OM ANDLIGA GEOMETRIER OCH
DERAS TILLAMPNING

P. KUSTAANHEIMO och B. QVIST

Inledning. Till de problem, som férefaller enkla men i alla fall kan
vara nog si besviirliga att 16sa, hor problemen inom kombinatoriken. Tag
till exempel Sylvesters kinda skolflicksproblem. Det bestéar i att grup-
pera 15 skolflickor i grupper pa tre varje dag under en veckas tid sa,
att efter en vecka varje flicka varit i samma grupp som var och en av de
6vriga en och endast en gang. Bekant #r dven problemet att konstruera
sgrekisk-romerska« kvadrater. Exempel p4 en si-
dan kvadrat dr vidstdende kvadrat av talpar.

Det for den grekisk-romerska kvadraten typiska  (1,1) (2,2) (3,3)
i denna kvadrat dr 1° att talen 1, 2, 3 férekommer  (2,3) (3,1) (1,2)
bade som forsta och som andra element i samtliga  (3,2) (1,3) (2,1)
rader och i samtliga kolonner; 2° att alla talpar

(1, 1), (1,2), ..., (3, 3) dr medtagna.

Att bilda en grekisk-romersk kvadrat av de 36 talparen (1, 1), (1, 2),
..., (6, 6) ir omojligt. Beviset for detta pastdende ar inte si alldeles
litt. Tarry torde vara den forste som bevisat det.

De kombinatoriska problemen &r ohanterliga och darfor ofta svara
trots sin vanligen elementira frigestillning. Ingen enhetlig princip lyser
genom problemen och de behandlas ofta sa att olika delar av problemen
bevisas enligt olika principer. Emellanat dyker en 16sning plotsligt upp
som en foljd av nagot teorem fran ett helt annat omrade inom mate-
matiken.

Var avsikt 1 foreliggande uppsats &r att utgdende fran ett tdmligen
allméint kombinatoriskt problem i statistiken leda oss fram till en
matematisk gren, den éndliga geometrin, som naturligt ansluter sig till
ifrdgavarande kombinatoriska problem. Vi foljer hérvid samma upp-
stillning som F. W. Levi anvint i sin fortraffliga lilla bok »Finite geome-
trical systems« (Calcutta 1942, 51 sidor).

»Block design«. Antag att vi har v olika typer av foremal och att
varje typ omfattar r foremal. Dessa vr féremal skall ordnas i b grupper
eller s. k. »block« si, att i varje block placeras k (< v) foremal av olika
typ. Sjalvklart maste
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(1) vr = bk .

Antag vidare, att varje par av foremal av olika typ férekommer i

exakt A olika block.
Ett system av block konstruerat efter dessa principer kallas ett »block

design¢. Exempelvis &r

1 2 3 4 5 6 7
2 3 4 5 6 71
4 5 6 71 2 3

ett »block design« med b =v =17, r =k =3, 1 = 1. I exemplet finns
-7 typer av foremal (tal). Varje typ ér representerad av 3 foremal (r = 3).
Kolonnerna ér de sju blocken. Varje talpar férekommer i en och endast
en kolonn (1 = 1).

I varje block finns 3k(k—1) par av féremal av olika typ. Eftersom varje
sddant par forekommer i exakt 4 block far vi allt som allt }k(k—1)b/A
par. A andra sidan #r antalet dylika par 4v(v—1), och alltss

tk(k—1)b/A = Jv(v—1).
Eftersom enligt (1) vr = bk, forenklas denna ekvation till f6ljande:
(2) r(k—1) = A(v—1) .

For oss dr speciellt de symmetriska »block design« av intresse. Symme-
tri innebér att v = b och alltsd r = k. Vidare behover vi endast sddana
»block design« for vilka 4 = 1. D4 ger (2):

(3) v=r2—rtl.

I det symmetriska fallet med 1 = 1 giller féljande: Varje blockpar
har ett och endast ett foremal av samma typ gemensamt. T. ex. f6ljande
resonemang ger oss detta. Det finns Jo(wv—1) = Jv(r2—r) = Jor(r—1)
blockpar. Féremal av en viss typ férekommer i r block och alltsd i
3r(r—1) blockpar. I medelial blir det av de v typerna silunda en typ for
varje blockpar. Men ett blockpar kan inte ha tva eller flera typer
gemensamma, ty da skulle ju de tva blocken innehalla samma féremals-
par fastin A = 1. Enda méjligheten #r att varje blockpar har ett och
endast ett foremal av samma typ gemensamt.

Vi upprepar: Ett symmetriskt »block design« med 4 = 1 kinnetecknas
av

1° att vart och ett av de v blocken innehaller  féremal av olika typ

s&, att varje par av féremél av olika typ forekommer i ett och endast
ett block;
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2° att varje blockpar innehaller ett och endast ett foremal av samma

typ.
Nodvindigt dr att v = r2—r-4-1.

Som vi visat féljer 2° ur 1° och omvint kan visas att 1° foljer ur 2°.

Ezxempel: Ordna samtliga kort i en kortlek i en rektangel pd 4X13
kort s8, att tva godtyckliga kolonner pa 4 kort har en och endast en
valor gemensam, samt sd, att varje par av valorer férekommer i en och
endast en kolonn.

Detta #r tydligen ett symmetriskt »block design« med v = 13, r = 4
och 1 = 1. Villkoret 13 = 42—4+1 #r uppfyllt. En 16sning &r t. ex.

Spader: A 2 3 4 5 6 78 910 J @ K
Hjarter: 2 3 4 5 6 7 8 910 J @ K A
Ruter: 5 6 7 8 910 J @Q K 4 2 3 4
Klover: 7 8 910 J Q K A 2 3 4 5 6

Andliga geometrier. Vi kallar ett block en linje och méngden av alla
foremal av samma typ en punkt. Ett symmetriskt »block design« med
A =1 kallar vi en dndlig geometri. D& en typ och ett block ha ett fore-
mél gemensamt, séiges punkten ligga pa linjen.

I denna terminologi kan vi formulera de i foregidende avsnitt upp-
stéllda utsagorna s& hér:

1° En #ndlig geometri bestar av v linjer och v punkter.
2° Tv4 linjer skir varandra i en och endast en punkt.
3° Genom tva punkter gar en och endast en linje.

Nu dr ju detta endast ett namnbyte. Men som ofta i matematiken &r
fallet med namnbyten #r det av synnerligen inspirerande natur. Vi kan
nimligen omviint definiera begreppen linje och punkt genom att uppstilla
1°-3° som axiom. Dessa axiom, de s. k. incidensaxiomen, 4r de forsta
inom det axiomsystem som uppbir den Euklidiska geometrin. De har
alltsd som sddana rent geometriskt intresse. Genom att folja den gingse
gangen i den geometriska axiomatiken kan vi ga vidare och pa detta
sitt bl. a. kasta ett helt nytt ljus 6ver de »block design« vi just behandlat.
Dessa »block design« utgor en sorts grafisk bild av de dndliga geometrierna.

For att inte gora framstéllningen f6r lang skall vi utan bevis upprakna
nagra teorem, som foljer ur axiomen 1°-3°. Teoremen forutsitter an-
tagandet att en rét linje har p+41 punkter och att det existerar &tmin-
stone 3 linjer. Storheten p &r vart tidigare r minskat med en enhet.

TroreEM 1. Alla linjer har p+1 punkter.

10*
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TEOREM 2. Genom varje punkt gir exakt p-+1 linjer.
TrorREM 3. Det finns exakt p?+p-+1 punkter och lika manga linjer.
Féljande teorem &r redan nigot svarare att bevisa.

TrorEM 4. Om p &r udda, finns det p-+1 men icke flera punkter, som
ar s& beskaffade att tre godtyckliga av dem icke ligger pa en linje.
((p+1)-kurva eller konisk sektion.)

TEOREM 5. Genom en punkt pa en (p+1)-kurva (p udda) gar en och
endast en tangent till kurvan. En tangent dr en linje, som skir kurvan
i exakt en punkt.

TrorEM 6. Fran en punkt, som icke ligger pa en (p-+1)-kurva (p udda),
kan antingen tva eller inga tangenter dragas till kurvan. Om p dr jimnt
gar alla kurvans tangenter genom samma punkt.

Teoremen 1-6 har vi velat ge som exempel pa att den enkla axiomatik,
som leder till en &ndlig geometri, ingalunda utmynnar i nagon trivial
modell. Sikert ligger ménga intressanta egenskaper dolda i de ganska
litet undersokta dndliga geometrierna. Huruvida dessa oupptickta egen-
skaper har annat intresse én ett rent akademiskt dr naturligtvis omojligt
att uttala sig om.

For att ga vidare uppstéller vi f6ljande vilkinda teorem som axiom:

DEsARGUES sats: Lat ABCDEFGHIK vara 10 punkter sidana att
punkttriplerna ABC, ADE, AFG, BDH,CEH, BFI, CGI, DFK och EGK
var for sig dr kollinedra; da &r dven punkterna HIK kollineira.

Det dr klart att detta nya axiom innebidr en visentlig inskrinkning.
Vi har limnat de icke-Desargueska geometrierna bakom oss och 6vergatt
till den betydligt littare behirskade Desargueska geometrin. Kanske
ar det ytterligare skl att papeka féljande. I tre dimensioner dr Desargues
teorem en f6ljd av incidensaxiomen. I tva dimensioner har man lyckats
bevisa att om icke-Desargueska geometrier existerar sa #dr p = 8. For
p = 9 och p = 16 har man lyckats konstruera dylika geometrier men for
intet annat vidrde pa p har man kunnat konstruera icke-Desargueska
geometrier.

Vi atergar till Desargues axiom och bortser i fortsdttningen frin de
synnerligen litet kiinda icke-Desargueska geometrierna. Det visar sig att
Desargues axiom drar med sig forvanansvirt kraftigt determinerande
konsekvenser. Man kan t. ex. visa att p maste vara ett primtal eller en
primtalspotens. (Hérur och av ovanstaende féljer att for p = 6 ingen
geometri existerar, vilket i sin tur omdjliggér konstruktionen av en
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grekisk-romersk kvadrat av talparen (1, 1), ..., (6, 6).) Vidare kan man
visa att geometrin kan isomorft avbildas p4 en del av en dndlig algebra,
en s. k. Galois-kropp. M. a. 0. man kan 6verga till en analytisk geometri.

Andliga analytiska geometrier. I talteorin definieras det fundamentala
begreppet »kongruent modulo p«. Tva hela tal m och n séigas vara kon-
gruenta modulo p om m—mn dr divisibelt med p. Beteckningen &r

m = n (mod p) .
Nu #r ju varje helt tal kongruent modulo p med nagot av talen
(4) 0,1,2,3,...,p—1.

Vi kan dérfor som man siger identifiera alla hela tal som dr sinsemellan
kongruenta modulo p och lata talen (4) utgora representanter f6r resul-
tatet. Detta innebir att varje helt tal erséitts med det av talen (4), som
det ar kongruent med modulo p. Vi antar nu att p dr et udda primtal,
alltsd ett primtal == 2. Vi kan d4, som man kan visa, entydigt utféra de
fyra enkla riknesitten med talen (4) och som resultat alltid fa ett av
talen (4). Héarvid far vi icke glomma att varje tal som eventuellt ligger
utanfor talen (4) skall ersittas med det av talen (4) som det &r kongruent
med. Kort sagt innebir det ovansagda att likhet ersitts med kongruens
modulo p. Tagna pd detta siitt séiger vi att talen (4) ger en Galois-
kropp GF,,

Exempel: Kroppen GF;. Talen eller elementen &r 0, 1,2, 3, 4; vi ha
t.ex. 2:3=1,342=0,1=§=3o0.5.V.

Utover de enkla riknesdtten kan vi inféra rotutdragning. I talteorin
bevisas att man kan draga kvadratroten ur hilften (0 icke medriknad) av
alla element, nimligen ur de s. k. kvadratiska resterna eller positiva talen

(p udda). I exemplet ovan #r 1 och 4 rester, ty ]/i = 1 eller 4 och VZ =2
eller 3. Talen 2 och 3 #r icke-rester och deras kvadratrétter ger »ima-
gindra« Galois-element. ,

Vi atergar nu till vara éndliga geometrier. Det sker pa foljande sétt.
Om z, 4, z och a, b, ¢ ir element i en Galois-kropp och varken r=y=2=0
eller a = b = ¢ = 0, s& kallar vi

(z, ¥, z) en punkt,

(@, b, ¢) en linje,

(21, Y1, 2;) sSamma punkt som (z,, ¥,, 2,) om och endast om x; = kx,,
Y1 = kys,, 2, = kz,, dir k == 0 &r ett element i Galois-kroppen,

(@y, by, ¢;) samma linje som (a,, by, ¢;) om och endast om a; = ka,,
b, = kb,, ¢; = kc,, diir k == 0 dr ett element i Galois-kroppen.
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Vidare siger vi att punkten (w,y, 2) ligger pa linjen (a, b, ¢) om och

endast om
ax+by+cz=0.

Det &r nu litt att visa, att det system som vi salunda far inte &r nagon-
ting annat #n en éndlig Desarguesk geometri.

Vi har infért s. k. homogena koordinater, vilka leder till en projektiv
geometri. Utesluter vi ur geometrin en linje och dess punkter si inser
vi att parallellaxiomet giller och vi far en dndlig euklidisk geometri.

Exempel 1: p = 3. Vi betecknar Galois-elementen med 0,1, —1 i
stillet for 0, 1, 2. Det finns 13 punkter, nédmligen:

1. (1,0,0) 5. (1, —1,0) 9. (0,1, —1)
2. (0,1,0) 6. (1,0,1) 10. (1,1, 1)
3.(0,0,1) 7.(,0 —1) 11. (1,1, —1)
4. (1,1,0) 8. (0,1,1) 12. (1, —1,1)
13. (—1,1,1)

Linjerna fis ur samma schema. For att se vilka punkter som t. ex.
ligger pa linjen 4, méste vi 16sa ekvationen z+y = 0, och far punkterna
3, 5, 12 och 13. I nedanstaende tabell ir de punkter uppriknade som ligger
pa linjerna 1—13.

3,11, 4,10 9. 10,1,13,8
7,13,11,2  10. 5,7,10,9
2,10,6,12 11. 11,6,8,5
9,12,1,11  12. 4,8,12,7
13. 13,4,9,6

W=
A=

Detta schema &r ett »block design« med v = 13, r = 4, A = 1, och utgor
en 16sning till kortproblemet i bérjan av var uppsats.

