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HISTORISKA SYNPUNKTER I SAMBAND
MED MATEMATIKUNDERVISNINGEN

INKERI SIMOLA
Foredrag hallet vid matematik- och fysiklararkongressen i Aarhus 6.8.54, nagot forkortat.

I Finlands rundradio upptogs en sondag i februari 1954 fragan om
linjedelningen i gymnasialstadiet vid véra laroverk till diskussion.
Deltagarna var representanter for Skolstyrelsen, Tekniska Hogskolan
samt liroverken och dessutom tva studenter, av vilka den ene hade valt
matematiska linjen i studentexamen. Den unge mannen, som for nir-
varande studerar vid Tekniska Hogskolan, beklagade livligt, att dven
den s3 kallade matematiska linjen i vara skolor har alltfor snivt tilltagen
kurs i matematik. Detta medfor, att hogskolestudierna i de matematiska
dmnena nodviandigtvis maste utgd frin en avsevirt ligre niva &n vad
fallet dr i de ovriga nordiska linderna. En orsak till att matematikkursen
ir sd begrinsad, sade han, utgér det stora rum, som undervisningen i
historia intar i undervisningsplanen i vara skolor. Historisk undervisning
ges under de egentliga historietimmarna, som &r rikligt representerade i
timplanen, men &ven i naturhistoria, musikhistoria, konsthistoria, kyrko-
historia, litteraturhistoria — ja, till och med fysikundervisningen bestéar
nagon gang overvigande av fysikens historia. Ett #mne fanns det dock,
fortfarande enligt studentens asikt, som lyckligtvis &r fritt frin historiska
ingredienser. Detta dmne dr matematiken.

I stora drag forhaller det sig som den unge mannen sade, atminstone
vad matematiken betrdffar. I allménhet blir inga historiska synpunkter
beaktade under matematiklektionerna vid liroverken i Finland, ehuru
det i sjilva verket d&ven hir vore motiverat att i en viss ansprakslés ut-
strickning medtaga historiska fakta.

Orsakerna hértill dr réitt manga. Da samma skil néstan alltid aberopas,
nér man motsétter sig undervisning i matematikens historia, vill jag hir
i all korthet anféra de viktigaste av dessa argument.

For det forsta maste man beakta, att till kursfordringarna for vara
matematiklirare vid universitetet &nda till h6sten 1954 inte har hort nagon
obligatorisk kurs i matematikens historia. For att vinna insikt i detta
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dmne har lararen silunda varit helt hinvisad till eget initiativ. Under-
visningsplanerna och de metodiska anvisningarna, utfirdade av Skol-
styrelsen ar 1941, innehaller inte heller ndgon hénvisning eller uppmaning
till undervisning i matematikens historia. Dessutom &r matematiktim-
marnas antal i skolan ganska ringa i jamforelse med den kurs, som maste
genomgas. Mangen lidrare dr helt enkelt ridd att anvinda lektionstiden
till annat &n behandlingen av det ordinarie undervisningsstoffet. Och
slutligen bor vi ocksa beakta, att I1onestandarden i vart land dr sddan, att
Atminstone en familjeférsérjare for att ekonomiskt reda sig ér tvungen
att overta ett stort antal timmar. Klasserna &r stora och dérfér upptar
hemarbete, korrigering av prov o. dyl. néstan all 6verbliven tid. Det kan
dven framstd som viktigare att dgna tid at nya didaktiska metoder, nya
larobocker och annat, som stéar i direkt kontakt med undervisningsstoffet,
varigenom tiden blir totalt upptagen och inte ger liraren tillfille att
sysselsidtta sig med historia.

Erfarenheten lir oss & andra sidan, att man alltid brukar finna tid for
det, som man &r intresserad och fingslad av. Dirfor synes det mig, att
bristande intresse hos ldrarna bar storsta skulden till att matematikbunder-
visningen © skolan ej tar ndgon hinsyn 1l historiska aspekter; denna brist
ma sedan bero pa vilka orsaker som helst. Om lirarens eget intresse och
hans entusiasm for saken kunde vickas, da torde vil alla ovan uppriknade
skil latt kunna elimineras. Ifall liraren sjilv blir 6vertygad om att han
blir en battre matematiklirare, om han vid sin undervisning dven kan
befatta sig med kulturhistoriska fakta, som berér de matematiska be-
greppen, vilka star under behandling, da férdjupar han sig i matematikens
historia, d4 undervisar han i den.

Men blir han da en béttre lirare? Lonar det médan att offra tid for
undervisningen i matematikens historia? I det foljande vill jag forsoka
framfora nagra tankar om detta sporsmal.

Det #ér kint att skolan vid sidan av sina andra syften dven vill ge
eleverna en bild av den ménskliga kulturen i dess utveckling fran for-
historiska tider till den dag som i dag &r. I férsta hand fullféljes denna
plan under historietimmarna; det, som dérvid framhalles om matemati-
kens bidrag till evolutionen, kan med goda skil betecknas som synner-
ligen obetydligt. Och detta dr ju helt naturligt, ty en vanlig historieldrare
kan ej forutsittas &ga en s& omfattande 6verblick 6ver matematikens
betydelse i kulturinsatsen, som &r mojlig f6r en historieforskare eller en
matematiker. Det dr s méanga olika synpunkter, som historielidraren har
att dgna sin uppmirksamhet at, att matematiken far ndja sig med att
bli flyktigt omnémnd i samband med behandlingen av de skilda kultur-
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perioderna. Salunda ger pyramiderna i Egypten anledning till att berdtta
nagot om bestdmningen av deras mattférhallanden, babyloniernas astro-
logi omtalas dvensom deras talsystem med 60 som bas, men helt sikert
far eleven intet begrepp om deras synnerligen hogtstiende matematik —
den Pythagoreiska satsen hade ju redan kommit till anvéindning hos
babylonierna. Dérefter upptrider matematiken i nigra anekdoter om
Archimedes och Kuklides, senare blir den omnimnd i samband med
namnen Newton, Cartesius, Leibniz. Stoffet, som kommer till behandling,
ir givetvis i nagon mén varierande allt efter lirarens individualitet, men
dven i bista fall maste framstdllningen vara starkt summarisk.

Det dligger matematikliraren att klargora for sina elever, © vilken hdg grad
matematiken har utévat inflytande pd de olika kulturformerna, deras upp-
komst och wutveckling. Han skall 6ppna deras 6gon for den enastéende
stéillning matematiken intar bland skapelserna av den ménskliga anden.
Redan fornhistorien adagaldgger, huru det har varit nédvindigt att
anvinda matematik for 16sning av problem i det praktiska livet — skatte-
indrivning, handel, delning av jordomraden, konstgjord bevattning,
byggnadskonst etc., medan matematiken & sin sida gjort framsteg tack
vare dessa praktiska tillimpningar. Overgingen fran det praktiska livets
problem till den egentliga teorin intréffade sedan under den grekiska
kulturperioden — den visentliga punkten vid denna &vergdng var ju
uppkomsten av grinsvirdebegreppet. Behandlingen av oéndlighetsspors-
malet, som begynte med de gamla sofisternas problem — jag omnimner
bara Achilles och skoldpaddan — ledde till Eudoxos’ exhaustionsbevis,
och déri ingér ju redan grinsvirdebegreppet, grundvalen f6r den moderna
matematiken.

Nér det sedan pavisas for eleverna, hur detta teoretiska forskningssitt,
som uppkommit s& langt tillbaka i tiden, sedermera utbrett sig i standigt
vidgade kretsar att omfatta &ven andra vetenskaper, ja till och med
konsten i dess olika uttrycksformer, d& blir det majligt for eleven att inse,
att man genom att folja matematikens utvecklingsgang kan ledas till
iakttagelser av allmént ménskligt virde. Matematikens forskningsmetoder
har 6vertagits av sa gott som alla grenar av praktiskt forskningsarbete.
Vare sig det dr friga om en ingenjor, arkitekt, likare, psykolog eller -
naturforskare — alla ér de i behov av matematik som effektivt hjalp-
medel. »Naturens bok #r skriven med matematiska bokstidver«, har
Galilei sagt, och redan Kant kristalliserade insikten om att den exakta
naturvetenskapen endast kan stricka sig sa langt som de matematiska
metoderna nar. Och det har visat sig att den nytta, som foljer med
tillimpning av matematiska metoder, ingalunda har kommit uteslutande
det praktiska livet till godo. Hérvid har nya teoretiska problem uppstétt,
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som lett till viardefulla resultat pa det rent vetenskapliga omradet. P4
detta sitt har en befruktande vixelverkan mellan teori och praktik upp-
kommit.

Pa samma sitt forhaller det sig med konsten. Vi vet, att redan Pytha-
goras inférde matematiken i musiken. Och i Spenglers »Der Untergang
des Abendlandes« finner vi foljande yttranden (I sid. 77):

»Am Anfang jeder Kultur steht ein archaischer Stil, den man nicht nur
in der frithhellenischen Kunst hiitte geometrisch nennen konnen. Es liegt
etwas Gemeinsames, ausdriicklich Mathematisches in diesem antiken Stil
des 10. Jahrhunderts, im Tempelstil der 4. Dynastie Agyptens mit seiner
unbedingten Herrschaft der geraden Linie und des rechten Winkels, im
altchristlichen Sarkophagreliefe und im romanischen Bau und Ornament.
— Qotische Dome und dorische Tempel sind steingewordne Mathematik.«

A andra sidan ir matematiskt forskningsarbete vil jaimforbart med
artistens vérv, nir han skapar ett konstverk. Konstnirens inspiration och
hans intuitiva syn dr lika nédvandiga for en sann matematiker. Newton,
Gauss och Riemann var personligheter med en konstnirs skapande sinne-
lag. Och f6ljande ord av Weierstrass har ofta citerats: »Om ej en matema-
tiker i sitt innersta gobmmer dven nagot av en poet, kan han inte vara en
riktig matematiker.«

Om eleverna kan bringas till insikt om matematikens direkta eller
indirekta inverkan pa hela vart kulturliv, da blir de méhénda dven med-
vetna om att den torra teorin, som de tvingas att gora sig fortrogna med
och som kanske rentav vickt deras avsky pa grund av bristande for-
staelse for teorins stora mal, &r vérd uppriktig beundran och att dess
studium &r nagot, som man inte angrar.

Nér man dessutom klargor for eleverna, att deras egen lidroprocess
avancerar genom samma stadier som hela var méinsklighet har genom-
gatt, dvs. nér undervisningen inledes med enkla problem, tagna ur det
praktiska livet, successivt Overgaende till temata med allt starkare
teoretiskt och abstrakt inslag, d& har de dven mojlighet att vinna en
djupare inblick i den matematiska forskningens utveckling. Hos somliga
elever med stérre matematisk begavning kan detta kanske leda till
en onskan att bli bekanta med matematiken utover ldrobockernas
pensum. Hér har saledes liraren mojlighet att framkalla det aktiva
intresset, den avgorande forutsidttningen for all framgangsrik studieverk-
samhet.

Diarmed har vi kommit till den andra viktiga synpunkten, som talar
for undervisning i matematikens historia. Historien dr fangslande och
underhdllande; den vicker elevernas intresse. '

Varje larare, som nagon gang berittat for sina elever om nigot av de
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urgamla problemen, vinkelns tredelning, cirkelns kvadratur, kubens for-
dubbling, eller beskrivit ndgon namnkunnig matematikers levnadshistoria
och livsgirning, har sikert lagt mérke till det odelade intresse, varmed
eleverna lyssnar till ett dylikt foredrag. Atskilliga gdnger har jag anmodat
mina elever att nedskriva sina tankar betriffande den ansprakslosa kurs
i matematikens historia, som jag har genomgéatt med klassen. Eleverna
ombads att i sina anonyma svar ge uttryck at sin verkliga asikt. Dessutom
har jag vid detta tillfdlle papekat, att deras lirokurs dr rétt omfangsrik
med beaktande av det liga timantalet, samtidigt som jag uppfordrat
dem att 6verviga, huruvida det dr virt att offra tid at ett tema, som ej
ingar i lirobSckerna. Ocksé den fragan togs till 6vervigande, om det inte
skulle vara virdefullare att anvinda dven ifragavarande tid till vningar
i problemlosning. — Svaren utvisar, att nistan alla utan undantag
onskar, att matematikens historia fortfarande upptas till behandling.
Aven i de hogsta klasserna med studentexamen alldeles inom synhall
lydde en stor del av svaren: »Mera om matematikens historia; flera
sddana problem, som inte omndmnes i kursen.« — Givetvis méste man
forhalla sig till elevernas utlatanden med en viss reservation. Hos somliga
har avgorandet helt sikert triffats enligt principen att vilja det mindre
av tvenne onda; dessa elever skulle med lika stort néje hélsa varje annat
slag av avbrott i lektionens vanliga forlopp, i lixférhoret och i rikne-
ovningarna. Men otvivelaktigt adagaligger en del av eleverna ett uppen-
bart intresse for saken. Ett sadant fall foreligger tydligt, t. ex. niir eleven
ber att & extra hemuppgifter. Sddana elever dgnar sig med stort intresse
at losningen av problem, som faller utanfor kursen. De sétter sig kanske
in i teorin for bindira talsystem eller bemodar sig att uppséka medel-
punkterna till tva cirklar, som skir varandra, enbart med tillhjilp av
linjal, och vanligtvis avbdjes till en bérjan lirarens hjilp med orden: »Jag
vill &nnu halla pa en stund sjilve. Uppkomsten av ett dylikt personligt
intresse hos eleverna #r det bista vittnesbordet om att liraren anvinder
riatt metod.

Till sist vill jag anféra ytterligare en motivering fér undervisning i
matematikens historia, ett motiv, som ir av rent pedagogisk art. Huru
nyttigt dr det inte bade ur ldrarens och elevens synvinkel, néir det framgér,
att samma svarigheter, som moter eleven i samband med ett nytt begrepp,
framstatt i samma gestalt for hela ménskligheten, da detta begrepp for
férsta gangen infordes i matematiken. Ehuru undervisningstekniken fun-
nit metoder, som medger en avsevird férkortning av lirotiden, &dr det
dnd4 nodvandigt att inhdmta allt undervisningsstoff i tur och ordning
med borjan frin elementerna, pa samma sidtt som de forna matemati-
kerna har fitt gora. »Det finns ingen kungsvig i matematiken«. For
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liraren &r det ocksa gott att halla i minnet, att matematiken endast genom
talrika felsteg och misstag kunnat utveckla sig till sin nuvarande niva.
Dérfér &r det varken nytt eller p&4 nagot sitt klandervirt, nir eleven
begér fel, och det innebir ej heller nagon fara — forutsatt att han drar
lirdom av felen och kan undvika dem i framtiden.

Det &r inte min avsikt att hir diskutera, huru nyttigt det #r for liraren
sjalv, att han &r fortrogen med den historiska bakgrunden for sitt under-
visningséimne, ty detta borde vara klart fér var och en. Jag vill blott
pipeka, huru varje lirare géirna anvénder extra material, som gor den
sedvanliga, lektion efter lektion fortsatta rikneexercisen littare. Korta
historiska glimtar ér séirdeles vl dgnade hartill. Just nu diskuteras ofta
en planerad omdaning av undervisningen i skolorna. Det ir rentav nod-
véndigt, att personer, som planerar en sidan reform, har klart for sig,
vad som tidigare gjorts i detta hinseende #vensom orsakerna till att
tidigare planer misslyckats. Detta forutséitter, att de bor kinna sin egen
vetenskaps utvecklingshistoria. I friga om matematiken visar historien
framfér allt, att det varit omdjligt for minniskan pa ett elementirt sta-
dium att uppfatta nagot utéver det rent dskadliga, som é&r férknippat med
det praktiska livet. Forst vid ett senare skede kunde abstraktionsfor-
mégan utbilda sig. Samma sakférhallande bor tagas i betraktande, da
det géller undervisningen i de liigre klasserna. Det 4r absolut nodvindigt,
att man later komplicerade teorier och svarfattliga framstillningar ansté,
till dess barnet har natt en sddan intellektuell utveckling, att det kan
tilligna sig dem.

I det f6ljande forsoker jag granska olika sétt att uppta undervisning i
matematikens historia i liroplanen i véara skolor jimte riktlinjer, som
kunde f6ljas vid valet av undervisningsmaterial fér de olika stadierna i
skolan.

Det ligger i sakens natur, att undervisningen i fraga &r genomforbar i
huvudsak endast i gymnasiet. Men kursen for de ligre stadierna uppvisar
dock dven sddana punkter, till vilka liraren kan anknyta en framstillning
av matematikens historia och sélunda avsevért liva upp undervisningen
genom detaljuppgifter om matematikens utveckling och underhallande
anekdoter om beromda matematiker. Bland sidana punkter kan jag for
det forsta nimna inforandet av talbegreppet samt inledningen till vart
talsystems struktur. Det &r ett noje att f6r de sm4 eleverna i forsta klassen
redogdra for decimalsystemets ursprung och anordna en lek, dir barnen
forestiller forntida boskapsriiknare, som med tillhjilp av sina egna och
sina bitrddens fingrar tar reda pa antalet av sina djur. Kan sedan dessa
elever — ungefir i tioarsaldern — med tillhjilp av téndstickor férvandla
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ett i decimalsystem uttryckt tal till ett tal i systemet med 8 som bas, s&
har liraren uppenbarligen lyckats att klargéra for dem talsystemets
strukturprincip. '

Ett annat exempel utgér inledningen till undervisningen i geometri.
Enligt min asikt 4r det vilmotiverat att fére introduceringen av punkter,
linjer och kroppar ge eleverna en bild av geometrins uppkomst och dess
forntida anviindningar samt sedan klargéra, huru den efter hand har
vuxit upp till en vetenskap, forutan vilken det vore oss omojligt att
planera och uppgora ritningar till stider, broar, bostidder och alla bygg-
nadsverk 6verhuvudtaget. Kanske inser eleverna hirvidlag, att liksom
kirurgen ej kan ata sig en operation, forrén han dr bekant med ménnisko-
kroppens anatomi och lirt sig att handha sin operationskniv, sa forut-
sitter byggnadskonsten — liksom méanga andra grenar av ingenjors-
hantverket — att man behérskar dess element, geometrin, och har for-
magan att anvinda dess speciella operationsverktyg, algebran.

Och huru létt ér det inte for eleverna att minnas anekdoten om Platons
akademi: »Ingen ma trida hitin, som inte behérskar geometrin.«

Jag kinner en lirare, som vid vergingen till liran om geometriska
figurers konstruktion enbart med passare och linjal, de klassiska hjélp-
medlen, haller ett glinsande anforande om Euklides, liser utdrag ur hans
Elementa och sedan angriper problemet att draga en cirkel med en given
punkt som medelpunkt och en given stricka som radie. Hérvid betonar
han séirskilt, att problemet kan 16sas enbart med hjialp av Euklides’ bada
bekanta postulat. — Om problemet i fraga behandlas pa detta speciella
sitt i samband med en historisk exposé och med betonande av principen,
att férutsittningarna, som gors vid inférandet av nya postulat, inskranks
till ett minimum, d& forsvarar problemet sin plats i var matematikunder-
visning, &ven om det har inf6érts bland postulaten i de flesta av de liro-
bocker, som for nirvarande dr i bruk.

Ovan har jag latit nagra exempel belysa framstéllningen av historiska
fakta i sddana fall, dir temat otvunget ansluter sig till det aktuella, for
tillfillet behandlade stoffet. Enligt min &sikt torde i mellanskolan denna
metod vara den enda mojliga. Aven pa gymnasialstadiet dr den mycket
anvindbar, i synnerhet som méjligheterna att framstélla det historiska
stoffet da sjalvfallet dr avsevirt mangsidigare. Eleverna forfogar ju d&
redan dver relativt omfattande fundamentala kunskaper, och éven i andra
hinseenden stir de pa en hogre utvecklingsniva, vilket medfor, att de
har littare att fatta ldrarens foredrag.

Ja — vad dr det d4 man skall foredra for eleverna ? Detta &r den cen-
trala fragan; i sjilva verket &r det i hog grad en personlig fraga. S4 linge
liroplanen inte foreskriver det lirostoff, som skall behandlas, &r under-
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visningen i matematikens historia starkt beroende av lirarens indivi-
duella intresse f6r de olika specialfragorna, och det 4r ju bara lyckligt att
lararen har fria hénder. Helt sikert rader det inte heller nagon brist pa
material, bland vilket man kan vélja. Den ene kan intressera sig sirskilt
for den pythagoreiska talteorin, medan en annan med forkirlek utbreder
sig 6ver talet z:s historia. Personligen har jag alltid kint sirskilt intresse
fér en omstindighet, som omedelbart framgar ur framstéllningen av det
gyllene snittets teori. Denna erbjuder i och fér sig ett utmirkt tillfslle till
intressanta berittelser; nir man sedan 6vergar till att konstruera den
reguljira tiohSrningen, faller det av sig sjilvt att ta fram det gamla
intressanta problemet om i huru manga lika stora delar det ir mojligt att
dela cirkelperiferin med enbart de klassiska hjilpmedlen, passare och
linjal. Os6kt leder sedan problemets 16sning till en skildring av matema-
tikernas konung, Gauss, och hans livsgérning. Det #r ocksa roligt att
berdtta om Gottingen, Gauss’ stad, som s& linge varit ett centrum for
den matematiska forskningen. Géttingen for ju tanken till namnen Klein,
Planck, Hilbert och andra, bland dem #ven Lietzmann, vars metodik #r
vilkind for oss pedagoger. Och har inte envar, som studerat matematik
i Gottingen, sokt upp Gauss’ gravvard och férgives anstringt sig att pa
den hitta den berémda reguljira 17-hérningen ? — Men anekdoten hirom
faster sig i elevernas minne och pa samma ging minns de éven, vad som
sagts om sjidlva problemet.

I det foreghende har jag behandlat nagra isolerade punkter i vart
undervisningsprogram, som erbjuder en naturlig anknytning till mate-
matikens historia. Det &r emellertid dven mé&jligt att ga systematiskt till
véga vid valet av behandlade dmnen. En regel, som enligt min asikt
borde beaktas, &r, att inforandet av nya begrepp si vitt mojligt alltid
borde atféljas av en framstéllning av deras historiska bakgrund. Liran
om logaritmerna mé tjina som exempel hirpa.

Vid inférandet av logaritmerna dr det pa sin plats att for eleverna
beritta om den tidsperiod, d& logaritmerna tillkom. Som kéint &r, sam-
manfaller denna héindelse med den nya tidens borjan under 1600-talet.
De stora geografiska uppticktsresorna vid dvergangen fran medeltiden
till nya tiden hade medfért en enorm utveckling av handel och sjofart.
Léngtarderna till nya linder, till kryddéarna och till Amerika hade till
resultat en strivan efter allt bittre navigationsmetoder och ortsbestim-
ningar i 6ppen sj6. De hirtill erforderliga berikningarna var ytterst tids-
ddande och svara att utféra. A andra sidan férde den livliga handeln till
en anhopning av stora formdgenheter. Placeringen av dessa medel foror-
sakade ett oerhort uppsving i bankvisendet och framkallade kompli-
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cerade berikningar av riinta och réinta pa rénta, en uppgift, som utfordes
av speciella rakneméstare.

Foljaktligen var det alldeles naturligt, att man just d& uppfann metoder,
som mojliggjorde ett enklare utférande av dessa svéira rikneoperationer.
Man lirde sig att losa navigationsproblemen med tillhjilp av trigono-
metrin, som d& befann sig i stark utveckling, och logaritmerna, som helt
nyligen inforts av Neper och Briggs, anvindes vid utférande av langa och
modosamma multiplikationer och divisioner.

Det dr sirdeles intressant att konstatera, att vi den dag som i dag ar
ater har ett motsvarande behov av nya, visentligt forbéattrade rikne-
metoder. Bland annat har atomfysiken med de talrika nya problem, som
uppkommit i samband med denna forskningsgren, givit upphov till upp-
gifter medférande ett si ofantligt matt av riknearbete, att de hjilpmedel,
som hittills statt oss till buds, tabeller och riknemaskiner, helt enkelt &r
ur stand att bemistra dem. Foljden hérav har varit uppfinnandet av de
nya revolutionerande rikneapparaterna, matematikmaskinerna. Vid sidan
av den betydelse dessa maskiner #ger i rent riknetekniskt héinseende har
de redan utdvat ett mirkligt inflytande pa matematikens utveckling,
dels genom att anviindandet av maskinerna har framkallat helt nya
metoder och. teorier, dels genom att nya landvinningar har gjorts pa
grinsomrddena till vart matematiska vetande. Salunda har man bland
annat med dessa maskiner redan kunnat uppvisa mycket storre primtal
in 2127 -1, det storsta kiinda primtalet fére matematikmaskinernas era.

