OM DEN PTOLEMAEISKE LARESATNING
OG MENELAOS’ SETNING

OLAF SCHMIDT

Foredrag holdt for matematiklerere i Kobenhavn i april 1954.

1. Den ptolemmiske leresetning og Menelaos’ seetning spiller nu en sé
underordnet rolle i matematikundervisningen, at s@tningerne — i reglen
ret umotiveret — blot omtales i et eksempel eller en opgave. Pa de fol-
gende sider skal det vises, at disse to setninger engang har indtaget en
s fremtraedende plads inden for trigonometrien, at de med en vis ret
kan kaldes hovedsatninger inden for henholdsvis den plane og den sfee-
riske trigonometri. Der geelder nemlig, som vi skal se, det resultat, at alle
beregningsopgaver inden for den plane trigonometri kan lgses ved hjelp
af en ud fra den ptolemsiske leeressetning beregnet kordetavle, medens
alle beregningsopgaver inden for den sfeeriske trigonometri kan loses ved
hjelp af Menelaos’ setning pa kuglen i forbindelse med den feromtalte
kordetavle.

De folgende sider kan imidlertid ogsa siges at veere skrevet med det
formal for gje at give en fremstilling af den forste trigonometri, som vi
har kendskab til gennem primere kilder. Man ville vel nok ret naturligt
forst spge sddanne primeere kilder blandt de babylonske kileskrifttekster;
det er nemlig velkendt, at den babylonske astronomi i drene — 300 til 0
var i stand til at forudberegne positionerne for sol, mane og planeter,
og pa forhand ville man anse det for umuligt at foretage den slags bereg-
ninger med en tilelig nojagtighed uden brug af trigonometriske hjzlpe-
midler. Men det er netop et overraskende moment ved den babylonske
astronomi, at den ved sindrig anvendelse af de sakaldte linezre zigzag-
funktioner (og uden anvendelse af trigonometriske metoder) var i stand
til at forudberegne de nsevnte positioner.

Det bliver saledes ikke hos babylonerne, vi finder den forste trigonome-
tri, men hos greekerne. De tre store navne inden for den graske mate-
matik er Euklid, Archimedes og Apollonios, men hos ingen af disse findes
trigonometriske beregninger. Sidanne foreligger derimod inden for den
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graeske astronomi, og det er i Almagest, skrevet af Ptolemaos i Alex-
andria omkring &r 150 e. Kr., vi meder ikke alene de forste trigonome-
triske beregninger, men ogsé en fuldt udviklet trigonometri, der er i
stand til at lose alle de beregningsopgaver, der dukker op inden for den
sfeeriske astronomi, og som stort set er de samme problemer, som vi
loser den dag idag. Almagest er oversat til tysk af Karl Manitius:
Des Klaudius Ptolemzus Handbuch der Astronomie, Bd.I, II; B. G.
Teubner, Leipzig 1912-13. Endvidere findes der en fransk oversxttelse
af Halma: Compositions mathématiques de Claude Ptolémée, Tome I, IT;
Paris 1813-16. (Genoptrykt i to bind i Paris 1927.) Endelig findes der en
engelsk oversettelse: The Almagest by Ptolemy, translated by R.C.
Taliaferro, pp. 1-478 in vol. 16 of the Great Books of the Western World;
Encyclopaedia Britannica, Inc., Chicago 1952.

Det ma dog fremhewves, at det ikke er den eldste trigonometri, vi
moder i Almagest. Theon, en sengresk kommentator, der levede i slut-
ningen af det 4. arhundrede e. Kr., citerer saledes kordetavler af bade
Hipparch (ca. 150 f. Kr.) og Menelaos (ca. 100 e. Kr.), men disse arbejder
er gaet tabt, sandsynligvis fordi de er blevet overflgdiggjort af det mere
omfattende arbejde, Almagest, der for eftertiden har indtaget samme
stilling inden for astronomien som Euklids Elementer inden for geome-
trien. Vi vil ikke her diskutere denne for-ptolemsiske trigonometri; vi
ngjes simpelthen med at give en udredning af trigonometrien — bade
den plane og den sferiske — i Almagest, og derved vil vi automatisk
na til det resultat, som vi navnte i indledningen.

2. I forste bog, kapitel 10 af Almagest udvikler Ptolemszeos trigono-
metrien for dernzst at bruge den ustandselig i de folgende astronomiske
beregninger. Han begynder med at udarbejde en kordetavle, der skal
indeholde sammenhorende veerdier af en cirkelbue og den tilhgrende
korde. Hele cirklen inddeles i 360 dele; herved er enheden til méaling af
cirkelbuer fastlagt. Diameteren i cirklen inddeles i 120 lige store dele,
hvorved den lengdeenhed, der skal bruges til maling af korder, er fast-
lagt. Ptolemeos stiller sig nu den opgave at finde de korder, der svarer
til cirkelbuer pa 3°, 1°, 14°, ..., 180°.

Her mi vi indskyde den bemarkning, at Ptolemzeos overalt i det
folgende skriver broker i 60-talssystemet, abenbart noget som er lant fra
den babylonske astronomi, hvor jo bade breker og hele tal skrives i
dette talsystem. Ptolemzos selv kommenterer ikke dette ngjere. Han
siger blot, at han vil regne med sexagesimalbrgker, fordi de almindelige
broker er si besverlige. Med denne bemsrkning hentydes til regning med
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stambrgker, som gar tilbage til den eegyptiske matematik. Skriver vi
altsd i det folgende 127;23,20,37, da skal dette betyde 127+ 23-60-1
+20-60-2437-60-3.

Som et forste skridt henimod beregningen af en kordetavle findes (ved
hjelp af setninger fra Euklids Elementer) korderne til buerne pa 60°,
120°, 90°, 36° og 72°. Korden til 60° er lig med radien, altsi lig med 60
af de enheder, hvori korder males. Korder til buer pa 120° og 90° findes
ved anvendelse af den pythagoriske leresetning. Korden til 36°, den
sékaldte ko, findes ved en hgjdeling af radien, medens k; er bestemt ved
at veere hypotenuse i en retvinklet trekant, hvori k,, og k, er kateter.
Nar korden til en bue b er kendt, kan man finde korden til en bue
b=180°—b. Saledes findes korden til en bue pa 144° ud fra korden til en
bue pa 36°. P4 denne méade findes:

b k

36° 37; 4,55
60° 60; 0, 0
72° 70;32, 3
90° 84:51,10

120°  103;55,23
144°  114; 7,37.

Inden vi fortsatter beregningen af kordetavlen, vil vi gere os klart,
at en kordetavle i det veesentlige er det samme som en moderne sinustavle,

thi udfra relationen
k = 2rsinib = 120sin b

folger, at hvis tallene i b-sgjlen halveres, fis en tavle, der pa nar faktoren
120 giver sammenhgrende vaerdier mellem en bue og sinus til denne bue.

3. For nu at finde korder til buer pa 3°, 1°, 14°, ... ud fra de allerede
fundne korder udledes forst den sikaldte ptolemwiske leeresetning, der
siger:

I en firkant ABOD indskrevet i en cirkel er diagonalernes produkt lig
med summen af de modsidende siders produkter, altsd

AC-BD = AD-BC+AB-CD .

Beviset, som Ptolemeos giver for denne setning, er det, der den dag
idag findes i vore lereboger. Her er det derfor tilstraekkeligt at minde
om, at beviset kommer i stand ved at trekke hjzlpelinien BE (E er et

6*
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punkt pa diagonalen AC bestemt saledes, at £ ABE = £ DBC), hvorved
der fremkommer to st ensvinklede trekanter.

Ptolemsaos anvender nu »sing setning til at finde 1) differenskorden til
to givne korder, 2) sumkorden til to givne korder samt 3) korden til en
bue, halvt si stor som den bue, en given korde spznder over. For en
ordens skyld fremhever vi, at det er en stiltiende forudsetning hos
Ptolemsos, at de buer, der optreder i det folgende, alle er positive samt
mindre end 180°, thi kun sddanne buer vil optraede i kordetavlen. Fore-
kommer der altsa i det folgende f. eks. en bue b, +b,, da er ikke blot b,
og b, hver for sig mindre end 180°, men dette gelder ogsé b, + b,.

Fig. 2

Ved bestemmelsen af differenskorden foreligger der to ulige store buer
b, <b, samt de to tilherende korder &, og k,; opgaven bestar i at finde
korden til en bue pa b, — b, grader. Denne bestemmelse foretages saledes:
De to buer afswettes (fig. 1) ud fra samme punkt A4, saledes at den mindre
bue AB udger en del af den storre bue AC. Korde BC er da den sggte
korde k. Punkterne B og C forbindes med 4’s diametralt modsatte punkt
D. Idet nu korder til en bue pi 180°—b;=b, og 180°—b,=0b, kaldes
henholdsvis %, og k,, fair man ved at anvende den ptolemeiske leereseet-
ning pa den indskrevne firkant ABCD:

ky ey = ky-koy+k-120
eller
(1) 120k = ky-ky—Fy by -

Da de korder, der optreeder pa hgjre side af (1), er kendt, er & dermed
bestemt.

Ved bestemmelsen af sumkorden foreligger der to buer b, og b, samt
de tilhgrende korder k&, og k,; opgaven bestar i at finde korden til en bue
pi b, +b, grader. Denne bestemmelse foretages saledes: De to buer af-
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settes (fig. 2) i fortsettelse af hinanden, siledes at bue 4B=b, og bue
BC =b,. Korde AC er da den sggte korde k. Punktet B forbindes med
sit diametralt modsatte punkt D, og AD og DC tegnes. Ved anvendelse
af den ptolemeiske lereseetning pa firkant ABCD fas

(2) 120k = ky kot Ky ks,
hvormed k er bestemt.

I parentes kan det bemerkes, at Ptolemzeos finder sumkorden % pa en
anden og lidt besverligere made; han tegner forst de to diametre 4E og
BD gennem henholdsvis 4 og B (diameteren 4Z er ikke indtegnet pa
fig. 2), og ved derpé at anvende »sin« seetning pa firkant BCED finder han
%, ud fra hvilken % kan findes.

I (1) genkender vi umiddelbart formlen for sin (v —v); thi indsettes i
(1) k=120sin}(b, — b,) samt de analoge udtryk for k,, k,, k;, ks, fas efter
division med 1202, at

sin§(by—b;) = sin }b,-sin $b, —sin 3b,-sin 3b, .

Ved analog omskrivning af (2) fas en tilsvarende formel for sin §(b,+ b,).
Visersaledes, at additionsformlerne umiddel-
bart folger ud fra den ptolemeiske leresset-
ning, og det er denne kendsgerning, der be-
tinger setningens mange anvendelser.

Ved den tredie af de ovenfor nevnte op-

gaver foreligger der en bue b=A4C (fig. 3) P

samt den tilhgrende korde K = AC. Opgaven AFE D
bestéar i at finde korden k= AB til buen b. Fig. 3

Denne bestemmelse kunne foretages ved

anvendelse af den ptolemeiske leresatning pa firkant 4 BCD, hvorved
man ville f&

(3) Kk =FkK+k120.

Her er K og dermed K givet, men da k, som vi soger, ogsé indgér i
k= 1/1202— k2, ser vi, at bestemmelsen af £ ud fra (3) krever lgsningen af
en andengradsligning. Ptolemaeos former derfor regningerne pa en anden
méde, hvorved han opnar at finde et udtryk for %2, og derudfra findes s&
k. Hans losning er folgende: P4 fig. 3 er punktet £ bestemt saledes, at
DE=DC=K. Da nu trekanterne DBC og DBE er kongruente, er
BE =BC, og altsa er trekant ABE ligebenet. Fra B nedfzldes den vin-
kelrette BF pa AE. Da er AF=4(AD—DE)=}(120—K). Af den ret-
vinklede trekant ABD fas k?=AB2=AD-AF =120-AF eller

(4) k =)60(120—K) .
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Erstattes her £ med 120sin }b og K med 120sin }b, genfinder vi formlen
for sinus til en vinkel udtrykt ved cosinus til den dobbelte vinkel.

4. De tre formler (1), (2) og (4) s@tter nu Ptolemzos i stand til at ud-
vide det brudstykke af en kordetavle, som i afsnit 2 blev fundet udfra
setninger i Euklids Elementer. Anvendes saledes formlen for differens-
korder p& korder hgrende til buer pa 60° og 36°, findes korden til en bue
pé 24°, og ved gentagen anvendelse af (4) findes dernsst korden til buer
pa 12°, 6°, 3°, 1§° og #°. Endelig forer anvendelse af reglerne for sum- og
differenskorder til korder hgrende til buer pa 11°, 3°, 43°, 6°, ..., eller
udtrykt med Ptolemaeos’ egne ord: man finder korder til buer, som efter
multiplikation med 2 er delelige med 3. Men det var jo ikke helt det,
Ptolemaeos onskede. Han stillede sig den opgave at beregne en tavle, der
giver korden svarende til buer p& £°, 1°, 13°, 2°, ..., 180°.