Exempel 2: p = 5. Vi utesluter linjen (0,0,1) och dess punkter
(, y, 0). Eftersom de aterstdende punkterna (z,y, z) har z 4= 0, kan vi
dividera med z och fir punkterna i formen (z, y, 1) eller kortare (x, y).
Vi har alltsd dvergatt till en euklidisk geometri med 25 punkter (z, y)
och 30 linjer (a, b, ¢), dir icke & = b = 0. Punkterna &r

(0,4) (1,4) (2,4) (3,4) (4,4)
0,3) (1,38) (2,3) (3,3) (4,3)
0,2) (1,2) (2,2) (3,2) (4,2)
0,1) (1,1) (2,1) (3,1) (41)
(0,0) (1,0) (2,0) (3,0) (4,0)
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Koordinataxlarna dr & = 0 och y = 0. Vrider vi koordinatsystemet
t. ex. enligt transformationsformeln

z = z—y, y' =a+y,
83 blir koordinaterna fér ovanstdende punkter

(1,4) (2,0) (3,1) (4,2) (0,3)
(2,3) (3,4) (4,0) (0,1) (1,2)
(3,2) (4,3) (0,4) (1,0) (2,1)
(4,1) (0,2) (1,3) (2,4) (3,0)
(0,0) (1,1) (2,2) (3,3) (4,4

Som geometriskt inses, genom att det #r fraga om parallella linjer,
maéste resultatet bli en grekisk-romersk kvadrat. Detta kan éven direkt
verifieras.

Den #dndliga geometrin och fysiken. I de féregdende avsnitten har vi
behandlat de #ndliga geometrierna utgéende frin kombinatoriken. His-
toriskt har likvil de #ndliga geometrierna sin upprinnelse i undersok-
ningar rérande de geometriska axiomen. En fér axiomatiken visentlig
fraga &r huruvida axiomen é&r oberoende av varandra. Med bl. a.
detta mal fér 6gonen har axiomatikens klassiker — Hilbert, Veblen,
Hjelmslev o.a.— uppstillt konfigurationer, som innehaller ett dnd-
ligt antal punkter och linjer och som enda relationer de s. k. incidens-
relationerna. Bland dessa konfigurationer finner vi dven de &ndliga
geometrierna. Den forsta undersckningen av denna art torde utgoras av
italienaren Gino Fanos berémda publikation av ar 1892. I denna publi-
kation anges redan systematiskt en &ndlig geometri for varje primtal p
och for varje dimension (plan, rymd, 4-dimensionell rymd o. s. v.). Fano
kan alltsd anses som den #ndliga geometrins »fader«.

Den forste som tillimpade #ndliga geometrier pa statistiken, enkanner-
ligen pa s. k. »block design¢, #r vil den tidigare omnémnde F. W. Levi.
Ar 1940 holl han i Calcutta fem forelisningar 6ver detta dmne.

Efter ar 1949 har forsck gjorts att tillimpa de éndliga geometrierna
pa ett fullkomligt nytt omrade. I den man dessa forsok leder till accep-
tabla resultat kan de leda till en helt ny naturvetenskaplig vérldsbild.
Nimnda &r framkastade G.J&rnefelt pd matematikerkongressen i
Trondheim tanken att en finitisering av fysiken och astronomin skulle
kunna astadkommas genom att de fysikaliska och astronomiska teorierna
skulle baseras pa Galois-kroppar och #ndliga geometrier. En finitisering
innebér att begreppet odindlig 4r bannlyst. Detta betyder inte allenast
att rymden och tiden méste vara éndliga utan éven att punkterna pa en
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stricka inte far ligga oéndligt tétt, det far inte finnas en odndligt liten
energimingd, inte en godtyckligt liten stricka, vinklar far inte delas i
huru méanga delar som helst etc. P& detta séitt skulle man kringgs alla
de svarigheter och paradoxer som begreppet odndlig drar med sig.

I och for sig dr tanken péa en finit virldsbild ingalunda ny. Kvantteorin,
som bygger pa antagandet att energin och impulsen bestar av ett éndligt
antal éndligt sma kvanta, dr ett forsta steg mot finitisering. Den oerhorda
framgang kvantteorin ronte i borjan pa detta arhundrade ledde naturligt
till forsok att kvantisera d&ven andra storheter sdsom hastighet, rymd och
tid. Bl a. har man forsckt lansera s. k. gitterpunktmodeller. Man har
antagit, att det existerar en minsta lingd av atomkdrndiameterns stor-
leksordning, en enhet, som inte mera kan delas. Fysikens rymd skulle
vara ett av denna minsta enhet hopfogat punktgitter. Det vill siga: de
fysikaliska storheterna kan inte existera i vilka punkter som helst utan
endast i sidana, vilkas avstdnd fran varandra utgéres av en heltals-
multipel av den minsta lingden. Vi kan t. ex. forestilla oss smé kuber
uppstaplade pa varandra. Kubernas kanter ér de minsta lingderna. I den
fysikaliska rymden existerar d4 endast de punkter som sammanfaller
med kubernas horn. En dylik gittermodell lider likvil av en uppenbar
svaghet: den &r ndmligen inte som man séger rymdisotropisk. Rymden
kommer ju att innehélla riktningar av olika slag. Ténker vi pa den rymd
som den klassiska geometrin arbetar i och som utgor grunden fér den klas-
siska fysiken, s& dr det omojligt att i denna rymd utpeka nagon riktning
som i nigot avseende skulle ha andra egenskaper én vilken annan rikt-
ning som helst. Men i gitterpunktsrymden intar de riktningar som anges
av kubernas kanter en sirstéillning, ty varje punkt har 6 nirmaste punkter
och dessa ligger sett fran ifrigavarande punkt justide riktningar som anges
av kubernas kanter. Vidare kan fran varje punkt dras 12 riktningar till
sidana punkter som befinner sig pa avstandet }/2 ganger minsta lingden,
ete.

Genom att tillgripa éndliga geometrier eliminerar man isotropiproble-
met. Den &ndliga geometrin &r till sin byggnad lika symmetrisk som den
Euklidiska geometrin, eftersom dess algebraiska konstruktion &r analog.
De reella talens kropp har ersatts med en Galois-kropp, men de fyra
enkla riknesitten foljer fortfarande samma regler.

Nu forefaller det siikert som om isotropiegenskapen skulle viiga mycket
latt i jamforelse med de séiregna egenskaper den #ndliga geometrin &r
behiftad med och som man blir tvungen att anamma i en teori som byg-
ger pa Galois-kroppar. Huru kan man tillimpa ett system pa fysiken dir
t. ex. primtalet p dr likvirt med noll? En nirmare undersékning, som
Kustaanheimo gjort, ger emellertid foljande anmérkningsvirda resul-
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tat: vi kan alltid konstruera &ndliga geometrier s att de avbildar den
fysikaliska vérlden med samma noggrannhet som den euklidiska geome-
trin. Konstruktionen bestar visentligen i att inféra ordning och metrik
i den &ndliga geometrin.

Ordningsbegreppet. En indlig geometri far vi om vi konstruerar en
analytisk geometri pa en Galois-kropp, t. ex. sa att vi identifierar alla hela
tal modulo p. Om t. ex. p = 5 kan en variabel x antaga virdena 0,1, 2, 3, 4
eller lika bra —2, —1,0, 1, 2. P4 xz-axeln ligger alltsd 5 punkter. Vi
fragar nu: vilket dr kriteriet f6r att en punkt ligger mellan tva andra
punkter ? Ligger 4 = —1 till hdoger eller till vinster om 1? Tar vi proble-
met allménnare s& giller det att bestdmma ordningsfcljden fo6r punkterna
pa en rit linje. Punkterna kan representeras av sina koordinater. I den
vanliga analytiska geometrin bestimmer en koordinat, t.ex. ax-koordi-
naten, punkternas inbérdes ordning. Vi inser att en allmén anordning av
punkterna pa en rit linje erhélls om vi lyckas ordna Galois-elementen.

For de reella talen dr problemet enkelt. Ett reellt tal a ligger till Aéger
om ett annat reellt tal b om a dr storre &n b vilket betyder att a—b
dr positivt. Forsoker vi oss pa samma definition f6r Galois-talen stéter
vi genast pa orimligheter. Galois-talen representeras av p hela tal som
ir olika modulo p, t.ex. }(p—1), ¥(p—3), ...,0, —1, —2, ..., {(3—p),
3(1—p),eller 1, 2,3, ..., p—1, p, eller varfor inte 0, 2, 4, ...,p—3,p—1,
p+1, ..., 2p—4, 2p—2. Vilka av dessa tal dr positiva? Ar 1 positivt?
Inte nédvéndigtvis, ty det dr ju detsamma som 1—p. Likasa dr p—2
inte nédvandigtvis positivt eftersom det dr detsamma som —2. Vi kan
inte intuitivt avgora vilka Galois-tal som dr positiva. Vi méste dérfor
atergd till de reella talen och fraga oss: vilken algebraisk egenskap ut-
mirker de positiva talen? Svaret kan inte fas inom ramen for de fyra
enkla riknesitten, emedan de reella talen bildar en kropp och alla ele-
ment i en kropp utom 0 &r likvirdiga i avseende pa de fyra enkla rikne-
sitten. Vi gar darfor till f6ljande rikneséitt och finner genast svaret: de
tal ur vilka kvadratroten kan dras dr positiva, de tal ur vilka kvadrat-
roten inte kan dras #dr negativa. Denna definition kan omedelbart 6ver-
foras till Galois-kropparna.

Elementet a i en Galois-kropp #r positivt, om och endast om det kan
skrivas i formen @ = «2, dir x ar ett fran 0 skilt Galois-element. Element
som inte &r 0 eller positiva &r negativa.

Vi kan nu ordna Galois-elementen. Men vi méiste underséka om den
ordning vi pa detta sitt accepterar har samma egenskaper som den for
de reella talen gillande ordningen. De reella talens ordning uppfyller
foljande villkor:
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Produkten av tvi positiva tal dr positiv.

Produkten av tvi negativa tal dr positiv.

Produkten av ett positivt och ett negativt tal dr negativ.
"Summan av tva positiva tal ér positiv.

Talet —1 dr negativt.

Suk W=

Omvint kan man visa att dessa 5 satser tagna som axiom entydigt
definierar de reella talens storleksordning. Alla 5 satserna #ér visentliga.
T. ex. den femte satsen garanterar, att om a—b #r positivt sd 4r b—a
negativt. Skulle s& inte vara fallet s4 kunde for tva tal @ och b samtidigt
gilla @ > b och b > a.

I algebran visas, att i varje Galois-kropp satserna 1, 2 och 3 giller.
T. ex. den forsta satsen bevisas s&: om a och b dr positiva, si ir a = 2
och b = 2 och alltsd ab = (zy)?, d. v. s. ab r positivt. Satserna 2 och 3
kan bevisas analogt.

Satserna 4 och 5 dr didremot inte giltiga i varje Galois-kropp. Vi har
tidigare visat att exempelvis i Galois-kroppen GF; talen 1 och 4 = —1
ir positiva; siledes giller sats 5 inte i denna kropp. Den berdmda reci-
procitetssatsen av Gauss tilliter oss att avgora i vilka kroppar —1 &r
negativt. Resultatet &r att —1 dr negativt i de och endast de Galois-krop-
par GF, dir primtalet p ér av formen p = 4n—1, n ett helt tal. Siledes
t. ex. i kropparna p = 3, 7, 11, 19, 23, 31, ...; ddremot inte i kropparna
p=2,5,13,17,29,37, .... Som grund for en fysikalisk vérldsbild kom-
mer alltsd endast Galois-kroppar av den forra typen i fraga.

Lat oss sedan betrakta sats 4. I varje kropp ér 1 positivt eftersom
1 = 12 oberoende av p. For att sats 4 skall gilla méste dven 141 = 2
vara positivt, vidare 14+2 =3 och 143 =4 vara positiva o.s.v.
A andra sidan far vi pa detta sitt alla Galois-tal och de skulle alltsé
alla vara positiva. Men man kan bevisa, som vi tidigare ndmnt, att i alla
Galois-kroppar dir p = 2 hilften av de fran 0 skilda elementen &r positiva
och hilften negativa. Vi ser saledes, att sats 4 inte kan gilla i ndgon
Galois-kropp.

Denna visentliga skillnad mellan de reella talen och Galois-talen &r
troligen orsak till att man ansett det omdjligt att anvinda Galois-tal i
fysiken. Men & andra sidan kan vi konstatera foljande: om for Galois-
talen alla satserna 1-5 skulle giilla, si skulle de ju vara likvirda med de
reella talen med avseende & anordningen. Men om en ny teori &r likvérd
med nagon gammal, si finns det ju ingen orsak att infora den i fysiken.
D4 en ny teori skapas, hoppas man tvirtom att den i nigot avseende skall
skilja sig fran den gamla och silunda skall vara i stand att ge resultat
som den gamla teorin inte ger. Som vi senare skall se, ger Galois-talen
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genom att de inte uppfyller sats 4 at var virldsbild en egenskap, som
ingen virldsbild byggd pa reella tal kan ha.

Sjalvklart far inte ordningsbegreppet i den nya teorin skilja sig
mycket fran det i den gamla. Erfarenheten fordrar en ging for alla att
summan av tva positiva tal skall vara positiv, dtminstone for sdidana
tal som vi komma i beréring med i det dagliga livet eller pa den klassiska
fysikens doméner. Men i fysiken forekommer aldrig tal, som innehaller
mer &n 40 siffror. Den klassiska fysikens fordringar dr alltsa uppfyllda,
om var Galois-kropps tal 1, 2, 3, ..., 104 &r positiva (och —1 negativt,
varav enligt sats 3 foljer att dven talen —2, —3, ..., —10% #r negativa).
For de ovriga Galois-talen behover ju sats 4 faktiskt inte alls gilla.

Nu uppstér fragan: finns det dylika Galois-kroppar dér s& manga »pa
varandra foljande« tal (d. v.s. tal, vilkas skillnad &r 1) &r positiva och
alltsd »p& varandra foljande« dven vad betriffar storleken? Genom att
tillimpa den tidigare omndmnda reciprocitetssatsen jimte Dirichlets
djuptliggande sats om primtal finner man féljande resultat. Lat ¢ vara
ett givet godtyckligt stort positivt helt tal; d& existerar det alltid till och
med o#éndligt ménga sidana primtal p, att i kroppen GF), talen 1, 2,
3, ...,9—1, ¢ alla &r positiva och —1 negativt.

