddan 16sning s& giller alltsé

(A) fo@, ) = f@)+f @)
s& snart alla tre talen x, y och ¢(z, y) tillhér I. Speciellt erhalles for y=e:

dvs f(e)=0. f(@) = f(x)+f(e),

Genom att derivera A m. avs. pi x resp. y erhiller man:
: o ,
F'@@ ) > (@9) = ')

0
(o=, y))-a—;” @ 9) = ') .

Saledes giller
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op

g& (x’ y)

f@) = 1)
7 (z,9)

By y

Lat oss nu sitta f'(e) =k och ersitta y med e i ovanstaende formel. Man

far )

0
(p(x e)

oy

f'@) = k-

b

o
ty a—Z(x, e)=1 eftersom ¢(z, e) =x.
Om vi nu tar hdnsyn till att f(e)=0 far vi f6ljande

LOSNINGSFORMEL FOR ERV. A:
x
) = ]~
e

Vi vet dnnu inte om denna formel verkligen ger en losning utan vi
har blott bevisat att om f &r en 6verallt i I deriverbar 16sning som i
punkten e har derivatan k, sa &r f given av ovanstaende formel. Formeln
ger oss alltsd mojlighet att berdkna de deriverbara losningarna om sa-
dana existerar, men vi har inte bevisat att varje funktion som ges av
formeln verkligen &r en l16sning. For att undersoka detta ér det nodvén-
digt att prova i ekv. A.

(t e)

Ovningsuppgifter: 5) Bestam alla i en omgivning av origo deriverbara l6sningar

till ekv.:
flet+y+zy) = fl2)+f(y) .

6) Visa, att ekv.
fl@+y+aty?) = fl@)+f(y)

icke har négra icke-triviala, deriverbara lésningar i ndgon omgivning av origo.

0
5. Vi forutsatte i nr 4 att a_qo ar kontinuerlig och skild fran noll i 1.
Y

Saledes har integranden i losningsformeln konstant tecken i I, ty en
kontinuerlig funktion kan ju inte vixla tecken utan att anta virdet noll.
Harav foljer att f'(x) har konstant tecken, dvs att f(x) dr strikt mono-
ton. I nr 6 skall vi visa att for att ekv. A skall kunna ha en strikt mono-
ton l6sning dr det nédvéndigt att ¢ satisfierar ekv. B i I. Operationen
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x o y miste m. a. 0. vara associativ. Vi skall nu visa att om detta nod-
viindiga villkor &r uppfyllt s& ger 16sningsformeln verkligen en 16sning.

Vi gor alltsd samma regularitetsforutsidttningar om ¢ som i nr 4 och
vill nu underséka om en av lésningsformeln definierad funktion f verk-
ligen satisfierar ekvation A. Det giller siledes att visa att uttrycket
[ (@, ¥))—f(x)—f(y) dr noll, eller om l5sningsformeln anvindes att

o, y) x w(w: Y) Y

y dt o dt
- —5 = ) %(t,e)_S(Pz(t’e)

e e e

0
ar noll. (Vi betecknar a—(p med ¢2.)
Y

I den forsta integralen genomfor vi substitutionen t=g¢(x, s) dir z
hélles fixt och s &r den nya variabeln. Man ser att d& s gar fran e till
sd gar ¢t fran x till p(x, y). Vidare giller di =g,(z, s)ds, varfor integralen
blir

Yy
S P2(®, 3)
é 992((}7('%: 8); 6)

Om vi i den andra integralen skriver s istéllet fér ¢ ser vi att vad vi
behdver bevisa nu dr att

Y
S(%&%i@_%&@)%=o'

e

Déirmed &r resultatet klart ty som vi strax skall visa dr integranden lika
med noll for alla x och s sddana att x, s och ¢(x, s) tillhér 1. For att
inse detta betraktar vi ekv. B som ju ¢ forutsitts satisfiera i I:

p(p(x, y), 2) = ¢(z, p(y, 2)) .

Om man deriverar m. avs. pa z far man

Pa(p(@, 9), 2) = o, @(y, 2)) @aly, 2) -

Sitt nu z=e och ersitt y med s:

Pa(p(x, 5), €) = @a(, 8)-@y(s, €) .
Vi har bevisat

Sars 5.1: Om ¢ satisfierar B pd ett intervall I och har kontinuerliga,
Sfran noll skilda forsta derivator pd I samt om I innehdller ett tal e med

egenskapen
?’(x, 6) = (P(e, x) =,
sd ger formeln :
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f(x) = konst- S
5(/0

en losning till A som dr deriverbar ¢ I. Genom olika val av konstanien er-
halles pa detta sitt alla © I deriverbara losningar till A.

ANMARKNING: En genomgéng av beviset visar att det ricker att an-

0
taga a—(p #+ 0 och kontinuerlig.
Y

. . o o
Ovningsuppygifter: 7) Beteckna - med ¢, ocha— med @,.
z Y
(a) Uppstill en lésningsformel fo6r ekv. A dér ¢, ingdr istillet for @,.
(b) Bevisa formeln
P1(®, ¥) * @@, €) = @u(®, y) - @ile, Y) -
8) Bestiim det storsta (dndliga eller oéindliga) intervall i vilket forutséttnin-
garna i 5.1 dr satisfierade om
z+y
1—2ay ’

(@) o y) =2y; (b) o, y) =

9) Visa, att ekv. A icke i ndgon omgivning av origo har en icke-trivial 16sning
om ¢ viljes som i ex. 3.5, 3.6 eller 3.7 samt uppgiv for vart och ett av dessa fall
vilka forutséttningar i ovanstdende sats som icke &r satisfierade.

6. Genom satsen i nr 5 har vi fullstindigt klarat ut relationerna mel-
lan ekvationerna A och B under vissa deriverbarhetsforutsittningar.
Satsen siger ju hur man kan bestimma alla deriverbara l6sningar f till
A om man vet att den givna funktionen ¢ satisfierar B (och satsens
ovriga forutsittningar). Den ger emellertid ocksa en overblick over alla
l6sningar till B som satisfierar satsens forutsattningar. Om némligen ¢
ir en saddan lésning finns ju enligt satsen en funktion f som satisfierar
A: fp(x, y) )=/ () ). Vi har sett att f dr strikt monoton (och deriver-
bar). Da ex1sterar en invers funktion ¢ till f, och om man applicerar g
pa bigge leden av A erhalles

(6.1) p@,y) = g(f@)+f(®)) -

En sidan 16sning ¢ maste dérfor ha den form som ges i hogra ledet. Men
omvint dr det klart att alla ¢ av denna form verkligen satisfierar B sa
linge f och g dr inversa funktioner. Man har ju nédmligen d&

(e, 9),2) = 9(F(9(f@) +/®) +/ @) = 9(f @)+ W) +/ ) -

Men uttrycket ¢(z, ¢(y, z)) kan analogt skrivas om pad samma form,
vilket visar att B giller.
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D4 vi salunda under vissa deriverbarhetsforutsittningar lyckats 15sa
vara tvé funktionalekvationer gar vi nu &ver till att diskutera l6snin-
garna under svagare villkor. Vi hirleder f6rst ndgra nodvindiga villkor
for att ekv. A skall ha strikt monotona och kontinuerliga (men ej nod-
vandigt deriverbara) losningar.

Om f &r en sidan losning, definierad pa intervallet 7, s& har ju f en
invers funktion g och beviset ovan for att ¢ satisfierar B pa I gr att
genomféra utan &ndringar. Vi ser alltsi att var operation z o y maste
vara associativ. Likaledes foljer av 6.1 omedelbart att o(x, )=y, z)
dvs att x o y maste vara kommutativ. Eftersom f iir strikt monoton och
kontinuerlig har g samma egenskaper. D4 foljer av 6.1 att (z, y) maste
vara en kontinuerlig funktion av de tva variablerna x och y.

Till sist papekar vi att om intervallet I antas innehalla ett tal e si-
dant att g(z, e)=g(e, ) == for alla i I och om detta e ligger i det inre
av intervallet si giller att det finns en omgivning av e sidan att om «
tillhér denna omgivning s& har ekv.

pla,z) = e

en rot , som — ¢ d& @ — e. Ekvationen antar ju nimligen enl. 6.1 formen

9(/(@)+f (@) =e eller f(a)+f(@)=F(c)=0, vilket ger f(z)= —f(a),
x =g(-f().

7. De férutsittningar, som hirletts som nodvindiga for existensen av
strikt monotona och kontinuerliga 16sningar till ekv. A i slutet av nr 6,
ir i sjilva verket ocksa tillrickliga, om blott intervallet I icke ir for stort.
Vi skall nu visa detta och anviinder di genomgiende beteckningen
z oy istéllet for @(z, y). Det visar sig att kommutativiteten hos denna
operation &r en Gverflodig forutsittning som foljer av de ovriga. Vi gor
darfor foljande

ForursitTNiNGAR F: Lat I vara ett givet intervall och e en given
punkt i det inre av . En operation o y #r ocksi given och definierad fér
alla x och y som bégge tillhér I. Operationen satisfierar

F.1: (woy) oz=x o (y 02) for alla z, y och z sidana att bigge leden #r
definierade.

F.2:eox=xce=xforalla zil.

F. 3: Om a ligger tillrickligt nira e s& kan man 16sa 2 ur ekv. @ o x=e.
Detta x varierar kontinuerligt med a och # — ¢ da @ — e.

F. 4: 2 o y ér kontinuerlig som funktion av de tva variablerna z och Y.

Om ekvationen a o x=e for givet @ har en rot x s siiger vi att detta
dr en (hoger-)invers till a. Foérutsittningen F. 3 siger dirfor att det
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finns en omgivning, U, till ¢ sddan att om a tillhér denna omgivning sa
har a minst en invers, och att en sddan invers alltid finnes godtyckligt
nira e om blott a viljes tillrickligt nidra e. Om déarfor e tillhor en till-
rickligt liten omgivning, V, till e sa har @ sédkert en invers i omgivningen
U av e. Lat b vara en sidan invers till @. D4 har b sjilv en invers c. D4

géller
aoboc) =aoce =a

och
(@edb)oc =eeocc=c.

Pa grund av associativiteten har vi dérfér a=c. (Observera att om V
véljes tillrdckligt liten sa ligger sdkert alla talen @, b, ¢, @ ob och boc
i 1.) Vi har visat, att det finns en omgivning V till e sadan att om a
tillh6r ¥ sa har a:s invers en invers och att denna invers dr @ sjilvt.
Eftersom b o c=¢ och c=a giller siledes icke blott att @ o b=e (dvs att
b ar invers till @) utan &ven att b o a =e. (Man séger att b &r bade hoger-
och vinsterinvers till a.)

SaTs 7.1: Om forutsitiningarna F ovan giller sd finns ett delintervall
tll I, innehdllande e, for vilket de ocksd galler och dir dessutom giller att
x oy dr en vixande funktion av x for varje y samt en vizande funktion av
y for varje x.

Bevis: Lat y vara ett tal i den ovan ndmnda omgivningen V till e.
Da har y en invers z. Vi visar forst att funktionen « o y 4r en omvéindbart
entydig funktion av z pa ett tillrdckligt litet intervall kring e. Antag
néamligen att x; och x, vore tva olika z-virden sadana att

ZyolYy = Tyoly.

D4 gillde ju (z; 0 y) 02 = (%5 o ¥) o 2. Om man anvinder associativiteten
(vilket sdkert dar mojligt om x; och x, ligger tillrickligt néra e) och ob-
serverar att y o z=e si fAr man x; o e=1, o ¢ eller x; =x,. Saledes dr z o y
omvindbart entydig. Eftersom den enligt F. 4 ocksa dr kontinuerlig si
ar den strikt monoton och i sjélva verket vixande eftersom detta ju ar
fallet for y=e. (Man har ju x o e=2.)

Pa analogt sétt visas att « o y dr en vixande funktion av y for varje
2 iV och y i nagon viss omgivning av e. Ddrmed #r satsen bevisad.

Sats 7.2: Om F giller och om x o y dessutom dr en viizande funktion av
var och en av variablerna x och y ¢ intervallet I sd har ekv. A en kontinuerlig
och vixande losning definierad 1 1.

Brvis: Beviset bygger pa att man anvinder en analogi till en vélbe-
kant, i vara skolor anvind metod for att inféra potenser av reella tal.
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Vi ger dérfor icke alla detaljer utan framhéver endast de for den aktuella,
situationen typiska momenten, medan resten skisseras.