For den moderne lxser er det klart, at den opgave at finde korden til
en bue pa 1° er langt vanskeligere og af en helt anden karakter end
f. eks. den opgave at finde korden til en bue p& 14°. Korden til buer pa
n+13° (n hel) kan jo som vist ovenfor findes ved gentagen lgsning af
forste- og andengradsligninger, hvis koefficienter er hele tal eller »fler-
etagers¢ kvadratradder af hele tal, hvorimod vi nu ved, at korden til
en bue pd 1° ikke kan findes ud fra sidanne ligninger, thi det ville jo
medfore, at den reguleere 360-kant kunne konstrueres ved hjzlp af passer
og lineal. Takket veere Gauss ved vi imidlertid, at de eneste regulare
n-kanter, der er konstruerbare, er sidanne, for hvilke

(5) no=2"pPy...Pyp,

hvor m er hel og py, p,, ..., p, er indbyrdes forskellige primtal af formen
22" 4 1. De fire mindste primtal af denne form er 3, 5, 17 og 257. Da
360=23-32-5, ser vi, at 360 ikke er af den form, der omtales i (5), og den
regulere 360-kant kan derfor ikke konstrueres ved passer og lineal.
Hvorvidt Ptolemaos har veeret klar over, at han ved bestemmelsen af
en korde til en bue pa 1° star overfor en opgave, der er langt vanskeligere
end de opgaver, han har lgst i det foregiende, er ikke helt klart, men i
alle tilfzelde er det for den moderne leser interessant at se, hvordan han

overvinder vanskelighederne p4 en fuldt ud tilfredsstillende made. Forst
vises, at

o k2 b2
(6) nar b, > by, daer — < =,
by by

og dernst anvendes denne ulighed to gange. Ptolemzos’ bevis for (6)
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gengives ikke her; men vi vil ngjes med at vise, hvordan hanudfra (6)
finder korden til en bue pa 1° med to rigtige sexagesimaler. I det fore-
géende har Ptolemsos fundet nedenstiende sammenhgrende vardier af
bogk:
k
1;30  1;34,15
0;45  0;47, 8.

Kaldes nu korden til 1° for &, fas ved anvendelse af (6), at

1;00
< ——+0;47, 8 = 1; 2,50,40
0;45
1;00
k> < 1;34,156 = 1; 2,50, 0.
1;30

Altsa, siger Ptolemeaos, er korden til 1° uden nevneveerdig fejl lig med
1; 2,50. Herefter kan Ptolemaos konstruere en kordetavle, der indeholder
de i afsnit 3 foreskrevne buer.

5. Efter at Ptolema=os saledes har konstrueret en kordetavle, ville man
vente at finde en nermere redegarelse for brugen af denne tavle. Specielt
ville man vente — som vi er vant til det i vore lerebgger — at finde en
anvisning pa, hvordan trekanter skal lgses i de forskellige trekantstil-
faelde. Men Ptolemaos nwevner ikke et ord i denne retning, simpelthen
fordi det ikke er ngdvendigt. Det er nemlig muligt at lose samtlige op-
gaver inden for den plane trigonometri ved hjelp af

I) den pythagorwiske leresetning,
IT) setningen om forholdet mellem ensliggende sider i ensvinklede
trekanter,
ITT) seetningen om maling af periferivinkler,
IV) en kordetavle (eller en sinustavle).

Ptolemzos formulerer ikke dette resultat explicit, men hans lgsning af
plane opgaver etableres netop ved hjelp af disse fire hjeelpemidler. Her
vil vi indse rigtigheden af ovennavnte pastand ved forst at vise, hvordan
man kan finde de ubekendte stykker i en retvinklet trekant, hvori to
stykker er kendt, og vi kan ngjes med at lgse en trekant, hvori de to
kateter @ og b er givet, thi de resterende tilfeelde lgses pa ganske analog
méde. Lad os da antage, at =3 og b=4. Ud fra den pythagorz=iske lere-
seetning findes ¢=5. I trekantens omskrevne cirkel, der tegnes, kender
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man da de tre korder a, b og ¢, hvor c tillige er diameteren. Saetter man
nu ¢=120, bliver a=2-120="72, og b=4%-120=96. Ved hjelp af korde-

tavlen findes da buerne AC og OB og derudfra trekantens vinkler som
periferivinkler.

Vi skal derneest vise, hvordan en ikke-retvinklet trekant, hvori 3
stykker er givet, kan lgses. Lad os antage, at der er givet to sider b og
¢ samt den mellemliggende vinkel 4. Nedfxldes hgjden = BD, kan alle
stykker i den retvinklede trekant ABD findes; i den retvinklede trekant
BDC kender vi da to kateter, og derfor kan alle stykker i denne trekant
findes, hvormed opgaven er lgst. Det er morsomt at bemerke, at Ptole-
maos i alle den slags opgaver hver gang tegner den omskrevne cirkel til
hver af de foreliggende retvinklede deltrekanter.

De andre trekantstilfzelde behandles p4 en analog made; kun i det
tilfeelde, hvor 3 sider er givet, forlgber regningerne lidt anderledes. Vi
felder i dette tilfeelde hojden A= BD pa den storste side b, og idet AD=x
og DC=b—uw, fas:
h2+a? = c? Rh*+(b—2)* = a?,
hvoraf

2bx = b*+ct—a’.
Heraf findes x, og hver af de to retvinklede deltrekanter kan derpé loses
som ovenfor.

Denne gennemgang af den plane trigonometri hos Ptolemeos viser, at
det er muligt at opbygge en trigonometri, der som eneste hjelpemiddel
har en kordetavle i forbindelse med s@tningerne I, IT og III. Den illu-
strerer altsd pa en igjnefaldende made, at nar man vil give afkald pa
visse af de lettelser, som vor trigonometri giver ved den praktiske ud-
forelse af beregninger, vil det formelapparat, der er nedvendigt, kunne
reduceres i tilsvarende grad.

6. Vi vender os nu til den sfzriske trigonometri, og ligesom den plane
trigonometri virker den ptolemziske trigonometri p& kuglen meget en-
kelt, idet alle beregningsproblemer lgses ved hjelp af en eneste formel,
nemlig den sakaldte Menelaos’ setning pa kuglen.

Her begynder vi med at minde om, at Menelaos’ s@tning for en plan
trekant siger, at nar en trekant ABC (fig. 4) skeeres af en transversal
PQR, da vil punkterne P, @ og R dele siderne AB, BC og CA i forhold,
hvis produkt er 1, altsa
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Beviset, som Ptolemaos giver i Almagest, bog 1, kap. 13, fores ved teg-
ning af en hjelpelinie gennem C parallel med AB, hvorved der frem-

B P
B, B
P
P
Q 4 4
0
A C R
Fig. 4
Fig. 5

kommer to s®t ensvinklede trekanter. Det kan tilfgjes, at Ptolemeeos
ogsé viser setningen i det tilfeelde, hvor transversalen PQR skeerer for-
leengelserne af alle tre sider i den forelagte trekant 4BC.

For nu at kunne overfgre denne seetning til kuglen viser Ptolemsos
forst to smé hjelpeseetninger. Pa en cirkel med centrum O (fig. 5) afsaet-
tes to buer 4AP* og P*B i forlengelse af hinanden. Linien OP* skeerer
AB i punktet P. Hjeelpessetning 1 siger nu, at

- K2AP*) AP
" BP’

k(2 BP*)
hvor eksempelvis k(QA/E*) betyder korden til en bue, der er dobbelt s&

stor som A/Z;*. Punkterne 4 og B projiceres pa OP* i henholdsvis 4, og
By ; rigtigheden af (7) folger da straks ud fra setningen om ensvink-

lede trekanter, idet %k(2A/I;*) =AA4,

og k(2BP*)=BB,.

Afsxottes buerne AP* og BP* til
samme side af punktet P*, vil for-
leengelsen af OP* skeere forleengelsen Q"
af 4B, og hjxlpesetning 2 siger da,
at (7) ogsd geelder i dette tilfeelde.

Ved anvendelse af disse to hjelpe- R
setninger overforer Ptolemaeos nu
Menelaos’ setning til fglgende seet-
ning pa kuglen (fig. 6): Fig. 6

B
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Ndr en sfeerisk trekant ABC skeeres af en transversal (storcirkel) P*@Q*R*,
da vil

. k(2 AP*) 12BQ*) k(2CR¥)

k(2 BP¥) k(2CQ%) k2AR*)

Idet fig. 6 er gentaget pé fig.7, hvor man ser hele kuglen, kan beviset
for formel (8) fares pa folgende méde: Radierne OP*, OQ* og OR* skaerer

Fig. 7

AB, BC og CA i henholdsvis P,  og R. Disse tre punkter ligger p4 ret
linie, nemlig p& skeeringslinien mellem planen ABC og storcirkelplanen
P*@Q*R*. Ud fra hj=xlpesetningerne folger da, at de tre faktorer i (8) er

lig med henholdsvis
AP BQ CR

BP 0Q ® 4R’
og produktet af disse tre faktorer er ifglge Menelaos’ s@tning for en plan
trekant netop lig med 1.

Ptolemzos beviser ogsd (8) i det tilfeelde, hvor transversalen P*Q*R*
skeerer forleengelserne af alle tre sider i den forelagte trekant ABC.

7. Der rejser sig nu ganske naturligt det spergsmal, hvordan Menelaos’
seetning kan anvendes til lesning af sferiske beregningsopgaver. Her
kommer Ptolemaos med den overraskende bemserkning, at alle sidanne
beregningsopgaver kan lgses ud fra denne ene setning. Han godtger
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imidlertid ikke denne pastand pa anden made end ved at henvise til,
at alle de beregninger, der skal udferes i Almagest, kan udferes ved
hjelp af Menelaos’ saetning.

Her vil vi fore et bevis for Ptolemseos’ pastand ps den made, at det
forst vises, at alle retvinklede sfeeriske trekanter kan lgses ved hjelp af
Menelaos’ setning, og dernsest, at enhver sfeerisk trekant kan loses ved
deling i retvinklede trekanter.

Beviset for, at enhver retvinklet sfeerisk trekant kan lgses ved hjelp
af Menelaos’ setning, kan fores ved at godtgere, at de (3)=10 formler,
der hver indeholder tre af trekantens stykker, kan udledes ud fra Mene-
laos’ seetning. Det er imidlertid tilstreekkeligt at vise nedenstdende 3
formler:

(9) sind = sTn_a
sin ¢
tgb
(10) cosd = -o°
tge
(11) cosc = cosacosb ,

idet de resterende 7 formler kan udledes ud fra disse. Yderligere kan man
ngjes med at betragte trekanter, hvis kateter @ og b er mindre end 90°,
idet formelsystemets almene gyldighed
derefter kan indses ved overgang til
nabotrekanter.

Lad nu ABC vazre en sadan ret-
vinklet trekant (fig. 8). Vi forlenger

AC ud over C, s& C”}’=I;=900—b, og
CB ud over B, sa BR=4G=190°—a.
Punktet B vil da veere pol for stor-
cirklen AC, siledes at PR=90° og
£ P=90° Videre ses, at PR vil skere
forleengelsen af AB i @, og da A4 er pol Fig. 8
for PR, vil B’E):E, @:A og @%zﬁ

Opfatter vi nu fig. 8 som bestédende af trekant QBR, skaret af trans-
versalen ACP, fas ved anvendelse af Menelaos’ s@tning

2rsin 90° 2rsina  2rsin 90°

2rsinc  2rsin90° 2rsind ’
hvoraf .
. sina
sind = ——.
sine
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Opfatter vi dernest fig. 8 som bestdende af trekant PAQ, skaret af
transversalen OBR, fas pa lignende méide

9rsinb 2rsinc 2rsin A

orsinb 2rsiné 2rsin90°

b

hvoraf tob
cosd = 82
tgce
Betragter vi endelig figuren som bestdende af trekant CAB, skaret af
transversalen PQR, fas

orsinh  2rsin90° 2rsind
2rsin90° 2rsiné 2rsin 90°

2

hvoraf
cosc = cosacosb .

Ud fra disse tre formler kan man som neevnt udlede de resterende 7
formler; vi ngjes her med at angive en af disse, som bruges i det folgende,
nemlig
tga

12 tgd = —.
(12) € sinb

8. Selv om det nu saledes er godtgjort, at de 10 formler, der galder
for en sferisk retvinklet trekant, kan udledes ud fra Menelaos’ setning,
er det dog ikke dermed vist, at retvinklede trekanter kan beregnes ved
hjalp af denne s®tning og en kordetavle. Lad os f. eks. antage, at a og
b er givet. Da findes 4 af (12), men hvordan finder man A ved hjelp af
en kordetavle, nar tgA er givet? Vi kan indskyde, at hejre side af (12)
jo let lader sig beregne ved hjalp af en kordetavle, idet

tga sina ;

sinb  sina sinbd '
Men hvordan bestemmer man nu 4 af tg4 =¢? Man kunne finde 4 ved
hjalp af den sztning, der bruges til losning af ligning (13) i afsnit 9, men
simplere er det forst at bestemme c af (11), og dernzest finde 4 af (9).
Ptolemaeos former i virkeligheden ogsi sine regninger pi denne méade,
men det medfarer, at man for at finde en vis storrelse ofte forst ma be-
regne en anden, og i denne henseende er Menelaos’ setning vore formler
underlegen.

Til ovenstaende bevis for, at Menelaos’ setning si at sige i sig inde-
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holder de 10 formler for den retvinklede sfwriske trekant, kan vi tilfoje,
at selv om Ptolemaeos naturligvis ikke har fort dette bevis, ligger den
fremgangsmade, som han anvender i sine beregninger, tet op ad tanke-
gangen i beviset. Han sgrger altid for — ved at forleenge passende sider
— at f& en figur, pa hvilken Menelaos’ setning kan anvendes, og som
indeholder flere buer pa 90°.