En annan form av undervisningen i matematikens historia skulle jag
anse utgoras av en historisk generaloversikt i samband med repetitioner
over den del av &mnet, som for tillfillet star under behandling. I mén av
mojlighet skall denna 6verblick éven innehélla sddant, som utvidgar ele-
vernas perspektiv utéver grinserna for skolkursen. Ett belysande exempel
ar den analytiska geometrin. Det dr nyttigt att vid en repetition klargéra
for eleverna att matematikens sprak under gamla tiden var rent geo-
metriskt — allt forsékte man aterge i form av figurer, strickor, arealer,
och volymer — och att det var Descartes, som i sin analytiska geometri
gav matematikern ett medel att tala om geometriska begrepp pd analy-
sens sprak. Geometrin jimte manga andra filt kunde dérefter »avbildas«
pa analysen. Och om #ven var skolkurs i analytisk geometri endast om-
fattar problem i ett tvadimensionellt kontinuum, bor liraren ej forsumma
att ge eleverna en antydan om, huru generalisationen till den tredimen-
sionella rymden kan forsiggd och huru det &r mojligt for matematikern
att pd motsvarande sitt behandla fyr- och flerdimensionella vérldar,
oaktat att det inte finns ndgon mojlighet f6r oss att bilda oss ett askadligt
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begrepp om dessa. Om en dylik generalisation, som kan tillimpas redan
p4 skolstadiet, ger professor R. Nevanlinna en sirdeles lirorik framstill-
ning i en artikel, publicerad ar 1953 i NMT.

Kursen i analytisk geometri kunde emellertid utvidgas #ven i en annan
riktning. Forutom framstillningen om kégelsnitten och de grafiska bil-
derna av négra fa hela och brutna funktioner, som ingar i kursen, borde
eleverna fi veta, att det dven finns andra kurvor. Nagot kunde berittas
om cykloiden och dess egenskaper, om kedjelinjen och den Gausska fel-
kurvan; dessa kurvor och deras ekvationer kunde anféras. Detta behéver
inte ta ett Svermdatt av tid i ansprak — syftet skulle endast vara att lata
eleverna forstd, att matematiken ej tar slut, dir skolkursen slutar.

Ett ytterligare exempel pé en historisk aterblick i samband med repeti-
tioner ér behandlingen av talomradet. Samtidigt som eleverna far del av
riknelagarnas permanensprincip vid utvidgningen av talomradet med de
naturliga talen som utgangspunkt, skall man beskriva, huru svart det pa
sin tid varit att ta ut steget fran de rationella till de irrationella talen och
vidare till de komplexa talen. Hir finner liraren ater en mojlighet att ge
eleverna en skymt av ett av den nyare tidens forskningsomraden, mingd-
léran, Cantors transfinita tal eller aleph-talen, som ej lingre foljer de
hévdvunna riknereglerna, i det att exempelvis delen kan vara lika stor
som det hela. Aven detta frimjar i sin méan elevernas insikt om att skol-
matematiken knappast utgér mer &n de allra férsta elementen av mate-
matikens hela forskningsgebit.

I bérjan av juni 1954 bevistade jag en konferens 6ver fragor rorande
laroverken. Ett av foredragen holls av en av vara universitetsprofessorer,
som bl. a. beklagade férhallandet, att manga studenter, d& de borjar sina
studier, till den grad &r uppfyllda av sin inbillade visdom, att de ér rentav
vaccinerade mot faran att »adraga sig« nya kunskaper. Som betecknande
for detta slag av studenter anforde han den gamla historien om en ung
studerande, som pa sin flickvéins suck: »O hur hirligt det skulle vara,
om man visste allt I« svarar: »Ja, det dr hiirligt '« — Det &r lirarens uppgift
att klargora for eleverna, att de endast star vid bérjan av kunskapens
vig, att vetenskapen ej dr nagot slutgiltigt och firdigt, utan att den ér
en alltjimt fortskridande, levande forskningsprocess, ur vilken stindigt
nya problem stiger fram.

Alla glimtar av mojligheter att behandla delar av matematikens histo-
ria, som jag hir har givit, har omedelbar anslutning till den egentliga
uppgiften fér varje ifragavarande lektion. Det forefaller mig, att man pa
gymnasialstadiet dven kunde dgna nigra lektioner enbart 4t matemati-
kens historia. Lérarna skulle d& ha tillfille att tala #ven om sadant, som
e]j star i berdring med skolkursen, men som i och fér sig dr virt att veta
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och dgnat att vicka intresse for matematiken. Det viktigaste program-
met for dylika lektioner skulle jag se i en viss systematisk framstéllning
av matematikens utveckling. En sddan lirokurs kunde ges eleverna till
hemlixa och férhoras i likhet med andra hemuppgifter.

Det ar uppenbart, att det omrade, som en sidan kurs omfattar, ej kan
vara sirdeles stort. Undervisningsmaterialet, som ingér i var skolkurs i
aritmetik och algebra, bestar i allménhet av flera hundra ir gammalt
vetande, och stoffet i skolgeometrin gér till stérsta delen &nnu vida lingre
tillbaka i tiden. Under nya tiden har en langtgaende utveckling #gt rum
i den matematiska forskningen, bade i horisontell riktning mot olika
omrdden och i vertikal riktning, & ena sidan mot precisering av begrepp
och & andra sidan mot generalisering. Jag vill endast omnidmna, huru
t. ex. utvecklingen av de reella funktionernas teori givit méjlighet till en
generalisering av integralbegreppet fran Cauchy’s integral inda till de
under ytterst generella villkor definierade Lebesgue-Stieltjesintegra-
lerna samt motsvarande begrepp av dnnu mera generell natur. Det &r
absolut omdjligt att pa grundval av skolkursen ge nagon som helst
begriplig bild av den moderna matematiken, och detta behovs ju inte
heller. Likasé &r det omdjligt f6r en lirare utan flerariga extra studier att
kunna redogéra for denna utveckling. Det 4r diarfor patagligt, att en sam-
manhéingande behandling av matematikens historia, som kunde féretas
i vara skolor, endast kan berdra gamla tiden och medeltiden samt even-
tuellt renissanstiden. Jag anser dock, att #ven en sa inskrinkt historisk
oversikt skulle vara till stor nytta. Aven for en i matematikens historia
obevandrad lirare torde det ej medfsra synnerliga svarigheter att sitta
sig in i saken, ty goda killskrifter finns att tillga. Bland sidana vill jag
blott anfora den for alla danskar vilbekanta, av Neugebauer omarbetade
boken »Matematikens historie« av Zeuthen.

Som exempel p& andra d&mnen, som limpar sig for de egentliga historie-
lektionerna, vill jag nimna en kort framstdllning av den matematiska
forskningens utveckling i det egna landet. For de finska skoleleverna dr
det séikert av intresse att erfara nagot om detta, ehuru hjiltarna i Kale-
vala ej torde ha utmirkt sig som vidare framstiende matematiker, om
ock 23.sangen fortiljer, att de kunde utlisa tiden ur himmelstecknen.
Annu vid bérjan av den nya tiden befann sig matematiken i vart land
pa ett ganska elementért stadium. P4 den férsta matematikprofessorns
vid Abo universitet, Kexlerus’, tid skrevs ett antal lirobscker i matema-
tik, vanligtvis sammanstillda ur dissertationer, och dessa bocker ger en
god inblick i de problem, vilka sysselsatte den tidens matematiker. Man
finner &ven, att matematiken hir, liksom annorstides i Europa, kunde
tillimpas pa synnerligen ovanliga omriden. Samtidigt som matemati-
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kerna i Europa under 1600-talet kunde bemdda sig att rikna ut, nir
virlden hade skapats eller vem som var Uppenbarelsebokens vilddjur,
skrev Kexlerus verket »Arithmetica geodaetica denaria«, som bland annat
framkastade frigorna : »Kunna trollpackor forvandla manniskor till vargar
och andra oskiliga djur % och »Bér man gifta sig med en skon kvinna %«
Mina lisare skulle kanske kinna sig besvikna, om jag undanholl dem
resultaten: svaret pa den forsta frigan blev »nej¢, pd den andra »jac.

Forst under 1700-talet borjade den matematiska forskningen i Finland
att uppna en hogre niva, och minga av Abo universitets matematik-
professorer blev da virderade som goda matematiker, och de insatser,
som den senare tidens finska matematiker gjort, tal nog jamforelse med
motsvarande resultat i andra linder. Om denna utveckling har professor
E. Lindelof skrivit en uppsats i tidskriften Valvoja-Aika (1929) samt
professor P. J. Myrberg tvé artiklar i tidskriften Arkhimedes (1950 och
1952). Dessas innehall borde varenda matematiklirare i ett finskt laro-
verk kinna till.

Ytterligare ett tema, som utan tvivel fangslar en lirarinnas &vensom
kvinnliga elevers intresse, 4r en redogorelse for kvinnan som matema-
tiker — fran Hypatias tid till den dag som nu #r. Nutidens kvinnliga
matematiker kan ej mera avskrickas med det pastaende, som nervlikaren
Mobius uttalat for ett halvt sekel sedan: »Kvinnan och matematiken hor
ej tillsamman. Om en kvinna sysslar med matematik, &r det lika gott,
som om hon hade skiigg.« Det #r dock nyttigt for flickelever att dven fa
héra om de svarigheter Sonja Kowalewski hade att kimpa emot, innan
hon blev professor i matematik vid Stockholms Hégskola. For den unga
kvinnan av i dag star diremot alla mojligheter att studera matematik i
man av begavning och skicklighet &ppna.

Om eleverna i en skola har bildat en sirskild klubb fér matematiska
amnen, erbjuder sig givetvis vida talrikare tillfallen till framstéllning av
historiska fakta. Jag anser just matematikens historia och behandlingen
av historiska problem som en av de viktigaste verksamhetsformerna for
en dylik klubb. Liraren 4 sin sida kunde utvilja det material, som skall
behandlas, si att eleverna sjilva #r i stand att med mindre foredrag delta
i undervisningen. Varje foéredragshallare skulle pa detta vis sitta sig
grundligt in i &tminstone ett tema, samtidigt som han skulle fa nyttig
ovning i utarbetandet av en sammanhéingande framstéllning. Forutsatt-
ningen for en sidan medverkan frén elevernas sida &r emellertid, att
liraren &r kompetent att ge eleverna den nddvindiga handledningen.
Han maste sjilv vara inkommen i saken, han méste fordjupa sig i &mnet
genom att lisa litteratur och finna &mnen, som kan intressera eleverna.
Han maste ha tillgang till limpliga kéllskrifter; saledes maste han ha
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mojlighet att skaffa sig sjélv eller skolan ett tillréckligt omfattande
matematiskt bibliotek.

Ovan har jag framstéllt nigra tankar rérande matematikens historia
i en form lamplig f6r liroverken. Sjdlvfallet vore det sérdeles onskvirt
att ha en lirobok omfattande ungefir allt, som kan behandlas i skolan.
Ur detta material skulle sedan liararen kunna traffa sitt urval av det han
anser intressant och lampligt for de olika stadierna. En sadan bok, for-
fattad av en kiinnare av matematikens historia, som samtidigt &r bevand-
rad i kursen vid vara liroverk, si att framstillningen inte blir for
teoretisk, kunde utgéra en grundkurs, som i hog grad skulle underlitta
inarbetande av historieundervisning i vara liroprogram. Det vore kanske
tankbart att planera en for alla nordiska linder gemensam kurs, som
skulle publiceras av experter i form av artiklar, t. ex. i vir gemensamma
tidskrift NMT. P4 detta séitt skulle den vara litt tillgéinglig f6r lararna.
I ett senare skede vore det mojligt att sammanfatta bidragen till en sér-
skild bok.

Som sista punkt i mitt anforande vill jag séiga nigra ord om de medel
man kunde anlita fér att effektivera undervisningen i matematikens
historia i vara skolor. Jag har redan talat om, vilket viktigt hjalpmedel
en lamplig lirobok utan tvivel skulle vara. Men huvudsaken ar dock att
vicka ldrarnas intresse. Bista sittet att nd detta mal vore vil att dligga
dem att redan under sina studier fordjupa sig i &mnet. For graduerade,
som ar verksamma som ldrare, kunde man anordna kurser och studie-
dagar, som behandlar matematikens historia. I detta héinseende anser jag
matematiklararféreningarna ha en viktig uppgift att fylla, bade genom
att ge impulser och arrangera sjilva utbildningen. Det vore sikert litt att
erhalla sakkunnig hjilp fran universitetshall. — Det mest radikala medlet
vore givetvis att i skolornas lirokurs uppta en viss obligatorisk kurs i
matematikens historia.

Nir jag till sist sammanfattar allt det, som jag har har framfoért, kom-
mer jag till f6ljande korta sammandrag:

1. Matematikens historia borde wpptas i liroverkens program.

II. Andamdlet for undervisningen ¢ matematikens historia dr:

1. att ge eleverna ett mera omfattande begrepp av den ménskliga
kulturen och att lira dem att uppskatta matematikens andel i
dess utveckling,

2. att efter hand f4 eleverna att uppfatta den stora betydelse &ver-
gangen fran en konkret iakttagelsevirld till abstrakta talbegrepp
innebir och att didrigenom fa dem att sitta virde dven pa sddana
teoretiska betraktelser, som ingér i deras lirokurs,

Nordisk Matematisk Tidskrift. — 2
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3. att vicka elevernas hag fér matematik och att hos elever med
matematisk begivning medverka till uppkomsten av ett djupt
och varaktigt intresse for studiet av dess olikartade problem,

4. att astadkomma en trevlig och samtidigt saklig omvéxling i de
vanliga, obligatoriska riknedvningarna.

II1. Undervisningen i matematikens historia kunde ske pd foljande st :
I realskolan skulle historiska uppgifter meddelas endast vid ett
fatal tillfallen i anslutning till det aktuella lirostoffet.
I gymnasialklasserna skulle matematikens historia undervisas i
storre omfattning. Undervisningen kunde ténkas forsigga:

1. i direkt anslutning till det egentliga undervisningsstoffet for lek-
tionen, varvid historiska synpunkter sirskilt skulle beaktas vid
inférande av nya begrepp och i samband med repetitioner,

2. i korta fortlspande lirokurser, med framstillning av matemati-
kens utvecklingshistoria under gamla tiden och medeltiden samt
av andra punkter, som ej behover ha anslutning till kurserna.

1V. For en mera effektiv undervisning © matematikens historia i vira skolor
vore det onskvért:

1. att en grundkurs i matematikens historia skulle utarbetas for
liroverken dvensom en speciell lirobok for detta dandamal,

2. att matematikens historia skulle inféras i programmet for larar-
utbildningen,

3. att specialkurser och studiedagar med matematikens historia som
amne skulle arrangeras for ldrarna,

4. att historiska synpunkter skulle beaktas vid uppstéllningen av
lirokurserna for véara skolor.

I det foregiende har jag tagit till behandling ratt elementéra och vil-
bekanta saker, men detta ir beroende av fragans natur. I vara skolor kan
man ej behandla nigon hég matematik. Jag har dock forsokt framhalla
det, som syns mig viktigast: det l6nar sig for liraren att sitta sig in i
matematikens historia och det &r virt att verviga, pa vilket sitt denna
kan utnyttjas till att liva upp undervisningen. Vi, som tjinstgjort som
larare i aratal, stelnar litt i former och sétter ar efter ar i ging samma
grammofonskiva, som uttrakar oss sjilva, och allt, som ej hor till skol-
kursen, faller efter hand i glomska. Ifall det kommit dérhén, dr det ej att
forundra sig 6ver om vara elever inte kinner intresse for matematiken.
Genom att fordjupa sig i matematikens historia, framfor allt i dess senare
utveckling, atminstone inom nigot omrade av matematiken, erhaller
liraren en liten mojlighet att bibehalla kontakten med sitt eget fack-
dmne. Och en levande kontakt med sjilva vetenskapen #r dock den
storsta kraft, som en god ldrare dger.




DA SANDSYNLIGHEDSREGNING BLEV VIDENSKAB

KAI RANDER BUCH

Uddrag af foredrag, holdt i Selskabet for de eksakte
videnskabers historie 2. december 1952.

1. Sandsynlighedsregningen er en ung disciplin sammenlignet med
mange af matematikkens andre omrader. Dette er bemarkelsesveerdigt
af flere grunde. Dels har mennesket gennem tiderne altid varet interes-
seret i at opné svar pa spergsmal af sandsynlighedsteoretisk art, og dels
er behandlingen af den elementere sandsynlighedsregnings problemer
set fra et matematisk standpunkt ikke indviklet, idet disses lgsning vee-
sentlig beror pa overvejelser af kombinatorisk art, og siledes er rent
aritmetiske og kun betjener sig af leeren om de hele tal. Alligevel skal man
helt frem til midten af det 17. arhundrede, for man overhovedet kan tale
om sandsynlighedsregning som del af den matematiske videnskab. Fra
dette tidspunkt gar der en bestandig udvikling op til vore dage, men forst
i vort drhundrede har det veret muligt at lgsrive emnet fra mange mis-
visende og uvedkommende filosofiske diskussioner om dets grundlag, og
specielt fra vanskeligheder i forbindelse med opstillingen af selve sand-
synlighedsdefinitionen.

Gennem grundleggende arbejder af bl. a. Kolmogoroff er det lykke-
des at give sandsynlighedsregningen et strengt aksiomatisk grundlag,
séledes at den optreeder pa linie med andre aksiomatisk opbyggede mate-
matiske discipliner, sisom geometrien, algebraen, o. s. v. Med nogen ret
kan man derfor sige, at vel blev sandsynlighedsregningen optaget blandt
videnskaberne i det 17. &rhundrede, men den er i vort arhundrede gen-
fadt i fuld klarhed og tjener nu som logisk opbygget fundament for alle
dens rige anvendelsesomrader.

Formélet med denne lille artikel skulle veere at give nogle spredte
glimt fra de tidligste ar, idet problemerne ogsa delvis behandles i den mere
moderne terminologi. Det vil derfor veere pa sin plads i sterste korthed
at formulere nogle enkelte af sandsynlighedsregningens sztninger i nu-
tidens sprog.

ol [19]
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2. Vi teenker os et eksperiment, der kan gentages vilkarlig ofte under
ganske ensartede omstendigheder. Med A betegner vi den heendelse, at
eksperimentet giver et ganske bestemt og nzermere preciseret udfald. I
s& fald siger vi, at hendelsen A4 er indtruffet. Foretager vi nu en serie
bestaende af n forseg, og er ¢ det antal gange blandt de n, hvor hendelsen
A indtrzffer, siger vi, at broken g/n er den relative hyppighed for heen-
delsen A i den givne iagttagelsesserie. Det er klart, at en ny iagttagelses-
serie i almindelighed vil give en anden verdi for den relative hyppighed,
men det er tillige et erfaringsresultat, at har man mange relative hyp-
pigheder for den samme hwndelse 4, vil disse tal i en vis forstand for-
teette sig om en bestemt veerdi. Det er derfor rimeligt til hendelsen 4
at knytte et tal S(4), som man kalder sandsynligheden for A, og som er
det fiktive tal, hvorom de relative hyppigheder forteetter sig.

Lad nu A og B betegne to heendelser, om hvis indbyrdes forhold man
intet forudseetter. Med A-+B betegner man da den handelse, at i det
mindste een af de to heendelser 4 og B indtreffer i et forseg, og med 4B
betegner man den hendelse, at de to hendelser 4 og B begge indtreeffer
i samme forsgg. Man kan da let vise, at der gelder sandsynlighedsreg-
ningens additionssatning

S(4+B) = S(4)+8(B)—8(4B),
og sandsynlighedsregningens multiplikationssetning
S(AB) = 8(A)-84(B),

hvor 8 ,(B) betegner sandsynligheden for, at hendelsen B indtreeffer,
under den forudsetning, at i hvert fald haendelsen A indtreffer. Hvis
specielt de to heendelser 4 og B udelukker hinanden, d. v. s. ikke samtidig
kan indtreffe, har man altsi

S(4-+B) = S(A)+S(B).

og hvis hendelsen B er uafhengig af handelsen 4 (d. v. s. hvis der geal-
der S(B) = S4(B)), har man

S(AB) = S(4) - 8(B) .

Ved hjalp af ovennzvnte formler er man nu let i stand til at udlede
et for det folgende betydningsfuldt resultat. Lad A veere en hsendelse,
der har sandsynligheden s for at indtrzffe ved et enkelt forsgg. Vi spor-
ger om sandsynligheden for, at heendelsen 4 i en serie af n af hinanden
uafheengige forspg indtreeffer netop p gange. Denne sandsynlighed S,
er givet ved formlen '
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(1) . 8, = (0) sr1—aye-r,

hvor binomialkoefficienten

(n) n!
p/  pln—p)!’

3. Efter dette indskud vender vi atter vort blik tilbage i tiden. Fra en
af datidens store spillere, Chevalier de Méré, fik den kendte matema-
tiker Blaise Pascal i 1654 en henvendelse med opfordring om bistand
ved lgsningen af visse problemer om sandsynligheder. Denne opfordring
gav anledning til en brevveksling mellem Pascal og en anden af tidens
store matematikere, Pierre Fermat. Det for de Méré vigtigste sporgs-
mal drejede sig om det sikaldte delingsproblem, der i sin enkleste form
lyder: To spillere P og @ gor hver samme indsats W og spiller en rakke
af spil, om hvilke det forudsaettes, at i hvert enkelt af spillene har de
begge sandsynligheden } for at vinde dette spil. Yderligere er forudsst-
ningen den, at den af de to spillere, der forst har » vundne spil, skal have
hele indsatsen, altsd belgbet 2W. Problemet er da fglgende: hvorledes
skal indsatsen deles mellem de to spillere, hvis spillet afbrydes, forend
nogen af dem har » vundne spil?

Om dette spergsmal skriver Pascal til Fermat i et brev af 29. juli:

»I det folgende skal jeg give min metode til at bestemme hver
spillers andel, nar for eksempel to spillere spiller et spil om tre point,
og hver har indsat 32 menter. Antag at den forste spiller har vundet
to point og den anden spiller eet point. De skal nu spille om yder-
ligere eet point under fglgende betingelse: hvis den forste spiller
vinder, er hele indsatsen, nemlig 64 monter, hans; hvis den anden
spiller vinder, har hver to point, siledes at de nu star lige, og hvis
de derfor skilles uden at spille videre, tilkommer der hver af dem
32 mgnter. Derfor, hvis den forste spiller vinder, tilfalder der ham
64, og hvis han taber 32. Hvis derfor de to spillere ikke gnsker at spille
spillet, men skilles uden at spille det, vil den forste sige til den
anden: jeg er sikker p4 32 menter, selvom jeg taber dette spil, og
om de resterende 32 — méske vil jeg f4 dem, og maske vil du fa
dem — vore chancer er lige. Lad os derfor dele disse 32 lige og giv
mig yderligere de 32, pa hvilke jeg er sikker. Efter dette skal alts&
den forste spiller have 48 og den anden spiller 16«.

Efter at have gennemfort det samme raesonnement i to andre tilfzlde
af lidt mere kompliceret art gar Pascal over til at give to resultater af
mere almindelig karakter, dog uden beviser, nemlig:
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1) Lad antallet af forlangte vundne spil vere n-1 og antag, at den
forste spiller har vundet n spil og den anden spiller ingen, nar spillet
afbrydes. Pascal angiver da, at den ferste spiller har et krav pa

w
2W——.
2n

2) Lad antallet af forlangte vundne spil vere n-1 og antag, at den
forste spiller har vundet eet spil og den anden ingen, nar spillet afbrydes.
Den forste spiller har da krav pa belobet

1-3-5...(2n—1)

W4Ww-
T 2-4-6...2n

Pascal tilfgjer, at det sidste resultat er vanskeligt at vise, idet ud-
ledelsen beror pa to matematiske setninger, den ene af rent aritmetisk
art, den anden en s@tning om chancer og tilfzeldigheder.