Om @ dr ett tal i intervallet I s& 4r @ o a ett definierat tal. Om detta
i sin tur tillhér I kan man bilda @ o (@ 0o @)= (@ o @) o a. Vi infér beteck-
ningen a°” for uttrycket a ca o o ... o a. Vi ser alltsd att om a°? tillhsr

n st.
I s kan man bilda a°®=a o a°2. Om &aterigen a°3 tillhor I s& kan man
bilda a°%. Denna procedur kan upprepas s& linge de erhallna talen till-
hor I. Vi far pa sa sitt en f6ljd av tal a, a°?, a°3, ..., bildad med hjilp
av operationen o i analogi med det siitt varpd man med hjilp av multi-
plikationen definierar potenserna. Man inser d4 att riknelagen

aP™Mm o o = qo(m+n)

maéste gilla s& snart de tva talen till vinster tillhor I. Vidare inses att
om a>e si #r foljden monotont vixande och om @ <e monotont avta-
gande s& att i bigge fallen a°” ligger lingre och lingre fran e ju storre
n blir.

Vi bevisar nu att, om a=e och I dr ett andligt intervall, det forr eller
senare intriffar att foljden a°™ upphér att ligga i I sa att man dérfor
icke kan fortsitta den hur langt som helst. Antag nimligen motsatsen,
dvs att a° tillhor I for alla n. Féljden vore da begrinsad och eftersom
den &r monoton skulle den ha ett grinsvirde b:

b = lim a°™.
n —» 00

Men da vore ju @ ob=a o lim @°” =lim a°®+) =p, dvs @ o b=c o b. Men
n—> oo n —» oo
detta strider mot att x o b 4r en vixande funktion av z.

Vi infér nu negativa exponenter genom att definiera

ae-n) — born

dér b 4r inversen till a. Detta kan goras for alla @ som ligga tillriickligt
néra e.

Sedan inféras a°" for rationella r. Man behover blott observera att
xe™ for fixt n &r en monoton och kontinuerlig funktion av z, ty hiirav
foljer att om a tillhér I s4 kan man bestimma ett tal  si att

z°" = a .

Detta x betecknas med a°@™ och a°®™ definieras nu genom g @/m
— (ao (1/n))o m,

Till sist utstriickes definitionen till irrationella exponenter genom kon-
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tinuitet och man visar att a°® &r en strikt monoton och kontinuerlig
funktion av b for fixt a+e.

Sammanfattningsvis erhalles med den ovan skisserade proceduren f61-
jande resultat: Om a ligger tillréckligt nira e s& dr a°? definierat for
alla reella tal b som tillhér ett visst intervall (som beror pad a) kring 0.
Da b genomloper detta intervall sa genomloper a°? monotont och konti-
nuerligt intervallet 1. Dessutom géller

(7.3) ac®+9 = g°b o qcc.

For att konstruera var sokta 16sning f till ekv. A forfar vi nu sé:
Fixera ett a+e och definiera f(x) genom ekvationen

a’@® = g,

(Observera analogien med inforandet av logaritmer i det specialfall da o
betyder multiplikation.) Av 7.3 féljer nu omedelbart att f satisfierar A:

f@oy) =f@)+f(),

och satsen ar bevisad.

KororLLarTuM: Om forutsittningarna i 7.2 ér satisfierade s& dr z oy
kommutativ.

Ty vi sdg ju i nr 6 hur losbarheten av A medfér operationens kommu-
tativitet.

ANMARRNING : Om man jimfor sats 7.2 med sats 5.1 s& ser man att vi
har fatt infora nya antaganden fér att i 7.2 kunna avsta fran de deriver-
barhetsforutsittningar som gjordes i 5.1. Den visentligaste av de nya
forutsittningarna ir att vi varit tvungna att anta existensen av inverser,
dtminstone i nirheten av e. A andra sidan visade vi i slutet av nr 6 att
om A #r losbar si existerar sikert inverser. Deriverbarhetsforutsittnin-
garna i sats 5.1 medfér saledes existensen av inverser och sats 5.1 faller
dérfér under sats 7.2.

Ovningsuppgift: 10) Bestim a°/? och " om o y ér definierat av
x4y
(@) ——; (b) x+y+azy.
1—2xy

8. I nr 7 visades existensen i nirheten av e av dtminstone en strikt
monoton 16sning till ekv. A om funktionen g satisfierar férutséttningarna
F. D4 uppstar problemet att avgora huruvida det dven existerar andra
16sningar 4n de som erhallas genom den konstruktion som anvéndes vid
beviset av sats 7.2. Svaret ir nej, vilket framgdr av sats 8.2 nedan.
For beviset av denna sats behover vi sats 8.1 som hinfér sig till det
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speciella fallet d& ¢(z, ) = +y. Detta dr den sats vars bevis utlovades i
ex. 2.1 och det &r alltsi en mycket vilbekant problemstéllning det #r
fraga om. Beviset ir, savitt jag vet, det elegantaste och kraftigaste och
samtidigt det minst kinda av de elementira, bevisen (=bevis utan an-
vindning av urvalsaxiomet),

Sats 8.1: Om den kontinuerliga funktionen [ satisfierar ekvationen
f@+y)=Ff(@)+f(y) for alla z och y sddana att z, y och x +1y alla tre tillhor
ett intervall I som innehdller origo sa giller for alla z i I att f(x)=konst-z.

Bevis: D4 f ar kontinuerlig ér den ocksé Riemannintegrabel. Sitt

@

Fla) = s ft)de .
0

L&t nu x och y vara givna tal i I sddana, att dven x+y tillhor 1. Da
giller sikert f(t+y)=F()+ f(y) for alla ¢t mellan 0 och ». Genom att
integrera bigge leden i ckvationen m. avs, pa t erhaller man:

fl+y)dt = F(z)+2-f(y).

(SR )

Hir &r vinstra ledet =F(x+y)— F(y) som man ser genom att utféra
substitutionen s=¢+y. Saledes géller

z-f(y) = Fx+y)—F(x)—F(y) .

Men da hogra ledet i denna ekvation ir symmetriskt i 2 och y giller

séledes
zfly) =y f(z).
Hérav foljer satsen.

Man observerar att man kan ersitta kontinuiteten av f med villkoret
att f skall vara integrabel, och icke nodvindigt i Riemanns mening, utan
att vilken som helst integrationsmetod kan anvéndas som har de vanliga
egenskaperna.

Vi kan nu bevisa

Sars 8.2: Lit ¢ satisfiera forutsittningarna i sats 7.2. Dg géller att om
[ och fy dr kontinuerliga losningar till ekv. A pd intervallet T och, om f dar
strikt monoton, sd dr f,(x)=konst- f(x) for alla z ¢ 1.

Brvis: Di f dr strikt monoton och kontinuerlig har den en invers
funktion g med samma, egenskaper. Funktionen f avbildar intervallet 1
pé ett annat intervall J. Eftersom [ innehaller e och f(e)=0 ser vi att
J innehéller 0. Tydligen ir g definierad pa J och avbildar J pa I.
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Vi visar forst att g satisfierar funktionalekvationen

(8.3) p(g(w), g(v)) = g(u+v)

88 snart w, v och 4+ tillhér J. Lat ndmligen » och v vara givna pa detta
sitt. Da kan vi finna z och y tillhérande I s& att

[u=ﬂw {x=mm
och
v = f(y) ¥y =g).
Om vi kan visa att ¢(z, y) tillhor I sa giller ju ekv. A dvs:
@, y) = f@)+fy) = utv.

Genom att applicera g pa vinstra och hogra leden erhéller man

p(9(w), 9(v)) = @z, y) = glu+v)

dvs 8.3. Emellertid &ér det klart att om « och y ligger pa var sin sida om
e s tillhor g(z, y) intervallet 1. Antag némligen t. ex. att  <e <y. Efter-
som @ #r en vixande funktion av var och en av variablerna foljer ur
dessa olikheter att

z =g e) sy ey =y

dvs att ¢(x, y) ligger mellan = och y som bigge tillhor 1.

Det andra fallet da « och y ligger pa samma sida om e, fordrar en nagot
lingre argumentering. Antag att ¢(z, y) icke tillhor I. Vi betraktar situa-
tionen ez sy (vilket dr tillrickligt d& alla andra fall kan behandlas
analogt). Vi kan ocksé forutsitta att f dr vixande (ty skulle f vara av-
tagande betraktar vi istéllet —f). Eftersom w4 v tillhér J kan vi finna
ett tal z i I sddant att f(z)=u+v=f(z)+f(y). Eftersom f ar vixande
giller f(e)<f(x)<f(y) dvs 0 <u =<v. Saledes &r u+v=v och déirav foljer
y <z. Vidare dr det klart att p(z, y) = och =y. Eftersom z tillhér I men
@(x, y) icke tillhor I maste ¢(z, y) >z. Sammanfattningsvis giller siledes

esx =y =z<o@y).
Vi betraktar nu s som obekant i ekvationen
p(x,s) = 2.

Eftersom ¢(z, e) =2 <2 och ¢(x, y) >z finns mellan e och y precis en rot s
till denna ekvation, och da z, s och g(z, s)==z alla tre tillhor I s& giller

A dvs:
f@) = (@, 9) = fl@)+f(s) -
A andra sidan giller ju f(z) =f(z) +f(y). Hirav foljer att y=s, vilket &r
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orimligt da @(z, y) icke tillhér 7, medan @(z, s) tillhor 1. Dirmed &r visat
att 8.3 giller s& snart u, v och u + v tillhor J.
Beviset av satsen kan nu slutforas pé foljande sitt. P4 grund av 8.3

-
o fi(o(g), 9)) = fi(g(u+v)) .

Men eftersom f; satisfierar A kan véinstra ledet skrivas om pé formen

Ja (g(u)) +f1 (g(v)) .

Séledes ser vi att den sammansatta funktionen f1(g) satisfierar forutsits-
ningarna i 8.1 p4 intervallet J. Dirfor giller for alla w i J att

fi(9(w)) = k-w dér k &r en konstant.

Om g(u) betecknas med z erhalles = f(x) och resultatet f,(x)=*k- f(x)
for alla x i 1. V. S. B,

Ovningsuppgift: 11) Loés funktionalekvationen (giltig i nigon omgivning av

origo): F@)+f ) +f @) fy) = fla+y) .

9. Vi skall nu betrakta de i det foregaende vunna resultaten fran en ny
synpunkt och erinrar di forst om vad som menas med en grupp.

En grupp ir en mingd av element diir det finns definierad en operation
som till tva element @ och b vilka som helst i gruppen associerar ett
tredje gruppelement ¢ (vilket i allméinhet betecknas med ab, som om
operationen vore vanlig multiplikation): ¢ =ab. Denna operation har f51-
jande egenskaper:

1. Den &r associativ, dvs:

(@y)z = x(yz) .
2. Det finns ett enhetselement e sadant att for alla z i gruppen giiller
ex =ge = x.
3. Till varje « i gruppen finns en invers y sé& att
xy =e.

Om gruppen samtidigt ir ett topologiskt rum s& séiger man att den ir
en topologisk grupp om

4. operationen zy ér kontinuerlig i bégge sina variabler  och y och
inversen till # varierar kontinuerligt med .

Som exempel pa grupper kan vi nimna:

Ex. 9.1: De positiva reella talen med multiplikation som operation,
e=1 och 1/z = inversen till .
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Ex. 9.2: De reella talen med addition som operation, e=0 och —z
= inversen till .

Dessa grupper ér tydligen topologiska grupper (om némligen den van-
liga topologien for reella tal anviinds). De &r enparametriga, dvs man kan
ange de olika gruppelementen genom att ange olika virden av en enda
reell parameter. Exempel pa en tvdparametrig topologisk grupp ér:

Ex. 9.3: De komplexa talen med addition som gruppoperation, e=0
och —z =invers till z.

Om man jimfér ovanstaende definition av begreppet topologisk grupp
med forutsittningarna F i nr 7 s& ser man att det rader pafallande lik-
heter. Ar intervallet I som omnimns i F en grupp om operationen o
tages som gruppoperation? Icke nodvindigt, ty det finns dock ett antal
viktiga skillnader mellan F och definitionen av gruppbegreppet. For det
forsta fordras i F icke att resultatet av operationen x oy skall tillhora
I, medan i en grupp xy alltid tillhér gruppen. For det andra antages i F'
existens av inverser blott i nirheten av e, medan i en grupp varje ele-
ment har en invers.

Vi erhaller en definition av begreppet lokal grupp om vi i forsta raden
i F dndrar ordet »intervallg till »topologiskt rum« samt ytterligare fordrar
att de virden som operationen antager bildar ett topologiskt rum i vilket
mingden a o I utgér en omgivning av a for varje a som tillhor 1.