9. Endelig skal det til sidst godtgoeres, at en vilkdrlig sfeerisk trekant
kan loses ved hjwzlp af Menelaos’ setning i forbindelse med en korde-
tavle. De tilfzelde, hvor der blandt de tre givne stykker forekommer
bade en vinkel og en side, giver ikke anledning til seerlige vanskeligheder.
De kan loses ved, at man falder en passende hgjde. Derimod stgder man
pé et seerligt problem, nar alle tre sider eller alle tre vinkler er givet.
Her mé jeg nu straks indskyde den bemerkning, at jeg ikke kender et
eneste problem i Almagest, der forer til en sidan trekantsberegning;
de trekanter, der skal beregnes, indeholder i alle tilfeelde bade en kendt
side og en kendt vinkel. Nar tilfeeldet (tre sider eller tre vinkler givet)
alligevel omtales her, sker det da dels for at gore ovenstaende fremstil-
ling komplet, og dels for at henlede opmeerksomheden pé en lille hjeelpe-
seetning hos Ptolemzos, som finder en naturlig anvendelse pd dette
problem.

Simple overvejelser forer til det resultat, at man altid — evt. ved at
betragte en nabotrekant til den givne — kan lgse en forelagt trekant
med tre givne sider ved at lose en trekant, hvori hgjst een af siderne
er storre end 90°. Lad nu den storste side i en sidan trekant veare b;
da vil det ene skeeringspunkt D mellem storcirklen gennem A og C' og
storcirklen gennem B vinkelret pa AC ligge mellem 4 og C. Swmttes
BD=hog AD=x, bliver DO'=b—=, og ud fra de to retvinklede trekanter
ABD og CBD fas da

coshcosx = cosc, coshcos(b—2x) = cosa,

og ved division
cosZ cosc

(13) cos (b—zx) ~ cosa’

Er der givet tre vinkler i trekanten, feeldes en hgjde fra den vinkel-
spids, hvor den storste vinkel ligger, og man fores da atter til en ligning af
formen (13), hvor der nu blot i stedet for sider indgar vinkler.

I (13) er hgjre side kendt, men spegrgsmailet er nu, hvordan z kan be-
stemmes af en sddan ligning ved hjelp af en kordetavle. Som ovenfor
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omtalt findes der en sw@tning i Almagest, der netop synes at vare
formuleret med lgsningen af ovennsevnte lille opgave for gje. Szetningen
siger (Almagest, bog 1, kap. 13; Manitius p. 47):
k(2by) . .
er givet, da kan man ogsd bestemme

k(2by)
buerne b1=A7? og bz=B’E' hver for sig. -

Som man ser, setter denne sztning os i stand til at lgse (13). For at
B, bevise sztningen (se fig. 9) bemeerkes forst,

2

k(2AB

—_

k(2BC) .
0 til oo, nar B gennemlgber buen AC, vil
der veaere et og kun eet punkt B, for hvilket
forholdet er lig det givne tal. Lad nu B pd
fig. 9 veere den entydigt bestemte losning
(beviset for, at B er entydigt bestemt, fin-

des ikke hos Ptolemaeos); da bue AC er

Ndr en bue fl/b:b1 + by sami

at da forholdet vokser monotont fra

Fig. 9 kendt, kan korde AC findes, og da ifglge (7)
k(2b,) AE
k(2b,)  EC’

kan nu ogsd AE og EC hver for sig bestemmes. Lad nu OF vere den
vinkelrette fra O p4 AC; da er AF =FC=1%4AC. Vi kan da finde FE og

FO og dermed vinkel FOE og endelig b1=ZB og b2=Bz’.

Der kan naeppe veere nogen tvivl om, at den ovenfor nevnte setning
fra Almagest netop er udledt som et middel til lgsning af ligninger af
formen (13). I Zeuthen, Matematikkens Historie i Oldtiden (1949), p.
215 hentydes der til denne setning, og det fremheeves, at den svarer til

vor formel . .
L sinz —siny
tgdl@—y) = ————tgi@+y).

sinx +siny
Denne transkription til moderne symboler er naturligvis rigtig, men den
giver naeppe udtryk for setningens egentlige formal.

10. Den omsteendighed, at samtlige beregningsopgaver pa kuglen kan
loses ud fra een eneste formel, har ganske naturligt vakt opmeerksomhed.
Saledes skriver Zeuthen (Bibliotheca Mathematica, 1900, pp.20-21):
»Selon moi un tel commencement serait méme inoui dans l’histoire des
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mathématiques, ot ’on connait ordinairement les solutions particulieres
des principales questions résolues plus tard par une méthode générale
avant de construire cette méthode. Il est donc & supposer quon ait
résolu d’une maniére plus directe les questions de trigonométrie sphérique
dont s’occupe Ptolémée, ou du moins une partie de ces questions avant
d’en réduire toutes les solutions & I’application du théoréme de Menelaos.«

Da man som neevnt i indledningen ikke har opbevaret trigonometriske
beregninger fra tiden forud for Ptolemzeos, kan man kun angive plausi-
bilitetsgrunde for en sadan péstand, og saddanne anfgrer Zeuthen ogsi.
Dette emne skal ikke uddybes nermere her, men til slut skal dog frem-
haeves, at Menelaos’ formel, trods det at alle beregningsopgaver kan lgses
ved hjelp af den, ikke er s& velegnet til beregninger, som man kunne
gnske. Der kreves nemlig — hvad leseren jo let kan overbevise sig om
— adskillige overvejelser, inden man finder frem til den made, hvorpa
en forelagt figur skal opdeles og suppleres, for at setningen kan anvendes.
Dertil kommer, at bestemmelsen af et enkelt stykke ud fra visse givne
stykker ofte forst kan gennemfores, nar andre stykker, som man igvrigt
ikke er interesseret i, er fundet. Derfor er Menelaos’ formel af araberne
blevet erstattet af flere andre, blandt andet sinusrelationen for en sfarisk
trekant, som netop blev kaldt »erstatningsswetningen, idet den i visse
tilfzelde kunne erstatte Menelaos’ formel. Men de herhen hgrende spergs-
mal falder uden for nervarende fremstilling, hvis formal det var at give
et indblik i den forste beregnende trigonometri.



HALVREGELBUNDNA KEDJEBRAK

NILS PIPPING

1. Euklides’ algoritm for bestimning av den storsta gemensamma
divisorn till tva naturliga tal &r vilbekant. Om algoritmen tillimpas pa
19 och 13, erhaller man likheterna

19—=1.134-6, 13=2.64+1, 6=26-1.

Den sist anvinda divisorn, i detta fall 1, ér talens storsta gemensamma
divisor.
Da de tva forsta likheterna, skrivna i formen

—IB = l—i—E = 1—|—i, resp. E = 2—|—1,
13 13 13 6 6
6
sammanstillas, far man
19
BT
94—

eller med enklare beteckning
19/13 = [1, 2, 6] .

Detta ir den s. k. regelbundna kedjebrdksutvecklingen (RK) av det ratio-
nella talet 19/13. Utvecklingens hela bestdndsdel r 1, dess delndmnare
2 och 6. De motsvarande deltiljarena, som bada dro +1, behsva icke
markeras, emedan samtliga deltiljare i varje RK ha vérdet +1.

RK -utvecklingen av ett godtyckligt reellt tal o blir bestimd, i det man
tillimpar Euklides’ algoritm p& talen o och 1. Man erhaller t.ex. for

w:]/%:S,OQ...:

— _ 1 —

26 = 5-4()/26—5) = 54—, }/264+5 = 104+——=
v v ) /2645 V20+ /265
och siledes

/26 = b = [5, 10, 10,...].
10+

10+. ..
[96]
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Utvecklingen #r periodisk med perioden 10. En ytterligare forenkling
innebir i detta fall beteckningen

/26 = 5(10) .
Vid RK-utveckling av o ge de s. k. konvergenterna,
A,/B, (v=0,1,2,...),

goda rationella approximationer av w. De framga, d& utvecklingen av-
brytes efter den hela bestandsdelen b,, efter den forsta delndmnaren b,,

efter den andra delndmnaren b,,.... For o = ]/2_6 har man alltsa

AyB, = [6], A,/B,=[5,10], A,/B,=[5,10,10],...,
och dessa konvergenter bestimmas enklast ur utgangsvirdena
A,=0, B,=1 A =1, B_;=0
medels rekursionsformlerna,
A, =4, ,+bA,,, B,=B,_+bB,, v=z0).

Man erhaller schemat

Y -2 —1 0 1 2

b, 5 | 10 | 10
A, ] 0o | 1 | 5 | 51 |515
B, |1 |0 |1 |10]101

Betriffande approximationens noggrannhet giller bl.a., att varje
konvergent 4,/B, (v = 1) ansluter sig battre till w &n vilket annat brak
som helst, vars ndimnare dr < B,. Bland alla brak, vilkas némnare icke
Overstiger 101, ger alltsd 515/101 den bésta rationella approximationen
av [/ 26.

Konvergensen #r alltsé anmérkningsvirt god. I méanga fall ligger
likafullt en forbéttring av densamma inom réckhall; man &vergar till en
s. k. halvregelbunden kedjebraksutveckling (HRK), vid vilken utom vérdet
+1 ocksd —1 kommer i fraga for deltiljarena. I det foljande efterstrivas
HRK-utvecklingar, vilkas konvergens &r snabb och jamn.

2. Kedjebraket

Nordisk Matematisk Tidskrift. Bd.3. — 7
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&r halvregelbundet. Med férenklande beteckning skriva vi
23/9 = [3, 2/, 4] (HRK).

Allméinnare: om b, ar den hela bestandsdelen och b, =1 (v =1, 2, .. )
delnimnarena i ett HRK, beteckna vi detta

[bgs b1, by, bg', bgs - - - 15

varvid accenterna i fraga om b, och b, ange, att de motsvarande del-
tiljarena dro —1, icke +1. Som gemensam bendmning for b, (» = 1)
och b, (v = 0) anvénda vi element, streckat eller ostreckat.

Emedan [a, 1, b] och [(a+1), (b+1)] bada &ro = (ab+a+b)/(b+1),
giller formeln
(1) [6,, 1,b,,5] = [(6,+1), (bv+2+1)/] >

med vars tillhjilp man ur ett RK helt eller delvis kan bortskaffa even-
tuella delndimnare 1. Det RK, frin vilket man utgir, transformeras
hirvid i ett HRK.

Vi betrakta t. ex.

(2) o= 275/76 = [3,1,1,1,1,1,1, 1, 3] (RK)

och tillimpa (1) p4 delnimnarena b, = b, = 1 (understreckade). Hérvid
erhalles ett s. k. diagonalkedjebrdk (DK), nimligen

(3) w=1[4,2,1,1,1,24"] (DK) .
Av konvergenterna

A, 3 4 7 11 18 29 47 76 275

B UTr23 5 8 1320 16
for (2) dro de bada, 3/1 och 47/13, som ge den relativt sett minst goda

approximationen, eliminerade. De sju aterstiende braken #dro konver-
genterna for (3), och betriffanda dem alla galler

1

4 P
( ) <2Bv2,

i
medan intet annat brak 4/B (B> 0, A och B relativa primtal) ger en
approximation av karaktiren (4). Da dessa bada villkor dro uppfyllda,
siges det betraktade kedjebraket vara ett DK.

Minkowski [2] pavisade existensen av en DK -utveckling for varje
reellt tal = [b,, 2]. Hirvid utnyttjades geometriska betraktelser, som
motivera kedjebrakens bendmning. Av Perron ([4] sid. 183-84) harror
en metod att avgéra, pa vilka delnimnare 1 i den motsvarande RK-
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utvecklingen formeln (1) bor tillimpas, for att man skall erhalla ett DK.
Dessa ettor ma bendimnas singuldra (enligt Perron ausgezeichnete), de
ovriga reguldra. En analys av Perrons forfarande har gett nagra enkla
regler (jfr. [6] och nedan nr 5), med stéd av vilka man ofta omedelbart
kan atskilja de singulira ettorna fran de regulira. S& sluter man t. ex.
utan svarighet, att i (2) de bada understreckade ettorna #ro singulira,
de 6vriga regulira. Héarav foljer, att (3) ar ett DK.

Emedan (4) giller for varje », dr konvergensen vid DK pafallande
jémn. I nr 4 visas, att dess tempo kan paskyndas genom modifikation
av utvecklingen.

3. Med D ma4 betecknas ett naturligt tal, som icke #r en jimn kvadrat.

Da man utvecklar ]/E i RK, erhalles en periodisk utveckling, och periodi-
citeten borjar redan vid delndmnaren b,; en ytterligare lagbundenhet
bestar déri, att perioden alltid &r av formen

by by b, 1, b, b, 1, ..., by by, 2b,

eller bisbyy ..y by 1y by 1. .., by, by, 2D,

med varianterna
b,, 2b, eller 2b,

([4] § 25). Ett dylikt RK beteckna vi (jfr. nr 1):
VE = bO(bly b2: LRI bz: bl, 2b0)
och ha t. ex. ([4] sid. 101):

) V19 = 4(2,1,3,1,2,8), /29 = 5(2, 1, 1, 2, 10),
)27 = 5(5, 10), /26 = 5(10) .

Da 2b, lamnas 4 sido, &r perioden symmetrisk, och som forf. [6] visat,
fordela sig vid 6verging RK — DK ocksa de singulira ettorna symme-
triskt inom denna del av perioden. Detta har till f6ljd, att samma lag-
bundenhet, som ovan angetts betriffande delnimnarena vid RK-utveck-

ling av ]/5, ocksd giller vid DK-utveckling av Vﬁ
Man har t. ex. DK-utvecklingarna

V19 = 4(3, 5,3, 8), /29 = 5(2, 1, 1, 2, 10),

ty vid RK for ]/ﬂ) (jir. (5)) éro periodens bada ettor singulira, medan de
vid RK for ]/29 dro reguldra (jfr. nedan nr 5).