1 samme brev til Fermat kommer Pascal ind pé et andet af de Méré’s
problemer. De Méré havde gjort en iagttagelse, som forundrede ham
meget: sandsynligheden for i fire kast med een terning mindst een gang
at fa 6 gjne viste sig at veere sterre end sandsynligheden for i 24 kast
med to terninger mindst een gang at fa 6 gjne med begge terningerne.
Ved et spil med een terning er der 6 mulige udfald, hvoraf eet er gunstigt,
og ved spil med to terninger er der seks gange si mange mulige udfald,
hvoraf igen eet er gunstigt. De Méré resonnerede derfor, at der métte
foretages seks gange si mange kast i det andet spil som i det forste for at
14 samme sandsynlighed for et gunstigt udfald.

Pascal skriver herom i sit brev:

sJeg har ikke tid til at sende Dem beviset for en vanskelighed,
som forbavsede de Méré meget — han er en stor and, men ikke
geometer, hvilket, som De erkender, er en stor mangel — han tror
for eksempel ikke, at en matematisk linie er delelig i det uendelige,
men hevder, at den ma vare sammensat af punkter i endeligt antal,
og jeg har ikke kunnet f& ham fra det. Han siger mig ogsd, at han
har fundet modsigelser blandt tallene ved dette resonnement«

— og efter at have n®vnt problemet fortsetter Pascal:

»Se, dette vakte hans forargelse og fik ham hgjlydt til at pésta,
at forholdene ikke var konstanter, og at aritmetikken dementerede
det.

Fermat’s svar pa dette brev kendes ikke, men svarets natur kan man
let slutte sig til af Pascals neste brev til Fermat, hvori han giver et
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eksempel pa anvendelsen af Fermat’s metode for det specielle tilfelde,
at den ene spiller P mangler 2 og den anden spiller ¢ mangler 3 point.
Pascal opskriver samtlige permutationer af bogstaverne P og @ med fire
elementer i hver:

PPPP  PQPP QPPP  QQPP
PPPQ  PQPQ QPPQ  QQPQ
PPQP  PQOP  QPQP  QQQP
PPQQ PRQQ QPQQ QRQQ ,

udfra den betragtning, at senest efter endnu fire spil ville spillet have
vaeret afsluttet. Han teeller derefter blandt de 16 tilfeelde de for spilleren
P gunstige, her 11, og de for ¢ gunstige, her 5, og slutter, at chancerne
er som 11 til 5. Pascal er af den opfattelse, at Fermat’s metode kun er
brugbar for to spillere, men ikke nar der er flere, hvilket han dog senere
indrommede var en fejltagelse.

Det er ikke overraskende, at brugbarheden af denne simple raesonne-
mentsmetode vakte tvivl selv hos Pascal. Endnu i vore dage kraever det,
trods sandsynlighedsregningens hgje stade, en vis skoling i og tilveenning
til begreberne, for man foler sig overbevist om dens rigtighed. Den tanke
i sine betragtninger at inddrage spil, der, hvis spillet blev udfert i prak-
sis, slet ikke ville blive spillet, virker ved forste gjekast chokerende. Til
nzrmere belysning vil vi fremdrage folgende simple eksempel: Vi teenker
os seks personer spille om en gevinst, og vinderen udpeges ved terning-
kast. De vil da alle fgle sig ens og retferdigt behandlet. Hvis derimod
de seks personer efter tur treekker kort af en bunke pa seks kort, hvoraf
det ene er serligt maerket og derfor giver gevinsten, vil det meget let ske,
at een eller flere slet ikke opnar at treekke og derfor fgler sig uretferdigt
behandlet. Fordeler man derimod de seks kort med bagsiden opad til
samtlige personer, ville sikkert alle fole sig tilfredse.

4. I dette afsnit skal vi ved anvendelse af de i 2. nevnte setninger
fore beviser for de to i Pascal’s brev ubeviste pastande:

1) Det forlangte antal vundne spil var n-+1, og P havde allerede n
vundne spil, medens ¢ ingen havde. Den eneste chance for @ er da, at
han vinder de folgende n-1 spil. Sandsynligheden for, at dette indtreef-
fer, er ifglge sandsynlighedsregningens multiplikationssetning (})"+, og
folgelig ma sandsynligheden for at P vinder vere

1

1— .
Qn+1
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1
til ——,
on+l on+l

Indsatsen ber altsi deles mellem P og @ i forholdet 1—
d. v.s. P har krav pa belgbet

2W(1—— ! ): o

on+1 n

2) Det forlangte antal vundne spil er n-+1, og P havde eet vundet
spil, medens @ ingen havde. Vi tenker os nu yderligere spillet 2n spil,
hvilket er det mindste antal, der sikrer os, at netop een af de to spillere
har vundet indsatsen, hvorimod intet forhindrer, at een af de to spillere
har vundet allerede p4 et tidligere tidspunkt. Det er klart, at hvis P vin-
der n eller flere af disse 2n spil, skal han have indsatsen. Vinder han
derimod feerre end n spil, har @ vundet indsatsen. Vi skal altsi udregne
sandsynligheden for, at P blandt de 2n spil vinder mindst n. Ifglge
formel (1) er denne sandsynlighed givet ved

s=2 (Vw2 (7)

Da de 2n-1 binomialkoefficienter af 2n’te orden som bekendt har sum-

men 227, har man let
e on 1 1/2n
. = - 22| ( ) ’
15( ? ) 2 +2 n

1 (1 2+1 @2n)!y 1 11-3-5...(2n—1)
92 (n!)z)_2 2 2-4-6...2n

altsa

S =

)

og multiplicerer vi dette med indsatsen 2W, har vi det belgb, som P
har krav pd

1:3-5...(2n—1)

WWe 6. om

Som det fremgar af ovenstaende, spiller binomialkoefficienterne og deres
egenskaber en fremtraedende rolle i bevisforelsen. Pascal har selv i et
arbejde fra 1654, Traité du triangle arithmétique, behandlet disse tal, men
udfra et andet synspunkt, og man skal helt frem til udgivelsen af Jacob
Bernoulli’s Ars Conjectandi i 1713, for man finder det forste bevis for
binomialformlen.

5. Delingsproblemet, som vi her har omtalt, optraeder i de folgende ar
hos adskillige forfattere, bl. a. Christian Huygens. Han skrev i 1657
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sit arbejde De Ratiociniis in Ludo Alece. Trods sit ringe omfang fortjener
Huygens’ indsats en nermere omtale, nir man taler om sandsynligheds-
regningens forste ar. Gennem fjorten sma afsnit fremsaetter forfatteren
delvis uden beviser visse pastande og behandler samtidig enkelte opgaver,
der malt med datidens méalestok absolut ikke kan kaldes elementere.
Det sandsynlighedsteoretiske middelveerdibegreb (forventningen) kan
saledes, trods fremstillingens ufuldstendighed, siges at veere skabt af
Huygens. De forste afsnit indeholder siledes tre pastande om middel-
verdidannelse, nemlig 1) hvis en spiller har samme sandsynlighed for
at vinde belgbene a og b, da er hans forventning 4(a+b), 2) hvis en
spiller har samme sandsynlighed for at vinde belgbene a, b og ¢, da er
hans forventning (a+b-c), og endelig et resultat af en mere almindelig
karakter, 3) hvis en spiller har p chancer for at vinde belgbet a og
q chancer for at vinde belgbet b, da er hans forventnin, p;—ig—b I de
folgende seks afsnit diskuterer forfatteren delingsproblemet for to eller
tre personer. De sidste fire afsnit indeholder undersggelser over visse
terningspil, af hvilke vi mere udferligt til belysning af Huygens’ reesonne-
mentsmetode skal omtale den sidste. -

Spargsmalet er folgende: To personer P og @ spiller med to terninger,
P kaster forst og vinder indsatsen, sdfremt summen af gjnene er 6. Er
denne sum ikke 6, kaster ¢ og vinder, safremt summen af gjnene er 7;
er den ikke 7, kaster P atter pad samme betingelse som for, og saledes
fortsettes spillet, til enten P eller @ har vundet indsatsen. Hvad er nu
forholdet mellem P’s og @’s chancer for at vinde spillet ?

Med en beskeden modifikation er Huygens’ metode nu folgende: Sand-
synligheden for i kast med to terninger at £ summen 6 er %, og sandsyn-
ligheden for summen 7 er 5. Endvidere indferes to ubekendte z og y
ved folgende definition: nar P kaster, er @’s chance for et godt udfald «,
og P’s chance altsd 1—x; nar @ kaster, er @’s chance for et godt udfald
y og P’s chance 1—y. Pa grundlag af Huygens’ ovennavnte tredie pa-
stand opstilles da folgende ligninger til bestemmelse af x og y:

5:04+31-y 6-1430-2
= 36 Y=""36

hvoraf z = 31 og 1—2 = 2%. Det sggte forhold er da som 30 til 31.
Skulle man i dag lgse det samme lille problem, ville man sikkert an-
vende sandsynlighedsregningens additionssetning i generaliseret form
for uendelig mange addender og reesonnere som folger: P kan vinde spil-
let p& uendelig mange mader, der to og to udelukker hinanden. Han kan
kaste 6 i forste kast, og spillet er afsluttet, men han kan ogsa vinde ved

b 3
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forste gang at fa 6 i tredie kast under forudsatning af, at @ ikke har
faet 7 i sit forste kast o.s.v. Sandsynligheden for at P vinder er da
givet ved summen af den uendelige raekke

5 31 30 5 31 30 31 30 5

36 736 36 36 36 36 36 36 36

Denne er en kvotientraekke med kvotienten 22% og har felgelic summen

5 1 30

36 1—230 61

1296

Huygens’ arbejde, som vi her har omtalt i sterre udferlighed, var
afslutningen pa det 17. &rhundredes studier inden for omradet, og forst
med de store navne Bernoulli, de Moivre og Laplace i det 18. og
begyndelsen af det 19. drhundrede fremstod teorien med et fundament
af mere almen karakter.

For de lxsere, der efter denne spinkle introduktion kunne gnske ner-
mere orientering, henvises til nedenstdende litteraturfortegnelse.
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SPECIELLA KONISKA YTOR

E. J. NYSTROM

Overensstaémmer i huvudsak med en artikel »Toisen asteen kartioista«
tryckt i Arkhimedes, 1952, sid. 35-38.

Betraktelser 6ver den rita cirkelkonen eller rotationskonen ha som
k#nt berikat det elementirgeometriska kunskapsstoffet med de koniska
sektionerna eller kurvorna av andra graden: ellipsen, parabeln, hyper-
beln. Vilken som helst sidan kurva kan erhéallas som plant snitt av en
given rit cirkelkon, varvid i fraga om en given hyperbel konens topp-
vinkel dock maste vara storre dn vinkeln mellan hyperbelns asymptoter.
Parallella plan ge likformiga snittkurvor.

Projicierar man en konisk sektion fran en punkt utanfér dess plan,
erhiller man en »allmin kon¢ av andra graden!. En rotationskon upp-
kommer endast om projektionscentrum ligger pa en viss ortlinje (dven
den en konisk sektion).

Liksom en kurva av andra graden &r bestimd genom fem av dess
punkter eller fem tangenter, ér en kon av andra graden bestimd genom
fem av dess alstringslinjer eller fem tangentplan. Aro endast fyra al-
stringslinjer eller fyra tangentplan givna, utgéra dessa gemensamma
element for en enparametrig skara koner av andra graden. Tre alstrings-
linjer, resp. tre tangentplan bestimma en tvaparametrig skara koner.

I det foljande skola vi betrakta speciella enparametriga skaror av kon-
iska ytor, sdrskilt sidana med kinematiska egenskaper, och angiva
askadliga alstringssitt for dem. Det karakteristiska vid ifrdgavarande
specialisering #r i regel ridtvinkligt (ortogonalt) lige av vissa linjer,
resp. plan.

Vi anféra till en borjan satser som ha betydelse i det féljande.

En kon av andra graden har i allméinhet tre mot varandra vinkelrita
symmetriplan. Problemet att bestdimma dessa leder till en tredjegrads-
ekvation. Man kan det oaktat utfora konstruktionen med passare och
linjal i ett plan vars skidrningskurva med konen &r uppritad forutsatt
att kurvan icke #r en cirkel.

Med de tre symmetriplanen som koordinatplan &r ekvationen for
konen

1 T den hogre geometrien betraktas konen som en yta, icke som en kropp.

[27]
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x2 y2 22
(k) ety
vari ingd tvd parametrar nimligen koefficientférhallandena a:b:c. Vi
anta i det féljande att a, b och ¢ > 0 och vidare att a = b.

Den allminna teorien fér ytor av andra graden giller jamvil for koner,
sérskilt ifriga om cirkelsektioner, harmoniska punkter, rita linjer och
plan #vensom fokalegenskaper. Endast egenskaper hos de bada skarorna
av alstringslinjer kunna icke utan vidare verforas till konen, ty skarorna
sammanfalla pa konen i en enda. ,

Cirkelsektionerna dro parallella med tvenne plan, vilka gi genom
z-axeln och ha ekvationerna

y2 22
(©) (@—b?) (@ e) 5 = 0.

Medelpunkterna i vardera cirkelskaran ligga pa en rdt linje s. k.
centrallinje. Den &r harmoniskt konjugerad med cirklarnas plan i av-
seende 4 konen. P4 den rita konen sammanfalla de bada cirkelskarorna
i en enda.

Emedan varje kon av andra graden har cirkelsektioner, kan man be-
trakta varje sddan kon som en (i allménhet sned) cirkelkon. For den réta
konen #r det karakteristiskt att den har odndligt manga symmetriplan.

Aven de koniska sektionernas fokalegenskaper ha som niémnt sin mot-
svarighet hos konerna av andra graden: Summan eller skillnaden mellan
de vinklar en godtycklig alstringslinje p& konen bildar med tvenne fasta
rita linjer genom konens spets, de s. k. fokalaxlarna, ér konstant. Liksom
de koniska sektionerna kunna ritas medels en askadlig »tradkonstruktiong,
erhallas konerna av andra graden mekaniskt s& att man fister en bojlig
men icke tdnjbar hinna vid fokalaxlarna och spénner den medels en stav
vridbar kring konens spets. Staven kan da vridas som en alstringslinje s
pd konen. Konens tangentplan lings s bilda lika stora vinklar med de
plan som sammanbinda s med fokalaxlarna.

Fokalaxlarnas ekvationer dro

x? 22

f =0 ——
( ) ’ a—b2 b2+62

Deras polarplan i avseende & konen idro direktrisplan. Konen utgor
geometriska orten f6r de punkter i rymden vilkas avstand fran nigondera
fokalaxeln och motsvarande direktrisplan ha ett givet forhallande.

Alla i avseende & koordinatplanen symmetriska koner av andra graden
bilda en tviparametrig skara. Ur denna vilja vi négra speciella en-
parametriga skaror for ndrmare betraktelse.
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Frimst nidmna vi den rdfa konen eller rotationskonen, #ven kallad
cirkelkon. Hos den sammanfalla fokalaxlarna med konens axel och skir
alla cirklarnas plan vinkelrdtt i deras medelpunkter. Med den samman-
falla alltsd dven centrallinjerna.

Ekvationen (k) representerar en rit kon eller rotationskon alltid och
endast om
(1) a=>b.

Hirefter anfora vi speciella arter av koner parvis enligt den kinda
dualitet dir rdta linjer genom en punkt och plan genom en punkt mot-
svara varandra. Lata vi homologa riéta linjer och plan vara vinkelrdta,
fa vi den dualitet som i den sfiriska trigonometrien spelar en stor roll.
Man kan da anvinda bendmningen reciprocitet.

Lagga vi genom spetsen av en kon av andra graden normalplan till
konens alstringslinjer, erhalla vi som envelopp fér dessa plan likasi en
kon av andra graden och kunna betrakta de reciproka konerna

2 2 2
) AT

a? b2 c2

(k')  a’x®4-b%2—c%2 = 0.

Man finner hirvid att vardera konens fokalaxlar &ro vinkelrdta mot
reciprokalkonens cirkelsektioner. Vardera konens direktrisplan &ro vinkel-
rita mot reciprokalkonens centrallinjer. Dessa egenskaper komma i det
foljande till anvindning varvid vi utfora betraktelserna for konen (k).

Om konen (k) har tre mot varan-
dra vinkelréta alstringslinjer, kal-
las den enligt Schroter liksidig.
Det visar sig att konen har an-
tingen en oidndlig skara sadana
grupper av alstringslinjer eller inga.

Om konen (k) har tre mot var-
andra vinkelrita tangentplan, kal-
las den dualt liksidig. Det visar sig
att konen har antingen en odndlig
skara sadana grupper av tangent-
plan eller inga.

De tre betraktade, mot varandra vinkelrita alstringslinjerna eller
tangentplanen bilda ett s. k. »kubhoérn¢ och vi kunna déarfor siga:

Ett kubhorn kan rulla som in-
skrivet i vilken som helst liksidig
kon och endast i liksidiga koner.

Som villkor for att konen (k)
skall vara liksidig kan man hérleda
foljande:

1 1 1

@ e

Ett kubhérn kan rulla sisom
omskrivet kring vilken som helst
dualt liksidig kon och endast kring
dualt liksidiga koner.

Som villkor fér att konen (k)
skall vara dualt liksidig kan man
hirleda f6ljande:

(3) a?+bi—c? = 0.
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En kon (k), f6r vilken relationen
(2) ar uppfylld, gar genom de rita

linjerna
) 4r=+4y==2.

Dessa kunna betraktas som de fyra
huvuddiagonalerna i en kub och
man kan darfor sdga:

Varje liksidig kon adr omskriven
kring en kub, d. v. s. kubens hérn-
punkter ligga pd konen.

En kon (k) for vilken relationen
(3) 4r uppfylld, tangerar planen

+xty+z=0.

Dessa kunna betraktas som fyra
sidoplan i en reguljir oktaeder och
man kan déarfor siga:

Varje dualt liksidig kon &r in-
skriven i ett oktaederhdrn.

De liksidiga och de dualt liksidiga konernas form beror av koefficient-
férhallandet a:b, vilket kan viljas godtyckligt®.

De plan som av konen (k) ut-
skira cirklar, dro i allminhet icke
vinkelrita mot nigon av konens
alstringslinjer. Om det emellertid
finnes tvenne alstringslinjer som
dro ortogonala mot var sin skara
cirkelplan, siger man enligt Schro-
ter att konen (k) &r ortogonal.

Villkoret for att konen (k) skall
vara ortogonal &r

1 1 1
@ et
De salunda erhéllna ortogonala ko-
nerna karakteriseras av att de in-

nehélla de rita linjerna

r Y
+i 1
och de dro siledes alla omskrivna
kring ett och samma imagindra
fyrsidiga horn.
Ror sig en rit diedervinkel sd
att dess plan glida genom tvenne
fasta, varandra skirande men icke

2
19

I allménhet éro inga tangentplan
till konen (k) vinkelréta mot ndgon-
dera fokalaxeln. Om det emellertid
finnes mot fokalaxlarna ortogonala
tangentplan, séiger man att konen
(k) dr dualt ortogonal.

Villkoret fér att konen (k) skall
vara dualt ortogonal &ar

(5) —a? b2 =0.

De erhélina dualt ortogonala ko-
nerna karakteriseras av att de tan-
gera de fyra planen

+xtiy+z=0,

och de #ro siledes alla inskrivna i
ett och samma imaginéra fyrsidiga
horn.

Ror sig en rit vinkel med fast
spets s att dess ben beskriva tven-
ne fasta, icke ortogonala plan, si

1 Lampliga modeller kunna konstrueras med vérdena

1 1

a=1 b= -

—=s C H
/3 2

a=1b=

3

1
—, C
Vs’
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ortogonala réta linjer, sa beskriver
diederns kant en ortogonal kon!.
De fasta linjerna #ro symmetri-
linjer pa konen och ligga i central-
linjernas plan.

Om axlarna till tvenne direkt
kongruenta planknippen skira var-
andra men icke vinkelritt, s& &r
orten for motsvarande plans skér-
ningslinje en ortogonal kon. Ndmn-
da axlar ligga symmetriskt pa
konen!.

ar enveloppen f6r vinkelns plan en
dualt ortogonal kon. De fasta pla-
nen tangera konen lings symmetri-
linjer beldgna i fokalaxlarnas plan.

Om tvenne direkt kongruenta
plana stralknippen ha gemensamt
centrum, s &r enveloppen for alla
plan genom motsvarande stralar en
dualt ortogonal kon. Néimnda plan
tangera konen symmetriskt.

Satserna till vinster &ro tydligen generaliseringar till rymden av vissa
kénda egenskaper hos cirkeln. De kunna litt bevisas elementirgeome-
triskt. Aven satserna till hger kunna tydas pa samma sitt men erhaillas
dven latt om man ersitter de i satserna till vinster betraktade rita lin-
jerna och planen med deras normalplan, resp. normaler genom en punkt.

Om genom spetsen av en kon g8
tvenne axlar a, och a, sddana att
varje genom nagondera av dem
lagt plan av konen utskir en rit
vinkel, bendmnes konen med Pap-
pus’ namn. Axlarna dro konens
centrallinjer.

For att konen (k) skall ha namn-
da egenskap, fordras att

(6) b=c,

d. v. s. konens toppvinkel i yz-
planet skall vara rit.

Enveloppen for alla plan genom
en punkt, vilka bilda lika stora
vinklar med en given rit linje och
ett ddrmed icke parallellt plan, &r
en Pappus’ kon. Den givna linjen
och det givna planet &ro central-
linje och ett cirkelplan fér ifraga-
varande kon.

Om spetsen av en kon &r cen-
trum for tvenne plana stralknippen
®, och «, sddana att de genom en-
var strile till konen lagda tangent-
planen #ro vinkelrita, benimnes
konen med Hachette’s namn.
Planen dro konens direktrisplan.

For att konen (k) skall ha nimn-
da egenskap, fordras att

(7) a=c,

d. v. s. konens toppvinkel i xz-
planet skall vara rit.

Orten for alla punkter med lika
stort avstand fran en given rit linje
och ett dirmed icke parallellt plan
dr en Hachette’s kon. Linjen
och planet dro fokalaxel och till-
horande direktrisplan fér ifraga-
varande kon.

! Skiéra de givna rata linjerna icke varandra, uppstar en rortogonal enmantlad
hyperboloid«. Sadana ytor spela en roll bl. a. i fotogrammetrien.
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Som ytterligare exempel kan néimnas: Varje storcirkel pd en sfir
projicieras fran en godtycklig punkt pa sfiren medels en Pappus’ kon.
Normalplanen mot projektionsstralarna genom en fast punkt tangera en

Hachette’s kon.

Kartongmodeller bestaende av
ett antal cirkelsektioner av en kon
gro som kint deformabla. Ett
slags normalléige uppkommer da de
bada cirkelskarornas plan &ro vin-
kelrita mot varandra. Da fore-
ligger en Reye’s kon. Som analy-
tiskt villkor hirfér har man

2 1 1

® aEta’

Den namnda konstruktionen av
en kon medels en vid dess fokal-
axlar fist hinna ger koner, vilkas
form varierar med vinkeln mellan
fokalaxlarna. Ett normalfall upp-
kommer da fokalaxlarna bilda en
rit vinkel. Som analytiskt villkor
hirfér har man

(9) —a?4+-202+c2= 0.

Det torde av ovanstiende ha framgétt att konerna av andra graden
icke endast utgora relativt ointressanta special- eller grinsfall av all-
ménnare ytor utan att dessa koner dven i sig sjilv fortjina uppmérksam-
het och att sddana upptrida i olika sammanhang.




NUMERISKA BERAKNINGAR PA SIFFERMASKINER

CARL-ERIK FROBERG

Inledning. For nagon tid sedan intriffade det att en svensk tidning
hérde sig for, huruvida man for dess rikning kunde &taga sig att 15sa
studenttalen i matematik pa matematikmaskin. Vederbdrande journalist
torde i andanom ha sett hurusom man via elektrisk skrivmaskin beford-
rade uppgifterna in i maskinen, vilken sedan blixtsnabbt 15ste problemen
och automatiskt skrev ut svaren. Detta betraktelsesidtt &r nog inte ovan-
ligt hos den breda allménheten, som endast kinner till matematik-
maskinerna fran mer eller mindre sensationella rapporter i dagspressen,
men #ven om man inte faller for s grova Gverdrifter, kinner man signog
ibland osiker om matematikmaskinernas mojligheter. Avsikten med
denna artikel #r att ge en 6versikt hirav, och det ligger da i sakens
natur, att den som redan ingdende sysslat med numeriska berikningar
pé siffermaskiner inte rimligen kan viinta sig att hir finna nigra epok-
gorande eller ens nya synpunkter.