Tydligen ér varje topologisk grupp en lokal grupp, men en lokal grupp
behiver icke vara en grupp. Man inser litt att ocksd en godtycklig om-
givning av enhetselementet i en topologisk grupp utgér en lokal grupp.
Det &r ett olost problem att avgéra huruvida omvéindningen ocksé giller,
dvs: Kan varje lokal grupp inbéddas i en grupp ?

Owvningsuppgift: 12) Vilka av féljande méngder, M, &r grupper resp. lokala
grupper om den vanliga multiplikation anvénds som operation? M &r méingden
av de reella tal som &r

(@) > 2;(b) 2 15 (c) >4;5(d) > 05 () =05 (f) +£0; (g =1; (h) =0.

10. En lokal grupp utgér enligt sin definition ett topologiskt rum.
Man kan dirfor klassificera de lokala grupperna genom deras topologiska
egenskaper. Om en lokal grupp kan omvindbart entydigt och konti-
nuerligt avbildas pa en omgivning av en viss punkt (t. ex. origo) p& den
reella talaxeln och si att enhetselementet avbildas ps den givna punkten
siiger man att gruppen dr enparametrig. Om det &r mojligt att géra en
sadan (topologisk) avbildning av gruppen pi en omgivning av origo i ett
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euklidiskt plan kallas den tvaparametrig. P4 liknande sitt definieras all-
mint n-parametriga lokala grupper.

De lokala grupper som pé detta séitt kan tilldelas en #ndlig dimension
n kallas euklidiska lokala grupper eftersom de topologiskt sett utgor
delar av euklidiska rum.

Om man har en n-parametrig lokal grupp och en topologisk avbildning
av denna pi en omgivning av origo i ett n-dimensionellt euklidiskt rum
kan man inféra koordinater i gruppen genom att forst gora detta i det
euklidiska rummet och dérefter tilldela gruppelementen samma koordi-
nater som de tillordnade punkterna i det euklidiska rummet. Dérigenom
blir det mdjligt att ange ett gruppelement genom att ange n st. koordi-
nater eller parametrar. Om vi antar att enhetselementet avbildas pa
origo kommer dess koordinater saledes att vara (0, 0, ... 0).

Lat nu z och y vara givna element i en n-parametrig lokal grupp och
lat deras koordinater vara (z;, Z,, ... ,) resp. (¥5, ¥, - - - ¥,). Om man
bildar z =2y kommer tydligen z:s koordinater att vara bestimda av z:s
och y:s koordinater. Det finns saledes n st. funktioner ¢;,¢,, ..., av
2n variabler sadana att

(10.1)

Eftersom operationen zy antages vara kontinuerlig foljer det att dessa
funktioner ¢ ér kontinuerliga.

Det &r naturligtvis mojligt att inféra koordinater i en lokal grupp pa
méanga olika sitt. Man séiger att tva lokala grupper dr lokalt isomorfa om
man kan inféra koordinater i var och en av dem pé ett sadant sitt att
de n funktionerna ¢ som ger gruppoperationen i koordinatform blir de-
samma i bigge grupperna, eller om detta atminstona giller i ndgon om-
givning av origo.

11. Vi betraktar nu forst det enkla fallet att en enparametrig lokal
grupp ér given. Om z, y och z ir gruppelement med koordinaterna z,, ¥,
och z, resp. sa svarar alltsa relationen z =y mot en relation mellan talen
%y, Y1 och z; av formen z; =g¢(zy, y,). Man ser litt att villkoret att grupp-
operationen 4r associativ svarar mot att funktionen ¢ satisfierar var
funktionalekvation B.

Med den terminologi som vi har infért kan vi nu formulera om sats
7.2 pa foljande sitt:
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Varje enparametrig lokal grupp dr lokalt isomorf med gruppen av de
reella talen med addition som gruppoperation.

Det finns siledes visentligen (dvs bortsett fran lokala, isomorfier) bara
en enda enparametrig lokal grupp, den additiva gruppen av reella tal.
Fér att inse detta behover vi blott undersska vilken effelt en koordinat-
transformation har pa den ovan infsrda funktionen ¢. Lat alltsa de fran
bérjan givna koordinaterna betecknas med ett index 1 och antag att vi
ocksd infér nya koordinater som anges med index 2. Om  ér ett variabelt
element i den lokala gruppen som i de tv koordinatsystemen har koor-
dinaterna x; resp. , s4 kommer dessa koordinater att variera kontinuer-
ligh med z sa att till varje virde av x, svarar precis ett virde av z,.
Saledes kan x, uttryckas som en funktion av 2yt

zy = f(z,),

dér funktionen f #r omvindbart entydig och omvindbart kontinuerlig,
dvs monoton och kontinuerlig. S& ser alltsi en godtycklig koordinat-
transformation ut. Villkoret f5r att den givna lokala gruppen skall vara
lokalt isomorf med den additiva gruppen av reella tal ér uppenbarligen
att det &r mojligt att vilja de nya koordinaterna s att relationen z=uxy
antar formen z,=x,+v,. Om relationen i de ursprungliga koordinaterna
har formen 2, =q(x,, y;) si giller det alltsi att finna en monoton och
kontinuerlig funktion f sadan att

[ (p(y, ?/1)) =fz1) = 2y = Tp4y, = f(21) +£ (1) .

Transformationen f skall alltsa satisfiera ekv. A. Men enligt sats 7.1 och
7.2 finns det en monoton och kontinuerlig 16sning till A och saledes kan
vi inféra nya koordinater sa att gruppoperationen uttryckt i dessa blir
den vanliga additionen.

12. Med kéinnedom om den formulering av sats 7.2 som gavs inr 11
dr det naturligt att stiilla problemet att avgoéra huruvida en liknande
sats giller for n-parametriga lokala grupper. Ar det t. ex. sant att varje
tvaparametrig lokal grupp #r lokalt isomorf med den additiva gruppen
av vektorer i planet (isomorf med de komplexa talen vid addition, jfr
ex. 9.3)% Detta dr icke fallet — ty det finns en tvaparametrig (global)
grupp som icke &r kommutativ och som dérfér icke kan vara lokalt
isomorf med den kommutativa gruppen av tvadimensionella vektorer
(se 6vningsuppgift 13). Man kan emellertid visa att varje tvaparametrig
lokal grupp &r lokalt isomorf med en av dessa bégge grupper. Siledes
finns det visentligen bara tva olika tvaparametriga lokala grupper.

Nordisk Matematisk Tidskrift. — 10
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Den ritta formuleringen av problemet gavs av Hilbert:

HILBERTS FEMTE PROBLEM: Ar det sant att i varje n-parametrig lokal
grupp koordinater kan inféras pd ett sadant sitt att de funktioner ,,@,, . . . @,
av 2n variabler som definierar gruppoperationen 10.1 dr analytiska funk-
tioner?

Genom resultatet i nr 11 har vi 16st Hilberts femte problem fér det
enparametriga fallet. Svaret pa Hilberts fraga ar i detta fall ja, ty +y
ar ju analytisk i « och .

Ovningsuppgift: 13) Betrakta alla talpar (a, b) dir a> 0. Verifiera att dessa
bildar en icke-kommutativ grupp om operationen definieras genom

(@1, by)(as, by) = (@405, @10+ 1) -

13. Till sist nagra historiska notiser.

I Abels Oeuvres finner man fyra artiklar om funktionalekvationer som
alla hénger intimt ihop med hdr behandlade fragestillningar. I en av
artiklarna behandlas ekv. B (under onddigt omfattande frutsittningar;
@ antages satisfiera ¢(z, ¥) =¢(y, x)). Abel bevisar dir en svagare version
av sats 5.1. Av de 6vriga behandlar en nérbesliktade funktionalekvatio-
ner och tva problemet att kontinuerligt iterera funktioner, dvs att bilda
en enparametrig lokal grupp av reella funktioner dir fy betyder den
sammansatta funktionen f(g(x)) och som innehaller en given funktion.
Dessa artiklar ha mycket litet uppmérksammats av Abels kommenta-
torer trots att de innehéller flera i den senare utvecklingen fruktbé-
rande idéer.

I den klassiska teorien f6r lokala grupper forutsatte man att funktio-
nerna gy, @,, - - - ¢, har vissa deriverbarhetsegenskaper. Denna teori ska-
pades av Lie, som édgnade hela sin produktion &t den och dess tillimp-
ningar. Lie visade att om i en n-parametrig grupp koordinater kan in-
foras sa att funktionerna ¢, har alla derivator upp till och med tredje
ordningen kontinuerliga s& kan man ocksa inféra nya koordinater si att
de nya ¢, blir analytiska. (Jfr sats 5.1.)

Hilberts femte problem bestéar saledes i att avgora huruvida dessa deri-
verbarhetsforutsidttningar verkligen &r nodvindiga eller om det ricker
att forutsitta enbart kontinuitet. Man har lyckats skirpa Lies resultat
s& langt att man visat att det récker att antaga att

(pv(xl, Loy « oo s Y15 Ygs - - - yn)

har kontinuerliga derivator av forsta ordningen med avseende pa vari-
ablerna x; enbart (eller y;). (Segal.)
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Foér kompakta grupper lostes problemet av v. Neumann 1933 och
for kommutativa grupper av Pontrjagin 1934. For grupper i allménhet
gavs det slutliga svaret pa Hilberts fraga av Montgomery och Zippin
1952. De bevisade bl. a. att Hilberts formodan var riktig. Det &terstar
emellertid fortfarande att lsa problemet for lokala grupper. Genom
Montgomery’s och Zippin’s resultat &r emellertid problemet 16st for alla
viktiga lokala grupper. Som tidigare framhallits kiinner man némligen
icke till nagon enda lokal grupp som inte kan inbéddas i en grupp. Men
for en lokal grupp som ligger i en grupp foljer resultatet naturligtvis av
Montgomery’s och Zippin’s arbete.

Svar till évningsuppgifterna:

1. (a) e = 1, f(x) = x—1 for alla x;
(b) e

Il

logaritmens bas, f(x) = loglogz fér x > 1.

4. zoy = x+y, x, y eller 0.
5. f(x) = k-log(l+=).
6. Ur lésningsformeln berdknat f satisfierar ej A.
7. (b) Derivera B m. avs. p4 y och sitt sedan y = e.
8. (@ 0<u; (b) —1l<a<l
10. (a) a° @ = — A , a°CD = —q;
14 l/l + a?
by a0t = % geem - %
1+ V1+a l+a
11. f(x) = e*—1.
12. (@ () () (@ () () (g) (h)
Grupp Nej Nej Nej Ja Nej Ja Ja Ja

Lokal grupp Nej Nej Ja Ja Nej Ja Ja Ja

10*



TRAK AF VAGTSTANGSREGLENS HISTORIE

MOGENS PIHL

Foredrag holdt i Selskabet for de eksakte videnskabers historie, november 1952.

I mekanikkens historie har vegtstangsreglen spillet en betydelig rolle,
idet den for kendskabet til setningen om kreefternes parallelogram ud-
gjorde grundlaget for behandlingen af alle statiske problemer. Og det
er forstaaeligt, at man gennem tiderne har forsggt at »bevise« denne grund-
leggende lov paa forskellig maade, altsaa at reducere den til endnu
simplere forudsetninger. Hensigten med det folgende er for det forste
at fortelle om saadanne beviser for vaegtstangsreglen, idet vi dog ude-
lukkende holder os til betragtninger af statisk natur, og dernest at vise
nogle faa eksempler fra mekanikkens historie paa anvendelser af denne
regel.

1. Arkimedes’ bevis. Dette velkendte bevis [1] bygger paa folgende
forudseetninger: 1° Ligeveaegten af et system bevares, dersom to lige tunge
veegte samles i midtpunktet mellem deres ophengningspunkter. 2° En
veegtstang — fra hvis egenveegt vi her og i det folgende ser bort — er i
ligevaegt, dersom den symmetrisk omkring ophengningspunktet er be-
lastet med parvis lige tunge veegte.