Patz [3] har utvecklat VE i RK intill D = 10000, ett modosamt
arbete, som utforts med foredémlig omsorg. Utgdende fran Patz’ tabell

T*
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har forf. ([5] och [6]) medels Gvergang RK — DK bestimt motsvarande
DK-utvecklingar for D = 1000. ’

4. Latom oss atergd till exemplet (2):
275/76 = [3,1,1,1,1,1,1,1, 3].

Vi betrakta nu delndmnarena b, = by = by = b, =1 (understreckade)
som »singuléira« och tillimpa (1) pa dem. Vi erhalla

(6) 27576 = [4, 3',3',3', 4']
med konvergenterna

b

A, 4 11 29 76 275
BT 3 s 16

Vid sidan av 3/1 och 47/13, som eliminerades vid dvergang till DK, ha
ocksd 7/2 och 18/5 bortfallit, vilket givetvis innebir, att konvergensen
ytterligare har paskyndats. Numerisk kontroll visar f. 6., att igen just
de tva konvergenter, som ge den relativt sett minst goda approximatio-

nen, blivit uteslutna. Man har ndmligen

41— 275/76 = 0,76..[2-12, 275/76— 7/2 = 0,94../2-2%
11/3—275/76 = 0,86../2-32, 275[76— 18/5 = 0,92../2-5%
29/8—275/76 = 0,84..[2-8%, 176/21—275/76 = 0,55../2-21%.

Emedan (6) ej innehaller nagon delnimnare 1, kan eliminationen av
konvergenter med stod av (1) icke drivas langre.

Enligt det anférda ér valet av singulira ettor vid 6verging RK —~ HRK
av fundamental betydelse. I det foljande triffas dylika val av olika slag.
Genomgaende forutsittes harvid:

Om det RK, fran vilket man utgar, ar andligt, har dess sista del-
nimnare ett virde > 1.

(7)
Antagandet innebér ingen vésentlig inskrinkning, emedan

[by byy - - - byy 11 = [bgy by, - -5 B,411

5. Det stiller sig ritt omsténdligt att fullsténdigt utreda de singuléra
ettornas fordelning vid 6verging RK — DK ([6] och [7]). Vi ndja oss
dirfr med att anfora ett par resultat, som dro visentliga for den foljande
framstéllningen.
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Med en mellanliggande etta ma forstds en delnimnare 1, vars bada
angrénsande delnimnare ocksa éro = 1. Under férutsittningen (7) giller:

(8) Varje mellanliggande etta &ir regulir.
Déarjamte kan visas:

Vid en foljd delndmnare b, 1, 1,5 med b > 1, b > 1 ér den etta, som
star invid den mindre delnimnaren b eller b, regulir; for b = b #ro
bada ettorna regulira. Om b betecknar den hela bestandsdelen b,,
ar by, = 1 regulir.

(9)

Som konsekvens av (8) och (9) framgar ytterligare:
(10) Av tvd angrinsande ettor #r &tminstone den ena regulir.

Detta mojliggor successiv tillimpning av (1) pa samtliga singuléira ettor.
Observeras bor blott, att varje delnimnare, som star mellan tva singulira,
ettor, blir hjd med tva enheter som t. ex. i fallet

Y19 = 4(2,1,3,1,2,8) = 4(3, 5, 3, 8) (DK) .

Hér &ro delndmnarena 1 isolerade ettor, omgivna av delnimnare > 1.
Man sluter d& litt, att de éro singuldra. Men det finnes ogynnsamma
fall, d& en mer eller mindre omfattande undersokning maste genomféras,
innan ettans karaktir, singulér eller regulir, kan faststillas.

6. De ovan nimnda ogynnsamma, fallen vélla, att ingen lag betriiffande
singuléira ettor med fordel kan utnyttjas for definition av DK. Men latom
oss triffa enklare val av »singulira« ettor och underscka, vilka HRK,

som hérvid erhéllas. P4 denna viig aterfinna vi bl. a. tva sedan gammalt
vilkinda HRK.

Foreskrirr 1. 1 varje obruten féljd delnimnare 1 viljas de med
udda ordningsnummer fran viinster riknat som singulira.

Vi strecka igen under de singuléira ettorna och ha t. ex. (jfr. nr 4 och
[4] sid. 101):

275/76=1[3,1,1,1,1,1,1, 1, 3], Vﬁ“—‘ 9(1,5,1,1,1,1,1,1,5,1,18) .
D4 (1) tillimpas, erhalla vi alltsi
275/76 = [4, 3,3, 8, 4'] (HRK, 1), )97 = 10(7, 3, 3, 2/, 6, 20')

(HRK,1).
Harvid giller:
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. b=2 (v=1);

(1) b,=3 (»=1),dab,ellerbd, efterfoljes av ett streckat element.
Alla och blott de HRK, vilkas delnimnare uppfylla villkoren (11),

aro enligt Perron ([4] § 39) »Kettenbriiche nach nichsten Ganzen, som

ingéende undersokts av Hurwitz [1]. 1 anslutning till dennes benimning

yKettenbriiche erster Art« har ovan anvints den forkortande beteck-
ningen HRK, 1. Allméint bestar

Sats 1. Da foreskrift 1 foljes vid overging RK — HRK, erhalles ett
HRK, 1.

Brvis. Betriffande delnimnarena b,,, (A = 0)i det RK, som betrak-
tas, foreligga sex mojligheter: :

1:0 b,,, =1 #r singuldr = 1;

2:0 b,,, =1 &r regulir vid en f5ljd 1, by L

3:0 b,,, = 1 &r regulir vid en foljd 1,b;., by > 13
4:0 by, = 2 efterfoljes av b, = 1;

5:0 b,,, = 2 efterfcljes av b;,, > 1;

6:0 b,,=3.

Vi verkstilla vergaing RK -~ HRK och beteckna med b,, resp. b, det
element i HRK, som motsvarar b,,, i RK. Hirvid giller i de sex olika
fallen: 1:0 elementet saknas; 2:0 b,/ = 3'; 3:0 b,/ = 2’ efterfoljes av
b,..; 4:0 b, = 3, vare sig elementet ar streckat eller icke; 5:0 b, = 2
eller b, = 3’ efterfoljes av b,,;; 6:0 b, = 3, vare sig elementet ar streckat
eller icke. T den man b, eller b,/(v = 1) alls ingér i HRK, &r alltsa b, = 2
for varje v = 1. I de fall, da b, = 2 (eller b," = 2'), ar det efterfoljande
elementet ostreckat (jfr. 5:0 och 3:0). Alltsa giller (11), d.v.s. HRK
— HRK, 1, s& att sats 1 #r bevisad.

Foruskrirr 2. I varje obruten f6ljd delnimnare 1 viljas de med udda
ordningsnummer fran héger riknat som singulira.

I motsats till foreskrift 1 &r denna icke fullt entydig. Vi betrakta ett
periodiskt RK med 1 som period, alltsa b,1,1,1,... (b = b, eller b =
en delnimnare > 1). De bdda valenb,1,1,1,1,1,... ochb,1,1,1,1,1,...

[ et]

std i samklang med foreskrift 2, och vi erhalla t. ex.
(/5—1)2=1[0,1,1,1,...]1=[1,8,8,...]1 (HRK,?2)
och vid sidan hirav

(V5—1)2=10,1,1,1,1,...1=1[0,2,3,3,...] (HRK,2).
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Denna villkorlighet kan dock ldtt hdvas. Man behéver blott komplettera
foreskrift 2 med bestdmmelsen, att ordningsnumren riknas fran vinster
vid en oédndlig f6ljd delndimnare 1.

Da 275/76 och ]/Eﬁ betraktas, f& vi de entydigt bestdmda utveckling-
arna

275/76 = [3,1,1,1,1,1,1,1,3] = [4, 3, 3, 3, 4] (HRK, 2) ,
/97=9(1,5,1,1,1,1,1,1,5,1,18)=10(6', 2, 3', 3', 7', 20') (HRK, 2).

Harvid géller:
(12) b,=z2 (»=1); b,=3 (v = 1), da elementet dr streckat,

medels vilka relationer Perron ([4] § 40) definierar »singulire Ketten-
briiche«. Dessas egenskaper ha forst undersokts av Hurwitz [1], och i
anslutning till dennes bendamning »Kettenbriiche zweiter Art« har ovan
anvints den forkortande beteckningen HRK, 2. Allmént bestar

Sars 2. Da foreskrift 2 foljes vid 6vergang RK — HRK, erhélles ett
HRK, 2.

Brvis. Betriffande delnimnarena b,., (A =0) i det RK, som be-
traktas, foreligga sex mojligheter:

1:0 b,,, =1 &r singuldr = 1;

2:0 b;,, =1 &r regulir vid en foljd 1, b, ,, 1;

3:0 b,,, =1 éar regulidr vid en foljd b,,b, ,, 1 (b, > 1);
4:0 b, , = 2 foregas av b, = 1;

5:0 b,,, =2 foregas av b, > 1;

6:0 by, = 3.

Vi verkstilla 6vergdng RK —~ HRK och beteckna med b, resp. b,
det element i HRK, som motsvarar b,,, i RK. Hirvid giller i de sex
olika fallen: 1:0 elementet saknas; 2:0 b,’=3"; 3:0 b,=2; 4:0 b,'=3;
5:0 b,=2; 6:0 b, =3 vare sig elementet dr streckat eller icke. I den
man b, eller b, (v = 1) alls ingadr i HRK, &r alltsd (jfr. (12)) b, = 2,
b, = 3, di elementet ar streckat, d. v.s. HRK = HRK, 2, si att sats 2
ar bevisad.

7. Jamfort med DK ha HRK, 1 och HRK, 2 obestridligen foretriden:
utvecklingarna erhallas synnerligen enkelt vid 6vergang fran RK; dir-
jamte dr konvergensen snabb, emedan de singulira ettorna ligga si tétt
som mdjligt inom varje obruten #éndlig eller oéindlig f6ljd delnédmnare 1.

Men i andra avseenden utfaller en jamforelse till DK:s formén:



104 NILS PIPPING

approximationen (4) #r allméngiltig, vilket innebdr jimn konvergens,

och vid DK for l/f) bestar den i nr 3 angivna lagbundenheten betré-
fande delnimnarena. I vissa fall sakna HRK, 1 och HRK, 2 dessa egen-
skaper. Som exempel ma betraktas

Y13 =3(1L, 1,1, 1,6) =4(2,2,8) (DK),
Y13 =3(1,1,1,1, 6) = 4(3',2,7) (HRK, 1),
Y13 =3(1,1,1,1,6) = 3(2,3, 7 (HRK, 2)

med konvergenterna
4/1,7/2,185, . .., resp. 4/1, 11/3, 18/5,. .., resp. 3/1,7/2,18/5,. .. .

Konvergenterna 11/3 vid HRK,1 och 3/1 vid HRK, 2 &terfinnas ej
bland DK :s konvergenter, varfor approximationen (4) icke giller for
dem. Varken vid HRK, 1 eller vid HRK, 2 for [/1—3 bestédr den i nr 3
angivna lagbundenheten ; orsaken &r givetvis de singulira ettornas osym-
metriska fordelning.

Den senare oligenheten kan ej generellt hévas, om man haller fast vid
onskemalet om si snabb konvergens som mojligt. I frdga om utveck-
lingen —

/29 = 5(2, 1, 1, 2, 10) (RK = DK)
innebiir kravet pa symmetri, att periodens bada delnimnare 1 &ro
regulira, medan konvergensens takt okas, om den ena av dem betraktas
som singuldr.

Saken ligger emellertid annorlunda till betriffande den forstnimnda
och visentligare oligenheten. Som i féljande avsnitt visas, kan den hivas
medels en modifikation av féreskrifterna 1 och 2.

8. I varje obruten foljd delnimnare 1 tilldelas envar ett ordnings-
nummer, vilket riknas fran vinster, och tva alternativa foreskrifter ges.

FORESKRIFT 3. Som singuldra ettor viljas

1:0 i varje findlig eller oandlig foljd av 2k+1 (k= 0,1,.. .) delndm-
nare 1 de med ordningsnumren 1,3,..., 2k+1;

2:0 i varje &ndlig foljd av 2k (k= 2, 3,...) delnimnare 1 de med
ordningsnumren 1, 3,. .., 2k—3, 2k (det sista alltsa 2k och icke 2k—1);

3:0 i foljden b, 1, 1,5 med b > 1 ettan b; och i féljden delndmnare
b,1,1,b med b> 1,5 > 1 ettan invid den stdrre delnimnaren b eller b
eller, om b = b, ettan invid b.

FORESKRIFT 4. Som singulira ettor véljas
1:0 som i foreskrift 3;
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2:0 i varje #ndlig f6ljd av 2k (k= 2, 3,...) delnimnare 1 de med
ordningsnumren 1, 4, 6, ..., 2k (det forsta alltsd 1 och icke 2);

3:0 som i foreskrift 3 utom att ettan invid b viljes som singulir, da
b=b.

De HRK, som erhallas vid 6vergang fran RK medels (1) enligt dessa
bada foreskrifter, beteckna vi med HRK, 3, resp. HRK, 4. Vid over-
gdngarna i fraga dro de regulira ettorna enligt (8) och (9) reguldra ocksa
vid 6vergang RK — DK, varav foljer, att alla konvergenter for HRK, 3
och HRK, 4 i 6verensstimmelse med var onskan uppfylla villkoret (4).

Som exempel anféras nagra utvecklingar (jfr. [4] sid. 101), vid vilka
valen av singuldra ettor skilja sig fran varandra.

Y29 = 5(2,1,1, 2, 10) (RK = DK),
=5(2,1,1,2,10) = 5(3, 2, 2, 10) (HRK, 3),
=5(2,1,1,2,10) = 5(2,2, 3, 10) (HRK, 4) .