Ordningsproblemet &r hirmed 16st. Vi tar en dylik kropp GF, och
konstruerar en analytisk geometri av euklidisk typ. Denna geometri
approximerar den klassiska euklidiska geometrins incidens- och ordnings-
relationer godtyckligt noggrannt, desto bédttre ju storre det ovannimnda ¢
tages. I denna geometri giller, oaktat den ir #ndlig, alla den klassiska
geometrins ordnings- och incidensrelationer om vi inte betraktar mycket
stora eller mycket sma tal. En stricka kan t. ex. alltid delas i » delar
84 att delningspunkterna alla ligger mellan varandra och #ndpunkterna,
om inte n #r mycket stort (storre &n 10%°). Likasa dr av tre punkter pa
en rit linje en och endast en beligen mellan de tvi 6vriga, om inte
punkterna ligger mycket langt fran eller mycket nira varandra. I det
mycket lilla och i det mycket stora ddremot finns det punkttripler pa
samma rita linje som har den egenskapen att varje punkt ligger mellan
de tva ovriga. — Detta sonderfall av vart intuitiva begrepp om ordning
dé vi gar till extremt smé eller stora virden kan vara orsaken till att
fysikerna som riknar med reella tal inte lyckats uppstilla tillfredsstil-
lande teorier for atomerna och f6r virldsalltet.

Kongruensbegreppet. Foérutom incidens- och ordningsrelationerna
karakteriseras den klassiska geometrin av en tredje relation, som kallas
kongruens. Kongruensen mojliggér métning av strickor och vinklar.
Analytiska geometrins avstandsformel, d. v. s. formeln fér avstindet
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mellan tvé punkter, ger oss ett analytiskt medel att avgdra om tva
figurer &r kongruenta eller ej. Det betyder, att si snart vi kénner den
funktion av koordinaterna (2, #1, 21), (%2, Yo, 25) f0r en strickas énd-
punkter, som ger oss avstdndet d mellan punkterna, s& &r kongruens-
relationerna definierade. Kongruensbegreppet i den euklidiska geometrin
skall uppfylla vissa axiom, av vilka foljer att d maste vara den positiva
kvadratroten ur ett homogent, definit andragradspolynom i koordinat-
skillnaderna #,—x,, §;—¥Y, 2;—%,. Funktionen d blir pa detta sétt be-
stamd, och viljer vi koordinatsystemet lampligt blir

(5) d = V(@ — )+ (1 —y2)*+ (71 —22)? -

Siittet, pa vilket kongruensbegreppet skall definieras i den dndliga geo-
metrin, ger sig timligen entydigt. Haller vi oss till Galois-kroppar kan
nimligen varje homogent andragradspolynom i tre variabler z, y, z trans-
formeras till formen 22-+y2+-2% Vi kommer &verens om att formeln (5),
dven i de dndliga geometrierna, skall ge avsténdet mellan tva punkter i
ett lampligt valt koordinatsystem.

Efter att pa detta sitt ha definierat begreppet kongruens konstaterar vi
att, liksom for ordningsrelationen, kongruensen har samma egenskaper som
den klassiska geometrins kongruens, detta under férutséttning att vi inte
gar till for stora eller f6r smé virden. Gor vi detta, s& stoter vi pd Gver-
raskande avvikelser fran den klassiska geometrin. I formel (5) dr defini-
tionsmissigt kvadraterna pad koordinatskillnaderna positiva tal eller 0,
och alltsd dven deras summa positiv. Detta under den férutsittningen
att vi haller oss till det vilordnade omrade dédr summan av tva positiva
tal dr positiv. I det mycket stora och det mycket lilla kan summan av
tre kvadrater vara negativ och vi far d en striicka vars lingd &r »imagi-
nir«. Men summan kan dven vara 0 fastin koordinatskillnaderna &r
= 0. Vi far da en s. k. »0-striicka«, en stricka vars lingd dr noll fastin
andpunkterna dr olika punkter. Situationen ér alltsi densamma som i
relativitetsteorins rymd dir ljusstralarnas banor #r O-linjer. — Vilken
fysikalisk betydelse de #ndliga geometriernas 0-linjer eventuellt kan ha
ar holjt i dunkel.

Tidsbegreppet. Vi har konstruerat en geometri dir allt &r logiskt
éindligt men vilken vi det oaktat inte med fysikaliska matningar kan
siirskilja fran den klassiska geometrin. P4 denna geometri vill vi nu
bygga en fysikalisk virldsbild. Férrén vi kan gora det maste vi undersdka
den fjirde dimensionen. Varje fysikalisk teori fordrar ju &tminstone fyra
grundvariabler: tre rymdkoordinater och en tidskoordinat.

D4 vi behandlade rymden hade vi endast en framkomlig vig att ga.
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D4 vi skall komplettera rymden med tidsbegreppet forgrenar sig viigen
och vi far tva acceptabla mojligheter att vilja emellan. Vi vidhaller fort-
farande kravet pa logisk &ndlighet: tidpunkter far finnas endast i
dndlig méngd. Men dérav foljer inte att tiden nddvindigt méste vara
en variabel i en Galois-kropp.

For att forsta detta bor vi underséka vilka typer av funktioner som
kan forekomma inom ramen fér Galois-kroppar. I fysiken #r ju en mate-
riell partikels geometriska koordinater funktioner av tiden.

Om Galois-talet y &r en funktion av Galois-talet x, s& kan man litt
bevisa att y alltid kan uttryckas medelst ett s. k. Lagrange-polynom i z,
d. v.s. att y som funktion av x &r ett polynom i # vars gradtal ir hogst
p—1 och vars koefficienter dr Galois-tal. Inom det viilordnade omradet
kan vilken funktion som helst approximeras med ett dylikt polynom, men
utanfér det vilordnade omradet kommer funktionens polynomnatur
fram. S& har t. ex. den reella exponentialfunktionen y = ¢* ingen mot-
svarighet inom ramen fér Galois-talen, men om vi haller oss inom det
vilordnade omradet sd ger polynomet y = 14z a2+ 423+, .. samma
talvirden med godtycklig noggrannhet.

Funktioner paAminnande om exponentialfunktionen kan man nog kon-
struera inom ramen for Galois-talen. Exempelvis

(6) y=at,

dir a dr ett Galois-tal, ir en sidan funktion. Men hir maste ¢ vara ett
vanligt helt tal f6r att uttrycket 6verhuvud skall ha nagon betydelse. Man
kan bevisa, att varje funktion av typen (6) dr periodisk, och dess period
antingen p—1 eller nigon faktor i p—1. Vi kan dven konstruera funk-
tioner vilkas perioder ér en godtycklig faktor i p»—1 (n ett godtyckligt
helt tal). Vi forfar da pa foljande sitt: till kroppen GF, adjungerar vi
roten till en i GF, irreducibel n:te grads ekvation a"+tax"14...+
+bx~+c = 0, varvid vi far en ny kropp GF .. Analogt fas ju den komplexa
talkroppen ur den reella genom adjungering av den ena av den irre-
ducibla ekvationens 221 = 0 rotter. I den salunda erhallna Galois-
kroppen GF,, finns p element, vilka alla kan skrivas i den komplexa
formen

(7) G+ x+a.x2+ . . +a, 2T,

dar x dr nyssnimnda rot (motsvarande den imaginira enheten 4) och
@gs g5 - - -5 Ay tal som hor till kroppen GF,. Man kan bevisa, att om
a dr ett tal som hor till kroppen GF . och om ¢ ér ett vanligt helt tal,
sd dr perioden for funktionen a! antingen p®—1 eller en faktor i p»—1.
Genom att pa limpligt séitt kombinera dylika funktioner far vi funk-
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tioner, vilkas alla virden hér till kroppen GF, och vilkas period &r en
godtycklig faktor i p*—1.

Perioden for funktionen y = y(f) kan dven vara p, oaktat ¢ dr ett
vanligt helt tal. Vi kan nimligen forst definiera en funktion

(8) z = z(t)

dir 2 ir summan av ¢ stycken ettor i kroppen GF,. Sedan konstruerar
vi de tidigare nimnda Lagrange-polynomen i . P4 detta sétt far vi exakt
samma funktioner som vi tidigare fick d& vi betraktade en Galois-
variabel som en funktion av en annan Galois-variabel. Enda skillnaden
ar att den fria variabeln nu icke ir Galois-talet « utan det hela tal ¢ som
svarar mot x enligh ekvationen (8). T. ex. polynomet y = 24z far
i kroppen GF, virdet 2 for t = ..., —14, —17,0, 7,14, 21, ... och vér-
det4f6rt= ..., —6, 1, 8,15, .... En dylik funktions period &r alltsé p;
i det anférda speciella exemplet dr p = T.

Slutligen kan vi kombinera funktioner av typen y = xaf, dér x &r
funktionen (8) och a ett komplext tal i kroppen GF,,. P4 detta sitt far
vi funktioner vilkas period #r en faktor i p(p®—1). — Funktioner vilkas
period skulle vara divisibel med p? kan vi ddremot inte konstruera.

Om alltsé tidsvariabeln ¢ genomlsper de vanliga heltalen, s& &r alla
analytiskt konstruerade Galois-funktioner y = y(t) av ¢ periodiska. Som
period kan férekomma vilket helt tal som helst som icke &r divisibelt
med p?. Denna, periodicitet gor var modell i varje hindelse logiskt finit:
eftersom alla funktioner som férekommer i var virldsbild &r periodiska,
och deras perioder ér hela tal, si har hela virldsalltet en &ndlig grund-
period. Denna grundperiod &r den minsta gemensamma dividenden till
de enskilda funktionernas perioder. Tidpunkter ¢, som skiljer sig fran
varandra med denna grundperiod, kan inte p4 nagot sitt skiljas frin
varandra och vi kan identifiera dem sinsemellan. P4 detta sitt kommer
vi sven till en finit tid sisom vi tidigare kom till en finit rymd. Skillnaden
ar endast den att medan de hela tal som beskriver rymden skall iden-
tifieras modulo ett primtal p, s4 kan diremot tiden identifieras modulo
vilket helt tal som helst. — I algebraisk terminologi kan vi séiga att
rymdvariablerna skall bilda en #ndlig kropp, tidsvariabeln déiremot
endast en éndlig ring. Orsaken hirtill ir rymdens 3-dimensionalitet: en
3-dimensionell geometri &r mdjlig endast i en kropp, tidens 1-dimen-
sionella geometri dédremot redan i en ring.

Nagra synpunkter pi eventuella tillimpningar. Fysikens tids-
begrepp kan vi enligt foregiende avsnitt uppfatta pa tvd olika sitt.
Antingen &r tiden den fjirde dimensionen i den &ndliga geometri déir
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fysikens rymd utgdr tre dimensioner, eller ocks4 &r tiden en skild #ndlig
ring. I det forra fallet, som vi kallar det »metriska«, &r hindelserna i
fysiken en 4-dimensionell oférédnderlig rymds punkter och naturlagarna
skall definieras som geometriska relationer mellan dessa punkter. Rela-
tivitets- och kvantteoriens framgingar suggererar oss att acceptera ett
dylikt betraktelseséitt. Prof. Jarnefelt har gjort ansatser till att finiti-
sera négra problem ur kvantteorien som tillimpning p& en finit virlds-
bild av denna typ.

Det senare »dynamiska« betraktelsesittet lockar dirfor att det tillater
en finitisering av den klassiska mekaniken pa ett jimforelsevis trivialt
sitt. Tiden har i detta fall en prefererad riktning, och masspunkterna
ror sig frdn en punkt till en annan i Galois-rymden allt medan tiden
fortskrider med en enhet i géngen. Om (t) &r en masspunkts z-koordinat
vid tidpunkten ¢ och z(¢4-1) dess z-koordinat vid tidpunkten ¢-+1, s&
har den pa tiden 1 forflyttat sig vigen x(t+1)—z(f) i z-axelns riktning.
Denna skillnad ger uppenbarligen ett matt ps, masspunktens hastighets-
komponent i z-axelns riktning. Om geometrin approximerar den vanliga
euklidiska geometrin tillrikligt bra, och om den fysikaliska motsvarig-
heten till tiden 1 tages tillrickligt liten, si nirmar sig skillnaden
x(t+1)—a(f) derivatan dx(t)/dt. Vi kan alltsd definiera skillnaden
Z(t+1)—z(¢) i var finita modell som z-komponenten fér punktens hastig-
het vid tidpunkten ¢ (eller vid tidpunkten ¢-+1, vilken inom grinserna
for observationsnoggrannheten ir densamma som tidpunkten ¢). Likasa
konstaterar vi att #(6+2)—2x(t41)+=x(t) godtyckligh noggrant ger
z-komponenten for masspunktens acceleration. Om F, ar en funktion
av masspunktens hastighet och lige samt tiden #, approximativt den-
samma som z-komponenten f6r den klassiska kraften, si kan vi natur-
ligtvis ersitta den klassiska Newtonska differentialekvationen med dif-
ferensekvationen

w(i+2)—20(t-+1) +2() = LT,

dér m &r ett Galois-tal, som representerar masspunktens massa. Allmént
kan vi siiga att alla rorelseekvationer godtyckligt noggrannt kan ap-
proximeras medelst differensekvationer av typen

(9) z(t+2) = X,

dir hogra membrum &r en Galois-funktion av tiden ¢ samt ifragavarande
masspunkts ligekoordinater vid tidpunkterna ¢--1 och ¢.
Om vi nu vinder pa talesittet och siiger, att de si konstruerade dif-
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ferensekvationerna for rérelsen utgoér den verkliga fysiken, som den pa
de klassiska differentialekvationerna grundade fysiken tillrickligt nog-
grant approximerar, si &r allt fortfarande i sin ordning. Vi observerar
speciellt, att en dylik finit modell exakt uppfyller de fordringar som
bor paliggas varje fysikalisk teori: ekvationernas antal ér detsamma
som de obekanta funktionernas och dessa funktioner blir entydigt be-
stimda s& snart randvillkoren #r givna. I detta fall utgéres randvill-
koren av alla masspunkters lige och hastighet vid nigon tidpunkt %,
alltsd av uttryck av typen z(f,) och x(ty-+1)—x(f). Det &r uppenbart
att dessa uttryck entydigt bestdmmer losningen: genom att addera dem
fas 2(f,41) och x(t,) och genom att insitta dessaiekvation (9) fas x(ty+2).
Sedan inséttes 2(fy-1) och z(t,+-2) i (9) och man far x({y+3) 0. 8. v.

Kraftfunktionerna X i hogra membrum av ekvationerna (9) kan véljas
pa oéndligt ménga sitt: det finns oéndligt méanga uttryck som ap-
proximerar den klassiska kraftlagen lika bra. Den fortsatta utvecklingen
av teorin kommer kanske att klarligga den intressanta fragan huruvida
man genom ett limpligt val av kraftlagen kan finna en naturlig forkla-
ring pi fenomen, som den klassiska mekaniken inte kan forklara.