For att det fortsatta resonemanget skall ha nagot att bygga pa &r det
nédvindigt med en kortfattad beskrivning av en siffermaskin ur fysika-
lisk synpunkt. D& vi endast intressera oss for det rent principiella, kan
denna beskrivning goras mycket litet teknisk; den som vill veta mera
hirom kan utan svarighet fi sitt lystmite pa annat hall [1—8].

Numeriska berikningar kriiver ett aritmetiskt organ, som ér i stand
att utfora de enklaste aritmetiska operationerna.

Det ir vidare klart att 1osandet av ett problem kriver ett stort antal
operationer i en viss forutbestdémd ordning och med hinsyn till vissa
alternativa mojligheter. Foljaktligen behovs ett administrativt organ,
som ombesorjer dessa uppgifter. Vidare méste vi ocksa ha en mdjlighet
att »anteckna« och »stryka ut« bade rikneprogram, behovliga konstanter,
mellanresultat och de slutliga virdena. Alla dessa uppgifter omhinderhas
av minnet. Slutligen krives ocksd organ som ombesérjer kommunikation
mellan maskinen och omvirlden. Fér inskrivande anvindes ofta hal-
remsor och for utskrivande elektrisk skrivmaskin.

Till en borjan arbetade man med mekaniska eller elektromekaniska
metoder, men forst sedan man tagit elektroniken till hjalp har man

Nordisk Matematisk Tidskrift. — 3 [33]
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uppnétt de hoga hastigheter, som éro en forutsittning for framgangsrikt
numeriskt arbete med stora problem. Vad sjilva minnet betraffar dr det
elektrostatiska f. n. det snabbaste, medan en magnetostatisk typ anses
mycket lovande for framtiden. Tekniskt sett har en oerhord utveckling
4gt rum under de senaste 10 aren, och antalet maskiner véxer nistan
lavinartat. Medan man &nnu i slutet av 40-talet kinde till varje enskilt
projekt och nistan kinde sig som personlig vén till varje existerande
matematikmaskin, dr det numera omdjligt f6r en enda person att halla
reda pa alla projekt eller ens firdiga maskiner.

Sjélvfallet har under denna tid en utveckling &gt rum &ven for de
numeriska metoderna, men den har av naturliga skil varit mindre i6go-
nenfallande. I fortsittningen skall vi forst syssla med hur maskinen
instrueras att 16sa problem och sedan ge en rad exempel pa enkla numeri-
ska metoder, som med férdel kan anvindas vid arbeten med siffermaski-
ner och endast i férbigdende bersra mera avancerad metodik.

Representation av tal. Forst betrakta vi nagra enkla fakta som spela
en roll vid val av talsystem. Man kan d& genast géra den iakttagelsen, att
maskinens grundelement till sin natur &ro bindra. Ett elektronrér kan
vara ledande eller icke-ledande, p4 ett magnetiskt material kan man lagra
dipoler i ena eller andra riktningen, pa skirmen i ett katodstraleror kan
man lagra elektriska laddningar pa hog eller lag potential, en liten ferrit-
kiirna kan befinna sig i vre eller nedre delen av hysteresiskurvan osv.
Det #r da knappast overraskande, att man for det stora flertalet maskiner
valt det binira talsystemet, speciellt som detta dven &r vél limpat for
rent logiska operationer. I det binira systemet ha vi endast siffrorna
0 och 1, och ett godtyckligt tal framstilles i formen:

2"+ . . 22 40,2 - ayFa_ 27+ Aa_,2-"; a, = 0eller 1.

T. ex. &r 10011 = 19, 0.101 = § och 110.11 = 6.75. Man finner litt, att
ett tal skrivet i binir notation blir ungefir tre ganger sa langt som i deci-
mal notation. Ofta sammanfattar man dirfor fyra bindra siffror till en
hexadecimal siffra (bas 16). Diarvid betecknas vanligen talen 10, 11, 12,
13,140och 15med 4, B,C, D, E och F. T. ex. ir 3E8 =3-162+14-161+8 =
1000; 0.1C71071. .. = 1/16-412/162+7/1634-1/164+ . .. = }. Konversion
fran ett system till ett annat &r i princip en enkel procedur, vars detaljer
dverlimnas till lisaren. D4 det ror sig om stérre méingder av tal, brukar
man lata maskinen ombesdrja Gversittningen.

Det ligger i sakens natur att maskinen endast kan arbeta med en viss
forutbestimd noggrannhet, vilken beror av konstruktionen. Vanligen lig-
ger denna noggrannhet mellan 30 och 45 bindra siffror, dvs. ungefir
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10—15 decimala siffror. Visserligen kan man genom sirskilda arrange-
mang 6ka denna noggrannhet till den dubbla, tredubbla osv., men sam-
tidigt stiger raknetiden starkt (omkring 7 ginger vid en férdubbling av
noggrannheten). I princip méaste alltsé i normala fall alla fran noll skilda
positiva tal i maskinen ligga mellan 2? och 27-¢, dar q &r ungefir = 40.
Valet av p ar rent konventionellt, t. ex. p = 0 (BEsk i Stockholm, TAS
Electronic Computer i Princeton), p = 2 (Seac i Washington) och p
variabel mellan —63 och 63 (BARK i Stockholm). Virdet p = 0 torde
vara det vanligaste och medfor, att produkten av tva tal ocksd kommer
att ligga inom det tillatna omradet. Denna begrinsning av maskinens tal-
omrade har vissa konsekvenser vid anvindningen. Man maste alltid for-
vissa sig om att man vid addition och subtraktion ej far ett resultat, som
ar numeriskt storre én 1, och vid division maste man forst kontrollera, att
dividenden dr numeriskt mindre #n divisorn. Man kan da fraga sig, hur
man pad maskin kan berikna t.ex. 4-+7, da varken sjilva talen eller
summan kan skrivas in i maskinen. Svaret dr enkelt: man berdknar i
stéllet t. ex. 4-2-194-7-2-10 och behover sedan endast gora sig fri fran
skalfaktorn 2-10,

Vi skall i detta sammanhang ocksa i korthet berdra representationen
av negativa tal. Har anvindes i stort sett tva principer. Dels kan man
skriva ett tal som dess absolutbelopp med plus- eller minustecken, dels
kan man lata forsta siffran vara teckensiffra, varvid alla tal definieras
modulo 2. Vanligen later man da 0 betyda plus och 1 minus. Salunda skall
0.11 betyda -+% och 1.011 betyda 1+3—2 = —3%. Denna konvention
medfér naturligtvis vissa konstruktionsmissiga komplikationer for multi-
plikationen, men dessa visa sig vara ganska litt 6verkomliga. Divisionen
utfores enkelt genom successiva additioner och subtraktioner alltefter-
som dividenden och divisorn ha motsatt eller samma tecken.

Operationer. Vi skall nu ocksa betrakta Gvriga operationer, som
maskinen bér kunna utféra. Forst ha vi da en grupp order, varigenom
tal kunna flyttas fran en plats till en annan. Dessa order dro principiellt
enkla och fordra knappast nagon kommentar. S& ha vi de elementira
aritmetiska operationerna, vilka vanligen kompletteras med skift och
logisk multiplikation. Skiftoperationen innebdr multiplikation med en
positiv eller negativ potens av 2; genom t. ex. 5 stegs vinsterskift multi-
pliceras talet med 32. Logisk multiplikation innebidr multiplikation siffra
for siffra. Denna mycket anvéindbara operation kan begagnas pé foljande
sitt. Om man Onskar extrahera siffrorna nummer 3—7 i ett givet tal,
kan man gora detta genom logisk multiplikation med talet 0011111000...

Forutom de férut nimnda inlisnings- och utskrivningsorderna ha vi

8*
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till sist en grupp mycket viktiga administrativa order. Det visar sig ném-
ligen vid formuleringen av ett rikneprogram att man forr eller senare
maste bestimma det fortsatta arbetet med hinsyn till de resultat, som
maskinen tidigare har kommit till. Rent matematiskt kan ett sadant
villkor alltid formuleras: Om @ = 0 skall maskinen f6lja en viss pa for-
hand given rutin, och om @ < 0 skall i stéillet en annan pé férhand given
rutin foljas. Har betyder a ett av maskinen beriknat villkorstal. Denna
villkorliga hopporder kompletteras sedan med en ovillkorlig hopporder,
vilken man kan anviinda, d4 man efter utnyttjande av alternativa mdj-
ligheter vill aterga till huvudrutinen. Det &r ingen Gverdrift att pasta,
att dessa order ger maskinerna deras stora flexibilitet, och man kan lugnt
siiga, att iteration av vissa delar av programmet &r sjilva kirnan i
automatiseringen av numeriska berdkningar.

Planering och kodning. Vi skall nu ndrmare betrakta vilka moment
som ingé i en numerisk behandling av ett problem. Forst kommer som
regel en omfattande matematisk planering. Vi skall senare granska olika
detaljer i denna planering och #ven ge en del exempel. Planeringen syftar
till val av numerisk metod, som approximerar det givna problemet, under-
s6kning av felens storlek, val av intervallingder och skalfaktorer dir
sadana behovas samt bestimmande av checkningsprocedur. Genom pla-
neringen brytes problemet ner i sina elementira delar, och det giller
sedan att oversitta detta till ett for maskinen begripligt sprik. Denna
oversittning sker genom kodningen. Till hjilp vid kodens utarbetande
brukar man vanligen rita ett flodesdiagram (vflow diagrame), som askad-
liggor det logiska sammanhanget i berikningen. Ett diagram visande
berikningen av ¢~ for 0 < z < 1 finns i fig. 1.

Observera, att efter box II savil u,_, som s, _, éro kinda (eftersom just

in ut
I II 11T IV | —
1 — u, 1->mn Uy = — LUy [N | |, | —e
1-— So Sp = Sn—1+un -+
v

<] n+1l—>n

Fig. 1
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hiar n dr = 1) och att formlerna i box III alltsd fungerar redan fran
borjan. Berdkningen slutar d& |u,| < & och for detta n-virde har man
s, =e % med ett fel av storleksordningen e.

Erfarenheten visar, att en kod praktiskt taget aldrig 4r korrekt redan
fran boérjan. For att underldtta felsokningen brukar man skéra sénder
programmet i mindre stycken och lita maskinen goéra halt efter varje
sadant stycke och jamfora dess resultat med pa férhand beriknade vér-
den. Men dven om man lyckats fa programmet korrekt, kvarstar alltjimt
mojligheten, att maskinen gor sporadiska fel, som kunna undgd att
upptickas. Manga forslag ha under aren framférts for att eliminera
dylika enstaka missoden. Man har exempelvis tinkt sig att gora maskinen
sjalvcheckande genom viss 6verrepresentation, att bygga tva identiska
maskiner, som rikna parallellt och efter varje operation jamfora sina
resultat, att lita maskinen berdkna varje sak pa tva olika sitt och
jadmfora resultaten osv. Alla dessa metoder dro kostsamma men leda
dnda inte till ndgon hundraprocentig sikerhet. De flesta maskiner har
darfor inte inbyggd checkning, utan man maste sérskilt koda de checkar
man 6nskar.

Enkla exempel pa hur en sadan checkning fungerar dr foljande. Om
man pd vanligt sdtt vill berdkna cosz ur dess potensserie, riknar man
dven ut sinx och kontrollerar sedan, att cos?z—+sin?x = 1. Antag vidare,
att vi s6ker de bada fundamentallésningarna % och v till ekvationen
y''++P(x)y = 0 genom numerisk integration enligt nagon standardmetod.
Genom insdttning av % och v i ekvationen samt elimination finner man
omedelbart u''v—uv'’ =0, som ger det kinda villkoret u'v—uv’ =kon-
stant. Detta erbjuder en enkel och i vissa sammanhang anvindbar metod
for checkning. Att den inte dr vattentdt inser man genom att ersitta
u med au+bv och v med cu+dv, dd man far samma virde pa konstanten,
om ad—bc = 1. Det trigonometriska exemplet framgér £.6. som specialfall
for P(x) = 1. — En ofta mycket effektiv check dr att helt enkelt géra om
integrationen med annan stegldngd.

Det dr nu en naturlig sak, att i manga problem vissa gemensamma
berikningar upptrida. Exempel pa sadana éro oversittning fran decimal
till bindr form och omvént, berdkning av vissa vanliga funktioner, rikning
med variabla skalfaktorer (s. k. flytande binérpunkt), rikning med dub-
bel noggrannhet, numerisk integration och matrisinversion. Fér att inte
behova koda dessa operationer sirskilt varje ging anvinder man s. k.
subrutiner, som man kodat en ging for alla. En subrutin for logaritmen
behover endast forses med virdet pa x, sa limnar den ifran sig viirdet pa
log x, och man behéver inte nirmare bekymra sig f6r de mellanliggande
rikningarna. Dessa subrutiner kunna lagras direkt i minnet, om detta &r
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tillrckligt stort, eller ocksa kan man samla dem pa halremsor i et sérskilt
bibliotek.

Om fel. Vi ha tidigare i korthet nimnt hur man i viss utstréckning
kan undga tillfalliga fel, beroende pé férbiseenden vid kodningen eller
bristande funktionering hos maskinen. Lat oss nu &ven betrakta ett par
typer av mera »reguljira« fel. Vi observera dé forst, att vi i manga fall
maste gora matematiska approximationer, t. ex. ersitta en derivata med
en differenskvot eller en integral med en summa. Fel av denna karaktér
brukar bensmnas trunkeringsfel och kan i allminhet goras godtyckligt
sma genom tillrckligt fin intervallindelning.

Man méste nu halla i minnet, att maskinen endast kan rikna med ett
visst antal siffror. Betecknas detta antal med N, ger addition och sub-
traktion i tillitna fall &nyo N siffror, multiplikation 2N siffror och
division i allménhet ett ofindligt antal siffror. I de bada senare fallen
ar det alltsd nodvindigt att avkorta resultaten. Det fel som hérvid upp-
star, avrundningsfelet, dr av storleksordningen 2-(V+D. Aven om man
kan rikna med att avrundningsfelen i stor utstrickning kompensera
varandra, orsaka de vid langa rikningar en allvarlig forlust i antalet
signifikanta siffror. I vissa fall kan man t. 0. m. forlora all signifikans,
och slutresultatet siger ingenting. Botemedlet méste hir bli rakning med
dubbel noggrannhet, och i Gvrigt bor man i férekommande fall soka
avpassa intervallingd etc. s att summan av trunkeringsfel och avrund-
ningsfel minimeras (en #ndring av steglingden paverkar de bada fel-
typerna i olika riktningar).

Matematisk planering. Vi 6vergd nu till den matematiska plane-
ringen och skall sirskilt uppehalla oss vid siadana berikningsmetoder,
som inte kan sigas hora till de konventionella. Redan tidigare har
papekats, att karakteristiskt for matematikmaskinernas funktionssitt ar
just iteration av vissa delar av programmet. Detta kan vara en mycket
allméin form av iteration genom att maskinen successivt ocksd kan
modifiera sitt eget program. Detta innebér bl. a. att man inte pa forhand
vet vilket program maskinen i verkligheten kommer att f5lja. Vi ge nu
forst ett par enkla men typiska exempel pa iterativa metoder. Antag, att
vi soker }/a, dir 0 <a< 1. Vilj x,=$(1+a) och sedan 2, ., = Hx,+alz,).
Man finner da litt att 2, bildar en monotont avtagande foljd, som kon-
vergerar mot den stkta kvadratroten. Betecknas felet med ¢, finner
man &, ,; = ye,2/2,. Detta innebir, att om man har 6 riktiga siffror i en
approximation, kan man vinta sig 12 i nésta osv. Liknande iterativa
metoder kan litt konstrueras dven i andra fall, t. ex. for division, kubik-
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rotter och n:e rotter. I detta sammanhang kan ocksd erinras om
den kidnda formeln for den fullstindiga elliptiska integralen K(k) =
Y- M(1, k'), dér k24-k'2=1 och M betecknar aritmetisk-geometriska
mediet.

De sarskilt intressanta numeriska problemen upptrider i samband
med linedira ekvationssystem av hog ordning, ordiniira differentialekva-
tioner med givna randvérden i tva punkter, partiella differentialekvatio-
ner, integralekvationer och integrodifferentialekvationer, gruppteori,
kombinatorik, talteori samt lineéra olikheter av hég ordning. Héartill
kommer problem, som inte later sig inrangeras i nagon bestimd grupp
och som i vissa fall kréver metoder helt utanfsr de konventionella for sin
l6sning. Det kan i detta sammanhang inte bli tal om nigon systematisk
genomgéng av alla géingse numeriska metoder, som kan tillimpas for
l6sning av dessa problem, utan vi fir ndja oss med ett antal typiska
exempel.

Algebraiska ekvationer. Lat oss forst betrakta en vanlig algebraisk
ekvation med komplexa koefficienter och gradtalet m, och antag att vi
soker de m rotterna. D4 man riknar for hand har man mojlighet att
anviinda olika teorem for rotternas lokalisering och diirvid ta hinsyn till
ekvationens speciella utseende. P4 en siffermaskin diremot vill man helst
ha en enhetlig metod, och det kan d& visa sig praktiskt att anvinda for-
meln:

dar n dr antalet rotter till ekvationen P(z)=0 innanfor konturen C.
Exempelvis kan man dela in en del av planet i ett antal kvadrater och
sedan utfora integrationen fér varje kvadrat

med borjan i 6vre viinstra hérnet. Sedan tryckes 0000000000
varje n-virde, och d& en vagrit rad kvadrater 8 8 (1} g g g (1) (l) g 3
dr klar, liter man skrivmaskinen bérja paAny (60113000 0
rad samtidigt som nista rad paborjas. Fér 000200210 0
m =20 kan man da fa en figur av vidstdende 0 1 00 1000 0 0
utseende. 0000000000O0

Det kan f. 6. nimnas, att denna metodik att 8 8 g g g (O) (1) g 8 g
direkt vid utskriften 1ata skrivmaskinen fram- 0000000000
stilla resultatet i diagramliknande form ofta Fig. 2

anvindes, och i tillimpliga fall kan man sedan
ocksd rita nivaikurvor. Vid maskinell berikning av vissa molekylstruk-
turer far man direkt fran skrivmaskinen en grov oversiktsbild genom
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att maskinen trycker ett tecken
nir en berdknad storhet &ver-
skrider ett visst pa férhand gi-
vet minimivirde ([6] p. 204,
" [7]1p. 200). Genom detta konst-
grepp kan man bemistra det
stora siffermaterial, som en
funktion av tva variabler er-
bjuder, och framfér allt ar det
mojligt att direkt gora det
askadligt utan en foregdende
tidsodande analys. (Se fig. 3.)
P4 nagra maskiner har man
ocksa ett katodstralerdr, som
kan ge en bild av en beriknad
funktion av en variabel.

, j e Lineidira ekvationssystem och

Fig. 3. Hojden av 500 millibar-ytan den 24  egenvirdesproblem. Vi be-
april 1954. (Fran Tellus 6, 2, maj 1954). traktar ett linedrt ekvations-

system skrivet i formen

n
Sagx,=b; (1=1,2,...n).
=1

Vilkiinda, direkta losningsmetoder, viisentligen byggande pa elimination,
ha angivits av bl. a. Gauss, Jordan och Choleski. Men vi kan ocksa,
betrakta problemet rent geometriskt (se Stiefel [9], p. 43). Vi bildar
funktionen

F(xli Loy« o xn) = %le;aikxixk_zbixi ’
%, i

dir vi nu antaga a,;, = a;,; och soker minimera F. P4 vanligt sitt erhélles
2—5; = Y agx,—b;=0 (1=1,2,...n), dvs. just det ekvationssystem vi
Tk
betraktar. Med sedvanliga matris- och vektorbeteckningar kan vi kortare
skriva: F(x)=ix'Ax—b'z, Ax—b=0, om x #r losningsvektorn. Tag
nu en vektor y=x, si har vi F(y)= }y’Ay—b'y och Ay—b=r, dir r
ir en residualvektor som blir 0 for y=ax. Ekvationen F (y)=C kan
geometriskt uppfattas som en skara ellipsoider i n dimensioner (vi antar
den kvadratiska formen positivt definit). Vi s6ker nu successivt tvinga
ned r mot 0. Forst konstaterar vi, att grad F(y) =1, dvs. r ér normal till
den genom y gaende ellipsoiden. Vilj nu y, = y+-cp och sitt r, = Ay,—b,
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s4 foljer r, —r-+cAp. Men eftersom vi vill géra 7, s& liten som mojligh dr
det lampligt att vilja ¢ si att y, kommer att hamna pé en ellipsoid sa
langt in mot medelpunkten som md&jligh. (Detta ger visserligen inte
minimum, men man bor hir tinka sig ellipsoiderna som ett slags nivaytor.)
Dé maste vektorn p utgdende fran y vara tangent till denna ellipsoid,
dvs. r;p=0. Ur detta villkor kan ¢ litt bestimmas: c= —r'p/p’Ap.
Annu férfoga vi fritt 6ver vektorn p. Ofta viljer man helt enkelt p=—r
("Method of steepest descent«). Ett &nnu béttre val dr emellertld méjligt,
nimligen att lata p,, vara konjugerad riktning till p_,, alltsé P AP, =0
(»Conjugate gradient method«). Man inser latt, att man pa detta sitt
kommer fram till ellipsoidens centrum, dvs. losningen av systemet, i
exakt n steg.

. 3 2 9 2
Numeriskt exempel: A=(2 4), b-——<14), yoz(l).

—1 1 15
"'oIAyo_b=<__6): Po= '“'r():(ﬁ)a Ap°:<26>

—ripy =37, PAp,=1T71, c¢c,=37[171

_ (379171
Y1=YoeaPo= (393/171)

B [ oss4iTy (=2
rl_Ayl——b_(_M/”l), p1—< 15) (alltsé p,Ap,=0)

_rip,=64, p,Ap,—1368, c;=8/171

Yo=Y F+6P1= (;) , som ger losningen.

I detta sammanhang skall vi ocks4 i korthet berdra berikning av egen-
viirden till en matris. Dylika problem upptrida t.ex. vid berdkning av
atomernas och atomkirnornas energispektrum. For enkelhetens skull
antar vi A vara en symmetrisk, positivt definit matris och ndjer oss till
en borjan med att soka storsta egenvirdet. Antag att egenviirdena &r

¢y, Csy - . . OCh motsvarande egenvektorer &;, &,, . . . D& kan en godtycklig
vektor & skrivas som en lineirkombination av egenvektorerna: &=
@, +a,2,~+ . .. med okdnda koefficienter a,, a,,. ... Vi har Ax,=c,x;

och antar, att ¢, ir det stérsta egenvirdet. Bilda nu successivt Ax,A%x, .. .,
s& erhalles

Amxfc,” = a1+ (Cofc))"AUat . . . A Ay
D4 egenvektorn ir bestdmd si néir som pa en konstant faktor, inses, att
man erhaller den mot storsta egenvirdet svarande egenvektorn genom
att upprepade ganger multiplicera en godtycklig vektor med A. Egen-
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virdet fas litt ur tvad pa varandra foljande approximationer till egen-
vektorn.

Numeriskt exempel: Matrisen <1§ g) far upprepade ganger operera

a(l) och ger: [20Y—s.(4). (74). (1342) (24206  Desvre
Paty 8% \15) = 3> 51)’ 903/’ \16179)° """

komponenterna ger 20, 18.5, 18.135, 18.037,... medan de undre
komponenterna ger 15, 17, 17.706, 17.917, ... som approximationer till

3
det storsta egenvirdet 18; motsvarande egenvektor &r < 2).

Om man vill ha fatt i samtliga egenvirden och egenvektorer, kan detta
forfaringssétt inte med férdel anviindas. En elegant metod beskrevs redan
av Jacobi och gér i korthet ut pa foljande. Man utviljer det storsta icke-
diagonala elementet a,;, och utfér en vanlig vridning i tvé dimensioner,
varvid transformationsmatrisen har ettor i huvuddiagonalen och nollor
for 6vrigt, utom pa platserna (¢, ¢), (4, k), (k, ¢) och (k, k). Efter vrid-
ningen skall elementet a;;, (liksom a,; = a,;) ha 6vergatt till 0. Proceduren
upprepas, och for varje steg far huvuddiagonalen en allt starkare domi-
nans. I slutstadiet far vi alla egenvirdena i huvuddiagonalen och egen-
vektorerna som kolonner i den totala transformationsmatrisen.