[ é TI T I I

Lad (fig. 1a) veegtstangen AB vere ophengt i punktet C, der deler
AB i det omvendte af forholdet mellem de i A og B ophaengte veegte;
disse antages at veere kommensurable. D er et saadant punkt af veegt-
stangen, at AC = DB (fig. 1b). Afsettes til venstre for A og til hajre
for B i vaegtstangens retning linjestykkerne henholdsvis 4D og BD,
bliver ¢’ midtpunktet af den saaledes forleengede vaegtstang. Der vil da

[148]

s
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veere ligevaegt ved ophengning i dette punkt, dersom veegtene i 4 og B
spredes som vist paa fig. 1b; dette er altid muligt, da de linjestykker,
paa hvilke veegtene fordeles, er proportionale med disse. Men denne lige-
veegt bevares, naar vegtene atter sam-
les, hvormed seetningen er bevist.
A E B Hos Arkimedes bevises dernzest det
inkommensurable tilfelde, hvad vi
ikke her skal gaa nermere ind paa.
D F ¢ En tillempning af Arkimedes’ bevis
Fig. 2a for veegtstangsreglen er givet af Ste-
vin [15] og Galilei [6]: Bjelken
ABCD paa fig. 2a er ophengt i ligevaegt. Den overskeres ved snittet £F,
og tankegangen fremgaar derefter saa tydeligt af fig. 2b og 2¢, at ner-
mere kommentar maa anses for overfledig. Figurerne 2a, 2b og 2c er
— med uveasentlige endringer — taget direkte fra Stevin.

K |M L
A E
D F
E B
F C
Fig. 2b Fig. 2¢c

Igvrigt er det mindre ligeveaegtsbetingelser end tyngdepunkisbestemmel-
ser, hvormed Arkimedes beskeftiger sig i de overleverede afhandlinger,
hvor —som paavist af Juel [9] og Stein [14] — tyngdepunktet er implicit
defineret gennem en rakke rent geometriske krav. Paa lignende maade
var jo f. eks. forholdsbegrebet i den Eudoxiske proportionslere i Euklid V
ikke eksplicit defineret, men aksiomatisk bestemt gennem opstillingen af
visse forudseetninger, som dette begreb skal respektere. Kendt er de
anvendelser, Arkimedes gjorde af tyngdepunktsbestemmelser til bereg-
ning af maal for overflader og rumfang, og hvorom E.J. Dijksterhuis
fornylig har gjort rede i dette tidsskrift [4].

Hvad forudseetningerne for det Arkimediske bevis angaar, har kritikken
i seerdeleshed veret rettet imod den forste, som heller ikke kan siges at
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vere indlysende. Samlingen af to lige tunge vaegte i midtpunktet er jo
i almindelighed ikke mekanisk tilladelig; saaledes vil f. eks. svingnings-
tiden af et fysisk pendul sendres ved en saadan samling, idet inerti-
momentet herved forandres.

2. »Euklids« bevis. Blandt de mange arabiske haandskrifter, der —
i reglen med urette — besmykkes med Euklids navn, findes et inter-
essant om vaegtstangen, udgivet i 1851 af Woepcke ([16]; se ogsaa [13]
og [5]). Det heri givne bevis viser sig ved nermere analyse i det veesent-
lige at bygge paa folgende forudseetninger:

1° Et i et punkt opheengt vandret plan forbliver i den vandrette lige-
vaegt, dersom det belastes med to lige tunge veegte, hvis forbindelseslinje-
stykkes midtpunkt falder i ophsngningspunktet, og dersom det i op-
haengningspunktet belastes med vilkaarlige vaegte.

2° Forskydes en vaegt paa et vandret plan, der er opheengt i et punkt,
vil planet ganske vist ophere med at veere i ligeveegt, idet det vil heelde
til den side, hvor vegten forskydes, men den linje gennem ophsengnings-
punktet, der staar vinkelret paa forskydningsretningen, forbliver vandret.

Fig. 3 forestiller to kongruente
rektangler med en vinkelspids felles F
og et par vinkler som topvinkler.
Figuren tenkes beliggende i et C I
vandret plan, der eriligeveegt under 4 H B
ophengning i C. Tilfgjelsen af tre
lige tunge vaegte i punkterne 4, D
og B vil da ikke sndre ligeveegts- G E
stillingen af planet. Thi for det for- Fig. 3
ste kan denne tilfgjede veegtforde-
ling jo opfattes som hidrgrende fra parallelforskydninger vinkelret paa den
rette linje FCE af to af tre i I, C og E anbragte lige tunge og ligevaegts-
bevarende vaegte, saaledes at fordelingen af lige tunge veegte i A, D og K
i hvert tilfeelde holder FCE vandret. Og for det andet kan den samme
vagtfordeling opfattes som hidrerende fra parallelforskydninger vinkel-
rette paa GOD af to af tre lige tunge, ligeveegtsbevarende veegte i G, C og
D, saaledes at ogsaa GCD holdes vandret ved tilfojelsen af veegtenei 4, D
og E. Men naar to hinanden skeerende linjer holdes vandrette, vil planet
ligeledes bevare sin vandrette stilling. Heraf folger da, at den i C' op-
hangte vandrette vaegtstang ACB forbliver i ligevegt, dersom den be-
lastes med tre lige tunge vaegte i henholdsvis 4, H og I, hvor H og I
er projektioner af D og F paa AB, og altsaa CH = IB; thi denne vagt-
fordeling kan jo opfattes som hidrerende fra parallelforskydninger af
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vegtene i D og B vinkelret ind paa ACB. Eller sagt med andre ord:
Dersom den ene af to lige tunge vaegte med samme afstande fra ophengnings-
punktet paa en veegtstang ¢ ligevoegt skubbes et stykke (BI) indad mod op-
haengningspunktet, vil ligeveegien bevares, saafremt en ligesaa tung vegt
samtidig losnes fra ophengningspunkiet og skubbes det samme stykke (CH)
i modsat retning. Og man kan da let vise, at ligeveegten af enhver vegt-
stang bevares, dersom man, for hver gang en vilkaarlig veegt skubbes et

L L L, S

Fig. 4a Fig. 4b Fig. 4c

stykke indad mod opheengningspunktet, losner en ny, ligesaa tung vaegt
i ophengningspunktet og skubber den det samme stykke i modsat
retning.

Af fig. 4a, b og ¢ fremgaar da, hvorledes veegtstangsreglen bevises for
det tilfzelde, at veegtene forholder sig som 1:3, og det er ikke vanskeligt
at generalisere denne overvejelse til vilkaarlige kommensurable forhold.

3. Huygens’ bevis. Vi skal ikke her eksplicit angive de nzermere
forudsetninger for Huygens’ bevis ([8]; se ogsaa [13]) — der igvrigt
udmerker sig ved en ngje pracisering af grundlaget —, men blot an-
skueliggore den ledende tanke (fig. 5):

I A og B er oph®ngt to kommensurable vaegte, og man skal vise, at

den i punktet C' ophengte vagt-

stang ACB er i ligevaegt, naar C
U deler AB i det omvendte af
vaegtenes forhold. D er som tid-
ligere det punkt af vegtstangen,
hvor AC = DB. Hjelpelinierne
RQ, PS og TU trekkes som vist
paa figuren, saa de helder 45°
mod AB. Firkanten TPSU er et
rektangel. VY tegnes, saa der
fremkommer to kongruente ret-
vinklede trekanter PTZ og VY Z;
de to trapezer QXY V og RXUS
er da ogsaa kongruente. Vegtene
i A og B spredes som vist paa
Fig. 5 figuren; dette er muligt, da de
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forholder sig som linjestykkerne P og RS. Det ses nu, at alle vaegte
langs RS ligger symmetrisk med de tilsvarende nummererede veegte
paa V@ med hensyn til X, 0g vegtene paa PV ligger parvis symme-
trisk med hensyn til Z. Planet vil derfor vare i ligevaegt, naar det
understgttes langs 7U. Men da dette ogsaa er tilfeeldet, naar det under-
stottes langs AB, vil det vere i ligeveegt, dersom det understottes i C,
hvor U og AB skarer hinanden. Denne ligeveegt eendres ikke, ved at
veegtene langs PQ og RS atter samles i 4 0g B, hvormed beviset er fort.

4. Ole Remers bevis. I Leibniz’ efterladte papirer findes et vidnes-
byrd om, at Huygens’ ven og kollega i det franske akademi Ole Rgmer
ogsaa har givet et bevis for veegtstangsreglen [11]. Desveerre er Leibniz’
notater saa kortfattede, at det ikke heraf fremgaar, hvorledes Romer i
enkeltheder har gennemfart dette hojst interessante bevis, men tanke-
gangen synes i det veesentlige at have vearet folgende:

Ved betragtning af henholdsvis en ligesidet trekant og en rhombe, hvor
man gerne vil indrgmme, at tyngdepunktet ligger i henholdsvis medianer-
nes og diagonalernes skringspunks, skal det ifolge Romer fremgaa, at
veegistangsreglen er gyldig for de tilfeelde, hvor veegtene forholder sig som
henholdsvis 1:2 og 1:3. Hvorledes han er kommet hertil, ses ikke af
Leibniz’ optegnelser, og forskellige formodninger kan opstilles, hvoraf en
er omtalt i [11] og med en lille @ndring kan gengives saaledes:

Et plan er belastet med lige tunge vagte i vinkelspidserne 1, 2 og 3
af en ligesidet trekant (fig. 6a); det er i ligevaegt med medianskeerings-
punktet som ophaengningspunkt. Denne ligevaegt forstyrres ikke, dersom
vaegtene i 2 og 3 samles i midtpunktet af den tilhgrende side. Hermed
er vegtstangsreglen bevist for det tilfelde, hvor vagtene forholder sig
som 1:2,

For vagtforholdet 1:3 godtgeres reglen paa lignende maade ved be-
tragtning af en rhombe, sammensat af to ligesidede trekanter og belastet

2 2
r

1‘1. p d 3d y

Fig. 6a Fig. 6b
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med lige tunge vagte i vinkelspidserne 1, 2, 3 og 4 (fig. 6b). Figuren er
i ligeveegt ved opheengning i rhombediagonalernes skaringspunkt. Lige-
vagten bevares, naar vegtene i 1, 2 og 3 samles i medianskeeringspunktet
for den tilhgrende trekant; heraf fglger vaegtstangsreglen for forholdet
1:3.

Til den givne bevisforelse maa dog bemerkes, at det ikke er helt til-
fredsstillende at operere med begrebet tyngdepunkt paa denne maade,
naar man ikke har nsermere kendskab til Remers opfattelse af dette
begreb.

Dernzest opstiller Remer den s®tning — og i den her givne preecise
formulering! — at det til hvert forhold mellem to hele, positive tal m og n
og til hvert positivt tal ¢ er muligt at finde to hele, ikke negative tal x og y,
saaledes at den numeriske forskel mellem m/n og 2%/3Y er mindre end c.
Altsaa at ethvert positivt rationalt tal kan approksimeres vilkaarligt tet
med tal af formen 27/3¥, hvor z og y er hele tal = 0. Og af denne grund
er det da ifelge Remer kun ngdvendigt at bevise vaegtstangsreglen for
det tilfeelde, at veegtene forholder sig som 2%:3v. Men beviset herfor er
meget let. I korthed kan vi formulere det paa fglgende maade: Lad de til
vaegtene 2% og 3¥ hgrende arme vare henholdsvis a og b. Er der ligevagt,
vil denne ikke sendres, hvis veegten 2¢ halveres og anbringes i afstanden
2a, saaledes at vi nu paa den ene side har vegten 2! i afstanden 2a.
Fortsettes med denne halvering af vegten og fordobling af armen, faas
tilsidst vegten 1 i afstanden 2%a, og paa samme maade vil ligeveegten
ikke forstyrres, ved at vi fortsetter med at tredele vaegten og tredoble
armen paa den anden side af vaegtstangen, indtil vi faar vegten 1 vir-
kende i afstanden 3vb fra opheengningspunktet. Men da de to vagte 1
kun kan vzere i ligevaegt, naar armene er ligestore, folger heraf, at
22, = 3¥b er en ngdvendig betingelse for ligeveegt. At betingelsen ogsaa
er tilstreekkelig, indses ved at gennemlobe reesonnementet i modsat
retning.

Desveerre findes beviset for ovennavnte fra den tid ellers ukendte
approksimationssatning ikke i Leibniz’ notater. Ssetningens rigtighed kan
let bevises med vor tids matematiske hjzlpemidler [11], men noget helt
elementeert bevis har det ikke veeret mig muligt at finde. Maaske kan
tidsskriftets lesere finde et saadant? Og angive en algoritme for denne
approksimation ?