Utover den logiska @ndligheten kan vi tillsvidare framhélla endast en
egenskap dir den finita véirldsbilden ér 6verlidgsen alla de virldsbilder som
bygger pa reella tal. Denna egenskap har framkommit redan i ovanstaende
ytliga betraktelse: I den finita virldsbilden &r alla fysikaliska storheter
periodiska funktioner av tiden och sjélva vérldsalltet har en finit grund-
period. Detta far oss att tinka pa nagonting som pendlar eller roterar och
pé sé siitt alltid aterviinder till sitt ursprungliga lige. Vi tillagger darfor:
de periodiska funktionerna kan oaktat sin periodicitet vara standigt
viixande eller stindigt avtagande d.v.s. monotona. Vi kan t. ex. be-
trakta en masspunkts rorelse i den tomma rymden, dir ingen kraft
verkar. Newtons rorelseekvation lyder d& (rorelsen i y-axelns riktning):
d?y(t)/dt* = 0, och den finita motsvarigheten &r y(t+2) = 2y(t+1)—y(2).
Allménna 16sningen till den senare ekvationen &r

y(t) = ax(t)+b ,

dir @ och b ar av tiden oberoende godtyckliga Galois-tal och z(¢) den
tidigare omnimnda funktionen (8). Rorelsens period ir alltsd p. Det
oaktat ér rorelsen en likformig alltid 4t samma héll fortskridande ritlinig
rorelse, eftersom skillnaden mellan tva pa varandra foljande lagen alltid
ir konstant och lika med a. En masspunkt pa vilken ingen kraft verkar
rér sig alltsd i den finita rymden likformigt och rétlinigt — och ater-
viinder efter tiden p till sitt utgangslige frin motsatt hall. Det oaktat
ir rymden inte pa nagot invecklat sitt »krokt« som t. ex. i den allménna
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relativitetsteorin, utan den ar en alldeles vanlig »riit« rymd, dir parallella
linjer inte skidr varandra och dir summan av vinklarna i en triangel
alltid dr densamma. — Den likformiga rétliniga rérelsen 4r inte den enda
monotona och periodiska funktionen. Om t. ex. a ir ett Galois-tal inom
kroppen GF, samt a > 0 och a > 1, s& &r funktionen y = a’ en dylik
funktion. Funktionens tillvixt mellan tvd p& varandra foljande tid-
punkter dr ndmligen a*'—a’ = a¥(a—1) och alltsa alltid positiv da ju
faktorerna @ och a—1 dr positiva.

Pa senare tid har fysikerna visat ett allt stérre intresse for en s. k.
expanderande men stationdr kosmologi, det vill siga en virldsbild, dar
stjarnrymden alltid utvidgar sig, men &nd4 alltid ser lika ut. En sadan
modell kan varken den klassiska fysiken eller relativitetsteorien astad-
komma utan att avstd fran den urgamla principen om materiens (eller
materiens plus energins) konstans. Fér den skull har bl. a. Bondi och
Hoyle i fysiken infort antagandet om »den kontinuerliga skapelsenq:
materie uppstér likformigt alltid och 6verallt ur intet och just s& mycket
som behovs for att rymden oberoende av sin utvidgning skall forbli lika
tdt. Man vill alltsa avsta fran ett gammalt enkelt antagande och i stéllet
inféra tvd av varandra oberoende antaganden som av en tillfillighet star
i ratt forhallande till varandra.

Vi mirker att finitiseringen bjuder pa en nigot naturligare viig till
en stationidr och dock expanderande kosmologi: nebulosornas lige-
koordinater &r monotona och periodiska Galois-funktioner. D4 avligsnar
sig nebulosorna alltid fran varandra, t. ex. exponentiellt sisom a! var-
igenom Hubbles rodférskjutningslag ocksd blir uppfylld — men da
virldsalltet genoml6pt sin grundperiod, 4r nebulosorna aterigen pa samma
stille. Den exponentiella utvidgningen medfér speciellt att nebulosorna
inte kommer »tillbaka fran motsatt hall« sisom vid en ritlinig likformig
rorelse, utan de dyker upp ur det »oéndligt lilla« efter att ha forsvunnit
i det »odndligt stora«. Detta betyder, att atomerna i en nebulosa som
kommer tillbaka, efterhand dyker upp mitt ibland oss — alltsi just det
som Bondi och Hoyle kallar kontinuerlig skapelse. Samtidigt far vi en
forklaring pa varfor just si mycket materie nybildas som det férsvinner
med de sig avligsnande nebulosorna: det #r helt enkelt samma nebulosor,
eller exaktare: nebulosor finns Gverallt ungefir lika titt, alltsa dven lika
ménga i pinyttfodelsestadiet som i ett bestimt flyktskede.

Denna endast for finita modeller méjliga »naturliga« forklaring ar
mycket lockande. Vi far dock inte glsmma att en naturlighet héir liksom
overallt i fysiken har kopts till priset av en annan: vi har avstatt fran
det naturliga intuitiva ordningsbegreppet, som alla andra fysikaliska
teorier, t. o. m. relativitets- och kvantteorin, bibehallit.

Nordisk Matematisk Tidskrift. — 11
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Tilligg till divisionen i Galois-kroppar. Efter att artikeln har
blivit satt, har redaktionssekreteraren riktat foljande fraga till forfat-
tarna om divisionen (delningen av en stricka) i GF,,: Kan inte divisionen
leda till tal, som ligger utanfor det »vilordnade« omradet? T.ex. § =
3(p+1) ar ju ett oerhort stort tal.

Svaret pa denna fraga, som helt naturligt instéller sig, fordrar en
utredning, som vi tyvérr utelimnade i var artikel. Vi behandlade i den
endast ordningen i riickan 1, 2, 3,. . ., 104, Emellertid &r detta specialfall
en foljd av en allmin sats, som bevisas analogt med specialfallet och
som lyder:

M3 en godtycklig #ndlig méngd R av rationella tal vara given. D4 &r
det alltid maojligt att finna ett primtal p sddant att méngden R kan
avbildas isomorft pa en delmingd av talen i talkroppen GF,.

Isomorft betyder hir, att om a avbildas pa a, och b pa b, och om t. ex.
a > b, s avbildas a-b, a—b, ab och a:b pa resp. a,+b,, a,—b,, ayb,,
a,:b, samt dessutom &r a, > b,

For att beskriva observationsresultaten fran fysiken och astronomin
tar vi alla ekvidistanta brak, vilkas nimnare dr 10" och vilkas absoluta
vérden &r mindre dn 10%. Denna dndliga méngd av rationella tal dr sikert
fullt tillrsicklig, om blott » och k tas tillriickligt stora. Enligt ovanstaende
sats kan vi sedan finna en sddan Galois-kropp GF,, att vara rationella
tal isomorft kan avbildas pa tal i GF,,. Hirvid maste talet 1 avbildas pa
Galois-talet 1,, ty @ = «-1 avbildas péd 2, = %, ¥, vilket dr mojligh
endast om y, = 1,. Likasd méste 2 =141 avbildas pa 2, = 1,+1,,
0=1-1pa 0,=1,—1, —1=0-1pd —1,=0,—1, etc. Speciellt
avbildas 3 = 1:2 pa (}), = 1,:2, och allmént rfs = r:s pé (r/8)p =
7p:8,. Emedan } ligger mellan 0 och 1, s& ligger &ven (}), mellan 0,
och 1,. Naturligtvis &r det mdjligt att ersitta (3), = 1,:2,, med ett

helt Galois-tal n,, d.v.s. med (?——_;1> . Denna egenskap, som Galois-
kropparna har, att brak r,:s, kan ersittas med hela Galois-tal, dr for
oss av mindre betydelse. Det ir mera praktiskt att bibehalla briken och
rikna som vi #r vana att rikna med brak, dn att ersitta dem med
symboler 7, som ger missvisande storleksforhallanden, och som vid
rikning fordrar idelig reducering modulo p.

Som exempel skall vi konstruera den delméingd av en limpligt vald
Galois-kropp, pa vilken de 11 ekvidistanta rationella talen 0, 0.1, 0.2,. . .,
0.9, 1 isomorft kan avbildas. En nirmare undersskning ger vid handen,
att p = 311 ir det minsta av alla de ofindligt minga primtal, som ger
en Galois-kropp GF,, som tillater en isomorf avbildning. Efter att p &r
funnet, dr konstruktionen klar. Bildméngden &r 0,, (0.1),, (0.2),,.

ooy




OM ANDLIGA GEOMETRIER OCH DERAS TILLAMPNING 155

(0.9),, 1,. Vi vill, fastéin det &r obehovligt, for fullstindighetens skull
ge de hela Galois-tal, som Galois-braken motsvarar. Vi har (p = 311):

0 > 0,= 0,2 0.6 125, = 37,2

D » »
0.1 >280, = 882 0.7 > 94, = 120,?
0.2 - 249, — 101,2 0.8 > 63, = 109,°
0.3 > 218, = 232 0.9 > 32, = 47,2
0.4 — 187, = 135,7 - 1 > 1= 1.2

0.5 > 156, = 33,2

I den tredje kolumnen har vi gett de hela Galois-talen som kvadrater
P4 andra Galois-tal. Vi ser dirav, att samtliga Galois-tal 0.1, 0.2,..., 1
ar positiva. Genom subtraktion inser vi sedan omedelbart, att storleks-
ordningen &r densamma som f6r motsvarande rationella tal.

11%
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OLAFUR DANIELSSON

I en konvex Firkant 4 BCD er Diagonalpunktet P. Hvis man forbinder
Medianskeeringspunkterne i de to modstaaende Trekanter PDA og PBC,
hvori Firkanten deles af Diagonalerne, samt Hgjdeskaringspunkterne for
de gvrige to, vil de to Forbindelseslinier altid vere vinkelrette paa hin-
anden.

Bevis: Lad Medianskaringspunkterne for de to forste Trekanter veere
M og N og Hojdeskaringspunkterne for de to sidste veere H og K. MN
er da aabenbart parallel med den ene Diagonal i det Parallelogram, hvis
Vinkelspidser er Midtpunkterne af Siderne i Firkanten ABCD. To Par
Hgjder i Trekanterne PAB og PCD begranser et andet Parallelogram
ligedannet med det forste, thi baade er de to Parallelogrammer ensvink-
lede, og Siderne i det forste er proportionale med Diagonalerne i Firkanten
ABCD, altsaa ogsaa med deres Projektioner paa hinanden. Nu er de to
Parallelogrammers Sider vinkelrette paa hinanden, altsaa maa deres
Diagonaler ogsaa vere det og dermed ogsaa KH og MN vinkelrette paa
hinanden, q. e. d.

[156]




STORE PRIMTAL
THOGER BANG

Foredrag holdt i marts 1953 i Foreningen af Matematiklerere

ved Gymnasieskoler og Seminarier i Danmark.

I den danske skole er talteorien efterhaanden blevet indskrenket til
kun at omfatte beviset for de hele tals entydige primoplgsning og Euklids
klassiske bevis for eksistensen af vilkaarligt store primtal.

For en del aar siden omfattede pensum ogsaa Fermats scetning: Hvis p
er et primtal, saa vil p gaa op © a?—a for ethvert helt tal a. Af hensyn til det
folgende skal jeg minde om et hyppigt anvendt bevis for denne satning:
Ved binomialudvikling faar man

ormtws ot (o (4,2 )]

som viser, at naar p gaar opia®? —a, saa vil p ogsaa gaa opi (a4 1)?—(a+1),
thi for 0 < j < p vil alle binomialkoefficienterne

(p) _plp=1) ... (p—j+1)
J JG—=1...2-1

aabenbart indeholde p som primfaktor. Heraf folger setningen ved in-
duktion, da den umiddelbart ses at veere gyldig for a = 1.

Skent man ved, at der eksisterer uendelig mange primtal, kan man ikke
konkret angive en uendelig folge af saadanne (denne paastand rokkes ikke
af en i de senere aar hyppigt omtalt kuriositet, se f. eks. Norsk Matema-
tisk Tidsskrift 1952, s. 42 og s. 117). Der har derfor til ethvert tidspunkt
eksisteret et storste bekendt primtal; to beromte saadanne rekorder i
primtallenes verden er Eulers tal

2311 = 21474 83647
og Lucas’ tal

21271 = 1701 41183 46046 92317 31687 30371 58841 05727 .

Jeg skal her fortelle lidt nermere om, hvorledes man kan bestemme
saadanne store primtal, og om den nuverende rekord.

[157]
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Det er ikke tilfaldigt, at begge de nwevnte tal er af formen 27—1,
altsaa en potens af 2 formindsket med 1, thi tal af denne form er, som
vi skal se, swrlig lette at undersoge. Saafremt 27—1 er et primtal, vil vi
kort betegne det M,. Allerede Euklid interesserede sig for tallene M,
og viste i slutstykket af sin talteoretiske bog (IX, 36), at hvis 2»—1 er et
primtal, saa er 27-1(2"—1) et »fuldkomment tal«, d. v. s. et tal, som er
lig summen af sine segte divisorer. F. eks. faar man M, = 3, og det giver
anledning til det fuldkomne tal 6 (som har de segte divisorer 1, 2 og 3, hvis
sum er 6); et andet primtal er M; = 7, som giver anledning til det fuld-
komne tal 28 (hvis divisorer 1, 2, 4, 7 og 14 har summen 28). Langt se-
nere har Euler vist, at der ikke findes andre lige fuldkomne tal end den
af Euklid angivne type. Hvorvidt der findes ulige fuldkomne tal, er til
dato et aabent spgrgsmaal; hvis de findes, maa de i hvert fald veere tem-
melig store og komplicerede af opbygning.

I oldtiden har man i hvert fald kendt de forste primtal M,, nemlig

M,=3, My="1, M, =31, M, = 127.

Fra middelalderen har man manuskripter, hvor man har fortsat denne
rekke, idet man gik ud fra, at alle ulige veerdier af n gav anledning
til primtal M, saaledes 2°—1 = 511, 211—1 = 2047, 213—1 = 8191, ....
I renaissancen blev det imidlertid fastslaaet, at dette er forkert, idet
511 = 7 - 73 og 2047 = 23 - 89, hvorimod M,; virkelig er et primtal, og
man fandt ogsaa de to neeste primtal M, nemlig M,, og M,.

Disse er sekscifrede tal, og det er derfor overkommeligt at undersoge
dem ved division med alle primtal op til tallets kvadratrod. Men for
storre tal bliver arbejdet ved denne metode altfor overveaeldende; der maa
andre hjeelpemidler til, og disse blev skabt, da Fermat (1601-1665)
grundlagde den egentlige talteori.