Ordinidra differentialekvationer. Vi betraktar nu ett exempel pa
ordindra differentialekvationer med givna randvirden i tva punkter. Den
vanliga metoden &r att konstruera en funktionsfsljd, diir varje funktion
satisfierar differentialekvationen samt uppfyller randvillkoren i ena punk-
ten, och frn denna skara stka plocka fram en funktion, som uppfyller
randvillkoren &ven i den andra punkten. Denna metod &r naturligtvis
fullt anvindbar &ven pa en siffermaskin. Emellertid kan man i stillet
utgé frin en funktion, som uppfyller randvillkoren i bada punkterna men
ddremot inte differentialekvationen. Genom ett limpligt iterationsférfa-
rande frambringar man en serie nya funktioner, som alltjimt uppfylla
randvillkoren och som dessutom allt biittre satisfiera differentialekva-
tionen. Om denna funktionsféljd har en grinsfunktion, kan man viinta
sig, att denna utgor 16sningen p4 problemet.

Foljande exempel anféres av Hartree ([1], p. 125). Vi soker I6sningen
till ekvationen "'+ (1+4y?)y"’ =0 med randvillkoren %(0)=y’(0)=0,
y'(0) =1 och betraktar en funktionsféljd, som ér definierad av

e

Y+ (1+y?)y: = 0. Losningen kan skrivas:

xz nf n 2 d

§,9€ §,dn-exp (—{ (1+y,%) de)
{, dn-exp (= (14y2)dc)

Yirr1=
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Som utgangsfunktion kan man vilja y,=2 (trots att den ej uppfyller
randvillkoret y’(0)=0), och den fortsatta rakningen kan goras nume-
riskt med stor noggrannhet. Denna metodik &r mycket vél limpad
for maskinell rikning. — Naturligtvis finns det en méngd andra metoder,
av vilka manga énnu ej pa allvar provats pa siffermaskiner. I vissa fall
kan man representera losningen till en differentialekvation genom en
bestdmd integral. Denna &r di ofta mycket invecklad men behdrskas
anda litt med hjilp av en siffermaskin. I andra fall kan differential-
ekvationen betraktas som Euler-ekvation till ett variationsproblem osv.

Partiella differentialekvationer. Vid numerisk behandling av sidana
ekvationer med traditionella metoder brukar man approximera med en
lamplig differensekvation. Om ursprungsekvationen &r lineér, far man
ett system av linedra ekvationer (se t.ex. [10]). Antag silunda, att vi
har tva oberoende variabler samt att vi kan indela planet i 10- 10 maskor
(vilket i manga fall sikert ir en grov approximation). Detta ger da ett
ekvationssystem med 100 obekanta, visserligen med de flesta koeffi-
cienterna =0, men #nda erbjudande aktningsviirda svarigheter. I hogre
dimensionsantal blir situationen sjilvfallet dndéa allvarligare. I méanga
fall kan emellertid relaxationsmetoder anvindas med stor framgéng (se
[11, 12]).

) 2u 0w .

Tag som exempel ekvationen éﬁ—}—é—y—z—l—q)(x,y)u:zp(x,y) med givna
randvirden u=f(x) fér y =2z och u=g(x) for y=0 samt u=0 i oo. Vi
soker 16sningen for > 0 och 0 <y <. I detta omride utmirker vi alla
gitterpunkter (ik, kh), dir 5 och k &r heltal. Virdet av u i punkten (ih, kh)
i en viss approximation betecknas med u och i nista approximation

2 2
med wu,. Uttrycket 8?-]—% approximeras som vanligt med:
(ui+1,k+ui—1,k+ui,k+1+ui,k—1—4uik)/k2 .

Sedan detta insatts i ekvationen, ersitter vi u,, med u;;, och motsvarande
for w;_y  och u; ;_;, varigenom foljande likhet erhalles:

! ’

2
= Wi, o Wiy, k%, ka T %, i — PP
ok — 4:—}&2 . .

Dik

Fran borjan tilldelas alla inre punkter viirdet 0. Relaxationsprocessen
borjar i punkten (2h,h), fortsitter sedan med (3k,%), (3h,2h), (4h,h),
(4h,2h) osv. Genom processen tvingas hela tiden, bildligt talat, rand-
viirdesmateria att flyta in i omradet, utan att randvirdena sjilva pd
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nagot sitt influeras, och stromningen slutar férst da jamvikt uppnétts,
dvs. da vi har kommit fram till l6sningen pa ekvationen.

Vid numerisk behandling av partiella differentialekvationer genom att
i stéllet 16sa motsvarande differensekvation upptrader vissa karakteris-
tiska svarigheter. Redan 1928 visade Courant, Friedrichs och Lewy i ett
ként arbete [13] att for hyperboliska ekvationer foérhallandet mellan
maskléngderna maste satisfiera en viss olikhet om konvergens skall
erhéallas. Under 40-talet har liknande fragor studerats av bl. a. v.Neu-
mann [14,15,16], och det har d& visat sig, att ndr den numeriskt erhallna
I6sningen avvikit avsevirt fran den riktiga, s &r det ofta brist pa kon-
vergens (dvs. hur 16sningen till differensekvationen nirmar sig 16sningen
av differentialekvationen) snarare &n brist pa stabilitet (dvs. avvikelser
pa grund av avrundningsfel) som astadkommit detta.

Slutligen mé& ndmnas, att man f.n. dr intensivt sysselsatt med numerisk
behandling av en rad partiella differentialekvationer emanerande fran
meteorologien, bl.a. i syfte att erhalla sikrare langtidsprognoser for
vidret. En narmare redogorelse for berikningarna pa BEsk finns i [17].

Talteori. Till sist anfor vi dven ett talteoretiskt exempel, som nyligen
behandlats pad Princeton-maskinen av v.Neumann och Goldstine [18].

p—1 Qmvd

De Kummerska summorna §,= 3'cos- ™ dir p 4r ett primtal av
=0 p

formen 6k+-1, dr bildade i analogi med de Gausska summorna och under-

soktes ingdende av Kummer. Han bevisade, att de satisfierar ekvationen
23—3pr—pA =0, dir 4 ir ett heltal, som entydigt bestimmes ur vill-
koren: 4p=A24-27B%; A—1 jimnt delbart med 3; B heltal. Exempelvis
blir 4 =1 fér p=7 och 4= —5 fér p=13. Man har vidare S,=4.74,
vilket dr den stérsta roten till ekvationen x3—21x—7 =0, och S;;=1.82,
vilket dr den mellersta roten till ekvationen x3—39x4-65= 0. Kummer
beriknade sjilv de 45 forsta summorna och trodde sig finna, att storsta,
mellersta resp. minsta roten var representerade i proportionerna 3:2:1.
Sedan 611 summor nyligen undersékts, fann man i stillet de ungefirliga
proportionerna 4:3:2, vilket resultat méjligen kunde utgora grundval
till ett forsck att bevisa en asymptotisk fordelningsformel.

I detta sammanhang ma ocksd nidmnas, att K. Goldberg med maskinell
hjalp (Seac, Washington) funnit ett nytt Wilsonskt primtal [19]. Enligt
Fermats kénda sats dr (p—1)!-+1 jimnt delbart med p om p dr primtal.
Om uttrycket dven ir delbart med p2?, kallas p ett Wilsonskt primtal.
Vilkinda exempel dr p=5 och p=13, och man fann nu, att &ven
p=>563 ar ett sadant tal.

Sedan Lucas 1876 upptickte, att 2127—1 var primtal, har manga
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forsok gjorts att finna storre primtal, men forst pa den allra senaste
tiden har forscken varit framgingsrika. Salunda kunde Ferrier med
hjilp av en vanlig bordsmaskin visa, att (214¥4-1)/17 var primtal. Dér-
efter bevisade Wheeler och Miller med hjilp av Epsac, Cambridge, att
1+4k(2127—1) var primtal for k=114, 124, 388, 408, 498, 696, 738, 744,
780, 934 och 978, liksom 180(2'27—1)2-+1. Slutligen har man pad Swac,
Los Angeles, beriknat inte mindre #n 5 nya Mersenneska primtal, varfor
man nu kinner 17 stycken, nimligen 27—1 fér n=2, 3, 5, 7, 13, 17, 19,
31, 61, 89, 107, 127, 521, 607, 1279, 2203 och 2281. Det sista av dessa,
222811 har 687 siffror och synes f.n. samtidigt vara det stérsta kénda
primtalet. En utmirkt uppsats behandlande dessa problem har nyligen
publicerats av Bang i NMT [20].

I detta sammanhang ma slutligen ocksd nimnas Selmers arbeten
med 18sning av obestimda kubiska ekvationer pa Princetonmaskinen,
vilka nirmare beskrivas i efterféljanda artikel i detta hifte [21].

Diverse problem. For atskilliga typer av problem har man inte
nagon konventionell metod. Hér skall endast erinras om att man ibland
med framgéng kan anvinda den i NMT tidigare beskrivna Monte Carlo-
metoden (Dahlquist [22]), vilken #r utomordentligt vil limpad for en
siffermaskin. Sirskilt giller detta vissa atomfysikaliska tillimpningar,
kombinatoriska problem och en del matematiskt ytterst siregna problem
hirrérande fran bl.a. operationsanalysen. I somliga fall kan ocksd en
mer eller mindre systematisk trial-and-error-teknik erbjuda en framkom-
lig vag.

En nira till hands liggande reflexion ér att de beskrivna metoderna
lika géirna kunde anvindas vid handrikning. Detta dr en viktig sak att
ligga mirke till: En maskin kan inte gora mer &n en ménsklig riknare,
den kan endast gora det fortare. I atskilliga fall kan detta vara visentligt
for problemets 16sning. Om némligen problemet &r si beskaffat att alla
rikningar maste goras i bestdmd ordning, kan man inte nedbringa 16s-
ningstiden genom att lata ett stort antal personer arbeta med problemet.
En modern elektronisk maskin utrittar pd 1 timme lika mycket som en
miinsklig riknare pa 1 ar (detta &r en hogst ungefirlig siffral), och det
ir litt att inse, att stora grupper av problem tack vare matematikmaski-
nerna kommit inom rickhall for numerisk behandling. Orsaken till att
man ibland soker sig mindre konventionella viigar fram till en 16sning
kan da helt enkelt vara, att den konventionella metoden d& det géller
stor noggrannhet egentligen #ir underligsen men &ndé ger en néigorlunda
hygglig approximativ 16sning utan alltfor mycket arbete.
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Icke-numeriska problem. Trots att detta avsnitt egentligen faller
utom ramen for &mnet, ger vi som komplettering négra exempel pa dylika
problem, desto hellre som de erbjuda ett ganska stort allmént intresse.
Forst ma di nimnas, att man ganska ingéende spekulerat 6ver mojlig-
heterna att lata en matematikmaskin spela en rad olika spel sdsom nim
eller schack, och speciellt om den dérvid rentav skulle kunna slé sin kon-
struktor. (Att den, efter limplig instruktion, kan frambringa musik har
med stor framgang demonstrerats pa Besk.) En ndrmare redogorelse for
dessa och likartade fragor skulle hir fora for langt, och den intresserade
hinvisas till [5].

Dirnist kan ocksd anforas, att man konstruerat en sirskild maskin
for logiska operationer (Logical Truth Calculator, New York; [5], p. 144),
nirmast avsedd foér anvindning i affirslivet. Sjélvfallet kan en siffer-
maskin begagnas for samma #ndamal.

Slutligen ma dven omnémnas, att man sedan flera ar arbetat pd ett
projekt att maskinellt utféra Gversittning frin ett sprak till ett annat.
Detta har ocksa verkligen utforts i det att tysk matematisk text Gver-
forts till engelska, visserligen grammatikaliskt rétt visentligt forenklad
men dock fullt begriplig (Swac, Los Angeles).

Av de nimnda exemplen framgar klart, att en siffermaskin kan anvén-
das for de mest skiftande dndamal. Orsaken hartill dr vél ytterst, att
maskiner faktiskt #r i stand till att utfora arbete inom en stor sektor av
det minskliga intellektets omrade, nirmare bestimt den sektor, som &r
avhiingig av minne och instruktion. Det &r alldeles uppenbart att numeris-
ka berikningar faller inom denna sektor. Vissa forfattare vill rentav ga
annu lingre och mena sig kunna pévisa, att en maskin t.ex. kan ldra av
sina misstag. Aven om detta delvis ér riktigt, synes atskilliga argument
som framforts som stod for denna uppfattning inte helt Gvertygande.

Det ir sed, att varje artikel, som mer eller mindre handlar om mate-
matikmaskiner, slutar med en entusiastisk programforklaring om dessa
maskiners utomordentliga framtidsutsikter, och forfattaren har inte velat
bryta mot denna tradition, desto mindre som han sjilv i ndgon mén
tillnor de dvertygades skara. Ett talande tecken utgtr i varje fall det
stiindigt vixande antalet maskiner, trots tidigare pessimistiska spadomar,
att ingen maskin nagonsin skulle fungera tillrackligt linge for att 16sa ett
problem, eller »optimistiska« funderingar om att redan den forsta maski-
nen pd nagra veckor skulle rikna slut pa alla problem som fanns.

Siffermaskiner i Norden. I Sverige finns tvé storre siffermaskiner
i arbete: relimaskinen BARK och elektronrérsmaskinen BESK, bada till-
hérande Matematikmaskinnimnden i Stockholm. Vid Lunds Universitet
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bygges f.n. en férenklad kopia av Busk kallad SmiL, och vidare projekte-
ras ytterligare en kopia av BESK vid en svensk storindustri. Dessutom
finns 11 stycken IBM 604 och 2 stycken IBM CPC. I Danmark skall
byggas en kopia av BEsk, och i Norge har man dels byggt en kopia
av en Boothmaskin, dels bestiillt en Ferranti-maskin fran England. I
Finland 4r en maskin under byggnad. Savitt férf. har sig bekant finns
dnnu inga siffermaskiner byggda eller projekterade p& Island.
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DEN UBESTEMTE LIGNING X°4 Y= AZ°
ERNST 8. SELMER

Utdrag av foredrag i Dansk matematisk forening 15. febr. 1954.

Leeren om ubestemte eller diofantiske ligninger er en meget gammel
gren av matematikken; den har sitt navn etter Diophantus fra Alex-
andria, som levet i det 3dje arhundre. — Slike ligninger har alltid veert
meget populere (ikke minst blant norske matematikere). I Dickson’s
»History of the Theory of Numbersc, i tre bind, er hele bind 2 viet til
omtalen av diofantiske ligninger. Populariteten er lett forklarlig; i fa
grener av matematikken er vel problemstillingen — losbarhet eller ikke
losbarhet i rasjonale eller serlig i hele tall — s umiddelbart forstéelig
selv for ikke-matematikere. En annen sak er at teorien for de ubestemte
ligninger byr pa en rekke vanskelige og tildels ulgste oppgaver. For & gi
et inntrykk av noen av de problemer man meter og de metoder som be-
nyttes, skal jeg nedenfor gi en kort omtale av en type ligninger som jeg
selv har arbeidet endel med.

Vi tar vart utgangspunkt i tredjegradskurven
1) a3+ = A, A et helt tall.

Al ettersom vi soker heltallige eller rasjonale punkter pa denne kurve,
far vi to helt forskjellige problemstillinger.

Ifglge en alminnelig sats av Thue har kurven (1) bare et endelig antall
heltallige punkter. Det er vanligvis ingen sammenheng mellom de enkelte
lgsninger; hvert punkt ma bestemmes for seg.

Hvis vi derimot sper etter rasjonale lgsninger av (1), altsé & = X|Z,
y = Y|Z, gir dette den homogene ligning

2) XL ¥ = AZ8,

med heltallige X, ¥ og Z. Denne ligning skal veere vart videre utgangs-
punkt. — Det er klart at vi kan anta 4 positiv og kubusfri. Den trivielle

losning X = —Y, Z = 0 ser vi bort fra i det folgende.
Med A = 1 far vi tilfellet » = 3 av den bergmte Fermats ligning
Xn+ Yn — Zn R

[48]
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som har spillet en stor rolle for utviklingen av tallteori og algebra. Ulgs-
barheten for » > 2 er fortsatt ikke bevist i alminnelighet, men umulig-
heten for n = 3 har veert kjent meget lenge. (Se f. eks. Hardy & Wright:
»Theory of Numbers«.)

Ligningen (2) med 4 > 1 er studert av en rekke matematikere, swrlig
i slutten av forrige drhundre, da bl. a. Sylvester og Pepin bidro med
ulgsbarhetsbevis eller lgsninger for en rekke verdier av 4. I min doktor-
avhandling! har jeg systematisert de tidligere resultater og tilfoyet en
rekke nye; bl. a. har jeg behandlet ligningen (2) for alle 4 opp til 500.

La P, og P, veere to rasjonale punkter pa (1); vi soker kurvens tredje
skjeeringspunkt med tangenten i P, og med korden P,P, henholdsvis.
Dette skjeringspunkt bestemmes av en rasjonal 3djegradsligning med to
kjente rasjonale rgtter; folgelig vil ogsé den siste rot veere rasjonal.

Ved gjentatt bruk av en slik stangent-korde-prosess« kan vi derfor van-
ligvis konstruere et ubegrenset antall rasjonale punkter pd kurven ut
fra et endelig antall grunnpunkter. En bergmt sats av Mordell — som
gjelder for en vilkarlig rasjonal 3djegradskurve — sier na at samilige
rasjonale punkter pd kurven kan ndes ut fra en endelig basis av grunnpunk-
ter. Disse punkter kalles ogs& generatorene, og deres (minimale) antall for
kurvens rang.

Vi skal se pa en metode til bestemmelse av rangen for kurven (1).
Vi betrakter den homogene form (2), hvor venstresiden kan faktoriseres:

X34V = (X+Y)(X2—XY+7T?).

Den klassiske fremgangsmate (Sylvester, Pepin) bestar i 4 betrakte egen-
skapene ved den kvadratiske form X2—XY -+ Y2 Imidlertid er det, som
forst papekt av Hurwitz, lettere & faktorisere denne form videre ved
hjelp av de komplekse tredjergtter av enheten:

0= }H—1+)/—=3) og g = §(—1—}—3) = —1—p
(altsé de komplekse rotter i ligningen 2°—1 = (z—1)(2*+-2+1) = 0). Da
kan nemlig (2) skrives som

(3) (X+Y)X+Yo)X+ Yo%) = AZ°.

Vi gar derfor over til & operere i den algebraiske tallkropp K(p). Et
helt tall i tallkroppen defineres ved a-+bp med hele rasjonale a og b. Ved
normen av et tall forstar vi produktet av tallet og det konjugerte:

N(a--bo) = (a-+bp)(a+be?) = a*—ab-+b?

1 yThe diophantine equation ax®-+by®+cz® = O, Acta Math. 85 (1951), pp. 203-362.
Denne avhandling inneholder en omfangsrik litteraturfortegnelse.
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(altsd nettopp lik kvadratet av modulen til det komplekse tall a+-bp).
Enhetene er de tall

e = +£1, +o, £¢°
som har norm 1.

Et primtall i tallkroppen K(p) defineres pa vanlig méte ved at det ikke
kan spaltes i to faktorer som begge er forskjellig fra en enhet. Det er da
lett & vise at de vanlige delelighetsregler gjelder i tallkroppen, slik at
ethvert helt tall spaltes pa entydig méte i primfaktorer (bortsett fra en
ubestemthet som opptrer p. g. a. enheter).

For & bestemme primtallene i K(p), skiller vi mellom de rasjonale
primtall av formen

q=3h—1 og r=3h+1.
Det viser seg da at primtallene g forblir primtall i K(g¢), mens primtallene
r spaltes i to konjugerte primfaktorer:

(4) r = nm, = (a+be)a+be*) = N(a+bo) ,
beks g (143014300, 13 = (—1430)(—1+3¢7).
Det rasjonale primtall 3 spaltes som

3= —¢2 = —0¥1—0)?,

hvor N(1) = N(1—p) = 3. Her er A = 1—p et primtall i K(g), og —p?
er en enhet.

Vi vender s4 tilbake til ligningen (3), hvor vi tydeligvis kan forutsette
at de hele rasjonale tall X, Y og Z er parvis uten felles faktorer. Da et
primtall ¢ forblir primtall i K(p), kan det ikke gi opp i X+ Yy eller
X4 Yp? uten & gé opp i bade X og ¥, mot forutsetningen ovenfor. En-
hver primfaktor q © A md derfor g opp © X+ Y. En primfaktor r i 4 kan
selvsagt ogsd gi opp i X+ Y, men da r ifolge (4) spaltes i K(g), kan her
m, gd opp i X+ Yo:

(5) 7w, | X+ Yo, altsd 7, |X+Yp?.

Delelighet med primtallet 2 = 1—p ma behandles seerskilt; det viser
seg at vi ma betrakte tre forskjellige tilfelle. Ett av disse (faktisk den
eneste mulighet for en rekke former av 4) er gitt ved

(6) AX+Yo, 9X+7Y.

Hyvis videre alle primfaktorer i A er av formen g, har vi sett ovenfor
at vi mé ha A|X-+ Y. For & fa frem tredjepotensen Z3 i (3) mé vi da sette

(7) X+Y =94u?, X+ Yo = cA(u-+vp)?,

hvor ¢ er en enhet. Her blir
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(X+Ye)(X+Y¢*) = N(X+Yo) = N(e) - N(3) - N(utve) .

1 3
Innsetting i (3) viser at

Z = 3w - N(u+vp) = 3w(u*—uv-+v?) .

Fortegnet for enheten ¢ er tydeligvis likegyldig. Det viser seg at i de
fleste tilfelle er ¢ = 1 den eneste brukbare mulighet. Av 2. ligning i (7)
finner vi da ved & sammenligne de reelle og de rent imaginsere partier at

X = w4 3uv—6uv?+13, Y = —(ud—6uv-3uv?-+3).
YVed addisjon og sammenligning med 1. ligning i (7) far vi
(8) wo(u—v) = Aud .

Her mé u og v veere uten felles faktor (da en slik vil g& opp i X og Y).
Vi slutter derfor at det ma finnes tre hele tall z, y, z og en faktorisering
A = abc, slik at (det negative fortegn for » er hensiktsmessig):

—u =ax®, v=by, u—v = cz?, altsd w= —ayz.
Addisjon av de tre forste ligninger gir
(9) ard+byttczt =0, abc = A.

Vi har altsé funnet folgende meget viktige setning (allerede kjent av
Euler):

Enhver losning av ligningen ax®+4-byd-+cz® = 0 gir en losning av ligningen
X34 Y3 = abcZ®.

Formlene for X, Y og Z uttrykt ved z, y og z blir tydeligvis av niende
grad, sa selv en enkel lgsning (z, y, z) kan gi anledning til en meget stor
lgsning (X, Y, Z). — Det viser seg at de gvrige muligheter for delelighet
med A (smlgn. (6)) alltid leder til samme ligning (9), safremt vi velger
¢ = 11i ligningene svarende til (7).

En mulighet for faktorisering av A4 er selvsagt

slik at ligningen (9) er identisk med den opprinnelige ligning (2), men
(som man lett viser) med en mindre tallverdi av Z. Vi bruker da et resonne-
ment som spiller en fundamental rolle i teorien for ubestemte ligninger,
det sakalte »infinite descent«: Blant alle lgsninger av ligningen (2) er det
én (eventuelt flere) for hvilken |Z| har et minimum. Hvis vi tar vart
utgangspunkt i denne lgsning, vil derfor tilfellet (10) veere utelukket.

I alminnelighet vil vi kalle overgangen fra (2) til (9) for en »descent«.

4%
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Mer spesifikt vil vi tale om descent av type I, idet vi ifolge (5) ogsé kan
bruke en prinsipielt ny faktorisering nar 4 inneholder rasjonale prim-
faktorer r = 3h-+1. La f. eks. A = r4,, hvor r spaltes i K(p) etter for-
melen (4). Da kan vi erstatte (7) med

X+Y =94,w?, X+Yo = Aa+bo)(utve),

idet enheten ¢ kan trekkes inn i a+bp. Ved & ga frem som ovenfor finner
vi at ligningen (8) na erstattes med

(11) bud+3(a—b)uv—3auv?+-bv® = 34,u8 .