5. Momentsztningen. I de hidtil givne beviser har vi forudsat, at
kreefterne — veegtene — er indbyrdes parallele og vinkelret virkende
paa den retlinjede veaegtstang. I middelalderen — og maaske allerede i
oldtiden, hvad bemarkninger hos Heron og Pappus kunne tyde paa —
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var man klar over, at vegtstangsreglen kunne udvides til den lov, vi
nu kender under navn af momentseiningen. I det simple tilfelde, hvor
et plant legeme paavirkes af to i samme plan beliggende, hinanden mod-
arbejdende krafter &, og k, (fig. 7a), siger denne s®tning jo, at der

Fig. 7a

Fig. 7b

bestaar ligevegt omkring oph@ngningspunktet O, saafremt k,r; = kyr,,
hvor r; og r, er de vinkelrette afstande fra O til krafterne. Man kunne
teenke sig, at indsigten i denne moments®tning var opnaaet paa felgende
maade (se f. eks. [3], [7]) — direkte evidens herfor foreligger dog ikke:

I dobbelttrissen med radierne r, og 7, i fig. 7b holder krafterne £,
og k,, der i storrelse er lig med henholdsvis %, og k,, hinanden i ligeveegt
ifolge vaegtstangsreglen, da k,r, = k,r,, og felgelig k;r, = kyr,. Tilfgjes
nu krefterne k' og k, ligestore og ensrettede med henholdsvis &, og k,,
vil k; og k; af »symmetrigrunde« holde hinanden i ligeveegt, ligesaa
ky, og ky; men da k; og k, holder systemet i ligeveegt, maa dette
ligeledes veere tilfazldet med &, og k,, og folgelig vil krefterne k&,
og ky, i fig. 7a ogsaa holde dette system i ligeveegt.

p
6. En statisk anvendelse. Som et

eksempel fra den tid paa statisk an- B
vendelse af veegtstangsreglen vil vi

vise, hvorledes Ole Romer bestemte

ligeveegt paa skraaplanet ([12], hvori

omtales nogle utrykte manuskripter a
af Romer i det franske akademi; heri

er ogsaa behandlet mere komplicerede P
ligevaegtsproblemer end det her om-

talte). Paa et skraaplan med held- A
ningsvinklen « (fig. 8) holdes legemet O

S i ligeveegt under paavirkning af Fig. 8

S
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tyngdekraften P og en kraft p, hvis vinkel med skraaplanet er f.
Lad O vere et punkt af skraaplanets normal i 8. Tenker vi os skraa-
planet fjernet og legemets beveegelse paa et lille stykke erstattet med en
cirkelbeveegelse med centrum i O, saaledes at radius fra O til legemet
kan opfattes som en enarmet veegtstang, sendrer dette ikke ligevaegten,
og ligeveaegtsbetingelsen er da p-a = P-A, hvor a og 4 er de vinkelrette
afstande fra O til retningerne af p og P. Og idet Afa = sinx/cosf, kan
ligeveegtsbetingelsen skrives

pcosf = P sinc .

I det tilfzlde, hvor p virker parallel med skraaplanet, overgaar betingel-
cen til den velkendte lov for en veegt virkende langs et skraaplan:
p = P sino.

7. En dynamisk anvendelse. 1 det bergmte verk om penduluret,
offentliggjort i 1673, havde Huygens bestemt den reducerede pendullengde
af et fysisk pendul, altsaa leengden af det matematiske pendul, der svinger
i takt med det fysiske. Og i et arbejde fra 1703 [2] viste nu Jacob
Bernoulli, hvorledes denne bestemmelse kunne foretages paa simplere
maade ved anvendelse af vagtstangsreglen. For nemheds skyld ngjes
vi med at betragte et pendul bestaaende af to massepunkter m, og m,,
der er fast forbundne med en veagtlgs stang gennem ophengningspunk-
tet O, og hvis afstande fra O er henholdsvis I, og I, (I; <l). Hvis masse-
punktet m i afstanden [ fra O svinger i takt med det fysiske pendul, er
I den reducerede pendullengde. Betegnes m’s akceleration i bevaegelses-
retningen til et givet tidspunkdt med y (= g sinx, hvor g er tyngde-
akeelerationen og & vinklen med lodlinien), vil m, og m,, da pendulerne
jo felges ad, til dette tidspunkt i samme retning have akcelerationerne

%y og %2 y. Heraf folger, at m,, grundet paa den mekaniske f(;rbindelse
med m,, i sin bevaegelse er hemmet af tvangskraften m,y —ml»;y, hvor-
imod m,’s bevagelse af samme aarsag fremmes af tvangskraften
mz%y—mgy. Og da disse vinkelret paa stangen virkende tvangskreaefter

maa holde hinanden i ligeveegt overfor den betragtede drejning om op-
heengningspunktet — her er Bernoulli faktisk allerede inde paa d’Alem-
berts princip! —, forer veegtstangsreglen til

Iy Ly
(’mﬂ"‘m17?> l, = (mzj)’—mﬂ’) ly
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eller
. Ml 2 +myly?

myly +myl, ’

hvilket er formlen for den reducerede pendullzngde.

LITTERATUR

[1] ARKIMEDES, se f. eks. Ostwald’s Klassiker nr. 203. Leipzig 1923, s. 36; eller Paul Ver
Eocke: Les oeuvres complétes d’ Archiméde. Bruxelles 1921, s. 307.

[2] JacoB BERNOULLI: Opera. Gendve 1744, I, s. 454, s. 460; II, s. 930.

[3] La Cour og Aprrr: Historisk Fysik 1. Kobenhavn 1896, s. 165.

[4] E. J. DksTERHUIS: Die Integrationsmethoden von Archimedes. Nordisk Matematisk
Tidskrift 2 (1954), s. 5-23.

[5] P. DurEM: Les origines de la statigue I. Paris 1905, s. 61.

[6] GavriLer: Dialogues concerning two new sciences. New York 1914, s. 110; eller Ostwald’s
Klassiker nr. 11. Leipzig 1890, s. 94.

[7] A. E. Haas: Die Qrundgleichungen der Mechanik dargestellt auf Grund der geschicht-
lichen Entwicklung. Leipzig 1914, s. 10.

[8] HuveeNs: Oeuvres complétes XIX. La Haye 1937, s. 40—47.

[9] C. JUBL: Note om Arkimedes Tyngdepunktslere. Oversigt over Videnskabernes Sel-
skabs Forhandlinger, Kgbenhavn 1914, s. 421—441.

[10] E. A. Moopy og M. CLAGETT: The medieval science of weight. Madison 1952.

[11] M. PravL: Et lille bidrag til veegtstangsreglens historie. Matematisk Tidsskrift B, Koben-
havn 1950, s. 123-126.

[12] M. P1HL: Ole Romers virksomhed ¢ det franske akademi. Naturens Verden, Kebenhavn
1949, s. 25.

[13] D. REmmaNN: Historische Studie iiber Ernst Machs Darstellung der Entwicklung des
Hebelsatzes. Quellen und Studien zur Geschichte der Mathematik, B III, Berlin
1936, s. 554—592.

[14] W. StEIN: Der Begriff des Schwerpunktes bei Archimedes. Quellen und Studien zur
Geschichte der Mathematik, B I, Berlin 1930, s. 221-244.

[15] STEVIN, se E.J. Dijksterhuis: Simon Stevin. Haag 1943, s. 116.

[16] WoErckE: Journal Asiatique (IV), bd. 8 (1851), s. 225.

For nzrmere studium anbefales i seerdeleshed henvisningerne [14], hvori W. Stein giver
en omhyggelig analyse af Arkimedes’ statik; [13], i hvilken afhandling D. Reimann gor
rede for vasentlige traek af vagtstangsreglens bevishistorie; samt den udmeerket kommen-
terede udgave [10] af middelalderlige skrifter om vagtstangen.

S RS R,



ET LILLE PROBLEM FRA FLADETEORIEN

DAVID FOG

De folgende linier skal tjene til at belyse det faktum, som vel nok kan
virke overraskende, forste gang man meder det, nemlig at selv om alle
normalsnit til en flade z=f(z, y) i et bestemt punkt har minimum (resp.
maksimum) i dette punkt, behgver selve fladen ikke at have minimum
(resp. maksimum) i punktet.

Som et simpelt eksempel herpa vil vi betragte fladen

(1) z = y?— 2%y + jat .
. 0z 02 .
Af (1) ses, at i begyndelsespunktet O er 5—=a—=0; i dette punkt er
x oy

altsd xy-planen tangentplan og z-aksen normal.

Vi vil skere fladen med en vilkarlig plan gennem denne normal.
Planens skeeringslinie med zy-planen kan pé parameterform fremstilles
ved .

X = gcosv, y = @sinv,
hvor v er liniens vinkel med x-aksen, og parametren g angiver det labende
punkts afstand fra O. Indsettelse i (1) giver

(2) z = p2sin2v—2p3cos?vsinv + $o*costv .

Idet v holdes fast, fremstiller denne ligning snitkurven i et gz-koordinat-
system, beliggende i snitplanen.
Af (2) ses, at man i O har
dz a2z .
— =0, -—— = 2sin%v.
de de*
Alle snitkurver, for hvilke sinv+0, vil derfor have minimum i dette
punkt. Det samme geelder imidlertid ogsa for den ved sinv=0 bestemte
kurve, idet (2) her reduceres til z= 3o*. Alle fladens normalsnit © begyn-
delsespunktet har altsé minimum i dette punkt.
Lad os dernsst betragte den kurve pa fladen, der projiceres pa xy-
planen i parablen y=22 Indswmttelse i (1) giver her z= —ja*, hvilket
viser, at kurven — og dermed fladen — indeholder punkter i umiddelbar

[157]
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nserhed af O med negativ z-koordinat. Fladen har altsd ikke minimum @
begyndelsespunktet.

Den tilsyneladende modstrid mellem de fundne fakta opleser sig let,
nar man betragter fladens beliggenhed i forhold til zy-planen. Dens

ligning (1) kan skrives
z = (y—12%) (y—§2%) .

Tladen skeerer altsd xy-planen i to parabler, der rerer z-aksen — og
hinanden — i O og vender til samme side. Fladens z-koordinat er negativ,
nar (z, y) ligger i det seglformede areal mellem de to parabler, men positiv
for punkter (z,y) uden for dette omrade.

Vi betragter nu en vilkarlig linie i ay-planen, gaende gennem O. Pa
denne kan vi med O som midtpunkt afgreense et interval, som ikke har
noget punkt i det »megative omradec. Lader vi linien dreje sig omkring O,
s8 den neermer sig x-aksen, vil det brugelige interval blive mindre, og
nar linien konvergerer mod xz-aksen, vil intervallets leengde g& mod nul;
men det eksisterer stadig i enhver stilling under graenseovergangen. Falder
linien pa selve x-aksen, kan intervallet vealges ubegrenset stort. Disse
forhold er i overensstemmelse med, at hvert normalsnit i O har minimum
i dette punkt. Parablen y =2 forlgber derimod i det negative omrade og
giver derfor anledning til fladepunkter under xy-planen i ubegraenset
neerhed af 0. Hermed er det anskueliggjort, hvordan de to fremsatte —
og beviste — pastande kan forenes.

Tn anden flade med lignende egenskaber som den ovenfor behandlede

er fremstillet ved
z = y2— 2y +at—a5;

men udseendet af denne flade — og dens skzeringskurve med xy-planen —
i omegnen af det kritiske punkt (begyndelsespunktet) er dog lidt ander-
ledes end i det foran gennemgaede eksempel. Den narmere undersggelse
heraf overlades til laeseren.




ON THE PROBLEM OF PARTITIONING THE CIRCLE
SO AS TO VISUALIZE LEIBNIZ’ FORMULA FOR 7

VIGGO BRUN

Lecture in the Norwegian Mathematical Society, Sept. 28, 1954.

Lionardo da Vinci has an interesting remark in Trattato della pittura.
Tn his opinion the art of painting, the art of the eye, is superior to poetry,
the art of the ear, because the eye is a much finer organ than the ear.
He says: »If you, historians, or poets, or mathematicians had not seen
things with your eyes you could not report them in writing.« (Se uoi
istorigrafi o poeti o altri mattematici nd ui aveste col’ochio viste le cose,
male le potreste riferire per le scritture.)