/53 =17(3,1,1, 3, 14) (RK = DK),
=17(3,1,1,3,14) = 7(4, 2/, 3, 14) (HRK, 3) ,
=17(3,1,1,3,14) = 7(3,2, 4, 14) (HRK, 4) .

/58 =17(1,1,1,1,1,1,14) = 8(2, 1,1, 2, 16') (DK) ,
=7(1,1,1,1,1,1, 14) = 8(3, 2, 2, 16) (HRK, 3),
= 7(1,1,1,1,1,1, 14) = 8(2, 2, 3/, 16') (HRK, 4) .

}/85 = 9(4,1, 1, 4, 18) (RK = DK),
—9(4,1,1,4,18) = 9(5, 2/, 4, 18) (HRK, 3),
= 9(4,1,1,4,18) = 9(4, 2, 5, 18) (HRK, 4) .

/88 = 9(2,1,1,1, 2, 18) (RK = DK),
—=9(2,1,1,1,2,18) = 9(3, 3, 3, 18) (HRK,3 = HRK, 4) .

V97 = 9(1,5,1,1,1,1,1,1,5,1,18) = 10(7',2,1,1,2,7', 20") (DK) ,

=9(1,5,1,1,1,1,1,1,5,1,18) = 10(7", 3',2/,2,7,20')  (HRK, 3),

sy 2o by ooty by 2

=9(1,5,1,1,1,1,1,1,5,1,18) = 10(7,2/,2,3',7,20°)  (HRK,4).

Betriffande Gvriga utvecklingar av /D (D < 100) giller: i 33 fall
uppvisar RK ingen delnimnare 1, varféor RK = DK = HRK,3 =
HRK, 4, medan i 51 fall de singuldra ettorna dro identiska vid &verging
fran RK till DK, HRK, 3 och HRK, 4, s& att RK & DK = HRK, 3 =
HRK, 4.
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Slutligen mé nimnas, att Krishnaswami (jfr. referat avLehmer i
Mathematical Reviews, vol. 5, sid. 92) pad helt annat sétt &n det ovan
angivna definierat en HRK-utveckling, som synes vara identisk med

HRK, 3, dock endast for o = 1/5 Krishnaswamis undersékningar gilla
niamligen blott detta speciella fall.
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AN APPROXIMATION FORMULA
FOR THE DETERMINATION OF AREAS

K. ZEUTHEN HEIDAM

Let a curve represented by the equation

Y = f(@) = ot e+ oz + o

be determined by passing through two given points (x,_;,y,;) and
(%, ¥p), at which points the inclinations of the tangents are known as

J'(@y_y) and f'(zy).

The constants of the equation as well as the area between the z-axis

Fig. 1

(p('_%dp) = %[f(xp—
p(ddp) = — S (@,-

and the curve within the interval from z,_,
to x, of length d,=x,—x, ; (we shall say
sthe interval d«) are easily determined.
To facilitate the computations, let us use
another system of coordinates (&, 5) for
which the axes are parallel to those of the
original system, and the origin is bisect-
ing the line P, P, (cf. fig. 1). The equa-
tion of the curve will then be of the form

N = (&) = ko+ki&+ k2 + ka5

According to the above conditions the
following four equations should be satisfied:

1) _f(xp)] = ko - '}Z'kldp + %kzdpz - %?k:idpa
1) —f@p)] = ko+ ¥kydy, + hod))® + Fhod,®

P'(—% _’p) = f,(xp—1) = kl_kzdp+%k3dp2
@' (3dy) = [f'(®p) = ky+kod ), + 2hsd )2 .

The solution of these equations gives

[107]
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- dp[f’(xp—l) "—f, (xp)]

ky 3
b= S @) = f @)1+ dy[f (@) +f ()]
e 4d,
b o= — f,(xp—l) '_f'(xp)
2 2d,,
v 2 @) —f @)1+ L (@) +1(w,)]
3 dp3 .

The area bounded by the curve, the &-axis, and the ordinates through
P,_, and P, is then
dp2
PO = \ p)d = ko +5kad,® = 350,200 (@, ) ~f @]
—dp/2
The area between the z-axis and the &-axis is

Fp(z) = %dp [f(xp—l) +f(xp)] .
Hence, the total area F,=F ®+ F @ within the interval d,,:

(Al) Fp = %dp{f(xp—l) +f(xp) + %dp[f/(xp—l) '—f,(xp)]} .

If several points of the curve are known, the area from the first to the
last ordinate is F=27F:

(@) F= 2 M, (f @y 2)+f () + 3 [f (2 2) —F ()]}

The first part, X 3d,[f(x,_;) +f(x,)]=2"F,@, is obviously the ordinary
trapezoidal formula, while the latter part is a corrective term.

If a series of pairs of observations (z,, ¥,), - .., (¥,, ¥,) have been
made to determine a curve which is otherwise unknown, such curves as
are represented by equations of the form stated above may constitute
an expedient approximation. The total area from the first to the last
ordinate can then approximately be obtained from formula (2). With
regard to the inclinations of the tangents, which are normally not ob-
served, a reasonable judgment is generally the only way out. It seems
rational to choose, arbitrarily, the inclination of the tangent through
each of the points P, parallel to P, ;P,,; (p=1,2,...,n—1). At the
first and the last point the inclinations of the tangents cannot, however,
be determined in this way. We will then let the tangent through P,
intersect the tangent through P, in the middle of the interval d,, whereas
the tangent through P, is made to intersect the tangent through P,
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in the middle of d,, (cf. fig. 2). The choice of the latter inclinations renders
the curves parabolas (k;=0).

Y
P,
10
F, - Z;/1 P 7
y, P7?
yp—Z
dyd,
22 % dp-1

The inclinations chosen can be expressed as follows:

_ S @y 1) —f (@p11) _ B
i R N (p=12...,n-1)
(3) Ky = — 01— 2—[—]‘%]‘(‘%1)]
1
Kp = —O&p—1— d .

n

Especially for n=2 we get

d dy—d,
(2a) = g L @)+ 4f @) +f @]+ = [f (@) —f @]

which is the formula given by Viggo Brun (Nordisk Matematisk Tid-
skrift 1 (1953), pp. 10-15).

For a known function y=g(x) the error A of the approximation can
be determined:

@
' n

@ 4= g@de— X 1,0, @)+ il -]

. 1
Zo

where f(x,_;)=g(x,-,) and f(z,)=g(z,). If, especially, the known func-
tion is a polynomial of 3™ degree or less, the above expression can be
reduced :
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(43’) 4= 11—221' dpz{g’(xp—d)_gl(xp)—“p—l'*'(xp} .

We apply the formulae (2) and (2a) to the example
Inb
f(x) = €%, S edx = 5—-1= 4.
0

The interval is divided into four sections by
(5) 2y =0, 2, = In2, z, = In3, 3 = In4, z, = Inb.

The corresponding ordinates have the simple values 1, 2, 3, 4 and 5.
Since here f'(x)=f(x), it means that also the difference between the
inclinations of the tangents at either end of the four intervals is constant
=1.

Substituting (5) and

f@pa) =f'@p0) =p, p=123,4,5,
in formula (2), we get
F = }In2{1+2—}In2}+ }(In3—In2){2+3 - }[In3—In2]}
+3(n4-In3){8+4—}[In4—In3]}+ $(In5—-In4){4+5— §[In5—In4]}.
With an initial accuracy of 6 decimals, this gives
F = 3.9996, ie. 4 = 4—3.9996 = 0.0004 .
From Brun’s formula (2a), we get
F =}{n3-(1+4-2+3)+}(In2—(In3—In2))(1-3)
+3(In5-In3)(3+4-4+5)+3(In4—In3—(In5—1In4))(3—5) = 4.0057.

The error A= —0.0057 is considerably larger than by the previous
method.

If we use the same examples as those used by Brun and apply the
formulae (3) and (4a) for f(z) =22 and f(x) =23, we get the same expres-
sions for the errors. (As for the latter example, the formula is exact only
for a=b and a=4(}/13+2)b but not for a= (/13— 2)b, which a re-cal-
culation will easily show.) With regard to the function f(x) =2*, formula
(4a) must be replaced by (4) because the function is a polynomial of ‘a
higher degree than 3. In this case we likewise obtain the same expression
for the error. However, the error 4=0 for 1.11...b<a<1.12...b and
2.60...b<a<2.61...b, a=1.12b and a=2.60b being the better ap-
proximations respectively. (These values differ slightly from those given
by Brun.)
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OskAR BECKER: Grundlagen der Mathematik in geschichtlicher Ent-
wicklung. (Sammlung Orbis.) Verlag Karl Alber Freiburg, Miinchen, 1954.
11+422 8., 62 Fig. DM 26.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 114.)

Denne bok gir som titelen sier en sammenhengende fremstilling av den
historiske utvikling av matematikkens fundamentale idéer og metoder fra
oldtiden til idag. Den vender seg ikke bare til den aktive matematiske
forsker, men ogsd til alle som har historiske og filosofiske interesser
knyttet til matematikken. Det er nok sa, at den vitenskapelig arbeidende
matematiker vil veere mere interessert nettopp i den moderne grunnlag-
forskning som man finner utforligere fremstilt i slike bgker som f. eks. de
nylig av Rosenbloom, Kleene, Rosser o. a. publiserte, men en slik samlet
historisk fremstilling av grunnlagforskningen gjennom tidene som den
foreliggende bok gir vil interessere alle som p& noen mate har med mate-
matiske fag & gjore, leerere, studerende osv.

For & gi et sa fullstendig billede av bokens rike innhold som mulig
vil jeg gi en oppregning av dens forskjellige deler med kort angivelse av
hver dels innhold. Den bestar av 5 kapitler. Det forste omtaler babylonsk
og egyptisk matematikk. Det annet med overskriften »Begrunnelsen av
den vitenskapelige matematikk ved grekerne« bestir av 5 avsnitt A-E.
I A omtales den tidlige greske matematikk fra omkring ar 600 for Kr.
Her fortelles om de talltegn som dengang var i bruk og begynnelsen til
geometrien, siledes Hippokrates kvadratur av »halvmaner«. B omtaler
begynnelsen til infinitesimale betraktninger, siledes Eudoxos exhau-
stionsmetode og Archimedes kvadratur av parabelen. C handler om pro-
porsjonsleren. D gjengir Euklids aksiomatiske begrunnelse av geometrien.
Her nevnes den av Zeuthen papekte meget interessante omstendighet,
at begrepet eksistens i gresk geometri opfattes konstruktivt, altsa eksi-
stens =konstruerbarhet. E er av filosofisk innhold og gjengir betrakt-
ninger av Platon, Proklos, Aristoteles og pythagoréerne.

Det tredje kapitel omhandler grunnleggelsen i det 17de arhundre av
den nyere tids matematikk. I det forste avsnit A nevnes en Nicole Oresme
som skal ha kjent til den grafiske fremstilling av funksjoner, og noen
naive »integrasjoner« av Galilei og Kepler omtales. Avsnittene B og C

[111]
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omtaler henholdsvis Descartes oppdagelse av den analytiske geometri og
oppfinnelsen av infinitesimalregningen ved Newton og Leibniz.

Fjerde kapitel har overskriften »Det 19de arhundres kritiske matema-
tikk«. I forste avsnitt A omtales studiet av geometriens grunnlag fra
Gauss betraktninger gjennom Kleins Erlanger program til Paschs og Hil-
berts aksiomsystemer. Videre gjengis Poincarés og Dinglers anskuelser
om de geometriske aksiomers natur. B har overskriften »Grunnlag for
aritmetikken, analysen og mengdeleren«. Her omtales innferelsen av de
imaginzre tall, Dedekinds og Cantors definisjoner av irrasjonale tall samt
etter bemerkninger fra Bolzanos »Paradoxien des Unendlichen« noksa ut-
forlig Cantors alminnelige mengdelare.

I femte kapitel som er det siste, og det der sewrlig vil interessere fag-
matematikere, omtales den moderne grunnlagforskning. Selvsagt tar for-
fatteren her for seg de 3 hovedretninger : logisismen, intuisjonismen og den
Hilbertske bevisteori. Hva logisismen angér, omtales Freges og Russells
arbeider, for den sistes vedkommende szrlig typeteorien som middel til
fjernelse av antinomiene. For intuisjonismens vedkommende gjores om-
hyggelig rede for Kroneckers synsmater foruten Borels innvendinger mot
diskontinuerlige funksjoner av alminneligste art; men fremfor alt om-
tales naturligvis Brouwers oppfatninger. Den Brouwerske intuisjonismes
tolkning som regning med oppgaver ifglge Kolmogoroff blir forklart.
Weyls artikkel »Grundlagenkrise der Mathematik« blir utferlig gjengitt.
Det viktigste som meddeles angéende Hilberts bevisteori er en forklaring
hentet fra Gentzens bevis for aritmetikkens motsigelsesfrihet av, hvordan
han mé benytte transfinit induksjon opptil det minste e-tall i 2nen tall-
klasse. Tilslutt omtales her Lorenzens konstruktive begrunnelse av ma-
tematikken. Fgentlig kan vel denne siste ikke tas til inntekt for den
spesifikt Hilbertske retning.

Bokens innhold er som man ser meget rikholdig. Imidlertid kan den vel
neppe sies & veere helt & jour hva den moderne forskning angar. Man
savner f. eks. omtale av leren om de rekursive funksjoner som er blitt
av stor betydning for grunnlagforskningen. Videre forekommer det refe-
renten, at erkjennelsen av at ethvert formal-logisk system som den ak-
siomatiske mengdelare eller typeteorien, eller hva det ni er, ikke krever
absolutt ikke tellbart uendelige totaliteter, burde veert ettertrykkelig
nevnt, da dette betyr en fundamental avvikelse fra den Cantorske eller
klassiske oppfatning av det uendelige. Riktignok finnes en bemerkning
om dette i boken; men den er bortgjemt i en parentes i »Schlusswort«
side 402.