For det forste kan man bemerke, at 2*—1 kun kan vere et primtal,
naar eksponenten n selv er et primtal, for hvis » = pg, bliver 27—1 =
(27)2—1 delelig med 27—1. Dette er i overensstemmelse med, at 2°—1 =
511 er delelig med 23—1 = 7 (og giver ogsaa grunden til kun at betragte
ulige veerdier af n for n > 2). I alt det felgende vil vi derfor antage, at n
er et ulige primtal. Men eksemplet n = 11 viser, at betingelsen n lig prim-
tal er ikke tilstraekkelig til, at 27—1 er et primtal. Det siges, at det netop
var gennem arbejdet med disse problemer, at Fermat blev ledt til den i
begyndelsen nevnte setning, og sikkert er det, at han ved hjelp af den
viste, at naar n er et primtal, saa maa de eventuelle divisorer i 27—1
have formen hn-1, hvor % betegner et helt tal; da divisorerne er ulige og
n er ulige, kan vi endda sige, at h maa vere et lige tal. Man ser, hvorledes
dette stemmer med, at divisorerne i 211—1 er 23 = 2 - 11+1 og 89 =
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8- 114-1. I fortsettelse af Fermats arbejder blev flere betingelser op-
stillet af Euler (1707—1783), som bl. a. viste, at disse eventuelle divi-
sorer yderligere maa vere af formen 8h—1 eller 84-+1 (hvor % betegner
et helt tal); divisoren 23 er af den forste type, medens 89 er af den anden.

Saadanne setninger indskrenker antallet af mulige divisorer og letter
derved regningerne. Fermat fandt, at 2°—1 er sammensat for en rakke
n-veerdier, idet han fandt divisorer i tallene, og Euler viste, at det foran
anforte tal 281—1 er et primtal, idet han ved prove fandt, at det ikke har
nogen divisor mindre end kvadratroden af tallet, hvilket kraever nogle
dages regnearbejde.

Blandt de samtidige, hvormed Fermat i breve udvekslede sine mate-
matiske ideer, var franciskanermunken Mersenne (1588-1648), iseer
kendt for sine musikteoretiske veerker, men han udgav ogsaa boger om
. fysiske emner (Galilis teorier) og om matematik. Han behandler blandt
andet primtallene M, og de er derfor (lidt tilfeeldigt) for eftertiden kom-
met til at gaa under navnet Mersennes tal.

Han fremsatte den konkrete hypotese, at udover de paa hans tid fast-

slaaede er de naste eksponenter z, som giver anledning til primtal, ver-
dierne 31— 67 — 127 — 257,

og han havde en almindelig hypotese om, at de brugbare veerdier skulde
ligge i nzerheden af potenserne af 2. Veerdien 31 blev som naevnt bekreeftet
af Euler over hundrede aar senere, og i 1947 har man, som det skal
omtales, fuldfert en undersogelse af alle tallene op til 257; den viser, at
af de andre tre forslag er et rigtigt (127) og to forkerte. Paa den anden
side udtrykker hypotesen en rigtig ide om, at tallene hurtigt bliver sjzld-
nere i talreekken; i virkeligheden er der mellem 31 og 257 (incl.) ikke fire,
men fem brugbare veerdier blandt de derverende 45 primtal.

Lad os, inden vi gaar videre, indfere en grafisk afbildning af ekspo-
nenterne n. Paa figuren neweste side er som abscisse benyttet » og som
ordinat antallet af Mersennetal med eksponent mindre end eller lig n.
Derved faas som kurve en trappelinie, der har spring af storrelsen 1
i de punkter, der svarer til brugbare eksponenter. Men da disse som
nevnt hurtigt kommer til at ligge meget spredt, har vi for at faa en
rimelig figur anvendt logaritmisk maalestok paa abscisseaksen.

Ved denne afbildning kan det virke lidt mat, at den klassiske tal-
teoris glansperiode i aarene 1600-1800 kun har formaaet at fgje et saa
lille stykke med kun et trin til den i forvejen eksisterende trappes syv
trin, men for at vurdere den arbejdsindsats, som ligger bag, maa man her
betenke den logaritmiske maalestok. Paa baggrund heraf virker den
senere tids tilfgjelser til kurven saa meget mere imponerende. Med punk-
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Elektronregning
1952

1850-1947

.....

Euler | [ reoeee '
Fermat -

2304 == --reemeeaeme e

Renaissance

— 257

7 17 3 89 127 607 = 2203
2 5 13 19 61 107 521 1279 2281

tering er angivet Mersennes hypotese, og man ser, hvorledes det giver et
stykke kurve, som afviger en del fra den rigtige.

Med Eulers tal M, blev rekorden for det storste kendte primtal erobret
af Mersennes tal, og disse har beholdt den siden med undtagelse af en
kort periode 1951-1952 (se s. 166). Men forst skulde der gaa endnu et
aarhundrede, inden rekorden overhovedet blev forbedret.

Omkring midten af 1800-tallet fandt dygtige beregnere faktorer i de
neeste tal 27—1, og i 1886 viste Seelhoff, at M, = 261 —1 gaaropi 37 —3,
hvoraf han ved Fermats setning tillod sig at slutte, at M, er et primtal.
Efter nogen tids forlgb hevede der sig roster, som gjorde opmeerksom
paa, at Fermats seetning kun giver en ngdvendig og ikke en tilstreekkelig
betingelse for, at et tal er primtal ; man har derefter foretaget nadvendige
ekstraberegninger, som viser, at Mg, virkelig er et primtal. En anden
fejl i Mersennes hypotese blev paavist af F. N. Cole, som (ca. aar 1900)
i et annonceret foredrag i American Mathematical Society ikke melede
et ord, men i den afsatte time med kridt paa tavlen udregnede

1937 07721 - 76 18382 57287 og 297.

Det sidste tal var 1 storre end det forste, saaledes at » = 67 ikke er brug-
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bar Mersenneeksponent; karakteristisk for talregning er det jo desveerre,
at en effektiv kontrol er ligesaa langvarig som selve regnestykket.

Men forinden var der i 1876 sket noget langt vigtigere i teorien for
Mersennes tal. Det store navn er her Lucas (1842-1891), en fransk
matematiker, som ellers mest er kendt for sine beger om spil og under-
holdningsmatematik.

Lucas havde ogsaa folt sig generet af, at Fermats s@tning kun gaar
den ene vej, og han skabte derfor en setning, som giver en ngdvendig
og tilstreekkelig betingelse for, at 27—1 er et primtal. I Fermats seetning
indgaar (efter en nerliggende division med a) storrelsen p—1, medens
det for et Mersennetal p aabenbart er p+1, som bliver s@rlig simpel, og
Lucas fik derfor bragt dette ind i sin setning. Vi skal nu bevise denne og
begynder med nogle lidt mere almene betragtninger.

Lad os antage, at der eksisterer to felger C,, og S,, af hele tal,

m =1, 2, ..., som opfylder formlerne

(1) Sm;tl = Smol:tslom
og

(2) C,:+al,2=1,

hvor a er et helt tal = 0. Da galder

SmrNING I. Samtlige indices r, for hvilke S, er delelig med et vist ulige
primtal p, er (saafremt der overhovedet findes noget) netop samtlige mul-
tipla af det mindste saadanne indeks r,.

Thi seettes I = 7,1 (1) og benyttes plustegnet, ser man, at med §,, vil
ogsaa 8,,,,, vere delelig med p, og med 8, vil derfor ogsaa S,,, S3, - - -
veere delelige med p. Og antager man, at der foruden disse indices fandtes
endnu et indeks 7, hvor Ary < r < (h-+1)r, (h hel), som havde egenskaben,
da kunde man i (1) med minustegnet sette m = r og | = hr,, og man
vilde faa, at r—hr, ogsaa havde egenskaben, i strid med at r, var den

mindste veerdi.

SarNING I1. Samtlige tndices r, for hvilke C, er delelig med et vist ulige
primtal p, er netop samilige ulige multipla af 4r,, hvor ry er det ¢ scetning 1
omtalte indeks (idet saadanne r-indices kun vil forekomme, saafremt der
findes et r,, og dette er et lige tal).

Thi settes m =1 =r i (1), faas S,, = 28,C,. Hvis p gaar op i C,,
vil p derfor gaa op i S,,, saa at 2r er et multiplum af r,, og hvis omvendt
2r er et multiplum af r;, vil p gaa op i enten C, eller S,. Og (2) viser, at
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p ikke samtidig kan gaa op i O, og S,. Sammenholdes disse oplysninger,
faar man seetning II.
Formlerne (1) og (2) minder om velkendte trigonometriske formler,
og vi faar dem til at gaa over i saadanne ved at sette
inmt
3) C, = cosmt, 8, = 5111—7—71'— og a = sin%*t = 1—cos?t.
s
Vi faar derfor et eksempel paa to fglger C,, og S,,, som opfylder (1) og
(2), ved blot at veelge en verdi for ¢ og saa benytte definitionen (3).
Kravet om, at folgerne skal bestaa af hele tal, bliver automatisk opfyldt,
naar blot O; = cost er heltallig, thi det er velkendt (og let at vise ved
induktion), at
inmt
(4) cosmt = P(cost) og s—l?ﬁ = @(cost) ,
sing
hvor P(cost) og Q(cost) er polynomier i cos?t med hele koefficienter.
Vi ensker nedenfor at benytte en veerdi af ¢, for hvilken

cost = 2.

Dermed forlader vi den elementeare trigonometri, men de trigonometri-
ske funktioner kan udvides til funktioner af en kompleks variabel, og
for visse veerdier af denne variable bliver cosinus lig med 2. Det veesent-
lige for os er, at ogsaa for komplekse variable gwlder hele det seedvanlige
formelapparat, saasom (1), (4) og (2), hvori nu @ = —3. Endvidere findes
formler, som giver forbindelse mellem eksponentialfunktioner og trigo-
nometriske funktioner, nemlig f. eks.

¢ = cosz+isinz og cosz = }(e*f-e%).
Vi velger nu ¢ saaledes, at

5) ot — 1/%_]_ ]/;n og dermed ¢ 2 = Vi— V;‘ .

Heraf faas ) ) _
¢t =2+)3 og e¥=2—V3,

saaledes at cost = 2 som omtalt ovenfor. Videre bliver
cospt = H(eP¥4-eP) = } [(2+ V3)?+ (2— Vg)p] .

Udvikles her efter binomialformlen, vil de ulige potenser af ]/5 ophaeve
hinanden, hvilket giver

cospt = P (f) 2p_j(l/§)j.

7 lige
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Antager vi nu som foran, at p er et ulige primtal, vil det (smlgn. s. 157)
gaa op i alle de forekommende binomialkoefficienter undtagen for j = 0,
saa at p gaar op i cospi—2P. Da Fermats seetning siger, at p gaar op i
2P —2, og 2 = cost, faar vi

SarNiNGg III. Naar p er et ulige primtal, vil det gaa op 7 cospt—cost.

Iogvrigt ser man neesten umiddelbart, at beviset og setningen gelder,
naar cost er et vilkaarligt helt tal. Denne almindelige s®tning kan op-
fattes som en trigonometrisk formulering af Fermats seetning.

Af setning 1T felger, at p vil gaa op i

1 —1
cospt—cost = —2 sing—g——t . sing—2—~t = 6 Sps1-Sp-1,

2 2

og sammenholdes dette med seetning I, faas

SmrNING IV. For ethvert primtal p > 3 vil der eksistere et indeks ry (af
den 1 seining 1 omtalte art), og dette vil gaa op © }(p-+1) eller i (p—1).

Efter disse forberedelser kan vi nu bevise Lucas’ setning:

HovepsaTNiNG. Lad n veere et ulige tal > 1, og cost = 2. Den tilstreek-
kelige og nodvendige betingelse for, at 2"—1 er et primtal, er da, at 27"—1
gaar op i Cyns = cos(27-2).

Tilstreekkeligheden ses saaledes: Lad p veere en primdivisor i 27—1;
den kan ikke veere 2 og, da n er ulige, heller ikke 3. Ifplge s@tning IV
vil der til p svare et r,, og ifglge setning IT er 272 lig et ulige multiplum
af 4r,; her maa den ulige faktor veere lig 1, og 7, er altsaa lig 27—, Ifolge
setning IV gaar ry op i 3(p41), og p+1 er derfor et multiplum af 27.
Da p < 2"—1, bliver den eneste mulighed, at p selv er lig 2»—1, som
saa maa vere et primtal.

Man ser, at dette tilstreekkelighedsbevis kan gennemferes usendret,
uanset hvilket helt tal man har valgt som veerdi for cos?, naar blot
—a = (cost—1)(cost+1) er primisk med 27»—1. Beviset for ngdvendig-
heden, som vi nu skal give, beror derimod paa talteoretiske egenskaber
ved tallet 2, idet dette dog kan erstattes med visse andre hele tal, som
f. eks. 26.

Lad p vere et ulige primtal. Ved at benytte (5) faas

2 cos—z—)-_ié——lt = @t+Dit2 + @Dtz (V% + V%‘)pﬂ + (V%“ V;)pﬂ )
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Udvikles leddene efter binomialformlen, vil de ulige potenser af 1/;
oph®ve hinanden, saa at

P_
+1 v 1 K 1
9 @+1)/2 cosp2 t =20+ 3 (p+ )(V ) (V%)pﬂ T 2(: (p_l_ )

7 hge J

Paa ganske samme maade som ved beviset for Fermats setning ser man,
at p gaar op i alle de forekommende binomialkoefficienter undtagen den
forste og den sidste, som begge er lig 1, og p vil derfor gaa op i

ptl

9 w+1)/2 cog t_3(1’+1)/2_]_ —

2@+D/2 (cos ptl i+ 1) —[2@+D/2 3@+D/2 1],
2
Antages nu, at 2"—1 er et primtal p, saa viser en let regning, at p er
af formen 24h-7, hvor % er et helt tal. Til fuldferelse af beviset maa vi
nu benytte den klassiske teori for kvadratiske rester. For den anforte

specielle form af p er 2 kvadratisk rest, medens 3 er ikke-rest, d. v.s.
20-D2 =1 (mod p), 3®-V2= —1 (mod p).
Heraf sluttes, at p gaar op i sidste parentes i (6), og p gaar folgelig ogsaa
opi
+1 t)2

og dermed i cos [}(p+1)f] = cos (27~2%), hvormed satningen er bevist.

De arbejder af Lucas, hvori setningen og andre af samme type fore-
kommer, er ret vanskeligt forstaaelige (om s@tningens betingelse er teenkt
som ngdvendig eller ej, fremgaar f. eks. ikke), og blandt matematikere
havde setningen i lang tid en lidt miskendt rolle. Forst i den sidste menne-
skealder er der fremkommet forskellige ngjagtige beviser (bl. a. af D. H.
Lehmer, der — ligesom tidligere hans afdede fader D. N. Lehmer — ind-
tager en ledende position paa de talteoretiske beregningers omraade).
Den her givne udformning afviger noget fra disse, men bygger paa en
ide, som nsevnes et enkelt sted hos Lucas.