No doubt not all mathematicians are in agreement. Some prefer a
geometrical treatment, others an analytical one. As characteristic exam-
ples one can mention Poncelet and Abel. Poncelet treated mathematics
wholly geometrically. A direct contrast was Abel; in his collected works,
one can hardly find a figure of importance. His ideal world seems to have
been totally independent of the geometrical treatment. An amusing
verification of this is given by Oystein Ore in his book on Abel, where he
quotes a newspaper polemic between Professor Hansteen and Professor
Holmboe. The latter had criticized a textbook in geometry published
by Hansteen in 1835. In the polemic which followed, Hansteen writes:
yWhen I see a student, who has received his mathematical education in
that school, draw a circle for me which has the form of a potato, and in
one extremity of this monster put a point, or, what is even worse, just
write a capital letter, to indicate what he calls the midpoint, then I
already know what the clock has struck, and that all his geometry is not
worth a pipe of tobacco.«

Holmboe gives the following reply: »I must confess that this is a really
curious criterion for the worth of a student’s geometrical knowledge.
Niels Abel was a man of this school. As it happens, I am able to show
to anyone who so desires, several illustrations of the circles which he

[159]
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sketched. He was not clever in freehand drawing. Therefore his circles
looked miserable and they can really be compared with potatoes if not
with even worse things. Consequently, all his geometry was not worth
a pipe of tobacco.«

We can see that the desire of Lionardo da Vinci to have seen the things
with the eyes is not alien to modern mathematicians either. In a necro-
logy over Max Dehn, written by W. Magnus and R. Moufang, it is said:
»Dehn war ein Geometer von ausgezeichneter Phantasie, seine Probleme
wurzeln im Anschaulichen. Die dem Geometer nach einem Worte von
Felix Klein eigentiimliche Freude, sehen zu kénnen, was er denkt, wird
an Dehns Forschungsweise lebendig.«

The old greeks can certainly be said to have fulfilled the claim of
Lionardo. They indeed treated mathematics geometrically. The old hin-
dus went even a step further when
they treated geometrical questions.
They drew a figure and wrote: »See«.

Newton and Leibniz computed areas
by making use of the fact that the
) 2 determination of areas and of tangents
lead to inverse operations. This was
great progress indeed. But in doing so,
the determination of areas could no

Fig. 1 longer be seen with the eyes, to use
the words of Lionardo.

I will mention an example. Archimedes calculated the segment of a
parabola in the following way (fig. 1): He bisects the abscissa @ and
thereby determines a vertex of the triangle ¢;. He then shows that

olQ

ti+ty, = 3T .

In continuing the bisection of the abscissas, he gets four new triangles
with a total area of 1(f, +1,), and so on. In this way, Archimedes obtains
the area of the parabola:

11
S=T+-T+-T+...==-T.
+T+ET+

U

This operation is indeed »visible«. Newton and Leibniz determine this
area by means of the operation

d (x3
— (=) = a2.
dx 3)

I have shown in an article on the formula of Simpson in the first
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volume of this journal how the Archimedian method could lead to a
usable generalized Simpson-formula, whereas the most obvious ana-
lytic method leads to a formula which is nearly unusable.
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Fig. 2

Before the time of Newton and Leibniz, lord Brouncker used this bi-
secting-summation of Archimedes to determine the area under the hyper-

1
bola y= ——, when x goes from 0 to 1. Lord Brouncker in this way, as
Y 1+ & y

seen from fig. 2, obtains the formula

In 2 1 1 1 1
n2 = —§+§—Z+....

It seems that at that time much importance was attached to this dis-
covery by lord Brouncker. The publication in Philosophical Transactions
Vol. 4, 1668 opens thus: »The squaring of the Hyperbola, by an infinite
series of rational numbers together with its demonstration by that Emi-
nent Mathematician the Right Honorable the Lord Viscount Brouncker.
What the Acute Dr. John Wallis had intimated, some years since ...
that the World one day would learn from the Noble Lord Brouncker the
Quadrature of the Hyperbolae: the Ingenious Reader may see performed
in the subjoyned operation, which its Excellent author was now pleased
to communicate as followths in his own words.«

Nordisk Matematisk Tidskrift. — 11
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Otherwise lord Brouncker’s interesting determination of In2 appears
to have been entirely forgotten after having been replaced by the inte-
gration of

— =1l—x4+x?—2%+....
1+

I should think that this intelligible method of Brouncker ought to find
its place in elementary mathematical education, along with the method
of the infinitesimal calculus.

y y:zz
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Fig. 3
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Let us examine what formulas we arrive at by using this bisecting-
summation in the determination of the area A4, under the parabola
y=a? when x goes from 0 to 1 (fig. 3). We find

1

1 1
(1) Ay = b (B2 30 4 (1224 B 4245 — 624 7?)

1
—(12—224+32—-424 ., 4152
+ 15 + +... 4150+
It is known that
1222482424 .., +(2r—1)2 = 272 —7.

Using the formula for the sum of a geometrical series, one then obtains
the same result as Archimedes, 4,=13.
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The corresponding formula for the area A4, under the curve y=a"
when x goes from 0 to 1 is

1

1 1
A, = 2n_ﬂ_i.‘in_ﬂ(1"—2n+3")+§n—+1(1"—2”+3ﬂ—4t"+ T

Certainly a formula for
In—2ny3n_dnq . 4 (2r—1)n

is known when » and r are natural numbers. But as this formula uses
the Bernoullian numbers, it will not be easy thereby to deduce that

1

A = ——.
n+1

n

Otherwise it is possible to establish this independent of the infinite-
simal calculus of Newton and Leibniz, in the manner already used by
Roberval and Fermat.

Is it possible, in a corresponding manner, to schart« the area of the
circle such that the formula of Leibniz and Gregory:

T I 1 1 1
—=l——p———t...
4 3 5 7+

can be »seen with the eyes«?

The classical method for the determination of z, using inscribed and
circumscribed polygons, was visible indeed. But it has the disadvantage
of leading to a series of calculations of square roots.

The vertices of a regular polygon inscribed in a circle with radius 1
do not have rational coordinates. It is easy to determine a rational
point (z;,7,) on the circle

(.’L’— 1)2+y2 =1 ’
as intersection with the line y =k with & rational:

2 ok
DT T e

We are therefore able to find a formula for sz, using the partition of the
area of the circle which is shown in fig. 4. It is not difficult to find a rule
for computing the successive terms by continued bisection of the k-scale.
But the formula will be too complicated to be of interest.

The condition that the inscribed rectangles, or perhaps triangles, shall

11*
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have vertices with rational coordinates is, however, unnecessarily strong.
It is sufficient that the areas of the rectangles or triangles be rational

Yy k=1
1
3
% q
28 vy
625 1
— )
p
¢
F =t
e
z 0
Fig. 4 Fig. 5

numbers. We can use the fact that the area of the triangle ¢ in fig. 5 will
be rational if p and ¢ are rational, as

1g-p
2 1442

(3) t =

Consequently it is not necessary that the coordinates of the point P be
rational. If we therefore, instead of partitioning the circumference of the
circle into equal parts, partition the circumference of the circumscribed
square in equal parts, we will, by the construction in fig. 6, obtain a

\

Fig. 6
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lower bound for 7. In the same manner we can obtain an upper bound,
and it is easy to show that the difference between the upper and the
lower bounds tends to zero by continued partitioning.

We will use this method to deduce a formula for . It is sufficient to
study the eighth part of the circle (fig. 7).

e

ol

B,

N

Fig. 7

We first partition the square side PQ into two equal parts and inscribe
only the triangle 4. Afterwards we partition P@ into four parts and
construct the trapezoid B; and the triangle B,. We then partition P@Q
into eight equal parts and construct the trapezoids C,, C, and C; and the
triangle C,. By continuing in this manner we get

4
3= A+B;+By+C0+Cy+C3+Cy+ ... .

The areas of the triangles can be calculated by formula (3), and each
trapezoid can be considered as the difference between two triangles. In
this manner we obtain, after multiplication by 2:

) a 1] 1 171 1 1
) Z_Q[W]+Z[l+(i)2—l+(%)2+1+(%)2}
1

1 1 1 1
—~ + + - + TINEEEE

1
TSITE G 1r R 1A I+ @R 1 1+ @R 1+
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By aid of the formula

1
—— = l-a+4+a?—a®+... (for0<a<1),
l+a

we are able to transform each term in (4), and we get the formula

i 1 | I I —1 +1 ] I 1 -1 + + 1 |
I B R B O
= 5| FOM | F @] 5| @A
S| @A | @@ (3
+ ... P e

The sum of the first horizontal line is 1. The sum of the second line is
— 4, according to formula (1), and the sum of the third line is 4, ac-
cording to formula (2). After having established the possibility of changing
the order of summation in the double-infinite series, we obtain

JT
1= LAt A= Agt .

where 4,, denotes the area under the curve y =a" when z goes from 0 to

1
1. Assuming that we know the formula 4, = 7 Ve get the Leibniz
formula n

7 ! 1 1 1
Z = _§+B_?+” C.

Obviously I have not succeeded in finding an equally »visible« formula
for 7 as lord Brouncker found for In 2. It would surely be of great interest
if someone could find a better »charting« of the area of the circle to
illustrate this »arithmetical formula« for z, which certainly is one of the
most glorious conquests in mathematics.




APROPA EN PRISTAVLINGSUPPGIFT

LENNART SANDGREN

Hosten 1954 anordnades genom NMT en pristivling for svenska gym-
nasister. Forsta delen av uppgift 3 16d sé:

ySom bekant #ir sinz < for > 0. Bestim det minsta virde pd a for
vilket sinx >z —ax® dd x> 0.«

Det visade sig att ingen av deltagarna korrekt 16st denna uppgift.
Formodligen ér detta ganska forvinande fér dem som inte kénner till
den giingse upplidggningen av gymnasiekursen i funktionslira i Sverige.
Uppgiften skulle troligen inte berett t.ex. danska gymnasister samma
svarigheter, beroende inte si mycket pa det visentligt storre omfanget
av analyskursen i Danmark utan framfér allt pa att denna kurs &r in-
riktad pa centralare fragestillningar.

Under de senaste aren har i Sverige forts en ganska livlig diskussion
om gymnasiets matematikundervisning och i forsta hand om funktions-
lirans uppliggning och omfang. En ny kursplan har ocksa tillkommit,
vilken bor innebira ett stort framsteg. Losningarna till ovan citerade
prisuppgift har gett impulsen till f5ljande reflexioner, som huvudsakligen
berdr kravet pa stringens i framstéillningen av analysen.

Medan man i ménga avsnitt av gymnasiekursen forsoker géra framstéll-
ningen korrekt och i stérsta utstrickning logiskt bindande, tycks funk-
tionsliran &nnu utgdra ett undantag. Denna ésikt far man bekriftad av
de insinda 16sningarna av uppgiften ovan. Medan nistan alla deltagarna
i de 6vriga fem uppgifterna i tévlingen uttrycker sig noggrant och logiskt,
4r de diffusa och felaktiga formuleringarna i uppgift 3 legio. En av de
tivlande, som pa flera av de ovriga uppgifterna presterat utmérkta 16s-
ningar och dessutom ér den som kommit »érmast« en korrekt 16sning
av uppgift 3, uttrycker sig (i en for sammanhanget helt overflodig passus)
bl. a. pa foljande sitt:

»Om en funktion y=f(x) &r vixande, s dr ocksa y’ vixande«.

Orsakerna till att en gymnasist gor ett dylikt misstag kan naturligtvis
vara manga. Det kan kanske finnas ett samband med det faktum att

[167]
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man pd gymnasiet dgnar en oproportionerligt lang tid at et ensidigt
mekaniskt riknande med derivatan for bestdmning av maxima, minima,
tangenters och normalers ekvationer. Fér den djupare forstaelsen av be-
greppet derivata har detta riknande mycket litet virde. Visentligt
mera givande dr di derivatans betydelse for funktionens véxande och
avtagande. Om man t. ex. vid uppritandet av funktionskurvor inte bara
intresserar sig for derivatans nollstillen utan ocksd f&r dess tecken far
man flera upplysningar om kurvans utseende samtidigt som man inévar
vésentliga egenskaper hos férsta derivatan.

En annan mgjlighet att rikta intresset pé derivatans fundamentala,
egenskaper dr en utvidgning av den traditionella problemfloran med an-
dra givande omraden t. ex. olikheter. En av orsakerna, till att uppgift 3
togs med i pristivlingen var en énskan att framhalla et problemgebit,
som &r véirt att odla men t. ex. i studentskrivningarna forekommit mycket
sparsamt.

Ett betydande inflytande p& funktionslirans utformning utévas na-
turligtvis av de anviinda lirobéckerna. De flesta larobScker i funktions-
léra uppvisar patagliga brister bl. a. i friga om stringens. Inte sillan
avfirdas t. ex. hela teorin for funktioners vixande, avtagande, maxima
och minima med hénvisning till nagra figurer. Ibland férekommer #ven
rent felaktiga uttalanden. T. ex. séger en ldrobok:

»Dé funktionen har ett minimum, overgér den fran avtagande till
véxande« och i konsekvens hirmed

»I en minimipunkt Gvergir derivatan fran negativ till positive.