Av denne kan vi imidlertid ikke f4 noen ny ligning, som ved utledningen
av (9) fra (8) ovenfor.

Vi kaller overgangen fra (2) til (11) for en descent av type I1. 1 denne
kan vi ogsa inkludere tilfellet ¢ = g i (7), ved & velge a = 0, b = 1 og
A, = A.

Vi skal serlig betrakte descent av type I, altsd ligningen (9). Denne
kan ofte vises ulgsbar ved enkle kongruensbetrakininger. Som kjent betyr
kongruens modulo 7, 5=t (mod n),
at s og ¢ gir samme rest ved divisjon med n, altsa at differensen s—t er
delelig med n. Kongruenser kan adderes, subtraheres og multipliseres
som vanlige ligninger.

Det er na lett & se ved enkle kongruensbetraktninger at f. eks. folgende
ligninger av typen (9) er ulesbare:

(12) 23+42y° = 52% og a3+2y3 = T3 .

Den forste er umulig modulo 9, da man lett ser at for enhver 3djepo-

tens er
23 = 0 eller 41 (mod 9)

ettersom
z =0 eller 41 (mod 3),

idet
(8h+1)® = 9(3A343h2+h)+1 .

En kombinasjon av 0 eller +1 (leddet z3) med 0 eller 42 (leddet 2y3)
kan bare gi 0 eller 45 i tilfellet 00 = 0, altsa for z, y og z alle delelige
med 3. Men en slik felles faktor kan vi tenke oss fjernet pa forhand.

Den annen ligning i (12) er pa4 samme méate umulig modulo 7, da en-
hver 3djepotens er = 0 eller |1 (mod 7). Vi sier at 41 er de eneste.
(egentlige) kubiske rester av 7. (Det er tilstrekkelig 4 vise at 2® = 4-1
(mod 7)forx =1, 2, 3, 4, 5 og 6.) I alminnelighet har et primtall » = 341
bare }(r—1) inkongruente (egentlige) kubiske rester.
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Det viser seg at, alle tall er kubiske rester av et primtall q = 3h—1,
(Eksempel: 03=0,13=1,22=3,33=2,43=4 (mod 5).) De eneste
kongruensbetingelser for ligningen (9) far vi modulo 9 og modmlo de
primtall » som gér opp i koeffisientene. Det er folgelig en enkel sak &
undersgke om ligningen kan utelukkes ved kongruensbetraktninger; i
motsatt fall sier vi at den er mulig for enhver modul.

La oss nd betrakte to enkle, men typiske eksempler pa ulosbare lig-
ninger X34 Y3 = AZ3. I begge tilfelle er descent av type I, altsa ligningen
(9), den eneste mulighet.

1) 4 = 5, altsa et primtall ¢ = 3h—1. Den eneste mulige faktorisering
er gitt ved (10), men den ble utelukket ved »infinite descents.

2) A =10 = 2- 5, altsd et produkt av to primtall g. Den eneste fak-
torisering forskjellig fra (10) er 4 = 1-2- 5, som nettopp leder til den
forste av de utelukkede ligninger (12).

Eksemplene ovenfor er spesialtilfelle av. en alminnelig sats av Syl-
vester, om ulgsbarhet for visse former av A4.

La oss si betrakte 4 = 14 = 2 - 7. Ifolge siste ligning (12) er her
descent av type I utelukket, men p. g. a. primfaktoren » — 7 m4 vi 0gsé
betrakte type II, altsa ligningen (11), med 4, = 2, a+bp = =, = 143p.
Det viser seg at ogsé denne ligning kan utelukkes ved kongruensbetrakt-
ninger, som na blir atskillig vanskeligere. Endel slike utelukkelser ble
allerede gjennomfert av Sylvester og Pepin (bl. a. for tilfellet 4 = 14
ovenfor), men deres bevis er tunge. Ved hjelp av den sikalte »kubiske
resiprositetssats« i tallkroppen K(p) har jeg kunnet forenkle og systema-
tisere studiet av ligningen (11). Som et resultat kan jeg nevne folgende
alminnelige setning (som for ¢ = 2, » = 7 gir talleksemplet ovenfor):

Hvis ¢ = 3h—1 er kubisk ikkerest av r = Sh-+1, sd er ligningen X3 Y38 =
AZ? wlosbar hvis A (kubusfri) har en av formene

A = qr, qr*, ¢* eller ¢, A = +1 (mod 9) .

La oss vende tilbake til ligningen (9), som vi na vil forutsette mulig
for enhver modul. Kan vi da si noe om lgsbarhet i hele tall, med andre
ord om tilstrekkeligheten av kongruensbetingelsene ? Spersmalet er meget
nerliggende, da man for homogene kvadratiske ligninger — for gvrig i et
vilkérlig antall variable — har det kjente resultat at kongruensbetin-
gelsene er tilstrekkelige for losbarhet (safremt det overhodet finnes reelle
lgsninger).

Under et foredrag i Oslo hosten 1948 fremkastet Mordell den hypo-
tese at kongruensbetingelsene er tilstrekkelige ogsé for kubiske ligninger
av typen (9). Imidlertid lykkedes det meg aret etter, mens jeg studerte
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hos Mordell i Cambridge, & motbevise hans hypotese. Kongruensbetin-
gelsene er ikke tilstrekkelige for losbarhet av homogene kubiske ligninger 4
tre ukjente. (I fire ukjente har jeg derimot pavist tilstrekkeligheten i
visse tilfelle.)

Jeg skal bare ganske kort skissere metoden: Etter multiplikasjon med
a? og substitusjon av x for —ax kan ligningen (9) skrives som

(13) B—my® = nzt.
Hyvis vi innforer Vm = 9, altsd my® = (y9)?, kan venstresiden faktori-
P (@—yO)@*-+ayd+y*9?) = na? .

Vi opererer da i den algebraiske tallkropp K(¢#) = K (Vm). Hyvis dennes
»klassetall« er > 1, gjelder her ikke de vanlige delelighetsregler for tall i
tallkroppen; vi ma innfore de sikalte »idealer.

Resultatet av slike betraktninger er at vi ledes til et endelig antall lig-
ninger av formen

(14) T—yd = pod = (e+fO+g8)(u+vd+wd?)p,

hvor u (kjent) og « (ukjent) er hele tall i K(9). Ved & betrakte den til-
svarende kongruens (for passende moduler), ledes man til et studium av
kubiske rester i tallkroppen. Det viser seg da at vi i en rekke tilfelle (jeg
har et gjennomsnitt pa 30°/, i mine tabeller) kan bevise ulosbarheten av
(14) og dermed av (13), selv om den siste ligning er mulig for enhver
modul.

Lignende betraktninger, men atskillig mer kompliserte, har jeg ogsé
gjennomfert for ligningen (11), i den kubiske tallkropp som defineres ved
venstresiden.

Ligningen (14) uttrykker egentlig at vi m& bestemme de hele tall
u, v og w slik at leddet med 9* faller bort nar vi multipliserer ut hgyre-
siden. Utferer vi dette, og benytter oss av at 9 = m, far vi en kubisk
ligning mellom #, v og w:

g+ (U3 +mv3+mA*uP+ 6muvw)
(15) +3f - (w4 muw?+mv2w)
+3e- (wwtuvi+mow?) = 0.

En lgsning av denne vil gi en lgsning av ligningen (13), og dermed av
(9). Formlene for x, y og z uttrykt ved u, v og w blir av tredje grad. Da
som nevnt X, Y og Z i (2) igjen er uttrykt som polynomer av grad 9 i
%, y og z, forstar vi at selv beskjedne lgsninger av (15) kan gi meget store
lgsninger av (2). De storste i mine tabeller forekommer for 4 = 382 =
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2191, hvor 2-sifrede lgsninger i u, v og w ga 6 sifre i z, y og 2, og hele 53
desimalsifre i de endelige svar for X, Y og Z. Og dette er vel 4 merke
den enkleste losning av ligningen X3+ Y3 = 38223,

De ligninger — av forskjellig slag — som ikke kan utelukkes, ma
ihvertfall oppfylle visse, ofte strenge kongruensbetingelser for de ukjente.
Dette benyttet jeg meg av nar det gjalt & finne lgsninger for de ikke ute-
lukkede ligninger. Kongruensbetraktningene gir jo tngen tilstrekkelige
losningsbetingelser, og den eneste mate & konstatere lasbarhet pa er fak-
tisk & lete seg frem til en losning. I de fleste tilfelle fant jeg lgsningene ved
hjelp av de relativt enkle ligninger (9) eller (11), men noen ganger matte
jeg bruke den noksa uhéndterlige ligning (15). Og selv da var det endel
ligninger hvor jeg matte gi opp & lete etter lgsninger pa en vanlig bord-
regnemaskin. I min doktoravhandling er det ca. 10 &pne »hull« for uleste
ligninger i tabellene opp til 4 = 500.

Varen 1952 fikk jeg imidlertid anledning til & vkode« mine ulgste lig-
ninger for den elektroniske regnemaskin ved Institute for Advanced
Study i Princeton, og kjorte dem selv pa maskinen. Det var ligninger av
begge typer (11) og (15), og programmet var laget slik at maskinen ville
stoppe ved den forst funne lgsning. Det var virkelig spennende & sitte ved
kontrollbordet og vente p& at flimringen av katodestrilergrene og neon-
lysene skulle stanse. Ville maskinen (som nettopp var tatt i bruk) opp-
fore seg pent? Hadde jeg kodet problemet korrekt? Og i dette spesielle
tilfelle: Hadde mine ligninger virkelig lgsninger innenfor det omrade for
de variable som var fastlagt ved maskinens egen kapasitet ?

Alt gikk heldigvis som det skulle, og maskinen lgste alle ligninger, etter
en samlet effektiv regne-tid pa noen timer. (Det er for gvrig ingen kort
tid for en maskin som prinsipielt kan utfgre 20000 addisjoner eller 2000
multiplikasjoner av 12-sifrede desimaltall pr. sekund.) Jeg har derfor na
komplette tabeller for ligningen X3+ Y3 = AZ3 opp til A = 500 (de nye
lgsninger er publisert i Acta Math. 92, 1954). Med »komplett« menes her at
for hver lgsbar ligning er det gitt et fullstendig sett av generatorer eller
grunnlosninger, i et antall lik rangen (som for gvrig aldri overskrider 2
for 4 < 500).

Den siste bemerkning leder oss tilbake til vart utgangspunkt, bestem-
melsen av rangen for kurven (1) eller (2). — Det viser seg at antallet av
(vesentlig forskjellige) losbare ligninger (9) (descent av type I) alltid er
gitt ved formelen N —33"—1),

altsi N = 0,1,4,13, ... forn = 0,1, 2, 3, .. .. Man finner da at det til-
svarende antall grunnlosninger er lik eksponenten n.

g
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P4 samme mate er antall losbare ligninger (11) (descent av type II)
gitt ved en helt analog formel, hvor eksponenten angir bidraget til rangen.
Og hvis descent av bade type I og II er mulig, blir den totale rang av
kurven (2) lik summen av de to eksponenter.

De forste resultater av denne art skyldes Faddeev, som beviste set-
ningen under forutsetning av at bare descent av type Il opptrer. Senere
har jeg utvidet resultatet til ogsa & inkludere type I. Dette var jo en
meget naturlig generalisering, men beviset voldte meg sterre vansker enn
noe annet punkt i avhandlingen.

Overgangen fra (13) til (14) — eller en tilsvarende overgang fra ligning
(11) — kan sies & representere en ny descent, som altsi gir nye kongruens-
betingelser og dermed flere utelukkede ligninger enn den opprinnelige
descent i tallkroppen K(p). De nodvendige betingelser er altsi skjerpet,
men som allerede nevnt gir de fremdeles ikke tilstrekkelige betingelser for
lgsbarhet. For 4 < 500 har jeg ett tilfelle som viser utilstrekkeligheten,
nemlig A = 473 = 11:43 = ¢-r. Her er det én mulig ligning (9) og én
ligning (11) som ikke kan utelukkes ved ny descent. Dette skulle gi
1-+1 = 2 generatorer hvis betingelsene hadde vert tilstrekkelige, men
ligningen X3-- Y3 = 47328 kan vises ulgsbar ved en annen lignende me-
tode (som for gvrig heller ikke gir tilstrekkelige betingelser).

I alminnelighet kan man si at den ulgste oppgave, & finne tilstrekkelige
betingelser for eksistensen av rasjonale punkter pd en tredjegradskurve, er
ett av de sentrale — og vanskeligste — problemer i teorien for ubestemte
ligninger.




OM KONVEXA KURVOR

ARNE PLEIJEL

Lat C beteckna en sluten, konvex kurva och 1t p(u) vara dennas
krékningsradie, uttryckt som funktion av den vinkel u, som kurvans
stodlinjer (tangenter) bildar med en fast riktning i planet. Lat vidare L
beteckna kurvans omkrets, F den av kurvan inneslutna ytan samt D
storsta och d minsta avstandet mellan parallella stodlinjer till kurvan.

Antag nu, att krokningsradien, som &r en integrerbar funktion av u,
har blott ett #ndligt antal diskontinuitetspunkter och i alla punkter
uppfyller villkoren 0 < p(u) < R, déir R ir ett fast tal. Harur foljer d&
L < 2aR och F < nR? (se t.ex. Blaschke: Kreis und Kugel, § 24, 11
sid. 116). Denna uppsats kommer att behandla féljande problem: Ldt
L och R vara givna. Sék maximum for D, minimum for d samt mazimum
och minimum for F.

Jag bevisar forst foljande hjilpsats: Ldt AB vara en given strdcka och
AA’ och BB’ tvd dt samma héll riktade normaler mot AB. Ldt vidare ACB
och ADB vara tod genom A och B gdende konvexa kurvbdgar, beldgna inom
det av AB och nimnda normaler begransade omrddet. Om da ACB ligger
wnom segmentet ADBA sd finns det alltid
minst en punkt B pd kurvbdgen ACB sddan,
att krokningsradien © E dr storre an krok-
ningsradien 1 den punkt pa ADB, vars stod-
linje har samma riktning som stodlinjen till D
ACB i E.

For beviset antar jag, att kroknings- C
radien p4 ACB har formen g,(u) och pa
ADB formen gy(u). Med lattforstaeliga be- 4 B
teckningar ar da (se fig. 1) Fig. 1

A’ B’

u Vo
AB = S 0,(t)costdt = g 04(t) costdt ,

uy v
7 n .
dér 3 S, S U < Uy S Vy = 3 I de betraktade intervallen ar cost = 0.
Da far jag
[57]
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Uz

\let)—extticostar = 0,

U1

varav hjilpsatsens riktighet framgar.

Jag vill nu visa, att foljande pastaenden giller: Maximum for D,
minimum for d och minimum for F uppnds endast for en linsformad figur,
bestdende av tvd cirkelbdgar med radien R och lingderna 1L vardera.
Mazimum for F uppnds for en cirkel med omkretsen L. Ar L < 2nR och
Jordrar man, att krokningsradien i ndgon punkt pd kurvan skall anta virdet
R, sa existerar icke ndgon kurva, for vilken F dr storst, ty man kan finna
kurvor inom den betraktade mingden, som kommer nimnda cirkel hur
nira som helst medan sjilva cirkeln icke tillhér mingden.

For att bevisa det forsta pastiendet

ovan betraktar jag en kurva, for vilken

E avstidndet mellan tva parallella stodlinjer

4 B har sitt storsta virde, nir stodlinjerna

M beréra kurvan i punkterna A och B.

Fig. 2 Strickan 4B dr d& dubbelnormal till kur-

van (se t. ex. Bonnesen—Fenchel:

Theorie der konvexen Korper, sid. 52). Jag placerar sedan en linsformad

figur med samma omkrets som den givna kurvan (och radier R) s, att

cirkelbigarnas gemensamma korda A faller utefter A B och dess ena iind-

punkt i 4 (se fig. 2). Skulle nu punkten Z falla inom eller pé kurvan, si

kan man pa den ena av cirkelbadgarna finna tvé skirningspunkter med den

givna kurvan si att denna senare mellan dessa folle innanfor cirkelbagen.

(En konvex kurva, som ligger helt inom en annan konvex kurva, har
mindre omkrets én denna.) Enligt hjilpsatsen
skulle d& pa kurvan finnas en punkt, dir krok-
ningsradien vore storre én R, vilket strider mot
forutsattningarna. Punkten £ maste alltsa falla

utanfér kurvan, varmed péstaendet ir bevisat.
Detta ger

L
1 D < 2Rsin —,
(1) < sm4R

och likhetstecknet i denna olikhet giiller endast
for den linsformade figuren.
Riktigheten av det andra pastiendet kan
man inse salunda: Lat FG vara en korda, vars
lingd &r = minsta avstdndet mellan tva paral-
lella stodlinjer (se fig. 3). F@ #r dubbelnormal Fig. 3
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til kurvan (Bonnesen—Fenchel, loc. cit.). Konstrueras tva cirklar med
centra pd F@ eller dess forlingningar och giende genom F resp. G, sa
kommer kurvan att ligga helt inom den gemensamma delen av cirklarna
(Blaschke, loc. cit.). Denna gemensamma del, som &r en linsformad
figur, har alltsi stérre omkrets dn kurvan (se ovan) och dess kortaste
avstand mellan parallella stodlinjer &r alltsd storre &n motsvarande
storhet for den omkretslika linsformade figuren. Hirmed dr pastaendet
bevisat och jag far

L
2 d=2R(1—cos—
(2) = ( cos4R),

dar likhetstecknet giller endast fér den linsformade figuren.

For att bevisa det tredje pastaendet bemirker jag forst, att varje kurva
ur den betraktade klassen kan med hur stor noggrannhet som helst
approximeras medelst konvexa cirkelbagspolygoner med radierna R.
Detta iir en foljd, dels av den bevisade hjilpsatsen, dels av det faktum,
att varje konvex kurva kan med godtycklig noggrannhet approximeras
medelst ritlinjiga polygoner. Betraktar jag némligen en av dessa senare
och sammanbinder hérnen med cirkelbagar med radien R till en konvex
cirkelbagspolygon, s& maste enligt hjilpsatsen varje cirkelbage falla mel-
lan den ritlinjiga polygonen och kurvan. Approximationen blir alltsé
noggrannare med cirkelbagspolygonen #n med den ritlinjiga. Kan jag
alltsd visa, att av alla cirkelbagspolygoner med samma omkrets och
radierna R den linsformade dr den, som innesluter den minsta ytan, si
giller detta pastaende dven for godtyckliga kurvor med samma omkrets
och med krokningsradien < R. Den enda svarigheten #r att visa, att den
linsformade figuren dr den enda, fér vilken detta minimum uppnés, da
detta icke utan vidare framgar for godtyckliga kurvor &ven om pastdendet
ar riktigt for cirkelbagspolygoner. Jag kommer emellertid att visa &ven
entydigheten hos 16sningen.

Riktigheten av pastaendet, att den linsformade figuren innesluter den
minsta ytan av alla cirkelbdgspolygoner med samma omkrets framgar av
foljande sats: Har jag en sluten komvex figur, bestdende av en ritlinjig
stricka AB och tvd cirkelbagar AC och BC med radierna = R och ir AB
konstant = 2a och summan av cirkelbdgarna konstant = 2b, si har den av
figuren inneslutna ytan sitt storsta virde, ndir cirkelbdgarna dr lika stora,
och avtar, nir den ena av cirkelbdgarna minskar (och den andra okar) till
dess att figuren wpphor att vara konvex, d.v.s. ndir cirkelbdgen tangerar
AB.

Betecknar jag cirkelbigen AC med x och fsljaktligen BC med 2b—u,
far jag foljande uttryck for ytan:
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f(x) = Rb— R2sin b cosb_x—}-T
N R R ’
dar

b b—ax\?
T = V4a2R2sin2%—<a2——R2 sinﬁsinTx>

betecknar ytan av den rétlinjiga triangeln ABC.
Genom att derivera med avseende pa x far jag efter forenkling:

J'(@) ! Rsi b—a (RZS'n2 b a2>2
x) = — — in? —— ,
¥ Bsin — 7

dar N ar ett uttryck, som litt visas vara positivt om hinsyn tages till
b
att @ < Rsin I Saledes har f'(x) samma tecken som b—z och hirur

framgar satsens riktighet.

Betraktar jag nu en cirkelbagspolygon med omkretsen L (och radierna
= R) och med minst tre horn kan jag alltid konstruera en ny sadan
polygon med samma omkrets men inneslutande mindre yta. Detta sker
pa foljande sitt. Tag tre pa varandra foljande horn P, @ och S i polygonen
och drag kordan PS. Enligt féregdende sats kan jag nu alltid ersitta
hornet @ med ett annat hérn Q' s, att den av PQ'S inneslutna ytan
blir mindre &n motsvarande storhet for figuren PQS medan omkretsen
ar oforéndrad. Detta kan alltid goras si, att ett av hoérnen P eller S
forsvinner och i stéllet blir en punkt pa en sida. Den nya polygonen har
alltsi ett horn mindre #n den ursprungliga och detta forfarande kan
upprepas till dess att blott tva horn aterstir. Men den figur, jag pa si
sitt erhallit (efter ett andligt antal konstruktioner) 4r just den linsformade
figuren, vilken alltsa dr den av alla omkretslika cirkelbagspolygoner, som
innesluter den minsta ytan (och t.o.m. den enda).

Nu kan alltid en godtycklig konvex kurva med krékningsradien < R
hur néra som helst approximeras medelst cirkelbagspolygoner (med
radien R) och hirav framgar, att ytan av en dylik kurva sikert icke kan
vara mindre &n ytan av en linsformad figur med samma omkrets. Som
tidigare nimnts, framgar emellertid icke av detta, att den linsformade
figuren &r den enda, for vilken minimiytan uppnés. For att bevisa, att
s& ar fallet, antar jag, att det existerar en annan figur O, vars yta ér lika
med minimiytan. Avstindet mellan parallella stodlinjer till C' har ett
storsta virde, som sikert 4r mindre 4n motsvarande storhet for den lins-
formade figuren. Lat nu AB vara en korda i C, vars lingd ar lika med
ndmnda storsta avstind. En linsformad figur med AB som stérsta korda
(och radien R) ligger da helt inom C. Konstruerar jag tva cirklar med
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radierna R, som har sina medelpunkter pa AB eller dess foérlingningar
och som gir genom A resp. B sa faller kurvan C helt inom det gemen-
samma omradet D till dessa cirklar. Jag konstruerar nu en svit av cirkel-
bagspolygoner C,, C,. .., C,,. .., inskrivna i C och sidana, att var och
en av dem har ett horn i 4 och ett i B. Vidare skall var och en av dem ha
samma horn som den féregadende och dessutom minst tva till, ett pa varje
sida om 4 B. Det #r tydligt, att sviten kan konstrueras si, att lim C, = C.

n—>o0
Kurvorna C,, delas nu av AB i tva delar, en pa varje sida om AB. For

varje sddan del konstruerar jag den cirkelbagspolygon (6ppen), som gar
genom A och B, har samma lingd som
motsvarande del av C,, dr beligen helt
inom D och med AB innesluter minsta
mojliga yta (se fig. 4). Dessa minimum-
polygoner bestar nu av en del av D:s
begrinsning, som jag pa grund av sym-
metriskil kan anta har A till sin ena énd-

punkt. Den andra dndpunkten betecknar F \
n
T

jag med E,. Vidare bestar den av en cir-

kelbage med radien R fran B till E,. For

den andra delen av O, far jag en mot-

svarande figur AF,+BF,, dir I, ligger

pé den del av D:s begrinsning, som gér Fig. 4

genom 4. Jag far pa detta sitt en svit

av cirkelbagstrianglar BE, F, med samma omkretsar som C,, men inne-
slutande mindre ytor. Var och en av punktsviterna K, och F, &r mo-
noton och begrinsad och har alltsd en grinspunkt £ resp. F. Cirkelbags-
triangeln BEF har samma omkrets som kurvan C' och innesluter sikert
inte storre yta #n denna. Den har emellertid sikert storre yta én den
linsformade figuren med samma omkrets och vi har alltsd kommit till
en motsigelse genom antagandet, att kurvan C inneslét samma yta som
den linsformade figuren. Detta ger nu

3 p=tB_pn L
[ — n._’
(3) =7 SMoR

dir likhetstecknet giller endast for den linsformade figuren.