I hvert fald har Lucas og andre anvendt satningen til at finde nye
Mersennetal. Vaerdierne n = 89, 107 og 127 giver primtal M. Det sidste
af disse, hvis 39 cifre er opskrevet paa s. 157, skal allerede veere fundet
af Lucas i 1876. Naar man faar forelagt et saadant regneresultat, kan
man tvivle paa dets rigtighed, men her maa betenkes, at det er usand-
synligt, at en regnefejl skulde faa et tal paa f. eks. 39 cifre til at gaa op.

p
cos

1
t+1=2 (cosp
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Det er mere tvivlsomt ved hjelp af seetningen at paastaa, at et tal ikke
er primtal, fordi divisionen ikke gaar op; igvrigt er det jo en bemserkelses-
veerdig situation, at der findes tal, som kan vises at veere sammensatte,
men hvori man tkke kender nogen divisor.

Men lad os lidt nermere se, hvorfor setningen beted et regnemsessigt
fremskridt. Hvis man ved at preve med mulige divisorer op til kvadrat-
roden af tallet vil konstatere, om 2"—1 er et primtal, vil arbejdet vokse
eksponentielt med 7, selvom man tager hensyn til de foran nzvnte let-
telser. En undersggelse paa denne maade af M ,, vilde give fuldt arbejde
i nogle aarhundreder til den samlede menneskehed, denne forudsat at
bestaa af lutter habile regnere, og vilde kreeve et bassin af blek paa stor-
relse med Sortedamssgen i Kobenhavn.

Lucas’ s®tning krever derimod kun kendskab til talfglgen C,, C,,
Oy, ..., og disse kan let dannes sukcessivt, idet Cy; = 20;2—1 (formlen
for cosinus af den dobbelte vinkel). En undersggelse af 2"—1 krever
derfor i det veasentlige kun n kvadreringer. Hertil maa dog bemserkes,
at folgen O, C,, ... vokser saa kraftigt, at der slet ikke kan vere tale
om at opskrive dens elementer udover den fgrste halve snes. I praksis
maa man derfor ved undersogelsen af et bestemt M, = 2"—1 hele tiden
tage den rest R, man faar ved division med M,, saa danne 2R*—1, og
igen tage resten o.s. v. Ialt skal derfor foretages n—3 kvadreringer af
divisionsrester, som hver for sig kan vere af storrelse som M,, og end-
videre ligesaa mange divisioner med M. Dette arbejde bliver altialt pro-
portionalt med n3 og vokser altsaa meget langsommere med n end ar-
bejdet ved den forrige metode. Lucas kunde ene mand i lgbet af nogle
maaneder foretage udregningen ved M,,,.

Bestemmelserne af divisionsresterne er den ene halvdel af arbejdet,
men det omgik man ved at foretage udregningerne i totalssystemet. 1
dette bliver 2#—1 jo skrevet 11 ... 11 (n ettaller), og saa gaar det paa
samme simple maade, som naar man i titalssystemet kan sige, at 376249
ved division med 999 giver resten 376--249. For nogle M, foreligger ud-
regningerne i totalssystemet trykt i form af kvadrerede blade forsynet
med krydser, som markerer ettallerne, medens nullerne ikke er angivet.

Senere tog man almindelige regnemaskiner i brug, og efterhaanden
lykkedes det at faa undersegt (H. S. Uhler) alle tallene 2*—1 op til Mer-
sennes grense n = 257, hvilket blev fuldfert i 1947. Det blev et stort
og trettende arbejde. Dels vilde man gerne turde stole paa regningerne,
saa man maatte belaste dem paa kryds og tveers med kontrol. Dels regner
disse maskiner i titalssystemet, hvilket er mindre egnet til formaalet. Og
endelig kan maskinerne jo ikke direkte tage tal af den sterrelse (op til
78 cifre), som det drejer sig om; ved multiplikation er dette ikke saa
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galt, idet man blot kan opdele tallene i mindre ciffergrupper, som man
multiplicerer sammen, men divisionerne gav nogle ubehageligheder. Man
fandt ikke flere primtal.

Elektronregnemaskinen har aabnet nye muligheder. I England provede
man at gaa ud over Mersennes granse; man gik op til #» = ca. 450, men
det kom der ingen primtal ud af. Da man imidlertid havde lysten til at
sette en rekord, benyttede man i 1951 Lucas’ M,,, til at finde nogle
primtal, som var noget storre end dette og ikke selv var Mersennetal
(kendskab til et stort primtal ger, at man for visse tal beslegtede med
det »neesten« kan anvende Fermats swtning som en baade ngdvendig og
tilstraekkelig betingelse for, at de er primtal).

Et mere storslaaet og ogsaa mere resultatrigt regnearbejde er fore-
taget i lobet af aaret 1952 med en maskine, kaldet Swaoc, i Los Angeles.
Som alle moderne elektronmaskiner regner den i totalssystemet, og af de
ovenfor nevnte grunde er undersogelsen af Mersennes tal ved hjelp af
Lucaskriteriet en uhyre nerliggende opgave for en saadan maskine. Man
har kontrolleret alle tidligere resultater, og saa fortsat systematisk op
gennem de mulige Mersenneeksponenter n. Alle udregninger er af kon-
trolhensyn foretaget mindst to gange med mindst en uges mellemrum
for at gore dem indbyrdes uafhengige overfor fejl (det veere sig i maski-
nen eller hos den, der betjener den); igvrigt synes det at fremgaa af beret-
ningerne, at udregningerne narmest er foretaget som »fritidsarbejde« for
maskinen.

Maskinen regner hurtigt; Lucas’ M,,, kan den kontrollere paa et par
sekunder, og varigheden af en undersogelse af M, er af storrelsesordenen
10-% - n? sekunder. Sammenlignet med varigheden uden mekaniske hjeel-
pemidler kan maskinens bidrag regnes at bestaa i faktoren 10-6,

Der viste sig virkelig at vaere et overraskende stort hul i rakken af
Mersenneeksponenter efter 127, idet de to nwste, som blev fundet i ja-
nuar 1952, er 521 og 607. Senere paa aaret fandt man 1279, og endelig
i oktober de to sterste hidtil kendte eksponenter 2203 og 2281. Man
kender saaledes ialt 17 Mersennetal; deres eksponenter er angivet paa
figuren s. 160.

Man kunde tro, at man nu blot blev ved at regne lgs, men saa simpelt
er det ikke. I virkeligheden udforte man et program, som gik ud paa at
undersgge de mulige veerdier af n op til 2304, og det var altsaa for saa
vidt interessant, at man kort for denne grense fandt to eksponenter.

Naar man satte en grense, skyldes det naturligvis dels, at arbejdet
efterhaanden voksede; en enkelt undersogelse af eksponenten 2281 varer
saaledes 66 minutter, hvilket med den pekunizre maalestok, man maa
anleegge overfor en elektronregnemaskine, jo ikke er ubetydeligt. Men
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den n®vnte grense blev ogsaa sat af selve maskinens konstruktion. Den
paageldende maskine ér af en type med hurtigtvirkende, men til gengald
forholdsvis lille »hukommelse«; denne kan rumme 256 stk. 36-cifrede tal
(i totalssystemet). Halvdelen af hukommelsen maa reserveres kontrolfor-
maal og regnedirektiver, og under det almindelige trin af udregningen
maa en divisionsrest B derfor hgjst fylde en fjerdedel af hukommelsen,
hvilket for n giver den n®vnte grense } - 36 - 256 = 2304.

Man har moret sig med at udregne My, i titalssystemet, og selv om
det kan siges at vare ret ligegyldigt, skal jeg dog anfore udseendet af
dette til dato sterste kendte primtal. Det har 687 cifre, som er folgende:

22281 1 — 44 60875 57183 75842 95711 51706 40210 18098
86208 63241 28599 01111 99121 99634 04685 79282 04733 69112
54526 90039 89026 15324 59311 24316 70239 57587 05693 67936
47909 03497 46114 70710 65254 19335 39381 24978 22630 79473
12410 79887 48690 40070 27932 84288 10311 75484 41080 94878
25249 48667 60969 58699 81289 82645 87759 60289 79171 53696
25030 68429 61733 17021 84750 32458 30091 71832 10491 60501
57628 88660 63721 45501 70222 59251 25224 07682 96054 27173
57396 48129 95250 56941 24807 20738 47685 52936 81666 71284
48311 90877 62060 67866 63862 19024 01185 70736 83190 18864
79225 81041 47140 78935 38656 24979 68178 72912 76295 94924
41196 09613 86713 94627 98992 75006 95491 71397 58796 06122
38033 93537 38103 46664 94402 95105 20590 47968 69325 53886
47930 44092 51041 86817 00964 01717 64133 17241 81328 36351

Efter at have bestemt saa mange Mersenneeksponenter kunde man
haabe, at et vist system i dem vilde blive igjnefaldende. Dette synes ikke
at vere tilfeeldet. En enkelt iagttagelse, som tangerer Mersennes foran
navnte hypoteser, kan dog nzvnes, nemlig at de primtal 3, 7, 31 og 127,
som selv er Mersennetal, ogsaa er Mersenneeksponenter. Saafremt dette
er en almindelig seetning, kan man konkret angive en uendelig folge af
primtal, men man er uhyre langt fra at kunne bevise det. Ved sandsyn-
lighedsbetragtning kan man endvidere gere det rimeligt, men langtfra
bevise, at antallet af eksponenter op til en vis greense N vokser propor-
tionalt med logV; dette betyder, at trappelinien paa figuren vokser
linewrt, hvilket synes at stemme nogenlunde.

Sammen med Mersennes tal neevner man hyppigt »Fermats tal« som en
talfolge, der rummer store primtal. Derved forstaar man primtal af
formen 27+1. Man kender fem primtal af denne type, det storste er
21941 = 65537. Man ser let, at » maa vare en potens af 2, og dette
bevirker, at skent man kan opbygge en teori for dem af lignende art som
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for Mersennes tal, saa har det ikke saa stor interesse, idet talfglgen hur-
tigt vokser udover, hvad der er tilgeengeligt for regning. De mindste tal
22" 1 1, hvis primtalskarakter er ubekendt, fremkommer for m — 10
(dette er dog tilgzngeligt for elektronregning) og for m = 13 (dette er
det n®ppe). De eventuelle divisorer kan vises at have formen % - 2m+2 4 1,
hvor 4 er et helt tal, og ved hjelp heraf har man gaettet divisorer for en
reekke m-verdier. Specielt har man (Morehead) for m — 73 ved at be-
gynde nedefra fundet, at 5-2754+1 er divisor; dette kan siges at veere
negativt for den egentlige opgave, men til gengzeld viser det jo,at 5-27%5 41
selv er et primial.

Man har ad forskellige veje fundet andre store primtal, selvom de ikke
kan maale sig med de foran nevnte. J eg skal slutte med at give et pitto-
resk eksempel (som skyldes Kraitchik), nemlig det 23-cifrede tal (i titals-

systemet
v ) 11111111111111113111111 .

Tilfajelse ved korrekturen:

Ifglge en beretning af R. M. Robinson, som ledede de nmvnte bereg-
ninger paa Swac, har man i 1953 faaet besvaret to af de sporgsmaal,
som er omtalt ovenfor. Paa en elektronregnemaskine ved University of
Illinois har man foretaget en underspgelse af 281911, som viser (forudsat,
at der ikke er regnefejl), at dette tal ikke er et primtal. Da 8191 er
Mersennetallet M ,;, modbeviser dette hypotesen om, at ethvert Mersenne-
tal ogsaa skulde vere brugbar Mersenneeksponent. Paa maskinen Swac
har man endvidere undersggt det eventuelle Fermat’ske primtal 22”1,
hvor m = 10, og udregningen viste, at dette tal 0gsaa er sammensat.
Resultatet blev hurtigt bekreeftet, idet det er lykkedes at finde en divisor
i tallet.




NYA KURSPLANER OCH METODISKA ANVISNINGAR
I MATEMATIK FOR GYMNASIET I SVERIGE

LARS GARDING och LENNART SANDGREN

I samband med den svenska gymnasiereformen har i ar faststéllts nya
kursplaner och metodiska anvisningar for matematikundervisningen pé
gymnasiet. De nya forordningarna skiljer sig avsevirt frin de gamla fran
1935. Tillkomsten av nytt stoff och omliggningen av gammalt stiller
manga nya pedagogiska problem. I denna situation tror vi att matematik-
lirarna kan fa viirdefullt stod av en diskussion i facktidskrifterna. Vi skall
hir ge ett bidrag av mera allmén karaktér och hoppas att det kommer att
féljas av andra, bade inom den nirmaste tiden och senare d& de nya
kurserna provats en tid.

Som bekant innebir gymnasiereformen bl. a. att latinlinjens matema-
tikundervisning utdver realskolestadiet forsvinner. Pa vissa hall har denna
atgiard vickt stor opposition. Vi tror emellertid att skilen for konser-
verande av latinlinjens matematikkurs var mycket sma. Fér den kategori
elever, som enligt den gamla ordningen skulle valt latinlinjen men &nda
haft viss inriktning pd och behov av matematik bér den nya allménna
linjen oftast lampa sig bittre.

P4 de biologiska och sociala grenarna, dir vil bl. a. de flesta blivande
statistiker, nationalekonomer, socionomer, biologer och medicinare kom-
mer att g, har matematiken nirmast karaktiren av hjilpvetenskap. En
riktigt avvigd kurs dr hir av sirskilt stor betydelse, eftersom de som valt
dessa grenar endast undantagsvis liser ndgon matematik efter student-
examen. Den kurs i tillimpad matematik, som nagra ganger givits i Lund
och vid vilken stoffet valts i samrad med deltagarna, har visat att vad
ovannimnda grupper frimst behéver, forutom elementir statistik, dr en
kurs i funktionslira, innefattande derivation och integration av polynom
och exponential- och logaritmfunktionerna. Déremot &r behovet av kun-
skaper i geometri och trigonometri ganska litet. Det ér dirfér mycket
tillfredsstillande att de geometriska avsnitten i de sociala och biologiska
grenarnas kurser fatt en ganska liten omfattning medan funktionslidran
beretts stort utrymme och exponential- och logaritmfunktionerna med-
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tagits. Avviigningen kan dock diskuteras och det hade otvivelaktigt varit
en forbittring om det sista momentet hade getts stérre utrymme och fatt
en mera obligatorisk karaktir #n vad som nu ér fallet. Kanske kunde
ockss kursen i geometri ha minskats ytterligare pa den sociala grenen.

Den kurs i statistik, som finns p4 alla grenarna, ér begransad till recept
f6r berikning av medeltal, spridning och korrelationskarakteristika. Tiden
kommer sikert inte att medge nagon utférligare behandling av detta
moment och det praktiska virdet kanske dérfor inte blir sa stort. Dess
allménbildande betydelse kan emellertid inte bestridas.