I bada fallen &r det ju bara omvéndningen som é#r riktig. D4 dessutom
bara de riktiga satserna kommer till anvéndning, kan det vil inte finnas
ndgot skil att formulera felaktiga satser erhallna ur alltfér speciella
tigurer. I en samling av studentuppgifter forekommer i I6sningen av ett
problem det ovan omtalade felaktiga pastdendet att »derivatan av en
vixande funktion #r vixandec.

Det faktum att funktionsliran infordes i den svenska, gymnasiekursen
ganska sent kan kanske vara en forklaring till att dess utformning i under-
visning och i lirobscker uppvisar si betydande svagheter. I Danmark
fick analysen en central stéllning i gymnasieundervisningen redan i
bérjan av 1900-talet och i dag motsvarar analyskursen en inte ovisentlig
del av den svenska ett-betygskursen vid universiteten. Man har svart
att tro att det skulle vara mojligt att bibringa nagot stérre antal av de
svenska gymnasisterna en djupare forstielse for s pass avancerade
fragor. Av diskussioner med sivil danska gymnasieldrare som universi-
tetslirare har jag fatt intrycket, att man ocksa i Danmark anser att
stringenskravet i vissa fall drivits for langt. En fara med lingt driven
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precisionsmatematik &r i varje fall att den kan verka himmande pd ett
spekulativt och intuitivt téinkande, som vil dnd4 dr charmen och en av
viisentligheterna i matematiken, &ven om det i skolan oftast bara far
sin yttring i 16sandet av mer eller mindre knepiga problem.

Hur langt man skall g& i fréga om stringens i matematikundervis-
ningen i gymnasiet ér en avvigningsfriga som i sista hand beror av den
enskilda klassens standard. I Sverige torde det emellertid vara ytterst
nskvirt att man i funktionsliran nar lingre én vad som tycks vara fallet
for nirvarande. PA det nya gymnasiets matematiska gren blir detta
sikert mojligh, medan malet naturligtvis far sittas ligre pa allménna
linjen och biologiska grenen. Om sedan de skriftliga proven i student-
examen utformas sa att de framhiver fundamentala begrepp och intres-
santa problemstéllningar, si kommer gymnasiets matematikkurs ocksa
att fa viisentligt okat virde.
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OPPGAVER TIL LOSNING

Losninger av oppgavene 66-70 sendes til oppgaveredakteren, professor R. Tambs
Lyche, Holmengrenda 7, Holmen, Oslo. Slike losninger vil bli trykt i et folgende
hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lgsning av hver
oppgave. Lgsninger av oppgaver i dette hefte ma vere sendt innen 1. febr. 1956.

De ovrige oppgaver i dette hefte er enklere, og lgsninger av dem vil ikke bli trykt.

I siste hefte etterlyste vi lesninger av endel eldre oppgaver (noen av disse er
lost nedenfor). Vi oversd imidlertid at vi ogsd mangler en lgsning av oppgave 37
fra forrige argang.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredaktoren, helst sammen med forslagsstillerens egen lgsning.

66. Wallis’ formel kan skrivas p&4 formen

2 ° 1
g (i-2).
] 4n

Visa, att for tillrickligt stora N géller

()

n=1 T

2
S ——-
7w (4N — 3)
Arne Pleijel

L
(N +1)

67. Lat L och L’ vara lingden av en regulir polygon P, resp. av dess
ortogonalprojektion P’, d& projektionsvinkeln &r v. Visa att

2L’ =z L(1+cosv).

Magnus Tideman
68. Polynomet P(x) har endast enkla nollstillen a, b, ..., m. Visa, att
om gradtalet av P(z) dr >pu+1, s giller

a* br m

?T(a—)'l"?(—b*)—i— R +P’(m)

=0 (u heltal och = 0).

Lennart Busch

69. Vis at

Age Ramberg
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70. I oppgave 49 ble det hevdet at rekken
1

W n
utstrakt over alle 7 som skrevet i titallsystemet ikke inneholder siffret 9,
er konvergent. Finn en gvre skranke for summen, helst s4 liten som mulig.

R. Tambs Lyche

71. Gjennom en terning av tre borer en tre sylindriske hull med samme
diameter, hvert av dem fra midtpunktet av en sideflate til den motsta-
ende. Hvor stort blir volumet av den resterende del av terningen ?

72. Funksjonen f(z) er definert i et apent intervall som inneholder
punktet . En vet at

lim f@+h)+f(x—h)—2f(x) —y

h—0 h?

eksisterer. Undersgk om f''(z) eksisterer og om i sa fall g=f""(x).

73. En funksjon f(x) defineres i intervallet 0 <z < 1 pa folgende mate:
Skriver en z som en uendelig dyadisk brek :

1 1 1
z :§c;+é?2+---+50;,+-'- 0O<ep<e<...),
er 5 .
o, X e, 00

(x) = 2‘.4‘.2'71- 2 -

! f:{ 2%t~ = 9 15129
Vis at f(z) er kontinuerlig for alle z i intervallet og deriverbar for alle
»dyadisk irrasjonale« z, men ikke deriverbar for »dyadisk rasjonale« x —

dvs. for x av formen m/2",

LOSNINGER
Oppgave 25.

(Oppgavens ordlyd: Om « #r ett tal >1 skall man berikna volymen
av det n-dimensionella omrade, som definieras av olikheterna

Ty Z T, By 2 T, ., Ty 2T, X, %)

Omrédet w i det n-dimensionale rum er defineret ved ulighederne
(hvor z,, ., = x,):

(1) ;> 0, x, 2 Z 1% (1

IA

)

IIA

n) .
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Indfores de nye variable

(2) Y= 47wy (L2020,
gar ulighederne (1) over i

0<y, =1 (@A=214=n),
og man har derfor

1 1
» d a .

@) V= ﬂdxldxz o dw, = S . S det(ﬁ) dy,dys - - . dy, -

D . ay’ %‘7

w 00 0 "

oYy
Ved (2) udregnes let det(%) ; den far kun 2 led, der sammentraekkes
Zil 5

til (= 1)L — 1) (2,2, . . . @,)*"2, der ved (2) omformes til

(= 1) am—1)(y1Ys - - - Yu)OTPOD

ox; W\ L. . .
Da nu det(——) = [det(——)] , fas ved indseetning i (3):
0Y; ox;

1 1 o2 " (= 1)
ey
0

a”—1

Anders Bager

Oppgave 53.

Det medlemstall som er tilstrekkelig for at ¥, 2, . . ., w skal kunne veere
medlemmer betegner vi med k(y, 2, ..., u), og nar betegnelsen brukes
antar vi at de nevnte medlemmer er opptatt.

La y, og y, veere medlemmer og ¥y, + 1. Vi kan da oppta folgende med-
lemmer:

1 1 1
Ys=—, Yo = Ys = Yo=Y, Y6 = —> Y7 = Ys—Ys >
Y1 Yo Ys
1) 1
Ysg = —, Yg = Yo—Ysg Y10 = Ys— Y2 O8 Y1 = —-
Yq Y10
Her er
. 1 —1
Yo = Y1¥sh Yz = — g Yu=-—-
P T e —yys? Ty

a) Det er klart at alle medlemmer ma vere ulike funksjoner av z.
Hyvis 2" er medlem velger vi i (1) y; =" og y,=2 og far y,=2a"*2 Herav
folger at 2 kan bli medlem nar og bare nar n er ulike.

¢) Vi lar 22 bli medlem ved i (1) & velge y;=1 og y, ==, og lar 23 bli

[ ]
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medlem ved i (1) & velge y; =y,=x. Vi far da k(z", x-1)<8 for n=2 og
for n=3.

Vi antar k(2" ~1) < 3n + 2 for n like og <3n—1 for n ulike, og velger
i (1) y;=2" og y,==. Vi far da y,=2"*2 og da y,, ¥, og ¥, er medlemmer
fra for far vi ved induksjon at var antagelse er riktig.

. 1 -1
d) Vi antar k(xz, a3, ..., xn,m, W) <5n og opptar fglgende
5 medlemmer:
1 1 1 -1
B — xn__xn+1, xn+1, __xn-)-l og

an-l_gn  gn  gn_pn+l’ gnt+l’
Da vi ved i (1) &4 velge y;=1 og y,=x ser at var antagelse er riktig for
n=2, far vi ved induksjon at den er riktig for alle n. Dessuten far vi:

k(x?, 2%, ...,2") < bn—2.

e) Vi antar k(z?, 2%, ..., 22") S 6n+2 og velger i (1) y; =1 og y,=a2".
Vi far da y,=22""" og da y,, ¥, og ys er medlemmer fra for, fir vi ved
induksjon at var antagelse er riktig, idet den er riktig for n=1.

b) La y og z veere forskjellige medlemmer. Vi kan da oppta

Yy—=z, —2, Y+z og z+z.

Da vi under c¢) har vist at 2» kan bli medlem for alle » folger herav ved
induksjon at enhver hel funksjon med hele koeffisienter kan bli medlem,
og dermed ogsa den resiproke til en slik funksjon.

La f(x) =g(x)/h(zx) hvor g(x) og h(x) er hele funksjoner med hele koeffi-
sienter, og g(x)+1. Vi velger i (1) y,=g(x)h(x) og y,=1/h(zx) og far

Yy=f (). Otto Marstrander

Oppgave 54.

a) Alle medlemmer kan skrives som en bregk hvor teller og nevner er
hele funksjoner av x. Med medlemmets grad mener vi differensen mel-
lom gradene av teller og nevner. Vi betegner det n-te medlem med y,,.

Det er klart at gradene av de 4 forste medlemmer mé vare +1 eller
—1; y5 ma derfor fa en grad <1 og kan ikke vere lik 23. For at y, skal
kunne fa en grad >1 mé y,=1/y,. Hvis da y;=2a3 s& er y;=23 og da
kunne vi, ved fra y; av & bytte om « med -1, oppnd en annen medlems-
fortegnelse hvor y; =23, og det er umulig.

b) En innser lett at gradene av de 5 forste medlemmer ma veere +1,
0 eller —1.
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1. Hvis 21 blir opptatt som medlem kan vi sette y;=a"1. Ved & re-
sonnere videre som under a), idet indeksene forhgyes med 1 og z® erstattes
med 22, finner vi at hverken y, eller y, kan bli lik 2* eller z=2.

II. Hvis 21 ikke blir opptatt som medlem har vi ifglge I at y, ikke
kan bli 22 eller z-2. Hvis da y, =22 s& mé y, vaere dannet som differens
mellom to tidligere medlemmer. Minst ett av disse matte vere av 2. grad,

og det er umulig. Otto Marstrander

Oppgave §9.
. de . d2x .
Betrakta baglingden s som oberoende variabel. Satt e =
osv. D& fas uttrycket for krokningsradien i punkten (z, y) som o=2/y.
Vi har r2=F(s)=%+4%?; derivering tva ganger ger (1) 1F'(s)=xx +yY;
(2) 3F""(s) —1=yy +ax. Under beaktande av att 224y2=1, och dirav
ai= —yy, tas efter kvadrering av (1) och (2) samt addition

Q}[3F"(s)— 112 = F(s)—[3F'(s)]*,

,  Flo)—[3F'(s)
IR O

dvs.

Otto Valdimarsson

Ogsé lost av J. Bjornsen, Lennart Busch, T.J. Engelskjon, Odd G. Eriksen,
Th. Godal, K. Zeuthen Heidam, H. Killingbergtre, Johannes Kvamsdal, Otto Mar-
strander, Arne Sandum og Helge Tverberg.

Oppgave 60.

For |z|<1—-A<1er

2n—1

— n 1-— 2
L—fef" _ 1-[a® _

= > =1-|2| > 4,
1+ 7| 1+ 7|

z—1

og ligningen har folgelig ingen retter innenfor sirkelen |z|=1 —4.
Ligningen kan ikke ha roten z=1 fordi n> 4.
En rot i den gitte ligning ma ogsa veere rot i ligningen Az +1—4 =2".
Men er |z| =1, 21, sd er

|Az+1—-A| < Ajz|+1-4 =1 = [2"],
og er |z|>1, s& er

|[Adz+1—A| £ Alz|+1-A4 < Alz|+(1—-A4)|z| = 2| < |2"].

Nordisk Matematisk Tidskrift. — 12
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Den gitte ligning har derfor heller ingen rotter pa eller utenfor sirkelen
|z| =1.

Den gitte ligning har dermed alle sine rotter i omradet 1 — 4 < 2] <1,
og likhetstegnet gjelder bare for n=2.

Dette er oppgavens péastand i skjerpet form. Johannes Kvamsdal

Ogsé lost av Lennart Busch, Jarl C. Dyekjer, Odd G. Eriksen, Bent Fuglede,
Th. Godal, Per Chr. Kristiansen, Henrik Meyer, Helge Tverberg og Otto Valdi-
marsson. I den skjerpede form ogs& av Otto Marstrander.