Vad betriffar maximumproblemet for ytan, ligger 1osningen till detta
i cirkelns isoperimetriska egenskap. Ytan dr alltsdé maximum, nir kurvan
ir en cirkel med omkretsen L. Fordrar jag emellertid, att krokningsradien
i nagon punkt pa kurvan skall anta virdet R (och &r L < 2mR), &r
problemets 16sning icke cirkeln, d& dennas krékningsradie overallt dr
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mindre &n R. Konstruerar jag emellertid en svit av reguljira cirkelbags-
polygoner med radierna R och omkretsen L s& kommer for tillrickligt
stort sidoantal ytan hos dessa polygoner cirkelns yta hur nira som helst,
vilket visar, att i detta fall ingen kurva existerar, for vilken maximumytan
uppnas.

I det féregaende har jag antagit, att undre grinsen fér krékningsradien
dr = 0. Har jag nu en konvex kurva, vars krokningsradie varierar mellan
de positiva talen » och R (r < R), s4 kan jag alltid konstruera en inre
konvex parallellkurva till denna pa avstandet . (En parallellkurva, till
en konvex kurva konstrueras pa foljande sitt: Man uppritar normaler i
alla punkter P pd kurvan och avsitter pa dessa normaler lika 1dnga strick-
or PQ) = h. Parallellkurvan ér d& geometriska orten for @, nir P beskriver
den ursprungliga kurvan. Ligger  utanfér kurvan, fir man en yttre
parallellkurva och ligger @ inuti kurvan, far man en inre parallellkurva.
Den yttre parallellkurvan till en konvex kurva &r oberoende av h:s
storlek alltid konvex, medan den inre parallellkurvan ér konvex endast,
om % &r mindre &n eller lika med minimumvirdet for kurvans kroknings-
radie. Vidare &r krokningsradien hos den yttre parallellkurvan = den
ursprungliga kurvans krokningsradie, 6kad med %, och krokningsradien
hos den inre parallellkurvan = den ursprungliga kurvans krokningsradie,
minskad med A.) Parallellkurvans krokningsradie kommer d att variera
mellan gréinserna 0 och R—r. Den ursprungliga kurvans omkrets och yta
kan beriknas ur parallellkurvans medelst Steiners formler (se t. ex.
Blaschke, loc. cit. § 21, IV):

L,= L+2ur, F,=F-+Lrim®.

Hér betyder L, och F, omkrets och yta hos den yttre parallellkurvan pa
avstidndet 7. I samband hirmed kan ocksd nimnas, att fér en kurva, vars
krokningsradie varierar mellan » och R giller

27ir < L < 2nR, wr® < F < aR?.

Skriver jag nu om de funna olikheterna (1)—(3) fér kurvor, vilkas
krokningsradier varierar mellan 0 och R—r och sedan tillimpar de
Steinerska formlerna, erhéller jag olikheter fér konvexa kurvor, vilkas
krokningsradier varierar mellan 7 och R:

L—2
D—2r < 2(R—r)sin 4(R—7%
L—2nr
2R—d < 2(R—
d < 2(R—r)cos B
L(R L—2
F = ( +r)—aer—(R——7')2sin il

2(R—r)’
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dir likhetstecknen giller endast fo6r den linsformade figurens (med radier
R—r) yttre parallellkurva pa avstandet r.

Genom kvadrering och addition av de tva forsta olikheterna ovan far
jag den av L oberoende olikheten

(D—2r)24(2R—d)? < 4(R—r)?,

och likhetstecknet giller hir naturligtvis endast for ndmnda parallell-
kurva.

Betraktar jag sa det »isoperimetriska deficitet« L2—4nF = A for en av
de ovan undersokta kurvorna, far jag

. L—2ar
A £ [L—a(R+r)P—a*(R—r)*+4a(R—r)2sin ——— =y .
2(R—r
For fixa r och R &r ovanstdende uttryck y en funktion av L. Denna
funktion ar noll for L = 2ar och L = 2zR och positiv mellan dessa
virden. Den har alltsd minst ett maximum i ndmnda intervall. For att
bestimma detta maximum bildar jag forsta och andra derivatorna, och
far

, L—2mr
Yy = 2L—27’E(R+T)+27K(R—T) COs é(iR_—rj
. . L—2nr
y' = 2—7zs1n2(R_T).

y'’ har i det betraktade intervallet endast tva nollstillen (inkl. &indpunk-
terna) och %’ kan alltsd i samma intervall endast ha tre nollstillen. Dessa
tre nollstéllen dr L = 2ar, L = m(R-+r) och L = 2xR. Det mellersta av
dessa ger maximumvirdet, vilket litt inses genom inséttning i y”’ eller
ur tidigare resonnemang. Genom inséttning av detta L-virde i y far jag

L2—4nF < n(4—m)(R—r)?.

Likhetstecknet hir giller endast for en kurva med omkretsen m(R-+r),
vars inre parallellkurva pa avstindet r dr linsformad. Extremalkurvan
ar sammansatt av fyra kvarteirkelbagar, tva med radien R och tva med
radien 7. Den i olikheten ingdende konstanten n(4—m) 4r den bista
mojliga, vilket framgér ur hérledningen av olikheten, som dessutom &r
en forbattring av ett tidigare resultat

L2—4nF < n*(R—r)?,

funnet av Bottema (Eine obere Grenze fiir das isoperimetrische Defizit
einer ebenen Kurve, Akad. Wetensch. Amsterdam, Proc. Bd. 36 (1933),
5. 442—446).



BOKMELDINGER

G. PoLya: Mathematics and plausible reasoning, I and II. Princeton
University Press, Princeton, 1954. 16280 sider og 104190 sider. § 5.50
og § 4.50. Begge bind $ 9.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 67.)

I matematikken kan pastandene underbygges med logiske beviser, men
i andre vitenskaper og i det praktiske liv ma man neye seg med plau-
sible resonnementer. Imidlertid brukes plausible resonnementer ogsa i
stor utstrekning i matematikken, iseer ved nye oppdagelser og ved los-
ning av oppgaver (gvelsesoppgaver og praktiske oppgaver). Forfatterens
grunnidé er at man i matematikkundervisningen ber ta sikte pa at ele-
vene ikke bare leerer & bevise, men ogsd & gjette fornuftig.

Et sted i slutten av annet bind presiseres formalet med verket slik:
»This book is designed to serve various categories of readers: those who
wish to understand guessing, those who wish to learn guessing, and those
who wish to teach guessing.«

Forste bind som har titelen »Induction and analogy in Mathema-
tics«, behandler begreper som generalisering, spesialisering, analogi, in-
duksjon og plausibilitet. Alt er illustrert med tallrike eksempler fra de
forskjelligste omrader: tallteori, geometri, analyse, matematisk fysikk,
0. 8. v. Som eksempel pa at en matematiker godt kan vise hvordan han
er kommet frem til sine resultater (ikke bare stille dem opp med etterpa-
konstruerte beviser) siteres in extenso (i engelsk oversettelse) en atte-
siders artikel av Euler, »Discovery of a most extraordinary law of the
numbers concerning the sum of their divisors«. Dette eksemplet mé be-
tegnes som meget velvalt, og vel verd ettertanke, ikke minst hos redak-
torene av matematiske tidsskrifter; hvis noen i vare dager sendte inn et
slikt manuskript, er det fare for at han ville f& det i retur med anmod-
ning om & forkorte det ned til en fjerdedel.

Annet bind bearer titelen »Patterns of plausible inference«. I analogi
med skjemaene for strengt logisk resonnement, som f. eks.

A impliserer B A impliserer B
A riktig B gal
B riktig A gal

[64]
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stiller forfatteren her opp skjemaer for plausibel slutning. Slike er f. eks.

A impliserer B A analog til B

B riktig B riktig

A mere trolig A mere trolig

A impliserer B A impliserer B

B utrolig i seg selv B trolig i seg selv

B riktig B riktig

A meget mer trolig A bare litt mer trolig

Forfatteren har ogsi gitt seg i kast med & diskutere de forskjellige
betydninger av ordet »sannsynlig, og han paviser en parallellitet mel-
lom sannsynlighetsregningens formler og reglene for plausibel slutning,
som mé betegnes som meget interessant.

Etter anmelderens mening kan det veere meget nyttig, iseer for den
som skal undervise, & bli seg bevisst strukturen i de plausibilitetsbetrakt-
ninger som man stadig benytter seg av. Men man mé veere pa vakt mot
4 ville tvinge den skapende fantasi inn i for stramme toyler; man mé
aldri fole seg bundet av resonnement-skjemaer som ikke gir sikre resultater.

Er man forst klar over dette, kan man ha stort utbytte av & studere
disse to bgkene, iser hvis man gir seg tid til & fordype seg i den over-
veldende mengde av eksempler, som man nesten kunne fristes til & be-

i ket.
tegne som det mest verdifulle ved verket I. Johansson

Fr. FaBrICTUS-BIERRE: Lerebog i Geometri, 11. Differentialgeometrr,
kinematisk geometri. 2.udg. Jul. Gjellerups Forlag, Kebenhavn, 1955.
181 s., 76 fig. D. kr. 31.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 67.)

I foreliggande nya upplaga av andra bandet av Geometri som lirobok
vid Danmarks tekniske hgjskole behandlas differentialgeometrin och den
kinematiska geometrin till stor del medels vektorer. Omliggningen av
studieplanerna vid hogskolan har medfért en minskning av bokens om-
fang fran 212 til 181 sidor jamférd med forsta upplagan. Till en del beror
minskningen pa att férenklingar kunnat géras. Men bl. a. har inversionen
och den stereografiska projektionen helt bortlimnats. Aven 6vningsuppgif-
ternas antal har minskats, nimligen fran 193 till 153. — Framstéllningen
jimte exempel #r teoretisk men klar och lattfattlig. Det som &r sagt i
slutet av anmilan av forsta bandet (NMT, Bind 1, s. 171) giller &ven nu.

E. J. Nystrém

Nordisk Matematisk Tidskrift. — 5
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A. Benoit — R. Canapale: Arithmétique. (Classes de Math. et de Sci.
exper.) Librairie Vuibert, Paris, 1954. 244 pp.

Nombres entiers. Addition et soustraction 5-22 * Multiplication et division 23-52 *
Puissances. Racines carrées 53-67 * Divisibilité. Nombres premiers 68-118 * Frac-
tions 119-172 * Nombres décimaux. Valeurs approchées 173-216 * Combinaisons.
Probabilités 217-222 * Exercices 223-240.

Gerrit Bol: Projektive Differentialgeometrie, II. (Studia Mathematica/
Mathematische Lehrbiicher 9.) Vandenhoeck & Ruprecht, Gottingen,
1954. 54372 S. DM 38.00.

Halbinvarianter Aufbau der Flichentheorie 1-73 * Geometrie im allgemeinen
Bezugssystem 74-150 * Kurven und Kurvensysteme auf einer Fliche 151-296 *
Flachentheorie im WiLozyNskischen System 297-362 * Namen- und Sachverzeich-
nis 363-370.

Lothar Collatz: Numerische Behandlung von Differentialgleichungen.
Zweite, neubearb. Aufl. (Die Grundlehren der mathematischen Wissen-
schaften 60.) Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955, 15
526 8., 118 Fig. DM 56.00, ganzl. DM 59.60.

Hilfsmittel. Einige allgemeine Prinzipien: Einteilung der Aufgaben, Differenzen-
rechnung und Interpolationsformeln, Fehlerabgleichsprinzipien, Hilfsmittel aus der
Analysis und aus der Funktionalanalysis 1-45 * Anfangswertaufgaben bei gewshn.-
lichen Differentialgleichungen: Das Runge-Kutta-Verfahren, Differenzenschema.-
verfahren 45-134 * Randwertaufgaben bei gewdhnlichen Differentialgleichungen :
Das gewohnliche Differenzenverfahren mit Verbesserungen, allgemeine Verfahren,
das Rirzsche Verfahren, Reihenansitze, spezielle Verfahren fiir Eigenwertaufgaben
134-242 * Anfangs- und Anfangsrandwertaufgaben bei partiellen Differentialgleich-
ungen: Das gewohnliche Differenzenverfahren mit Verbesserungen, partielle Dif-
ferentialgleichung erster Ordnung fiir eine gesuchte Funktion, Charakteristiken-
verfahren bei Systemen von zwei Differentialgleichungen erster Ordnung 242-320
* Randwertaufgaben bei partiellen Differentialgleichungen : Das gewéhnliche Dif-
ferenzenverfahren mit Verbesserungen, der Randmaximumssatz und Schranken
fir Losungsfunktionen, allgemeine Methoden, das RiTzsche und das TrEFFTZSChe
Verfahren 320-435 * Integral- und Funktionalgleichungen: Allgemeine Methoden
bei Integralgleichungen, spezielle Verfahren bei linearen Integralgleichungen, sin-
gulire Integralgleichungen, VoLTERRASChe Integralgleichungen, Funktionalgleich-
ungen 435-498 * Anhang (Tafeln I-X) 499-517 * Namenverzeichnis 518-520 =
Sachverzeichnis 521-526.
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Fr. Fabricius-Bjerre: Lerebog i geometri, I1. Differentialgeometri, kine-
matisk geometri. 2. udg. Jul. Gjellerups Forlag, Kgbenhavn, 1955. 181 s.,
76 fig. D. kr. 31.00.

(Anmeldt i NMT, dette hefte, s. 65.)

Kurver og vektorfunktioner 1-14 * Plane kurver 15-53 * Rumkurver 54-69 *
Kinematisk geometri 70-121 * Flader 122-157 * Opgaver 158-179 * Register 180-
181.

0.Haupt— G. Aumann — C. Y. Pauc: Differential- und Integralrechnung.
Band III: Integralrechnung. Zweite, neubearb. Aufl. Walter de Gruyter
& Co, Berlin, 1955. 12+ 319 S. Ganzl. DM 28.00.

Einfithrung in die Theorie der Booleschen Verbénde 1-27 * Allgemeine Sétze
iiber Inhalte und Masse 27-47 * Erweiterung von Inhalten und Massen 47-71 *
Zu einem Mass gehoriges Unterteilungsintegral 72-109 * Additive Funktionen
beliebigen Vorzeichens 109-130 * Lineare stetige Funktionale 130-159 * Masse
und Integrale in Produktrdumen. Mehrfache Integrale 159-173 * An eine Topo-
logie adaptierte Masse und Inhalte. Zugehorige Integrale 174—202 * o—additive
Funktion als Stammfunktion 203-227 % Additive Funktion als Stammfunktion
227-278 * Dehnungsbeschrinkte Funktionen und Flichenstiicke im K, 279-309 *
Anhang 309-312  Literaturangaben 313-315 * Sachverzeichnis 316-319.

Hans Hermes: Einfihrung in die Verbandstheorie. (Die Grundlehren
der mathematischen Wissenschaften 73.) Springer-Verlag, Berlin, Got-
tingen, Heidelberg, 1955. 84164 8., 24 Fig. DM 19.80, ganzl. DM 22.80.

Grundlagen 1-40 * Die einfachsten Verbandsklassen 40-68 * Modulare Verbsinde
68-105 * Distributive und Booresche Verbédnde 105-136 * Verschiedenes 136-151
Anhang 151-159 * Namen- und Sachverzeichnis 160-164.

G. Polya: Mathematics and plausible reasoning, I and II. Princeton
University Press, Princeton, 1954. 164-280 pp. and 104-190 pp. $ 5.50
and $ 4.50. The set $ 9.00.

(Anmeldt i NMT, dette hefte, s. 64.)

1. Induction and analogy in mathematics: Induction 3—11 * Generalization, spe-
cialization, analogy 12-34 * Induction in solid geometry 35-58 * Induction in the
theory of numbers 59-75 * Miscellaneous exampels of induction 76-89 * A more
general statement, 90-107 * Mathematical induction 108—120 * Maxima and minima
121-141 * Physical mathematics 142-167 * The isoperimetric problem 168-189 *
Further kinds of plausible reasons 190-209 * Final remark 210-212 * Solutions to
problems 213-278 * Bibliography 279-280.

II. Patterns of plausible inference: Some conspicuous patterns 3—17 * Further
patterns and first links 18—-54 * Chance, the everpresent rival of conjecture 55-108 *
The calculus of probability and the logic of plausible reasoning 109-141 * Plausible
reasoning in invention and instruction 142-170 * Solutions to problems 171188 *
Bibliography 189-190.
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S. Slade — L. Margolis: Mathematics for technical and vocational schools.
4th ed. John Wiley and Sons, Inc., New York, 1955. 94-574 pp., 404
figs. § 4.48.

Common fractions 1-25 * Decimal fractions 26-45 * Percentage 46-51 * Ratio
and proportion 52-59 * Mensuration 60-153 * Practical computation 154-163 =
Logarithms 164-180 * The slide rule 181-200 * Miscellaneous problems 201-212 *
Graphs 213-230 * Measuring instruments 231-242 * Practical algebra 243-262 =
Geometrical constructions 263-281 * The essentials of trigonometry 282-310 =
Strength of materials 311-321 * Work and power 322-331 * Woodwork 332-343 *
Tapers 344-364 * Speed ratios of pulleys and gears 365-380 * Screw threads 381—
413 * Cutting speed and feed 414-431 * Gears 432-475 * Milling machine work
476-495 * Belting 496-505 * Tables 506-568 * Index 569-574.

Hermann Weyl: Die Idee der Riemannschen Fliche. Dritte, vollst. um-
gearb. Aufl. B. G. Teubner Verlagsgesellschaft, Stuttgart, 1955. 84162
S., 13 Fig. Halbl. DM 22.00.

I. Begriff und Topologie der Riemannschen Flichen: Weierstrass’ Begriff der
analytischen Funktion. Begriff des analytischen Gebildes. Verhiltnis der Begriffe
ranalytische Funktion« und »analytisches Gebilde« zu einander. Begriff der zwei-
dimensionalen Mannigfaltigkeit. Beispiele von Flichen. Spezialisierung, insbeson-
dere differentiierbare und Riemannsche Flichen. Orientierung. Uberlagerungsflii-
chen. Differentiale und Linienintegrale. Homologie. Dichte und Flidchenintegrale.
Der Residuensatz. Schnittzahl 1-81 # II. Funktionen auf Riemannschen Flichen:
Dirichletsches Integral und harmonische Differentiale. Ansatz zur Konstruktion
der aus einer Doppelquelle entspringenden Potentialstromung. Durchfithrung des
Beweises. Die Elementardifferentiale. Die Symmetriegesetze. Die eindeutigen Funk-
tionen auf §§ als Unterklasse der additiven und multiplikativen Funktionen auf
&. Riemann-Rochscher Satz. Abelsches Theorem. Das Umkehrproblem. Der alge-
braische Funktionenkérper. Uniformisierung. Riemannsche Fliche und Nicht-Eu-
klidische Bewegungsgruppen. Fundamentalbereiche. Poincarésche 6§-Reihen. Kon-
forme Abbildung einer Riemannschen Fliche auf sich selbst 82-158 * Verzeichnis
der Begriffsnamen 159-162.




OPPGAVER TIL LOSNING

Losninger av oppgavene 5055 sendes til oppgaveredakteren, professor R. Tambs Lyche,
Holmengrenda 7, Holmen, Oslo. Slike losninger vil bli trykt i et folgende hefte i den
utstrekning plassen tillater, dog vanligvis bare den beste lesning av hver oppgave.
Losninger av- oppgaver i dette hefte mé veere sendt innen 1. juli 1955.

De ovrige oppgaver er enklere, og lesninger av dem vil ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til opp-
gaveredakteren, helst sammen med forslagsstillerens egen losning.

50. Den ubestemte ligning ax3+by3+c23=0 er selvsagt alltid losbar
nar f. eks. a+b=c, med z=y=1, 2= —1. Vis at ligningen alltid er
mulig for enhver modul (smlgn. NMT, dette hefte, s. 52-53), nar

a?+b2=c?,

altsd nar koeffisientene er Pytagoreiske tall. Frnst S. Selmer

51. K #r en sluten kurva, som har en kontinuerligt varierande tangent.
Inuti K finns en fix punkt O sidan att varje linje genom O skiir kurvan i
precis tva punkter (en pa vardera sidan om O). Vidare géller att tangen-
terna i de tva dndpunkterna av en godtycklig sidan korda genom O
dro parallella. Visa, att O dr mittpunkt pa varje korda genom O, dvs.

att O dr medelpunkt till K. H. Gask

52. In which region of the complex plane does the following series
converge:

(o]
2 (cosmez)t,
n=1

i i mplex number ¢
¢ being a given complex number Martin G. Beumar

53. Der startes en klub af rationale funktioner 40 i een ubestemt x
over det rationale tallegeme. Et nyt medlem kan da og kun da optages,
hvis det er reciprokt til et medlem eller differens mellem to medlemmer.

a) z er eneste medlem af klubben ved starten. Bestem alle hele n, for
hvilke z» kan blive medlem.
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I alle fplgende sporgsméil er 1 og = de eneste medlemmer ved starten.

b) Vis, at enhver rational funktion f(z)<0 kan blive medlem.

c) Vis, at 2® (n 2 2) kan blive medlem, uden at medlemstallet oversti-
ger 3n+4. Vis, at denne grense kan legges lavere for ulige n.

d) Vis, at 2%, 23, ..., 2" kan blive medlemmer, uden at medlemstallet
overstiger 5n.
e) Vis, at 22, 24, .. ., 2®" kan blive medlemmer, uden at medlemstallet

overstiger 6n + 2.
Anders Bager

54. Under samme forutsetninger som i oppg. 53 a) skal en vise at med-
lemstallet minst m& vare 7 dersom 23 er medlem. Og under samme for-
utsetninger som i 53 b-e) skal en vise at medlemstallet minst ma veere

8 dersom 22 er medlem.
Red.

55. La ¢(x) veere definert ved

3 23
PO = 2 e e )

og sett .
p(@) = Lim p(z+n).

n—>00

Vis at y(x) blir en periodisk funksjon som oppfyller funksjonallikningen

"P(m) +1:0(1 _x) =0. R. Tambs Lyche

56. La n vere et naturlig tall, og sett
Ay, = 2 (— l)d ’
2d+1|n

slik at summen utstrekkes over alle oddetall som gér opp i n. Vis at
funksjonen

16 = Saz
n=1

er regulaer for 2| <1, men ikke kan fortsettes analytisk utenfor denne
sirkelen.

57. La n vere hel og >0. Vis at J,(1) er et irrasjonalt tall nar J ()
er Besselfunksjonen
( x)n+2r
® 2

Ja(®) =£,0(—1)'r——-!(n+r)!-
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58. La m og n veere slike naturlige tall at m <n. Vis at

n—-1
2(_1)k_1(7021) (n—k)ym = (—1)n+m-1

k=1
n—1

3~k (’;) (n—kym = nm.

k=1

LOSNINGER
Oppgave 44.

Past.: Den heltaliga likheten
n n
2= = Y (a+v)
»=0 r=1

giller f6r k=2 med villkor att @ =2n(n+ 1), men aldrig f6r k=3 eller 4.
Bevis: Likheten kan omformas péa foljande sétt:

ak = Zn’ {(a+v)E—(@a—r)*} = Qé{kak—1v+ wiz—)ak-%'&-(- L)
v=1 p=1 H
Eftersom . . \
gv _ n(n2+1), gvs _ {n(nz-l- 1)} ,

s& far man vidare

fork = 2: a® = 2an(n+1),
fork = 3: a® = 3a?n(n+1)+ i[nn+1)]7,
fork = 4: a* = 4a®n(n+1)+2a[n(n+1)]?.

Den forsta likheten giller med villkor att a=2n(n+ 1). De bada andra
likheterna dro diremot omojliga. Skulle nimligen endera av dem bestd,
84 borde n(n + 1) vara delbar med a, vilket dr omojligt, emedan det hogra
membrum i den vederborliga likheten dé vore storre dn det vinstra.

Aniti Issakainen

Ogséa lost av N. E. Andersen, Anders Bager, Heimer Dahl, V. Gamst, Hans Killing-
bergtre, Anders Lodemel, Otto Marstrander og Henrik Meyer.