Boken ber ikke savnes i hgyere skolers eller matematiske institutters
biblioteker. Den er lererik og vil veere til bade nytte og glede.

Th. Skolem
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WarLter RubpIN: Principles of mathematical analysis. McGraw-Hill
Book Co., New York, Toronto, London, 1953. 10+ 227 pp. sh. 37/6.

(Innholdsfortegnelse i NMT 1 (1953), s. 128.)

De vanlige lereboker i matematisk analyse er mer eller mindre preget
av at deres formal er dobbelt: pa den ene siden & gjore leseren fortrolig
med den systematiske oppbygning av denne grenen av matematikken;
pa den andre siden & gi leseren, helst s& raskt som mulig, det fortreffelige
verktgy i hende som analysen er for utallige anvendelser. Dette gjelder
dog ikke de meget bredt anlagte framstillinger som f. eks. Jordan’s Cours
d’Analyse o. 1. bgker, der forfatteren uten sidehensyn tar for seg hele
systematikken i stoffets oppbygning.

Den foreliggende bok av Rudin vil veere et ypperlig hjelpemiddel for
den som allerede har lagt bak seg en mindre, eller middels stor, lzerebok
i analysen, og som gnsker nettopp en mere systematisk preget innforing
i emnet. Som begynnerbok vil den neppe egne seg, til tross for at den
ikke bygger pa noen spesielle forutsetninger utover, la oss si vare artiums-
fordringer. Begynneren vil vanligvis gjerne komme raskt fram til det
ymyttige« stoffet og vil neppe forsta behovet for en s& »teoretisk« preget
framstilling. Desto storre glede vil en ha av boken dersom en pa forhidnd
kjenner stoffet i hovedtrekkene, slik at en virkelig kan vurdere utvidel-
sene og den generelle problemstilling som fgrer fram til dem.

Framstillingen er etter min mening mesterlig; intet er overfladig, men
alle trekk i tankebygningen er samvittighetsfullt tatt med. Eksempler
og oppgaver, valt med sikker sans for & fa poengene fram, vil vare til
storste nytte for leseren.

Foruten det stoff som forekommer i enhver lerebok i analyse er
Stieltjes- og Lebesgue-integraler tatt med.

Som tittelen antyder er det ikke en vanlig lerebok det er tale om.
Forfatteren gir bare de prinsippene teorien hviler pa; sa snart disse er
klarlagt, og de generelle setninger utledet, forlater han emnet og tar fatt
pa et nytt.

En ubehagelig feil har innsneket seg i behandlingen av Riemann-
Stieltjes-integralet, idet forfatterens formulering av fundamentalteoremet
»6.11¢ 5. 92 ikke er almengyldig ut fra de valte definisjoner. Forhapentlig
vil der snart komme en ny utgave av denne ellers sa fortrinlige bok der

dette er rettet. R. Tambs Lyche

Nordisk Matematisk Tidskrift. Bd.3. — 8
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Heinz Bachmann: T'ransfinite Zahlen. (Ergebnisse der Mathematik,
neue Folge, 1.) Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955.
7+204 S. DM 29.80.

Einleitung: Allgemeine mengentheoretische Vorbemerkungen 1-15 * Ordnungs-
zahlen und transfinite Funktionen 16—45 * Arithmetik der Ordnungszahlen 45-105 *
Arithmetik der Méchtigkeiten und Kardinalzahlen ohne Auswahlaxiom 105-132 =
Die Konsequenzen des Auswahlaxioms und der Alephhypothese in der Kardinal-
zahlenarithmetik 132-164 * Probleme des Kontinuums und der zweiten Zahlklasse
164-176 * Unerreichbare Zahlen 176-189 * Literaturverzeichnis 190-200 * Sach-
verzeichnis 201-204.

Oskar Becker: Grundlagen der Mathematik in geschichtlicher Entwick-
lung. (Sammlung Orbis.) Verlag Karl Alber Freiburg, Miinchen, 1954.
11+422 8., 62 Fig. DM 26.00.

(Anmeldt i NMT, dette hefte, s. 111.)

Blick auf die Grundlagen der vorgriechischen Mathematik: Rechentechnik.
Algebra. Agyptische und babylonische Geometrie 3-21 * Die Begriindung der
wissenschaftlichen Mathematik durch die Griechen: Die friithgriechische Mathe-
matik. Die Grundlegung der Mathematik des Infinitesimalen. Die Theorie der
Proportionen. Die systematische Grundlegung der griechischen Mathematik inner-
halb ihrer selbst. Die philosophische Reflexion auf die »elementare« Grundlegung
und das Wesen der Mathematik 22-129 * Die Grundlegung der neueren abend-
landischen Mathematik im 17. Jahrhundert: Vorstadien der Infinitesimalrechnung.
Die Entdeckung der analytischen Geometrie durch Descartes. Die Erfindung des
Infinitesimalkalkiils 130-167 * Die kritische Mathematik des 19. Jahrhunderts:
Grundlagen der Geometrie. Die Grundlagen der Arithmetik, Analysis und Mengen-
lehre 168-316 * Die Grundlagenforschung des 20. Jahrhunderts: Logizismus. Intui-
tionismus. Beweistheorie (Formalismus) 317-401 * Schlusswort 402 * Quellenver-
zeichnis 403-407 * Textkritische Anmerkungen 408-409 * Bibliographie 410-414 *
Namenverzeichnis 415-419 * Sachverzeichnis 420-422.

Ludwig Bieberbach: Analytische Fortsetzung. (Ergebnisse der Mathe-
matik, neue Folge, 3.) Springer-Verlag, Berlin, Gottingen, Heidelberg,
1955. 44168 S. DM 24.80.

Grundlegende Sédtze 1-43 * FaABrRYsche Sitze 43-68 * Weiteres iiber Liicken und
Koeffizientendichten 68-91 * Die Haufigkeit der fortsetzbaren und der nicht fort-

[114]




LITTERATUR 115

setzbaren Reihen 91-104 * Zusétze zum HApAMARDschen Multiplikationssatz 105—
114 * Arithmetische Eigenschaften der Koeffizienten 114138 * Die Koeffizienten
als Funktionen der Nummer 138-155 * Literaturverzeichnis 155-166 * Namen-
verzeichnis 166-167 * Sachverzeichnis 168.

H. Boerner: Darstellung von Gruppen. Mit Beriicksichtigung der Be-
diirfnisse der modernen Physik. (Die Grundlehren der mathematischen
Wissenschaften 74.) Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955.
114287 S., 15 Fig. DM 33.00, ganzl. DM 36.60.

Matrizen 1-24 * Gruppen 24-42 * Allgemeine Darstellungstheorie 43-92 * Die
Darstellungen der symmetrischen Gruppen 92-111 x*Die Darstellungen der vollen
linearen, unimodularen und unitéren Gruppen 112-163 * Charaktere der linearen
und der Permutationsgruppen. Die alternierende Gruppe 164-190 * Charaktere
und eindeutige Darstellungen der Drehgruppe 190-236 * Spindarstellungen, In-
finitesimalring, gew6hnliche Drehgruppe 236-263 * Die LorENz-Gruppe 264-277 *
Literaturverzeichnis 278-282 * Namen- und Sachverzeichnis 283-287.

R. Courant: Vorlesungen iiber Differential- und Integralrechnung. Band
I: Funktionen einer Verinderlichen. Dritte, verbesserte Aufl. Springer-
Verlag, Berlin, Géttingen, Heidelberg, 1955. 11+ 450 S., 126 Fig. Ganzl.
DM 33.00.

Vorbereitungen 3-70 * Grundbegriffe der Integral- und Differentialrechnung
70-121 * Differential- und Integralrechnung der elementaren Funktionen 122-179 =
Weiterer Ausbau der Integralrechnung 180-223 * Anwendungen 223-268 * Die
Tavrorsche Formel und die Annéherung von Funktionen durch ganz rationale
268-302 * Exkurs iiber numerische Methoden 302-320 * Unendliche Reihen und
andere Grenzprozesse 320-373 * FouriErsche Reihen 373-425 * Die Differential-

gleichungen der einfachsten Schwingungsvorginge 426-442 * Sachverzeichnis 443—
450.

H. S. M. Coxeter: The real projective plane. Second edition. Cambridge
Univ. Press, Cambridge, 1955. 12+ 226 pp. sh. 27/6.

A comparison of various kinds of geometry 1-10 * Incidence 11-24 % Order and
continuity 256-40 * One-dimensional projectivities 41-58 * Two-dimensional pro-
jectivities 59—78 * Conics 79-100 * Projectivities on a conic 101-114 * Affine geometry
1156-137 * Euclidean geometry 138-160 * Continuity 161-170 * The introduction of
coordinates 171-185 * The use of coordinates 186-216 * Appendix: The complex
projective plane 217-218 * Bibliography 219-220 * Index 221-226.

Jean Dieudonné: La géométrie des groupes classiques. (Ergebnisse der
Mathematik, neue Folge, 5.) Springer-Verlag, Berlin, Géttingen, Heidel-
berg, 1955. 7+115 S. DM 19.60.

Collinéations et corrélations 1-35 * Structure des groupes classiques 36-72 *
Caractérisations géométriques des groupes classiques 72-85 * Automorphismes et
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isomorphismes des groupes classiques 85-108 * Table des notations 108-110 * Index
des définitions et des principaux théorémes 110-111 % Bibliographie 111-115.

H. Hadwiger: Altes und Neues iber konvexe Korper. (Elemente der
Mathematik vom hoheren Standpunkte aus.) Verlag Birkhiuser, Basel,
Stuttgart, 1955. 116 S. Brosch. SFr. 13.50.

Konvexe Kérper 7-22 * Approximations- und Symmetrisierungssitze 23-29 *
Die vier fundamentalen Masszahlen 30-49 * Ungleichungen 50-82 * Formeln und
Lehrsitze der Integralgeometrie 83-102 * Literaturverzeichnis 103-115 * Sach-
verzeichnis 116.

Lothar Heftter: Begrindung der Funktionentheorie auf alten und neuen
Wegen. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955. 8+ 63 S.,
13 Fig. DM 12.60.

Vorkentnisse 1-29 * Verschiedene Wege zur Begriindung der Funktionentheorie:
Definition der »analytischen Funktion«. Cauchy (1814) und Goursat (1900). Looman-
Menchoff (1933). Voraussetzung eindeutiger Integrierbarkeit. Benutzung von Polar-
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angaben 55-61 * Verzeichnis der Begriffe 62-63.

Paul Lorenz: Anschauwungsunterricht in mathematischer Statistik. S. Hir-
zel Verlag, Leipzig, 1955. T+134 S., 29 Fig. Ganzl. DM 15.30.

Bildliche Darstellung statistischer Reihen: Kartesische und logarithmische Dar-
stellungen, Abklingungen, Summenzeichen, kleinste Quadratsumme 1-40 * Begriffs-
bildungen fiir die zusammenfassende Beschreibung statistischer Reihen: Hiufigster
Wert, Merkmalwert, Zentralwert, Median, arithmetisches und logarithmisches Mit- ]
tel, endliche Differenzen, Streuungsmass, Normierung, Potenzmoment, Kollektiv-
mass, Zweidimensionale Verteilungen, Korrelation, Regression 41-129 * Literatur
130 * Namenliste 131 * Sachregister 132-134.

Ross R. Middlemiss: Analytic Geometry. Second edition. McGraw-Hill
Book Co., New York, Toronto, London, 1955. 9+ 310 pp. sh. 28/-.

Introduction 1-15 * Plane analytic geometry: Rectangular coordinates, funda-
mental definitions and theorems 19-45 * Functions and graphs. Equation of a locus
46-63 * The line 64-82 * Polynomials 83—89 * Rational fractional functions 90-98 *
Transformation of coordinates 99-104 * The circle 105-111 * The parabola, ellipse,
and hyperbola 112-138 * Algebraic curves of higher degree 139-149 * The trigo-
nometric curves 150-167 * The exponential and logarithmic curves 168-181 =
Parametric equations 182-193 * Polar coordinates 194-215 * Curve fitting 216-234
Solid analytic geometry: Preliminary definitions and formulas 237-252 * Planes
and lines 253-271 * Surfaces and curves 272-284 * Numerical tables 285-296 *
Answers 297-306 * Index 307-310.
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Carlo Miranda: Equazion: alle derivate parziali di tipo ellittico. (Ergeb-
nisse der Mathematik, neue Folge, 2.) Springer-Verlag, Berlin, Goéttingen,
Heidelberg, 1955. 8 +222 S. DM 28.80.

Problemi al contorno per le equazioni lineari 1-18 * Funzioni rappresentate da
integrali 18-39 * Traduzione in equazioni integrali dei problemi al contorno 39-79 *
Soluzioni generalizzate dei problemi al contorno 79-111 * Maggiorazione a priori
delle soluzioni del problema, di Dirichlet 111-137 * Equazioni non lineari 137-169 *
Altre ricerche sulle equazioni ellittiche. Equazioni di ordine superiore. Sistemi di
equazioni 169-191 * Bibliografia 192-219 * Indice per autori 220-222.

T. Rado — P. V. Reichelderfer: Continuous transformations in analysis.
(Die Grundlehren der mathematischen Wissenschaften 75.) Springer-
Verlag, Berlin, Géttingen, Heidelberg, 1955. 7+ 442 S., 53 Fig. Ganzl.
DM 59.60.