Oppgave 61.
Skrives (5-+ [/Tf))" =A4,+B,)/19, hvor 4, og B, er hele tal, bliver
(5-)19"=4, - B, /19 og derfor
(5+)/19)" = 24, — (5—)/19)" .

Nu er 0<5-)/19<1 og derfor 0< (5-)/19)"<1, s at [(5+V19)"]=
24, —1. Endvidere ses, at (5+]/19)"— [(5+ ]/TQ)”] =1-(5-)/19)">1,

nar n—- oo, Bent Fuglede

Ogsd lest av Anders Bager, J. Bjornsen, Lennart Busch, Odd G. Eriksen,
H. Killingbergtrs, Johannes Kvamsdal, H. Kyhl, Otto Marstrander, Henrik Meyer
og Otto Valdimarsson.

Opgaven generaliseres let:
[(a-i—l/l;)”] = ulige tal, n =0,1,2,...,
naar 0<aq— ]/I;< 1, @ og b hele og positive.

Henrik Meyer

Oppgave 62.

Lad forst x>0 vaere fast. Funktionen Sf(u)=ux/(u?+x)? antager for
>0 sin storste veerdi for u=]/x/3, og f(l/x/3)=3]/3/16\/x.

X px © ux 1 1 =z 1
T = “*ﬁd —= = —t —=
,é:(n2+x)2 Sl (u? + x)? u+0<]/x> 2 x+1+0<]/x>’

. ®  nx 1
lim ' —— =-—.
c—>toonm1 (ME+2)2 2 Henrik Meyer

Ogsd lest av Bent Fuglede, Johannes Kvamsdal og Otto Marstrander.
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(For gvrigt gelder

2nx

net (n? +x)?

= i) o~ 73],
hvor

V= g rs) = >
009) = galog Te) = 3

Heraf fas den asymptotiske rekkefremstilling

= () = '’
hvor B,=3%, By= —, ... er Bernoulli’s tal.)

Bent Fuglede

PRISTAVLING FOR FINSKA LAROVERKSELEVER

Finlands matematik- och fysiklirarférbund utlyser for andra géngen en pris-
tavling i matematik. Alla liroverkselever har ritt att deltaga. Av de sex tévlings-
uppgifterna bor minst fyra ldsas. Lésningarna renskrivas med blick, figurerna
ritas med blyerts eller tusch. Deltagare bor i sitt tévlingsbidrag uppge namn,
adress, sin skola och klass samt bifoga en egenhindigt skriven férsikran om att
han eller hon sjélvstindigt har 16st uppgifterna utan annan hjilp &n matematisk
litteratur.

Vid bedémningen beaktas sirskilt antalet av de losta uppgifterna samt att
l6sningarna utforts redigt, kortfattat och omsorgsfullt.

Férsta priset ar 5000 mk och andra priset 3000 mk. Tillaggspris kan ifrdgakomma.

Vid valet av tdvlingsproblem har kommittén utnyttjat &ven uppgifter av
prof. F. Iversen och doc. O. Tammi.

Lésningarna bér insindas till Pristédvlingskommittén fore den 15 februari 1956
under adress fil. dr. Inkeri Simola, Rajasaarenkatu 5, Helsinki.

1. K (x,y)=0 och K,(x,y)=0 #r ekvationerna for tva cirkellinjer,
vilkas medelpunkter ligger pa z-axeln. Undersok kurvan som bestémmes
av ekvationen K, +hK,=0, d& h antar olika virden.

2. Undersok fortecknet for funktionen
w3 —aty+axyt—y>P—x+y

i olika delar av planet, da x och y ér koordinaterna fér en punkt i planet.

12%
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3. Om (a+x)", dir n &r ett positivt helt tal, utvecklas till ett
polynom, erhalles ett polynom av formen

(@+z)" = cia™+ca™lx +ca 22+ ... +c 2" .

Hirled ett allmént uttryck for en koefficient ¢, genom att derivera funk-
tionen tillrédckligt manga ganger och inséitta =0 i den erhallna likheten.

Visa vidare, att det i utvecklingen av (4 + 3)3* finnes tva p& varandra
foljande termer, i vilka koefficienterna for potenserna av z ir lika stora.

4. Los ekvationen |sin 2x| =sin 3z.

5. Mantelytan av en rit stympad cirkelkon tangerar en halvsfir med
radien 7 och konens ena basyta ligger i samma plan som halvsfirens
basyta. Bestdm den minsta av alla de stympade koner, som uppfyller
dessa villkor, d&d konens héjd A >r forblir konstant. Tillimpa resultatet

pa fallet h=r V%

6. Fyra rita linjer begrinsar fyra trianglar. Bevisa, att dessas om-
skrivna cirklar gir genom samma punkt.

PRISOPPGAVER FOR NORSKE GYMNASELEVER

Oppgavekonkurranse for 1956, arrangert av Norsk Matematisk Forening.

Det kom ikke inn noen besvarelser i forrige rs konkurranse. Oppgavene fra ifjor
stilles derfor opp pd ny; de star i NMT 2 (1954), s. 186-187 (hefte 4). Sertrykk av
oppgavene kan faes ved henvendelse til redaksjonssekreteeren. En gjor uttrykkelig
oppmerksom pé at det ikke er nedvendig & besvare samtlige oppgaver for & kunne
delta i konkurransen.

Den beste samlingen besvarelser vil bli tildelt H. K. H. Kronprins Olavs premie
pé 100 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen kan alle
norske gymnasiaster veere med og dessuten de som tok examen artium i 1955, men
ingen kan vinne hovedpremien mer enn en gang. Oppgavene er slik at en kommer
fram ved hjelp av realgymnasets pensum. Jo enklere og mer elementere losnings-
méter en kan finne, dess bedre. Oppgavene ber drgftes og greies ut s& fullstendig
som rad er.

En sender losninger til rektor Kay Piene, Skjerstadvn. 2A, Smestad, Oslo, innen
1. 5. 1956, ledsaget av en erklaering om at oppgavene er selvstendig lost. Oppgi skole
og klasse.

PRISTAVLING FOR SVENSKA GYMNASISTER

Liksom féregéende ar anordnar Nordisk Matematisk Tidskrift en pristdvling for
svenska gymnasister. Var och en av de tre utgivande svenska foreningarna har
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stally 50 kr. till disposition, varigenom ett férsta pris om 100 kr. och ett andra pris
om 50 kr. kan utdelas.

For deltagande i tévlingen fordras, att 16sningar inséindas till minst fyra av
nedanstéende uppgifter. Gymnasister frén 6vriga nordiska ldnder kunna deltaga
utom tévlan.

Losningar, atféljda av en forsakran att de dro sjélvstéandigt utarbetade, inséndas
senast den 1 mars 1956 till: Nordisk Matematisk Tidskrift, Matematiska Institu-
tionen, Lund. Bifoga uppgift om namn, klass och ldroverk.

1. Med |#| menas numeriska véirdet av . Sok minimum av funktionen
f@)=a-|2|*+b- |1 —z|* dd a>0, b>0 och «>0.

2. T triangeln ABC #r A’ mittpunkten pa BC. Vinkeln 4A’B beteck-
nas med «, och analogt definieras § och y. Visa, att

coto 4 cot B +coty = 0.

3. Visa, att ekvationen sinz=kzx, dar 0<k<1, har en rot x, som
upptyller olikheten
7
1-k) <2< —.
n(l—k) Tk
4. De punkter pa en rit linje AB, som ligger mellan A och B, jimte
dndpunkterna 4 och B bilda ett intervall. Visa, att om man pi en rit
linje har ett antal intervall, och tva godtyckliga av dem har minst en
gemensam punkt, s& har alla intervallen minst en gemensam punkt.

5. Visa, att om tva hojder i en tetraeder skira varandra, si skira
ockss de bada andra hojderna varandra.

6. En person onskar sinda tva varor A och Bi ett paket till utlandet.
Vikten pa paketet far inte overstiga 10 kg. Kilopriserna pa de béda
varorna dro 9 och 4 kr. resp. i Sverige samt 13 och 7 kr. resp. i utlandet.
Vilken sammansittning skall paketet ha for att vinsten skall bli maximal,
da personen har 60 kr. till forfogande for inkopen ?

INTERNORDISK PRISOPPGAVE

Publisering av de beste losninger er utsatt til neste hefte.
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KRONIKK

AVSKJEDER

Dr. phil. N. E. Nerlund og dr. phil. Jakob Nielsen fratreder som professorer
ved Kebenhavns Universitet fra 1/2 1956. Professor Norlund er fratradt som direk-
tor for Geodeetisk Institut fra 1/11 1955.

Viggo Brun fratrer som professor ved Universitetet i Oslo fra, 1/1 1956.

Dr. philos. Henrik L. Selberg er fratradt som professor ved Norges Tekniske
Hogskole fra 1/7 1955.

UTNEVNELSER

Til professorer ved Kgbenhavns Universitet: Professor ved Danmarks tekniske
hojskole, dr. phil. W. Fenchel og amanuensis, dr. phil. Th. Bang.

Til direkter for Geodatisk Institut, Kebenhavn: Statsgeodset, dr. phil. Einar
Andersen.

SUMMARY IN ENGLISH

HaNs RADSTROM: Some elementary functional equations and Hilbert’s
Sifth problem. (Swedish.)

A mainly expository article about the two related functional equations

(A) fo@@y) =f (@) +/f(y)
(B) 99((17(5”’:‘/)’ z) =(p(x, <P(3/’z)) .

The equation B expresses that the operation ¢ is associative.
After a few examples, the following result is established: If @ satisfies B in an
interval I, which contains a number e such that @(z,e) =p(e,x) ==z for all z in I,

0
and if ég # 0 and continuous in I, then
Yy

¢ de
f@)=k-§ ———.
P
€= (t3 e)
This is the general differentiable solution of A in I.

To avoid the condition of differentiable solutions, a system (F') of conditions
is established for the operation ¢, essentially equivalent to the definition of a local
group. Under these conditions, ¢(»,y) will be an increasing function of both x and Y
in an interval U containing e, which again implies a continuous and increasing
solution f of A in U. Apart from a multiplicative constant, this solution is unique.
The proof of this is based on an elegant proof of the uniqueness in the classical
case p=x+vy, f=ke.

After a short survey of the laws of groups, including topological and local groups,
the above-mentioned system F is interpreted a,si'group-eonditions. In this notation,
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the established solubility of A can be formulated in the following way: Every one-
parametric local group is locally isomorphic to the group of real numbers under
addition.

The last result gives the answer (yes) for n=1 to the famous fifth problem of
Hilbert: Is it always possible, in every n-parametric local group, to introduce
coordinates in such a way that the functions defining the group-operation are
analytic 2—A few historical remarks concerning this problem concludes the article.

MogENS PraL: From the history of the lever principle. (Danish.)

A “proof” of the lever principle is defined as an attempt to reduce this law to
still simpler principles, such as the equilibrium of equal weights ete. The article
treats the proofs by Archimedes, Euclid, Huygens and Ole Remer. The law of the
lever is also applied to the moment of forces, equilibrium on the inclined plane and
the determination of the centre of oscillation of a compound pendulum.

Davip Foa: A small problem from the theory of surfaces. (Danish.)
It is shown that the function
2 = yP—2aty+at = (y—12*)(y—3e)

does not have a minimum for 2=y =0, in spite of the fact that for the corresponding
surface, all the normal sections through the origin have a minimum at this point.

Viceo BRUN: On the problem of partitioning the circle so as to visualize
Leibniz’ formula for m. (English.)

The article first gives a few historical remarks concerning some mathematicians’
desire to visualize their results geometrically. Examples of such ““visible’’ proce-
dures are the bisection-summation in Archimedes’ squaring of the parabola, and
lord Brouncker’s elegant and nearly forgotten geometrical deduction of the series
for In2 (fig. 2 p. 161). The author uses similar bisection-summations to express as
sums of infinite series the area

W1 1
4,=\ ade = ——,
L) ’I’L—I— 1
and also the area 1z of a quadrant of the unit circle (fig. 7 and formula (4) p. 165).
Transforming the latter result into a double-infinite series, changing the order of
summation in this, and utilizing the above-mentioned formula for 4,, the author
arrives at the well-known Leibniz-Gregory series for m.

LENNART SANDGREN: Regarding a prize problem. (Swedish.)

Based on the results of a mathematical prize competition (published by NMT)
among Swedish high school pupils, the author has some criticism and advice
concerning the teaching of elementary function theory in Sweden.
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