Oppgave 45.
0
Det sgkes losninger med kontinuerlige partielle deriverte J;ix) La X
3

]
|
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veere den lukkede flate x,2+x,2+ ... +;2=0% Ligger origo i det om-
rade som begrenses av den lukkede flate S, velges ¢ si liten at 2 ogsa
ligger i dette omrdde. S og X begrenser da et omrade som kalles V.
Ligger origo utenfor det omrade som begrenses av S, kalles dette V.
Gauss’ divergensteorem gir da

of (»)
o, +kf(x))dV.

sz(x)(x,n)d8'+ Szf(x)(x,n) is = S,,(x*’

I det andre tilfellet (origo innenfor S) gjelder samme likning nar integralet
over X sloyfes.

For at integralet over alle flater av den forste type skal ha samme
verdi, og integralet over alle flater av den andre type skal ha samme
verdi, er det nadvendig og tilstrekkelig at

of (x)
o0x;

(2

Z;

+kf(x) = 0.

Er betingelsen oppfyllt blir integralet over 2 uavhengig av p, og en kan
la o g& mot null slik at likningen gjelder uforandret for alle flater av
den farste type. For & finne nar betingelsen er oppfyllt settes y;=1tx;. Da
kan f(y)=f(tx) oppfattes som en funksjon av ¢, og

df(y) _ o @) dy: _ oY) v« _ k()

dt oy, dt  dy; t t

gir f(y)=Ci* eller f(tx)=f(x)t-%. Dette viser at betingelsen bare er opp-
fylt nar f(z) er homogen av graden —k. Omvendt finnes ved & derivere
ftx)=f(x)t=* og sette t=1, at den er oppfylt for alle slike funksjoner.
Satsen er da bevist, nir S ikke deformeres fra den ene type til den andre.

Anders Lodemel

Oppgave 46.

Skal de to tallfglger konvergere mot positive grenseverdier a og b si
ma a?=owna-fb og 2b=oa+ b, og da ma
) p=—

T 14ar

I. La né vilkéaret (1) vere oppfylt.

Dersom der finnes et slikt » at a, =«fb,, blir a,,,=a,, b,,,=b, for
alle p.

La s m vere et fritt valt naturlig tall. For et valt p> 0 blir da a,,,,,
en funksjon av a,, og b,

Apptp = (pp(arm bm) .
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Om vi her tenker oss en av storrelsene a,,, b,, holdt fast, mens den andre
vokser, vil penbart ¢, (@, b,) vokse. Antar vi derfor a,, > xfb,, blir

Ay,
Cptp = (Pp(‘xﬁbmv bm) = ‘xﬁbm 0g Qpip < Pp (a’ma Jg) = Gy »

slik at

(2a) ofby < Gpip < Gy -
Er a,, <pb,,, far vi pa tilsvarende mate

(2b) Wy < Uiy < &Bby, .
Vi far derfor for alle m og p

(3) oy — o] = 1= by -

Setter vi a, = «fb,x?, sa finner vi
a, — opb, 1—xx

Apt1— ‘xﬁbn+1 =

b

1+a2 142
1—u2x .
og da | — | <maks(1, a?) for >0 vil
(4) lim (@, —o«pb,) = 0.

Av (3) folger da at {a,} konvergerer mot et tall & som ifolge (2a) eller
(2b) er positivt. Av (4) folger da at {b,} konvergerer mot et tall b hvor
a=ufb.

IL. La s& p<2/(1+a2). Da gis det et tall y >« slik at f< 2/(1+y?)=0.
Tallfglgene {4,} og {B,} som fies ved & sette 4,=a, og B, =b, og ellers
erstatte « med ¥ og p med 6 konvergerer mot positive grenseverdier. Set-
tes 8

maks(z, —)=Ic< 1,
y 0

s& faes a, < kA, og by<kB,, og ved induksjon
a, < k»'4, og b, <k"'B,.
Det vil si at begge de gitte tallfglger konvergerer mot 0.

Nar B> 2/(1+«2) far vi pa tilsvarende méte at begge tallfglgene diver-
gerer mot uendelig.

IIL. Ifglge det foregiende konvergerer de to tallfglgene mot en felles
positiv grenseverdi nar, og bare nar

B =

Tt og afp=1lo:a=pf=1.
Otto Marsirander

Ogsé lost av Heimer Dahl og Anders Legdemel.

il
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MUTEREFERATER FOR 1954 FRA DE
UTGIVENDE FORENINGER

DANSK MATEMATISE FORENING.

25.1 N. E. Norlund: Om hypergeometriske Sfunktioner.

11.2 OQystein Ore, New Haven, Connecticut: Sandsynlighedsregningens tidligste
historie. (Felles for Dansk Matematisk Forening og Selskabet for de eks-
akte videnskabers historie.)

15.2 E. 8. Selmer, Oslo: En ny hypotese i teorien Jor ubestemte ligninger.

15.3 B. Fuglede: Lukkede linecre differentialoperatorer.

3.4 A.MarcuSevi¢, Moskva: Hinige Resultate aus der Theorie der Funktionen
einer komplexen Variablen.

8.4 T. Nagell, Uppsala: Om tals fremstilling som en sum av to kvadrattal i en kva-
dratisk talkropp.

9.4 T. Nagell: Problem < potensresternes teors.

13, 15, 17.9 H. S. M. Coxeter, Toronto : Non-euclidean networks and quadratic forms.

13, 15, 17.9 D. Montgomery, Princeton, New J ersey : T'opological groups and trans-
Jormation groups.

24.9 B. L. van der Waerden, Ziirich: Babylonische und griechische Algebra.

27.9 H. Davenport, London: Problems of packing and covering.

4.10 A. Ostrowski, Basel: Analytische Fortsetzung von Taylorschen und Dirichlet-
schen Reihen.

29.11 H. Busemann, Los Angeles: Problems of convex bodies in Minkowskian geo-
metry.

FORENINGEN AF MATEMATIKLZERERE VED (IYMNASIESKOLER OG
SEMINARIER I DANMARK.

Foreleesningsraekker for matematiklerere:
B. Jessen: Emner fra moengdeleren og de reelle funktioners teori. (Forérs-
semestret.)
H. Busemann, Los Angeles: The geometry of geodesics. (Efterarssemestret.)

Mgderne ved kongressen i Aarhus:

3.8 P. Rubinstein og M. Pihl: Omrdder for samarbejde inden Sfor fysik-, kemi- og
matematikundervisningen (forhandling).
4.8 J. Nielsen: Det internationale samarbejde inden for naturvidenskaberne.
P. Rubinstein: Metode til indforelse af logaritmer i realklassen (forhandling).
A. Gjelsvik, Norge: Eksamensoppgaver og undervisning (forhandling).
5.8 V. O. Laine, Finland: Forsoken att fornya geometriundervisningen i Finland.
A.F. Andersen: Om najagtighedsbestrabelser 5 den danske gymnasieundervis-
neng © matematik (forhandling).
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5-6.8 S. Bundgaard: Nyere betragtninger vedrorende greenseovergang, I-IL.
6.8 1. Simola, Finland: Historiska synpunkter ¢ samband med matematikundervis-
ningen (forhandling).

FinLaNDs MATEMATISKA FORENING.

20.1 P.Kustaanheimo: Tensorilaskun aksiomatickasta [Om tensorkalkylens axio-
maitek].

17.2 F. Nevanlinna: Cauchy-Goursat'n lauseesta [Om Cauchy-Goursats sats].

17.3 G. Jarnefelt: Yritys finitisorda harmonisen oskillaattorin teoria [Eit forsok att
Jfinitisera teorin for den harmoniska oscillatorn].

7.4 R. Nevanlinna: Differentiaaliyhtdloiden teorian eksistenssi- ja yksikdsitteisyys-
lauseista [Om existens- och entydighetssatser i teorin for differentialekva-
tioner].

5.5 TU. Grenander, Stockholm: En klass av egenvdirdesproblem.

15.9 B.L.van der Waerden, Ziirich: Grundlagen der algebraischen Geometrie.
22.9 M. Ohtsuka, Nagoya: On analytic functions bounded in the unit circle.

6.10 O. Heckmann, Hamburg: Uber die Vermessung des Himmels.

20.10 P.J. Myrberg: Automorfisista thetafunktioista [Om automorfa thetafunktioner].

17.11 Y. Juve: Ahlforsin verzerrungslauseen yleistimisesti [Om generalisering av
Ahlfors’ »Verzerrungssats«].

15.12 O. Lehto: Analyyttisten funktioiden reuna-arvoista [Om analytiska funktioners
egenvirden].

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

4.2 Arsmote i Helsingfors. Férhandlingar och val. Lektor S. Hollo och fil.
dr. U. Kuuskoski berittade om resor som de foretagit sdsom repre-
sentanter for forbundet.

28.2-2.3 Forelisningsdagar i fysik (med praktiska évningar). Foreldsare dr. A.
Lindberg, Kéln.
Over 60 medlemmar deltogo i Den andra nordiska matematik-, fysik- och kemi-
lararkongressen i Aarhus 3-6. augusti.
Inom forbundet verkar fortfarande 7 lokala klubbar. Helsingforsklubben sam-
mantridde 5 ganger. Foredrag och diskussioner i fackfrigor samt exkursioner i
samtliga klubbar.

ISLENZKA STHERDFREDAFELAGID.

2.2 Dorbjorn Sigurgeirsson: Beregninger ¢ forbindelse med protonbaner ¢ en kos-
motron.
2.4 Leifur Asgeirsson: Om visse uligheder ¢ algebra.
10.7 Sigurdur Helgason: Om Banach algebra.
2.11 Bjarni Jénsson: Reprasentationsproblemer for »lattices«.

Norsk MATEMATISK FORENING.

11.2 R. Gran Olsson: Integrasjon av visse likninger i dynamikken.
2.3 Th. Skolem: »Elementere« aritmetiske funksjoner.

i
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9.4 E.R. Lorch, New York: On certain extensions of the concepis of volume.
6.5 8. 8elberg: Om et problem med tilknytning til primtallenes Sfordeling.
28.9 V.Brun: De kjente formler for In2 og n/4 fremstillet slik at de kan bli »sett
med oynene.
26.10 A. A. Fraenkel, Jerusalem: The axiom of choice.
23.11 M. Hestenes, Los Angeles: Hilbert space methods in the calculus of variations.

Norsk LEKTORLAGS MATEMATIKKSEKSJON.

Om disse foredragene foreligger det melding:
2.5 i Kristiansand krets. K. Kolden: Den spesielle relativitetsteori.

Matematikkseksjonen i Oslo:

16.2 K. Alfsen: Hva bor vaere pensum ¢ matematikk pa naturfaglinjen?
14.9 O. Lindstad: Bruken av matematikk i Sfysikkundervisningen.
18.11 A. Kullerud: Problemer fra undervisningen 3 Sfunksjonsteors.

SVENSKA MATEMATIKERSAMFUNDET.
13.3 Mote i Stockholm:

H. Bergstrém: Gransfordelingen for normerade summor.
L. Carleson: Hit bevis for en olikhet av Carleman.

A. Pleijel: Om konvexa funkiioner.

H. Rédstrom: Minkowskicirkelns béaglingd.

12.6 Mote i Uppsala:

E. Hallén: Itererade integralsinus- och integralcosinusfunktioner och deras
amplitudfunktioner.

8. Lundqvist: Undertoner av hig ordning vid ickelinjdra system.

G. Nordlander: Slumpvis konvergens ¢ Hilbertrymder.

F. Niordson: Transversalsvingningar i ror, som genomstrommas av vitska.

Y. Rollof: Krig och matematik. Teorien for strategiska spel.

30.10 Mote i Stockholm:

H. Tornehave, Kobenhavn: M iddelbevaegelsesproblemer.

F. Hogner: En metod fér bestimmning av Jfartygs vagmotstind.

F. Eriksson: Om avstdnd pd ytor med begrinsad totalkrokning.

K. G. Odqvist: Om en icke linjir partiell differentialekvation, som upptrider
vid en ny metod for bestammning av egenspdnningar hos svetsfogar.

T. Ganelius: En sats om positiva harmoniska JSunktioner.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Luxp.

11.4 Arsmoéte. Se referat i NMT, Bind 2, s. 78.
21.11 Héstméte. Foredrag av
T. Wetterblad: Studentskrivningarna 4 fysik (diskussion).
Vidare diskussion om gymnasiekurserna i fysik med T. Wetterblad och L. Minn-
hagen som inledare.
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FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM.

4-5.1 Arsméte. Se referat i NMT, Bind 2, s. 79.

FORENINGSNYTT

FinpANDS MATEMATISKA FORENING

avholl rsmote den 23 februari 1955. Till styrelse valdes: Kansler P. J. Myrberg,
ordf., prof. G.Jérnefelt, v.ordf., dr. K. Karhunen, skattm., dr. O. Lehto, sekr.,
och prof. P. Laasonen.

Lindelofs pris for 1954 har tilldelats fil. mag. G. Tollet.

FiNLANDS MATEMATIK- OCH FYSIKLARARFORBUND

anordnar studiedagar med féredrag och exkursioner den 2—4 juli 1955 i Uledborg,
Finland. Samtidigt firas férbundets 20-arsjubileum. Nordiska géster &r vilkomna.
Lektor Bror Gustaver, Stockholm, har kallats till hedersmedlem i férbundet.

SVENSKA MATEMATIKERSAMFUNDET.

Professor Arne Beurling valdes til hedersledamot den 30 oktober 1954. Han &r
nu professor vid Institute for Advanced Study, Princeton, New Jersey.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING I LUND

avholl sitt &rsmote ps Fysiska Institutionen i Lund den 16-17 april 1955. Sty-
relsen omvaldes, och till medlemmar i arbetsutskottet utségos professorerna
Edlén, Gustafson och Smith, lektor B. Adell och lektor A. Leide. Dérefter f5ljde
diskussion om atomlirans fordelning pé fysik och kemi med inledningsanféranden
av lektor B. Adell och lektor A. Leide. Slutligen vidtogs en tvé-dagars demon-
stration av ett stort urval férsék fgnade atomliran i skolan.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
I STOCKHOLM

avholl sitt &rsmote den 7-8 januari 1955, forsta dagen i Byggnadsféreningens loka-
ler och andra dagen i Tekniska ldroverket. Till styrelse valdes: lektor E. Knave,
ordf., lektor F. Ehrnst, v.ordf., lektor B. Gustaver, sekr. och skattm. Arbetsut-
skott: ordf., v.ordf., sekr., lektor K. Persson och adjunkt I.Stal. Efter drsmétet
holls f6ljande foredrag:

I. Bolin: Ndgra nya gifter © manniskans tjinst.

0. Lindstad, Oslo: Et mer korrekt matematisk sprog < fysisk litteratur.

C.-E. Sjostedt: De nya metodiska anvisningarna ¢ matematik pd gymnasiet
(diskussion).

O. Franzén: Television. Utsindning av ett televisionsprogram.

M. Clemenz, Wuppertal: Trefasvixelstrom och elekiriska motorer.

E. Nordahl-Svendsen, Sorg: Energ:.

A.Nordhult holl ett orienterande féredrag om Tekniska ldroverket i Stockholm.
Direfter visning av liroverkets institutioner.

T. Wetterblad : De metodiska anvisningarna ¢ fysik pd gymnasiet (diskussion).




78 KRONIKK

UTNEVNELSER

Til amanuensis ved Kebenhavns Universitet: B. Fuglede.

Til lektor ved Kgbenhavns Universitet: Dr. phil. T. Bang.

Till lektor vid Abo Akademi: Fil. dr. B. Qvist.

Till professor vid Stockholms Hégskola: Fil. dr. L. Carleson.

Till professor vid Kungl. Tekniska Hégskolan, Stockholm: Fil. dr. L. G. Borg.

Till laborator vid Kungl. Tekniska Hoégskolan, Stockholm: Fil. dr. U. J. Hellsten
och Fil. dr. H. V. Radstrém.

Till laborator vid Chalmers Tekniska Hogskola, Géteborg: Fil. dr. A. Broman.

Till docent vid Lunds Universitet: Fil. dr. T. H. Ganelius.

Till docent vid Uppsala Universitet: Fil. dr. B. Stolt.

DEN INTERNASJONALE MATEMATIKERKONGRESS
Amsterdam 2.-9. sept. 1954

Det skal ikke her gis noe fullstendig referat fra denne kongressen, men bare en
kort omtale av den del av kongressens virksomhet som mé antas & vere av serlig
interesse for NMT’s lesere.

Matematikkundervisning var sammen med filosofi og historie anbrakt i seksjon
VII. Dessuten var det under kongressen mete i Den internasjonale kommisjon for
matematikkundervisning (C. I. E. M.). Fra de nordiske land var disse representan-
ter i kommisjonen: A. F. Andersen og S. Bundgaard (Danmark), I. Johansson og
R. Tambs Lyche (Norge), O. Frostman og L. Sandgren (Sverige). Kommisjonens
president er A. Chatelet (Frankrike), visepresidenter D. Kurepa (Jugoslavia) og
S. Mac Lane (U. 8. A.). Sekretar er H. Behnke (Tyskland).

I forbindelse med kongressen var det en utstilling av lerebeker i matematikk
arrangert av Centre National de Documentation Pédagogique i Paris med del-
tagelse fra ti land, deriblandt Danmark (ved S. Bundgaard) og Sverige (ved L.
Sandgren).

I C.I. E. M. ble det holdt en del foredrag under hovedtitlene: Matematikkun-
dervisning for alderstrinnet 16-21 ar og Matematikken og matematikeren i sam-
tiden (»The part of mathematics and the mathematician in contemporary lifeq).
Fra de nordiske land talte S. Bundgaard om matematikkundervisningen i Dan-
mark og O. Frostman om matematikkundervisningen i Sverige.

I seksjon VII som ble ledet av Dr. L. N. H. Bunt som er dosent i matematisk
didaktikk ved universitetene i Groningen og Utrecht var det fra de nordiske land
foredrag av H. H. Hansen: Geometrie und Wirklichkeit og av K. Piene: School
mathematics for universities and for life.

Det kan ikke veere tvil om at de mange foredrag om problemer for matematikk-
undervisningen, diskusjonene, leerebokutstillingen og det personlige samvzeret mel-
lom foredragene og pé ekskursjonene ga mange verdifulle impulser.

I de forste to tidr av &rhundret var det en slags gullalder med hensyn til inter-
essen for matematikkundervisningen, ikke minst p4 grunn av de impulser man
fikk gjennom Felix Klein og I.M.U. XK. Siden fulgte en viss stagnasjon. Mye
taler for at Amsterdamkongressen vil bety litt av et vendepunkt, at de kontakter
som her ble knyttet og de problemer som her ble reist, kan gi stotet til livligere
utveksling av meninger og erfaringer landene imellom. At tiden stiller okte krav
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til matematikk og dermed til matematikklererne, er det i hvert fall ikke tvil om.
Mye av det tradisjonelle lerestoffet trenger & bli erstattet av mer verdifullt. (T
Nederland pagir et interessant eksperiment: i det klassiske gymnasium er vanlig
matematikk erstattet av 1) historisk matematikk (med kildetekster) og 2) elemen-
teer statistikk.) Leerebokene kan moderniseres og selve undervisningen mé i hoyere
grad baseres pé forskningsresultater. I forste omgang er det viktig at matematikk-
leererne i de enkelte land pa en grei mate kan fa opplysninger om hvordan deres
kolleger i andre land arbeider. I den forbindelse kan det nevnes at leerebokutstil-
lingen fra Amsterdam vil sté til disposisjon for de foreninger som vil gjere bruk av
den. Her vil en ogsd finne en nettopp utkommet rapport fra den tyske under-
komite i C. I. E. M., skrevet med tanke pd Amsterdamkongressen. Under titelen
Der mathematische Unterricht fur die sechzehn- bis einundzwanzigjihrige Jugend
in der Bundesrepublik Deutschland (Gottingen 1954) er det samlet en rekke mel-
dinger om matematikkens plass i tyske skoler. Det er blitt en bok p& over 300 store
sider — rik p4 informasjon og inspirasjon.
K. P.

RESULTAT AV PRISTAVLINGEN FOR SVENSKA GYMNASISTER
(Uppgifterna i NMT 2 (1954), s. 190.)

Enligt prisnémndens mening &r intet av de inldmnade bidragen av sidan
kvalitet, att utdelandet av ett férsta pris vore berittigat. I stéillet utdelas tva
andra pris om 50 kr. samt fyra extrapris med gratisprenumeration pd NMT.
Pristagare:

Andra pris: Ulf Ottoson, Kommunala gymnasiet, Malmé och Hans Thérnblad,
Ostermalms h. a. liroverk, Stockholm. Extrapris: Bengt Bjirngard, Hissleholms
h. a. ldroverk (2 arg.), Bo Heiman, h. a. liaroverket f6r gossar i Malmé (2 &rg.),
Lars Hogberg, Karolinska h. a. liroverket, Orebro (1 arg.) samt Karl Soop,
Enskede h. a. laroverk (1 &arg.).

SUMMARY IN ENGLISH

INKERI S1MoLA : Historical aspects in the teaching of mathematics.

Based on her own experience as a teacher in the Finnish high school, the author
suggests that selected topics from the history of mathematics should be included
in the curriculum. By showing the pupils how mathematics has been an integrating
part of the general cultural life, it would rouse their interest in the subject as a
whole, apart from being a pleasant change in the ordinary exercises. In the lower
classes, historical aspects can only be introduced by way of selected examples. In
the higher classes, it might also be possible to give a more systematic account of the
history of mathematics, at least in ancient and medieval times. Such an extension
of the curriculum would necessitate suitable textbooks, and a strengthening of the
teachers’ education on this point. '




80 SUMMARY

Kar Raxper Buca: When calculus of probability became science.

After a short introduction to the additive and multiplicative laws of probability,
the article treats the discussion between Pascal and Fermat concerning two game
problems of Chevalier de Méré. Two results stated by Pascal are proved in modern
terminology. Finally, a problem of probability solved by Huygens is treated.

E. J. NystrOM: On special cones.

Starting from the cone wx?/a?-y?/b>—22/c?=0, several general properties are
first mentioned, concerning circular sections and focal lines. Imposing one condi-
tion, usually orthogonal intersection of some elements, a set of one-parametric
cones is obtained. Several cases are studied: Equilateral and orthogonal cones,
the cones of Pappus, Hachette, Reye etc. The treatment is given in dualistic form,
corresponding to the reciprocal cones x2/a®+y?/ b2 —22/c?=0 and ax®+b%y?—c%?2=0,

CarL-Erik FrOBERG: Numerical calculations on digital computers.

The article starts with a short introduction of digital computers, their logical
structure and fundamental operations, binary representation of numbers, planning
and coding of problems, truncation and round-off errors. Applications of computers
are then discussed in the following cases: Algebraic equations, matrix inversion
(by the conjugate gradient method) and eigenvalues, ordinary and partial differen-
tial equations, number-theoretical problems, non-numerical problems and other
applications. The existing and projected high-speed computers in the Scandinavian
countries are mentioned.

ErNsT S. SELMER: The indeterminate equation X34 Y3=AZ3.

The author gives an account of some results from his earlier paper “The diophan-
tine equation aa®-+by®+cz8=0", Acta Math. 85 (1951), pp. 203-362. By operating
in the field K(o), o=¢>* an important connection between the equations
axd+ byt +cz8=0 and X3?4 Y3=abcZ® is established. The latter equation is shown
insoluble in some cases by means of congruence conditions for the former equation.
Fven when all such conditions are satisfied, insolubility can be proved in many
cases by a treatment in certain cubic fields.—A method of determining the number
of generators (basic rational points) is mentioned.

ARNE PLEWJEL: On convex curves.
Given a closed convex curve of length L and maximum radius of curvature R,
the following inequalities are proved:

. L L LR . L
D < 2Rsin —, d = 2R (l—cosw), F = —— R?sin—.
4R 4R 2 2R

Here F is the area enclosed by the curve, and D and d are the greatest and the
smallest distance between parallel tangents. Equality in each case is attained only
for the lens-shaped curve composed of two circular arcs of radius .

If also a lower limit 7 is given for the radius of curvature, it is shown that the
isoperimetric deficit 4=IL*—4nl <n(4—mn)(R—r)?. The upper limit is the best
possible, attained by the outer parallel-curve (at a distance 7) to a lens with radius
R—r and perimeter (R —r). This is an improvement of an earlier result by Bottema.