Background in topology 1-110 * Topological study of continuous transformations
in B” 110-190 * Background in analysis 190-212 * Bounded variation and absolute
continuity in R" 212-292 * Differentiable transformations in R" 292-377 * Con-
tinuous transformations in R? 377-438 * Index 439-441 * Bibliography 442.

P. Samuel: Méthodes d’algébre abstraite en géoméirie algébrigue. (Ergeb-
nisse der Mathematik, neue Folge, 4.) Springer- Verlag, Berlin, Gottingen,
Heidelberg, 1955. 9+133 S. DM 23.60.

1. Théorie globale élémentaire : Idéaux et ensembles algébriques affines.Ensembles
algébriques dans I’espace projectif. Projections. Produits. Intersections d’ensembles
algébriques. Normalisation. Extension du corps de base. Variétés. Propriétés vraies
presque partout. Cycles. Coordonnées de CHOW. Correspondances 1-58 * II. Géomsé-
trie algébrique locale. Multiplicités d’intersection: L’anneau local d’un point, ou
d’une sous-variété. Points normaux. Cone des tangentes. Espace tangent de ZARISKI.
Points simples. Théorie locale des multiplicités d’intersection. Intersections de cycles
locaux et de cycles 59-111 * Rappel algébrique 111-124 * Annexe historique 124—
128 * Annexe terminologique 128-129 * Index alphabétique 130-133.

A. Spitzbart — R. H. Bardell: College algebra and plane trigonometry.
Addison-Wesley Publ. Co., Cambridge (Mass.), 1955. 14 + 408 pp. § 4.50.

Number systems and fundamental operations 1-14 * Special products and fac-
toring 15-21 * Fractions 22-29 * Exponents and radicals 30—40 * Exercises 41-43 *
Functions and graphical representation. The trigonometric functions 44-76 * Linear
and quadratic functions 77-103 * Circle relations. Right triangles 104-127 * Graphs
of the trigonometric functions 128-149 * Polynomials of higher degree 150-166 *
Inverse trigonometric, exponential, and logarithmic functions 167-197 * Properties
of the trigonometric functions 198-234 * Mathematical induction and the binomial
formula 235-250 * Systems of equations 251-270 * Complex numbers 271-286 * The
solution of oblique triangles 287-311 * Determinants 312-326 * Progressions 327-
340 * Permutations, combinations, and probability 341-357 * Answers to exercises
358-384 * Tables 386-399 * Index 401-408.
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Karl Strubecker: Differentialgeometrie, 1. (Sammlung Géschen 1113/
1113a.) Walter de Gruyter & Co., Berlin, 1955. 150 S., 18 Fig. DM 4.80.

Literaturverzeichnis 4 * Theorie der ebenen Kurven 5-58 * Theorie der Raum-
kurven 59-145 * Namen- und Sachverzeichnis 146-150.

F. G. Tricomi: Vorlesungen iber Orthogonalreihen. (Die Grundlehren der
mathematischen Wissenschaften 76.) Springer-Verlag, Berlin, Gottingen,
Heidelberg, 1955. 84264 S., 13 Fig. DM 34.00, ganzl. DM 37.60.

Einleitung 1-5 * Orthogonale Funktionensysteme 6—44 * Allgemeine Theorie der
trigonometrischen Reihen 44-76 * Konvergenzeigenschaften der trigonometrischen
Reihen 77-121 * Allgemeine Eigenschaften von orthogonalen Polynomen 122-142 *
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Numbers and elementary operations 1-23 * Fractions, exponents, and radicals
24-40 * Coordinate systems, functions, and graphical representation 41-66 * The
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Linear and quadratic functions 100-140 * Determinants 141159 * Functions and
equations of higher degree 160-173 * Inverse functions 174184 * Circular function
graphs with applications 185-199 » Mathematical induction and the binomial theorem
200-210 * Exponential and logarithmic functions 211-230 * Solution of triangles
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Progressions 282-294 * Permutations, combinations, and probability 295-311 =
AnsWers to problems 312-334 x Tables 335-348 * Index 349-354.
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Toronto, London, 1955. 8+ 381 pp. sh. 30/-.

The six trigonometric functions 1-32 * Elementary identities and reduction for-
mulas 33-54 * The solution of right triangles 55-88 * The graphs of the trigonometric
functions 89113 * Functions of composite angles 114-134 x The inverse trigonometric
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OPPGAVER TIL LOSNING

Losninger av oppgavene 59—62 sendes til oppgaveredaktoren, professor R.Tambs
Lyche, Holmengrenda 7, Holmen, Oslo. Slike lgsninger vil bli trykt i et folgende
hefte i den utstrekning plassen tillater, dog vanligvis bare den beste lgsning av hver
oppgave. Lesninger av oppgaver i dette hefte ma vzre sendt innen 1.nov. 1955.
Med samme frist kan ogsd sendes lesninger av oppgavene 50, 53 og 54 (i forrige
hefte), som det ikke er kommet noen losning av. Redaksjonen har heller ikke
mottatt noen lgsning av oppgavene 25 og 43 fra forrige argang.

De ovrige oppgaver i dette hefte er enklere, og losninger av dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til
oppgaveredakteren, helst sammen med forslagsstillerens egen losning.

59. For en plan kurve vil afstanden fra et fast punkt O til et variabelt
kurvepunkt P, altsd radius vektor r=OP, vere en funktion af bueleng-
den s. Swttes r2=F(s), skal man vise, at kurvens krumningsradius ¢ i
punktet P kan bestemmes af formlen

_F() (')
G0
Fr. Fabricius-Bjerre

—

60. Visa, att om A #r reellt och 0<4 <1, har ekvationen

2n—1

=4

z—1

1-4
alla sina rotter i cirkelringen T34 <lz|<1l, n=2,3,4,....

Sture Danielson

61. Om [a] betecknar det stérsta heltal , som uppfyller « < a, visa att
[(5+V19)"] = ett udda tal, n =0,1,2,....

Berikna aven

lim {G+Y19y = [(5+V19y] }.

[119]




120 OPPGAVER

62. Evaluate
i e nx
lim —
x—>+00 n=1 (’)’L +x)
Martin G. Beumer

63. Bevis for k> folgende identitet mellem binomialkoefficienter:
r—1 r—1 —y—1
5()-5 ()
=0 \V o \r—v—1
Jakob Nielsen

64. Pa en sirkelbue 4B ligger n punkter 4,, 4,,..., 4,. Hvor mange
konvekse brukne linjer kan en trekke fra A til B med knekkpunkter
i ett eller flere av punktene A4,,..., 4,°?

65. Gitt en rotasjonskjegle og et punkt P innenfor den. Sgk de plane
snitt som har P til brennpunkt.

LOSNINGER
Oppgave 51.

K er givet i polere koordinater (g, ) med pol O ved ¢=f(0), hvor f(6)
er positiv, differentiabel og periodisk med perioden 27 (—oco <0< + o).
Endvidere er ,

1de _10)

e di  f(0)
periodisk med perioden z. Heraf fas ved integration logf(0+x)=
logf(0) + k. Da man kan ombytte f(0) og f(0 +=x), er k=0, f(0+x)=f(0),

q. . d. Anders Bagert

Ogsé lost av H. Killingbergtrs, Johannes Kvamsdal, Leif Thorsen og Helge Tverberg.

Oppgave 52.

For reelle verdier av cz er 0=<|cosncz| <1, og rekken divergerer.
Nar |I(cz)|=v>0 er

|cosnez| = f(e™—e ") > Le™(1—e7"),
hvorav

Jeosnez|~t < I—H—v e,
—— 6_

og rekken konvergerer.

1 Oppgavelgseren bemerker at forutsetningen om at tangentretningen varierer kon-

tinuerlig, er overfledig.
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Rekken konvergerer altsa overalt i det komplekse plan utenfor den
rette linje I(cz)=0.

Johannes Kvamsdal

Ogsé lost av Henrik Meyer.

Oppgave 5.
Ved hjelp av rekkeutviklingen

1
meotgnr = — —2x —
x

kan @(x) skrives

1
2 cotg tx — cotg 2mx] — —.
12[ % g 2] 8z

Herav

) = lim p(x+n) = % [2cotgmx — cotg 2mx] ,

og folgelig er y(x) en ulike, periodisk funksjon, og
p(@)+yp(l—2) = 0.

Ogsé lost av Henrik Meyer og Leif Thorsen.

Johannes Kvamsdal

EKSAMENSOPPGAVER

Nedenfor folger matematikkoppgavene til studenteksamen viren 1955 pd de
matematiske gymnasielinjer i de nordiske land.

DANMARK
Matematik 1.

1. Angiv de veardier af z, for hvilke

x
z4+8 S — < 4.
- 4

2. Undersog og tegn kurven 2 g
Y=o T e

Beregn arealet af den lukkede figur, som begranses af kurven og den rette linie
3x—2y=>5.
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3. I en omdrejningskegle med toppunkt O er sidelinien 16 og radius i grund-
fladen 4)/2. AB er en diameter i grundfladen, og C et punkt pa sidelinien OB
sdledes beliggende, at OC=12.

Gennem punktet C og tangenten til grundfladecirklen i punktet 4 legges en
plan o. ‘

Bevis, at plan « star vinkelret p4 OB, og beregn akserne i den ellipse, som er
skeringskurven mellem keglens krumme overflade og o.

Beregn endvidere afstanden fra det ene endepunkt af ellipsens lilleakse til
keglens grundflade.

Matematik I1.
1. Find z af ligningen
(1—2d)2*— (3—7d)x+4—2:=0.

Idet o betegner den af de fundne rgdder, hvis modulus (numeriske veerdi) er
mindst, og f den anden rod, skal man dernwst beregne verdien af udtrykket

(x—=1)*+(f—12).

Sével den givne lignings redder som resultatet af det beregnede udtryk skal
angives p& formen a+¢b, hvor a og b er reelle tal.

2. T firkant ABCD er vinkel 4 =90°, siden AD= 2,383, siden BC = 6,823 og
diagonalen BD =4,842; endvidere halverer diagonalen AC vinkel 4.
Beregn firkantens ubekendte sider og vinkler.

3. Givet cirklen 2?4 y2=172, hvis centrum betegnes med O.

P er et vilkérligt punkt pé cirklen og @ dette punkts symmetriske punkt med
hensyn til abscisseaksen. S er et punkt pé forleengelsen af OP ud over P, sdledes
at OP=PS.

Idet R betegner punktet (—r, 0), skal man finde ligningen for det geometriske
sted for skeeringspunktet mellem de rette linier OQ og RS, nar P gennemlober
cirklen.

Angiv den fundne kurves art og dens beliggenhed i koordinatsystemet.

FINLAND

Langre kursen.

1. Ett positivt tal ékas med p9% och dess nya virde igen med p%. Det s&
erhéllna talet minskas med p% och det minskade vérdet med ytterligare p%.
Med huru ménga % har det givna talet foréindrats (frén sitt ursprungliga virde
till sitt slutliga)? Kan slutvirdet éverstiga det givna?

2. Fran punkten O utgé 8 halvstralar I, I,,. . .l;, vilkas mellanliggande vinklar
=45°. Fran den punkt P, pd I;, vars avstand fr&n O &r a, drages en rit linje som
skér I, i P, sd, att vinkeln OP,P,=v. Genom P, drages dirp4 en linje som skér
I3 i Py sé, att d&ven vinkeln OP,P,=9» och detta férfarande upprepas obegrinsat.
Huru bor vinkeln v véljas f6r att lingden av den brutna linjen P,P,P;... (d. &.
summan av strickorna P,P,, P,P,,...) mé vara dndlig och vilken #r i s& fall dess
léingd ? Angiv resultatet for v=45° och bestim for detta fall férhallandet mellan
den brutna linjens lingd och perimetern av triangeln OP,P,.
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3. Bestdm det polynom av 2. graden, som for x =2 far sitt extrema virde = 2,5
och fér z=1 och x=>5 antar motsatta virden.

4. Bestdm alla genom punkten (2, 0) gdende réta linjer, av vilka linjerna y=2x
och y= —=x avskéra en stricka, vars projektion pd z-axeln=2. Prova resultatet
genom métning.

5. Hérled formeln for den stympade cirkelkonens volym.

6. Dela strackan a i tva delar  och y samt delen y ytterligare i tva delar z och u
88, att x:y=y:z=z:u. Berdkna forhdllandet z:u.

7. Tv4 cirklar ha en gemensam korda AB, som av den ena cirkeln avskéir en
60°, av den andra en 90° bage; deras medelpunkter falla pd samma sida om 4B.
I vilket forhallande delas den storre cirkelns area av den mindres periferi? (Exakt
viarde och nérmevirde med 2 decimaler.)

8. En given reguljér tetraeder ABCD skéres av ett med basen ABC parallellt
plan. Den i skidrningstriangeln inskrivna cirkeln och dennas projektion pé planet
ABC utgéra baser i en cylinder. Bestdm det skdrande planet sd, att volymen av
denna cylinder blir sd stor som mojligt.

9. Los fullstdndigt ekvationen sinx = cotx.

10. At variabeln x i funktionen logz gives, utgende fran ett virde z,, det
positiva tillskottet k. Visa, att det tillskott funktionen dérvid erhaller, 4r desto
mindre ju stérre x, dr, d& k forblir oforéndrat. Bestdm x, si, att édven funktio-
nens tillskott blir =%. Angiv resultatet for a) k=1, b) k= 2. (Logaritmerna &ro
Briggs’ska.)

{SLAND
I.
1. Givet z = l——li_—_:{—gv
1. Beregn modulus og argument for tallet z.
2. Beregn z°.