Kursplanen for reallinjens ligsta ringar och matematiska grenen &r
enligt var mening vird oreserverat erkéinnande. Utan att vinda upp och
ner pa tidigare undervisningsplan torde den i manga avseenden innebéra
en omvilvning i svensk matematikundervisning. Genom att stryka sterila
moment, sisom delar av trigonometrin, har getts plats for nya virdefulla
omréaden framfor allt inom funktionsteorin. Over huvud taget torde for-
skjutningen till fsrman fér analysen vara det karakteristiska och vérde-
fulla i den nya kursplanen. Man har silunda fatt utrymme for en icke
ovisentlig kurs i integralkalkyl, for de tidigare nimnda exponential- och
logaritmfunktionerna och fér en stringentare behandling av funktions-
teorins element. En del detaljer skulle man emellertid vilja kritisera.
Exempelvis har det fran Euklides drvda begreppet analogi numera efter
brakrikningens uppkomst inget speciellt intresse och i synnerhet inte
som ett kapitel i geometrien. Trots detta finns i kursférdelningen f6r geo-
metri upptaget ett moment om analogier och proportionaliteter. Ménga
lirobscker i geometri #r forresten behiftade med samma onddiga tradi-
tionsbundenhet. Diskuteras kan naturligtvis ocksd den analytiska geo-
metriens uppliggning. Emellertid sammanhéinger denna med den storre
fragan: Skall vektorer inforas i skolan? Om man beténker att i manga
lander redan undervisas om vektorer (t. ex. i de flesta av Tysklands gym-
nasier) framstar det som hogst troligt att det bara dr en tidsfraga tills
man dven i Sverige infor vektorer i gymnasieundervisningen. Trots detta
anser vi det klokt att man i detta sammanhang, d& si manga andra vik-
tiga fragor pockade pa sin 16sning, inte ocksé tog upp fragan om vektorer.

De nya metodiska anvisningarna &r mycket detaljerade och kommer
sikert att bli ett virdefullt stod for manga lirare i deras undervisning.
Anvisningarnas férsta huvudmoment innehéller allménna synpunkter pa
sédana problem som undervisningens planering, bl. a. med hénsyn till
elevmaterialet, lektionsuppliggning, preparation, hemarbete och laxfor-
hér samt skolskrivningarnas uppliggning och bedsmning. Det framhalles
att »undervisningen bor liggas s, att om méjligt ingen lirjunge tycker
sig sta infor osverkomliga svarigheter« samtidigt som det ocksd anvisas
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vigar att ge elever med utpriglad fallenhet f6r matematik stimulerande
undervisning i problem, som gir utanfér den obligatoriska kursen.

Efter de allménna synpunkterna foljer en detaljerad kursfordelning
och ett avsnitt om undervisningen i de olika klasserna. I dessa tva avsnitt
fixeras den obligatoriska kursen i detalj och samtidigt lamnas i manga
fall véirdefulla uppslag for undervisningens uppliggning. Man frestas emel-
lertid att pa vissa punkter géra invindningar. Pa ett par stéllen sigs
betriffande geometriundervisningen att geometriens logiska uppbyggnad
bor framhallas. Eftersom geometrien i skolan inte &r logiskt uppbyggd
och ofta underforstatt vadjar till dskadningen, kan liraren pa denna
punkt, savida han vill vara &drlig, endast hénvisa till att det &r mojligt att
utan hjilp av dskddningen bygga upp geometrien logiskt med utgangs-
punkt fran vissa axiom, som inte dr de hos Euklides f6rekommande utan
av betydligt senare datum. Det #r att mirka att en svensk matematik-
larare i allménhet ej har nagra kunskaper i geometriens axiomatik och
att sddana forvirvas endast genom mycket arbete och utpriglad forméaga
till abstrakt tinkande. En néstan obegriplig och mycket perifer passus,
som girna kunde utelimnats, dr f6ljande, som meddelas i samband med
overgang fran formler for ellipsen till formler fér hyperbeln genom byte
av b2 mot —b2: »Substitutioner har stor betydelse i den hégre matemati-
ken, och det dr nyttigt for lirjungarna att i ndgon méan f& géra bekantskap
med dem¢. Daremot noterar man med stor tillfredsstéllelse deklarationen
att klyftan mellan gymnasiets och higskolornas sitt att ligga upp funk-
tionsldran bor minskas genom den tidigare nimnda stringare behand-
lingen av funktionslirans grunder. Mycket givande &ér ocksd den skiss av
integralkalkylens uppliggning, som gives. Man torde pa det angivna
sittet t. 0. m. pa allménna linjen na sa langt att de flesta normala behov
inom tillimpningarna blir tillfredsstéllda. Av de tva alternativa uttrycken
»en primitiv funktion till f« och »en integral till f« vill vi £6r var del rekom-
mendera det senare som har fordelen att innehéalla det magiska ordet
integral.

Sammanfattningsvis vill vi &nnu en ging framhalla, att de nya kurs-
planerna och metodiska anvisningarna i visentliga avseenden innebir
mycket stora framsteg for den svenska matematikundervisningen. Man
kan bl. a. vinta sig att de kommer att fa ett vilgorande inflytande pa
problemfloran i studentexamen. Inom ramen fér de nya kurserna finns
det ocksa stora mojligheter att astadkomma innehallsrika och stimule-
rande lidrobocker.

12+
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SVEN GELLERSTEDT: 800 évningsuppgifter © matematik for universitet
och hégskolor. Almqvist & Wiksell, Stockholm, 1954. 200 s. Sv. kr. 12.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 178.)

Det dr ett imponerande arbete som ligger bakom denna bok, vilken
innehéller manga intressanta och lirorika problem. Av dessa hdnfor sig
(enligt forfattarens angivelser) knappt 200 till ren ettbetygskurs medan
c:a 100 ligger utanfor den nuvarande tvabetygskursen. Trots det over-
vildigande antalet har anmilaren lyckats finna ytterst fa rena felaktig-
heter eller tryckfel.

Man #r dock ej benigen att ge boken nigot forbehallslost erkdnnande
som virdefullt tillskott till 6vningslitteraturen for tvabetygskurserna
vid véara svenska universitet. Den visentliga anledningen hirtill dr att
uppgifterna genomgéiende dr for svara for att limpa sig som 6vning péd
detta stadium. Detta dr uppenbarligen en omdomesfraga, men de experi-
ment anmilaren foretagit i sin bekantskapskrets, har stdrkt hans upp-
fattning.

Att problemen blir besviirliga beror i manga fall p4 den sdregna for-
mulering de givits. Det i och for sig rimliga problemet att visa att funk-
tionen e®cosx—1 endast har ett nollstille i intervallet 0 < x < #/2 for-
muleras salunda (78 b): »For vilka vinklar i forsta kvadranten giller
olikheten ecosx—1 > 0% med svaret: »For 0 < x < x, dir x, dr funk-
tionens nollstélle i intervallet.« Denna typ av svar férekommer i &n mer
avskrickande sammanhang. Ett problem (179 a) att bestdmma de punk-
ter pd en given kurva dér krokningen dr maximal har som svar: »for

cos bx = V;L—I, dir u, 4r roten i intervallet [0, 1] till ekvationen
2ud— 3u?—4a2b2u+ 3022 = 0.« Eftersom begreppet losning av ett pro-
blem ej dr sdrskilt vil definierat, hade det varit rimligt, om forfattaren
bittre preciserat vad som onskats. Andra exempel dér lisarens verk-
samhet skulle underlidttas genom precisare formulering ér 347 dir det
talas om den linedra differentialekvation av forsta ordningen som ett
bestimt polynom satisfierar (som om det bara funnes en) och 396 dir
forslaget att bevisa att en serie 4r konvergent utan att anviinda kriterier
vil nirmast innebédr en motséigelse. Nagra vilkinda problem (t. ex. 264)

[172]
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har givits en intresselos formulering; vid 478 beror detta sékerligen pa
att exponenten n bortfallit vid tryckningen.

Vad s8 giller anvisningarna skall jag ej trotta med en upprikning av '

de tal, dir en anvisning skulle sparat mig mycken moda. Dir anvisningar
finnes, dr de ej heller alltid s& lyckligt utformade. Av losningen till pro-
blem 753 framgar silunda ej, att den sats som problemet innehéller &r
fel (punkten méaste ligga pa ellipsoiden).

Av det anforda synes framgd, att en ndgot tunnare samling med mer
pedagogiskt valda exempel varit att foredraga. Att specialintresserade
problemlosare och mer erfarna studerande kan ha utbyte av samlingen
skall ej fortigas. Skulle den bland véara svenska studerande bli ansedd
som normgivande f6r kurserna, kan man dock befara, att de senare arens
arbete for att nedbringa studietiden (bl. a. genom sanering av tentamens-

problemen) blir helt forgives. Tord Ganelius

B. L. vaN DER WAERDEN: Science awakening. English translation by
Arnold Dresden with additions of the author. P. Noordhoff Ltd., Gro-
ningen, 1954. 306 pp., 28 plates. Florins 19.00 (§ 5.50).

(Innholdsfortegnelse i NMT, dette hefte, s. 181.)

Ovannimnda arbete dr avsett for alla, som #r intresserade av matema-
tikens historia och det redogor for det nyaste man vet om forna tiders
matematik. Det bygger pa noggranna kéllforskningar — forfattaren har
gjort sig fortrogen med innehallet i gamla papyrusrullar och kilskrifter
samt med bevarade skrifter av gamla tidens forskare.

Forfattaren klargor i borjan av sitt arbete i en kort dversikt den bety-
delse matematiken haft for hela var kulturutveckling och péavisar, varfor
vetenskapernas ursprungshistoria tillika #r matematikens utvecklings-
historia. Som kint fick matematiken som vetenskap sitt upphov under
den grekiska kulturens tidevarv, och pa den grund omfattar det omréde,
som boken behandlar, tiden fran de allra forsta kulturskedena till den
grekiska matematiken. Boken slutar med en granskning av denna mate-
matiks forfall. Forfattaren siger sjilv om sitt arbete:

Bokens huvudsakliga syfte dr att visa, huru Thales och Pythagoras
grundade sin lira pa babyloniernas matematik, men likvil gav denna
en helt och hallet forindrad, typiskt grekisk karaktér, huru matematiken
genom Pythagoras’ skola och pa annat hall nadde en allt hogre utveckling
och gradvis borjade fylla den stringt exakta logikens fordringar och huru
matematiken tack vare Platons vinner Theaetetus och Eudoxos nadde
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det stadium av fullkomlighet, skonhet och precision, som vi beundrar i
Euklides’ Elementa.

Forfattaren inleder matematikens utvecklingshistoria med en fram-
stillning om de gamla egypternas kultur och infér oss dérvid i deras
rikneteknik. S ser vi i den for nédra 4000 ar sedan avfattade Rhind-
papyrusen exempel pa s. k. »aha-rikning«. Direfter foljer de fornbaby-
loniska kilskrifternas matematik, och vi far konstatera vilka forvanande
vidder babyloniernas riaknekonst redan omspénde. S& har t. ex. tillimp-
ningen av Pythagoras’ lirosats varit bekant redan fér babylonierna.

Huvuddelen av boken #gnas likvidl det grekiska kulturskedet. For-
fattaren klargor f6r oss, huru man under denna tid upptéckte helt och
hallet nya sitt att utforska matematikens problem. Sa strivade grekerna
efter att framstélla allt geometriskt — med tillhjilp av stréckor, ytor,
volymer — s& att varje tal atergavs genom nigon geometrisk figur.
Hos babylonierna hade didremot varje stricka och yta framstéllts medels
ett tal. Med tillhjélp av figurer kunde grekerna salunda behandla ockséa
saddana problem, som de inte fsrmadde losa genom att anvinda tal. Till
exempel ekvationen 22 = 2 kunde de l6sa med tillhjilp av kvadratens
diagonal, ehuru de &dnnu inte foérstod att definiera det irrationella

talet /2.

Det dr omojligt att hér ens i storsta korthet aterge allt, vad boken be-
réttar om den grekiska matematikens utveckling, borjande med Pythago-
ras’ tidevarv dnda till Apollonius. Jag anfor blott nagra exempel. Sa far
vi kiinnedom om ett mérkligt ingenjorsarbete, som utférdesi 6. Arhundra-
det f. Kr., byggandet av tunneln pé Samos, och stiftar bekantskap med
de oden, som manga beromda matematiker, sdsom Eudoxos, Theaetetus
och Arkhimedes, genomgétt. Vi far fordjupa oss i Eudoxos’ exhaustions-
metod, som redan innefattar gransvirdebegreppet. Vi far ockséi veta, att
Euklides inte var nagon stor matematiker och att han av andra forskare
hade lanat mycket, som ingar i hans Elementa. Pa samma gang konstate-
rar vi, att manga uppgifter, som olika historiker tidigare har meddelat
oss, inte 4r annat &n anekdoter eller antaganden utan historisk grund.

Jag ndmner ytterligare, att forfattaren vid behandlingen av de olika
kulturskedena forst ger en kronologisk tabell ¢ver de viktigaste tilldra-
gelserna, & ena sidan i den allménna historien, & andra sidan i veten-
skapens historia. Ett sadant sammandrag hjilper en lisare, som utan
att vara nidgon egentlig historiekéinnare likvil hyser intresse for mate-
matikens utveckling, att pa riktiga platser inpassa de enskilda kunskaper
i matematikens historia, som han forut 4ger, p4 samma gang han erhaller
en helhetsbild av detta omrade.

Bokens utstyrsel ar sirdeles tilltalande. Férutom teckningar och bilder,
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som nira ansluter sig till texten, innehaller arbetet en stor méngd illu-
strationer, som belyser vetenskapens utveckling och forna tiders kultur.
Dessa bilder har valts av professorn i arkeologi vid universitetet i Gro-
ningen H. G. Beyen och bidrar i sin man att tcka bokens virde.

Jag rekommenderar varmt ifragavarande bok &t alla, som &r intres-
serade for matematik och for matematikens utveckling. Boken forutsétter
inte nagra omfattande kunskaper i matematik och kan dirfor med be-
hallning lisas ocksd av icke-matematiker. Framfor allt lonar det sig for
en matematiklirare att gora sig bekant med arbetet. Varje matematik-
ldrare star sikert ofta infor fragan, vilket program han for att liva upp sin
egen undervisning kunde genomgé jimte det vanliga under lektionen
behandlade lirostoffet. D4 har han skil att overviga, vilket virdefullt
tillskott matematikens historia utgor, vilket utméirkt och pa samma ging
reellt material den tillfér undervisningen. Ovannéimnda bok ar for detta
andamal en sirdeles trevlig och intressant killskrift, som skildrar de
forsta skedena av den minskliga kulturens historia, sidana som dessa
skeden avspeglar sig i matematikens utveckling fran dess borjan &nda
till uppkomsten av vetenskapligt tinkande i egentlig mening.