3. Anvend resultaterne til at udtrykke cos75° og sin75°.

2. Bestem maximum og minimum for funktionen y=a%"%, og skitser kurven i
hovedtraek.

Beregn arealet af det omréde, som begrenses af kurven, X-aksen og linierne
r=0 og x=2.

3. Sidefladerne i tetraedret ABCD er indbyrdes kongruente trekanter. I tre-
kanten 4ABC er siden a=57 mm, siden ¢=65 mm og hgjden h,=60 mm.
1. Tegn trekanten ABC i naturlig sterrelse, og beregn dens sider og vinkler.

2. Tegn tetraedret ABCD (AD =57, DC=65), og beregn vinklerne i et af dets
hjorner.
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3. En med kanterne AC og BD parallel plan skerer de andre kanter i P, @, R og S,
séledes at f. eks. AS=mn-AB (S ligger pd AB og 0<n < 1). Bevis, at denne plan
deler tetraedrets samlede overflade i det samme forhold, hvori den deler de
kanter, som den skerer. .

I1.

1. Parablen y%2=pz har toppunkt i O. P4 parablen ligger punkterne 4(z,, y,)
og B(x,, y¥,) pd hver sin side af parablens akse. En ret linie gennem A4 parallel med
X-aksen skeerer forlengelsen af korden BO i punktet C, medens korden 4B skeerer
aksen i D. Bevis, at parabeltangenten i A gar igennem midtpunktet af liniestyk-
ket DC.

2. Beregn
42 —1
42241

z—> % 91_21/2%_%2'

g
22(1 + Inz) — a?

1M e og
z—1 1 —cos(2—2x)

3. En geld pd 100.000 kr. skal amortiseres p&d 30 &r med lige store ydelser,
forste gang 1 &r efter gwzldens stiftelse. Renten er 6% p. a.

1. Hvor stor er den érlige ydelse?
2. Hvor stor bliver restgelden, nar det tyvende afdrag lige er blevet betalt?

3. Hvor mange hele ar senere end forudsat métte afbetalingerne begynde, nir
den arlige ydelse ikke mé overskride 129, af den oprindelige geld ?

NORGE
Reallinjen.

1. I AABC er £LC=90° og M er midtpunktet pd kateten AC. Kall kateten
AC for b, LA for x og LABM for v.

1) Konstruer AABC nar b og v er gitt. Utfor konstruksjonen med b=7 cm og
v=15° Finn (av figuren) den betingelsen som » m& oppfylle for at konstruksjonen
skal veere mulig.

2) Finn tgz uttrykt ved tgv. Droft den funne formelen og sammenhold resultatet
av denne dreftingen med resultatet av dreftingen av konstruksjonen.

2. T en reguleer, firkantet pyramide er siden i grunnflaten ¢ og heyden z. Vis
at radien (r) i pyramidens omskrevne kule da er gitt som funksjon av z ved
222+ a?

4

Finn den minste verdien » kan ha og den tilsvarende verdi av x. Hvor stor
blir i dette tilfelle sidekanten, og hvor stor blir sideflatens beyningsvinkel med
grunnflaten ?

I det tilfellet da radien er minst mulig, er det lagt et plan gjennom en side i
grunnflaten. Finn beyningsvinkelen mellom dette planet og grunnflaten, nir planet
deler kuleflaten i to deler, slik at disse har forholdet 2:1.
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3. Finn koordinatene for polen P til den rette linjen y=Z%kx med hensyn til
ellipsen 4(x— 3)% 4 9y2 = 36.

Finn s& likningen for det geometriske stedet for skjeringspunktet mellom den
rette linjen y=~Fkx og en parallell med x-aksen gjennom P, nir k varierer.

Det geometriske stedet blir en parabel med likningen y*=4x. Regn ut koordi-
natene til skjeringspunktene mellom denne parabelen og den gitte ellipsen, og tegn
begge kurvene p& millimeterpapiret med 2 cm som enhet p& aksene.

Beregn flateinnholdet av det lukkede areal som ligger over z-aksen og er begren-
set bare av de to kurvene.

SVERIGE
Realgymnasiet, allmdn kurs.

1. I en konvergent oindlig geometrisk serie ér fjéirde termen 3%. Seriens summa
4r 5 enheter mindre én summan av de béda férsta termerna. Vilken &r serien?

2. I en rat cirkuldr kon, vars sida dr lika stor som basytans diameter, ér en sfar
inskriven. Bestdm forhallandet mellan volymerna av de badda delar av konen, som
ligger utanfor sfiren.

3. Los ekvationen cos3x —cosx=0. Ordna de erhallna vinklarna i grupper, s
att i varje grupp perioden blir 360°. Berdkna dédrefter vérdet av funktionen
sinz — 3sin 3z for de olika gruppernas vinklar.

4. I rektangeln OABC ligger punkten P pé sidan OA4 och punkten @ pé sidan OC.
Sammanbindningslinjerna CP och AQ skir varandra i punkten R. Punkten S &r
det fjarde hérnet i en rektangel, vars évriga horn ar O, P och @. Bevisa med hjalp
av analytisk geometri, att punkterna B, S och R ligger p& en rit linje.

5. f(x) #r en funktion med derivatan f'(x) =2+ 3. De geometriska motsvarig-
heterna till funktionerna y = f(x) och y =f'(x) i samma ratvinkliga koordinatsystem
skidr varandra under rét vinkel i en av skédrningspunkterna. Bestdm f(x).

6. Fyra klot dr s& beldgna, att vart och ett tangerar de 6vriga utantill. Tre av
kloten &r lika stora, medan det fjarde klotets radie férhéller sig till de andras som
7:6. Berikna forhallandet mellan radierna i de bada klot, som tangerar alla fyra
kloten.

7. Upprita kurvan 3y=2%6—x?) i dess huvuddrag. Undersék darefter, hur
antalet tangenter till kurvan fran en punkt P pa y-axeln varierar, nér P genom-
16per ndmnda axel.

8. Undersok kurvan 10y = x* — 82% + 2ax? med avseende pd maximi- och minimi-
punkter f6r olika virden pé& konstanten a, och éskadliggor i skilda koordinatsystem
exempel pd de olika huvudtyper av kurvor, som kan férekomma.

Specialkurs.

. . — d*y
1. Visa, att funktionen y= Va?+C satisfierar ekvationen y3—‘£=y2—x2 for
alla virden pd konstanten C. dx



126 OPPGAVER, KRONIKK

2. P ar en rorlig punkt pd parabeln y2=2pz, F &r parabelns fokus. S6k och
konstruera orten for mittpunkten M pé stréickan FP, ndr P beskriver parabeln.
Visa ocksé, att tangenterna i P och M till respektive kurvor dr parallella.

3. Tvé kongruenta hyperbler i samma plan har gemensam medelpunkt, och
vinkeln mellan deras transversalaxlar ér rit. Kurvorna skidr varandra under 45°
vinkel. Bestédm deras excentricitet.

d43
4. For funktionen y=f(z) giller, att d—y?': 6x. Bestém funktionen sd, att mot-
x

svarande kurva far en inflexionspunkt i punkten (—1; 0) och tangenten i denna
punkt blir parallell med linjen y=4x. Undersék dédrefter kurvan med avseende
P& maximi-, minimi- och inflexionspunkter, samt upprita densamma.

ddy d?y
(Med — menas derivatan av — med avseende pi z.)
da® da?

5. I en likbent triangel &r basen och héjden mot basen lika stora. I triangeln
inskrives en ellips pa s& sétt, att dess ena axel faller utefter den ndmnda héjden.
Bestdm excentriciteten sd, att ellipsens yta blir s& stor som méjligt.

6. Bestdm avstdndet r frdn origo O i ett rdtvinkligt koordinatsystem till en
punkt P pé kurvan 222 — 2wy + 2y%?=1 som funktion av den vinkel v — riknad i
positiv led — som bildas mellan positiva z-axeln och strickan OP. Undersok,
hur detta avstdnd varierar, d& vinkeln v &ndras, och ange speciellt avstandets
storsta och minsta vérde. Upprita dven kurvan med anvindning av de erhallna
resultaten eller p4 annat sitt.

7. Undersok kurvan y=ax—sinz med avseende p4 maximi-, minimi- och in-
flexionspunkter f6r olika positiva virden pa konstanten a, och askadliggor i skilda
koordinatsystem exempel pé de olika huvudtyper av kurvor, som kan férekomma.

KRONIKK

UTNEVNELSER

Till professor i matematik vid Uppsala Universitet: Fil. dr. L. Carleson.
Till docenter i matematik vid Lunds Universitet: Fil. dr. Carl Hyltén-Cavallius
och fil. dr. Lennart Sandgren.

RESULTAT AV DEN FORSTE INTERNORDISKE PRISOPPGAVE
(Oppgavene sto i NMT 2 (1954), s. 128-130.)

Det kom inn ialt 15 besvarelser: 6 danske, 1 islandsk, 5 norske og 3 svenske.
Et utvalg av de beste losninger vil bli publisert i neste hefte av NMT.

Etter at konkurransen ble kunngjort, har dampskipselskapet Eimskipafélag
Islands oppstillet som forste premie en fri reise tur-retur mellom Kobenhavn og
Reykjavik. Vinneren vil £& fritt opphold i noen uker i Reykjavik, som den islandske
matematiske forenings gjest.
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Blant de innkomne besvarelser var det fire som var serlig gode. Bedemmelses-
komiteen har innstilt som vinner Peter Winge, III G mn, Sortedam Gymnasium,
Kobenhavn. Det disponible premiebelop, n. kr. 225, ble delt likt mellom Helg:
Jonsson, 6.kl. (mat. linje), Menntaskoldnum & Akureyri, Island, Per Wennerberg
Karlsson, III G mn, Vestre Borgerdydskole, Kebenhavn, og Asmus L. Schmids,
III G mn, Ribe Katedralskole, Danmark.

NMT takker alle deltakerne for den utviste interesse. En ny internordisk kon-
kurranse vil antagelig bli utskrevet i 1956.

PRISOPGAVER FOR DANSKE GYMNASIEELEVER

I prisopgavekonkurrencen for 1955, arrangeret af den danske matematik-
lererforening, indkom 21 besvarelser. 1. preemie (100 kr.) tildeltes Erik Jansen,
IIT G mn, Christianshavns Gymnasium, Kebenhavn. 2. preemie (50 kr.) tildeltes
Peter Kirkegaard, II G mn, Metropolitanskolen, Kebenhavn. Opgavernes tekst
findes i NMT 2 (1954), s. 187-189.

SUMMARY IN ENGLISH

Orar ScHMIDT: On the theorems of Ptolemy and Menelaus.
(Written in Danish.)

The article deals with the plane and spherical trigonometry in Ptolemy’s Alma-
gest, which is the oldest extant text that contains trigonometric calculations. In
this text the theorem of Ptolemy was used in constructing a table of chords
for arcs increasing from }° to 180° by steps of 1° (in other words a table of
sines for angles from %° to 90° by steps of £°). All problems within plane tri-
gonometry could then be solved by means of such a table, the pythagorean
theorem, and a few other theorems from elementary geometry. Astronomical
problems which we now would solve by using formulas from spherical trigonometry
were solved by Ptolemy by means of the theorem of Menelaus applied to the sphere
(and a table of chords). That all such problems actually can be solved in this way
is mentioned without proof by Ptolemy ; in the article this fact is proved by showing
that any spherical triangle in which three parts are given can be solved by Menelaus’
theorem.

Nius Prerine: Semi-regular continued fractions.
(Written in Swedish.)
In a regular continued fraction (c.f.) of a number w, one or more denominators

1 can be removed by the formula

1 . 1 1
ST S

The resulting c.f., with numerators +1 or —1, is said to be semi-regular. By an
appropriate removal of “singular’” denominators 1, we get a diagonal c.f., where

a+
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the convergents A,/B, represent all the rational numbers satisfying the inequality

1
2B,

v
——w

<
BV

(1)

The determination of the ‘“singular 1’s” is sometimes difficult, and the author
therefore studies a more systematic removal of denominators. By selecting every
other 1 in each consecutive row of 1’s, he gets two types of semi-regular c.f., which
are shown to coincide with Hurwitz’ ‘“Kettenbriiche erster und zweiter Art”’. The
convergents will not necessarily satisfy (1), but this can be obtained by a certain
systematic modification of the selection. Some of the convergents satisfying (1)
are, however, lost in the process. -

As an application, the author considers (p.105) the six values wzl/D for
D <100 where his new semi-regular c.f. differ from the diagonal ones. The symme-
tric property of a regular (and diagonal) c.f. for a quadratic surd is no longer
preserved.

K. ZeutHEN HEIDAM: An approximation formula for the determination
of areas.

(Written in English.)

Let a curve y=f(x)=—cy+ ¢,x+ @2+ c,@® be determined by passing through
two given points with abscissae z, , and a,, at which points the inclinations of
the tangents are known. The area between the curve and the x-axis from z,
to x, is then given by

Fp= 3dp{f(wp 1) +f () + 3, [ (@p1) =F (@) T},

where d,=x,—x, ;. If several points of the curve are known, the total area from
the first to the last ordinate is a sum of such expressions. This formula can be used
for approximate calculation of the area under a curve which is determined by a
series of pairs of observations. For the inclination f’(x,) of the tangent through
an interior point (which is usually not observed), it seems reasonable to choose
the inclination of the chord through the nearest points at either side. As for the
inclination of the end-point tangents, another assumption (stated in the article)
is necessary. Especially for a curve through three points, Brun’s approximation
formula (NMT 1 (1953), pp. 10-15) is obtained.

A numerical example for the curve y = ¢, using five points from £=0 to x=1n5,
reveals a much better approximation by the new formula than by the formula
of Brun.