Inkeri Simola

OysTEIN ORE: Niels Henrik Abel. Et geni og hans samtid. Gyldendal
Norsk Forlag, Oslo, 1954. 317 s. N. kr. 23.00, innb. kr. 27.50.

(Innholdsfortegnelse i NMT, dette hefte, s. 180.)

Det er naturlig nok skrevet meget om Abels liv og skjebne. Av korte
populere levnetsbeskrivelser i tidsskrifter, aviser og leksika er det kom-
met s& mange at det neppe er mulig & gi noen fullstendig fortegnelse over
dem, og det er det vel heller ikke noen grunn til. Men ogs& av boker om
Abel finnes det en del. Den forste var C. A. Bjerknes’ Abel-biografi som
kom péa norsk i 1880 og i en betydelig utvidet fransk utgave i 1885.
Vilhelm Bjerknes utga i 1929 pa norsk en noksd mislykket omarbeidet
og forkortet utgave av C. A. Bjerknes’ bok. I 1930 kom denne forkortede
biografi i en ikke uvesentlig forbedret tysk utgave, hvor mange av feilene
og misforstaelsene var rettet, men helt tilfredsstillende var resultatet ikke.
Et meget viktig kildeskrift er »Festskrift ved hundredaarsjubileet for
Niels Henrik Abels fodsel« ved Holst, Stormer og Sylow (1902), ogsa i
fransk utgave. Festskriftet inneholder en verdifull samling av doku-
menter og ca. 40 av Abels brever, videre en populer biografi ved Elling
Holst og en fagmessig fremstilling av Abels videnskapelige innsats ved
L. Sylow. Mittag-Leffler skrev pa svensk en kort, men verdifull biografi
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i »Ord och Bild« (1903), og den kom ogs4 i fransk oversettelse i Revue du
Mois (1907). Endelig har en fransk matematiker Ch. Lucas de Pesloiian
i 1906 utgitt en bok om Abel. Men ogsa efter at disse boker utkom er det
funnet adskillig nytt materiale til belysning av Abels liv.

Ore har brukt alt dette stoff, og han har selv gjennom utrettelige
undersokelser gravet frem mange nye opplysninger om Abel og om det
miljo han levet i. Bl. a. har den danske familie Tuxen stillet til hans
disposisjon en del brever som gir et meget klarere billede enn vi tidligere
har hatt av de efterhvert stadig mere ulykkelige forhold i Abels hjem
(soster av Abels mor var gift med en fremtredende dansk marineoffiser
Tuxen).

Resultatet av det szerdeles omfattende arbeide Ore har utfort er blitt
en bok som gir en meget fullstendigere, og sikkert ogsa en riktigere,
skildring av Abels liv enn noen tidligere bok om Abel. Flere av de tid-
ligere Abel-biografier, spesielt de norske, forsdker med en péfallende
mangel pa historisk sans & opprettholde en legende om at Abel ble darlig
og smalig behandlet i Norge. Dette er meget misvisende, selv om det pa
enkelte punkter kan reises kritikk mot de norske myndigheters holdning.
Stort sett ble Abel stottet og hjulpet pad en mate som gir meget storre
grunn til anerkjennelse enn til kritikk. Ore gar naturligvis meget noye
inn pé disse forhold, og hans vurdering av dem er mere néktern og meget
bedre begrunnet enn hans for nevnte forgjengeres, skjont ogsa han av og
til gar litt lenger i sin kritikk enn jeg ville gjore. Selve kjensgjerningene
er dessuten si klart og objektivt fremlagt hos Ore, at leserne selv kan
vurdere dem.

8. 126-27 har Ore noen interessante og plausible betraktninger om de
planer som Abels norske beskyttere ma antas & ha lagt for hans fremtid.
Jeg vil peke pé at Vilhelm Bjerknes i den f6r nevnte tyske utgave av 1930
(som Ore ikke har i sin litteraturfortegnelse) s. 108—09 har en lignende
betraktning som dessverre savnes i den norske utgaven av 1929. Det
dreier seg her om et punkt som er ganske vesentlig nar det gjelder &
bedomme — og ikke bare & fordomme — Abels samtid.

Ores bok er, savidt jeg kan bedomme det, preget av stor noyaktighet.
De ganske f& bemerkninger jeg har & gjore til den rent faktiske frem-
stilling er sa sma at man kanskje vil finne dem pedantiske. Men da jeg
ikke kan f& plass til dem noe annet sted enn i dette tidsskrift vil jeg ta
dem med. De har alle en viss beréring med kappestriden mellom Abel
og Jacobi.

Forste del av Abels fundamentale arbeide »Recherches sur les fonctions
elliptiques« utkom 20. sept. 1827. Nar dette manuskript ble levert til
Crelle, har Abels biografer veert uenige om. Ore skriver (s. 183) at Abel



LITTERATUR 177

i et brev av 4. mars 1827 til Holmboe meddeler »at han er ferdig med en
stor avhandling¢, som ma vzre forste del av Recherches. Her er en liten
undyaktighet, for Abel sier bare at han har »prepareret en betydelig
Afhandling« om elliptiske funksjoner, og det betyr jo ikke at han er ferdig
med den. Litt lenger ute i samme brev sier Abel: »I det Hele har jeg gjort
en skjendig Mengde Opdagelser. Naar jeg blot havde dem ordnet og
sammenskrevet, thi de fleste ere ikke komne lengere end i Hovedet.
Det er ikke at teenke paa noget for jeg kommer i honet Orden hjemme.
Da kommer jeg til at treele som en Vogngamp; men naturligviis med
Fornoielse«. Det er bl. a. denne siste uttalelse som har fatt Holst, Sylow
og Pesloiian til & anta at avhandlingen forst er avsluttet efter hjem-
komsten til Norge, og den kunne i s& fall tidligst veere levert i juni. Nu
har Ore funnet nye opplysninger om hva Abel foretok seg i de forste
maneder efter hjemkomsten, og efter dette gjetter jeg pa at C. A. Bjerknes
har rett i, at forste del av Recherches er levert til Crelle ved avreisen fra
Berlin, som fant sted senest i begynnelsen av mai.

S. 210 nevner Ore at »det hefte av Crelles Journal som inneholdt forste
del av Recherches kom til Konigsberg alt i de forste dager av oktober
1827¢, og han tilfoyer: »Det er nesten utenkelig at bade Jacobi og hans
venn Bessel kunne la vere & legge merke til den sveere avhandlingen
som tok opp storsteparten av heftet.« Det er helt unsdvendig & uttrykke
seg s4 forsiktig, for vi vet at Bessel straks la merke til Abels avhandling
og at han skriftlig gjorde Jacobi oppmerksom pa den, jfr. min frem-
stilling i dette tidsskrift 1953.

S. 211 sier Ore: »En méneds tid efter var Jacobis bevis trykt og pa vei
til Legendre«. Det tok nok noe lengere tid, neermere to maneder, jir.
Jacobis brev av 12. januar 1828 til Legendre.

Hva selve stridspunktet i prioritetsforholdet mellom Abel og Jacobi
angar, slutter Ore seg nermest til Bjerknes’ standpunkt, som gér ut pa
at Jacobi i sin avhandling av 18. november 1827 fortiet den stotte han
hadde funnet i Recherches. Jeg er enig i dette.

Ores bok inneholder en rikdom av kulturhistoriske trekk, som gjor
boken meget levende og underholdende. Den henvender seg fortrinnsvis
til folk som ikke har nevneverdige kunnskaper i matematikk, men Ore
gjor ogsa enkelte prisverdige forsok pa & gi en populer forklaring av de
problemer Abel arbeidet med. Mulighetene er her naturligvis noksd be-
grenset. Det er blitt en god og velskrevet populer bok som jeg trygt kan
anbefale alle dette tidsskrifts lesere. Boken er skrevet pa et forholdsvis
konservativt norsk riksmal som neppe vil volde lesere fra de ovrige nor-
diske land noen som helst vanskeligheter.

Fr. Lange-Nielsen
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MOTTATTE BOKER

R. Baldus — F. Lobell: Nichteuklidische Geometrie. Dritte Aufl. (Samm-
lung Goschen 970.) Walter de Gruyter & Co., Berlin, 1953. 140 §., 70 Fig.
DM 2.40.

Der geschichtliche Weg zur Nichteuklidischen Geometrie 6-18 * Axiomatik der
absoluten Geometrie 18-46 * Die Euklidische Geometrie 47-50 * Axiomatik der
hyperbolischen Geometrie im Einheitskreise 50-67 * Die hyperbolische Geometrie
als selbsténdige Disziplin 67-131 * Schlussbetrachtungen 131-136 % Nachwort 137—
138 * Register 138-140. '

A. Combes: Exercices et problémes de mathématiques, avec solutions.
(Classe de Seconde.) Librairie Vuibert, Paris, 1954. 337 pp. 800 fr.

Calcul algébrique 1-33 * Equations et inéquations du premier degré 34-44 *
Systémes d’équations du premier degré 45-56 * Fonctions du premier degré et
applications 57-76 * Problémes du premier degré 77-106 * Equations et systémes
d’équations du second degré 107-120 = Problémes du second degré 121-151 = Le
triangle 153-170 * Les parallélogrammes 171-197 * Le cercle 198-227 * Problémes
de construction 228-238 * Théoréme de Thalés. Triangles semblables 239-248 *
Applications de la similitude 249-290 * Relations métriques et trigonométriques
dans le triangle 291-329 * Aires planes 330-337.

Dansk tidsskrift-index. 39. arg., 1953. Udgivet af Statens Biblioteks-
tilsyn. Nyt Nordisk Forlag — Arnold Busck, 1954. 373 s.

Bog- og biblioteksvasen. Pressevaesen 1-13 * Filosofi 13-19 * Religion 19-30 *
Samfundsvidenskab 30-87 * Geografi (med topografi) og rejser 87-99 * Naturviden-
skab 99-128 * Leagekunst 128-137 * Praktiske fag 137-245 * Kunst. Spil. Sport
245-265 = Litteratur og sprog 265-272 * Historie 273-325 * Emneregister 327-342 *
Forfatterregister 343-373.

Sven Gellerstedt: 800 dvningsuppgifter i matematik. Almqvist & Wik-
sell, Stockholm, 1954. 200 s., 15 fig. Sv. kr. 12.50.

(Anmeldt i NMT, dette hefte, s. 172.)

Algebra 1-12 * Differentialkalkyl 13-29 * Integralkalkyl 30-50 * Talféljder,
serier och produkter 51-68 * Plan geometri 69-104 * Rymdgeometri 105-116 *
Svar och anvisningar 117-200.

W. Grobner — N. Hofreiter: Integraltafel, I und II. Springer-Verlag,
Wien, 1949-50. 8--166 S. und 6--204 S.

Band I, unbestimmte Integrale: Rationale Integranden 1-21 * Algebraisch
irrationale Integranden 22-106 * Transzendente Integranden 107-166.

Band II, bestimmte Integrale: Rationale Integranden 10-30 * Algebraisch ir-
rationale Integranden 31-51 * Elementare transzendente Integranden 52-168 *
Eulersche Integrale 169-186 * Integrale von Zylinderfunktionen 187-204.
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H. Hasse: Hohere Algebra, I und II. (Sammlung Goschen 931, 932.)
Walter de Gruyter & Co., Berlin, 1951. 152 und 158 S.

Band I: Literaturverzeichnis 4 * Einleitung 5-7 * Ringe, Korper, Integritits-
bereiche 7-48 * Gruppen 49-68 * Determinantenfreie lineare Algebra 68-103 *
Lineare Algebra mit Determinanten 104-148 * Schluss 149-150 * Namen- und
Sachverzeichnis 151-152.

Band II: Einleitung 5-7 * Die linken Seiten algebraischer Gleichungen 8-38 *
Die Wurzeln algebraischer Gleichungen 38-49 * Die Korper der Wurzeln algebrai-
scher Gleichungen 5079 * Die Struktur der Wurzelkérper algebraischer Gleichungen
79-126 * Auflésbarkeit algebraischer Gleichungen durch Wurzelzeichen 126-156 *
Namen- und Sachverzeichnis 157-158.

G. Hoheisel: Gewshnliche Differentialgleichungen. (Sammlung Goschen
920.) Walter de Gruyter & Co., Berlin, 1951. 129 S.

Die Differentialgleichung erster Ordnung 5-50 * Differentialgleichungen héherer
Ordnung 50-84 * Randwertaufgaben 84-129.

G. Hoheisel: Partielle Differentialgleichungen. Dritte Aufl. (Sammlung
Goschen 1003.) Walter de Gruyter & Co., Berlin, 1953. 129 8. DM 2.40.
Die Differentialgleichung erster Ordnung mit zwei Veréinderlichen 5-35 * Die
Differentialgleichung erster Ordnung mit n Verénderlichen 35-65 * Systeme mit
einer und mehr unbekannten Funktionen 66-87 * Die Differentialgleichung zweiter

Ordnung mit zwei unabhingigen Verénderlichen 87-122 * Nachtrige 122-128 *
Sachverzeichnis 129.

G. Hoheisel : Aufgabensammlung zw den gewdhnlichen und partiellen Dif-
ferentialgleichungen. (Sammlung Goschen 1059.) Walter de Gruyter & Co.,
Berlin, 1952. 124 S.

Differentialgleichungen erster Ordnung 5-50 * Differentialgleichungen hoherer
Ordnung 50-112 * Aufgaben zu den partiellen Differentialgleichungen 113-124.

Fr. Losch: Siebenstellige Tafeln der elementaren transzendenten Funk-
tionen. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1954. 8335 S.
Ganzl. DM 49.80.

Neunstellige Werte der elementaren transzendenten Funktionen fir z =
0 (0,0001) 0,1 1-41 * Siebenstellige Werte der elementaren transzendenten Funk-
tionen fiir z = 0,1 (0,0005) 3,15; = 3 (0,01) 10; = 10 (0,1) 20 44-319 * Werte
von tgx fiur x ~ n/2. Werte von Ar Tqa und Ar Ctgx fir  ~ 1 320 * Sieben-
stellige Werte elementarer Funktionen fiir x = 0 (1) 100 322-323 * Zwdlistellige

Werte von %n fiir n = 0 (1) 100 324 * Siebenstellige Werte der Funktionen siny—;x,
cos 7—2rx fir « = 0 (0,001) 0,5 324-327 #* Siebenstellige Werte der Funktionen

i3
=z

n
2%, 3% @in%x, @:057—2” @ fiir = 0 (0,01) 2 328-329 * Siebenstellige Werte der
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Funktionen ¢180, ¢ 180, @in—l%(-) , (&:og% fiir @ = 0 (1) 180 330-331 * Umwand-

lung von Bogenmass (¢) in Gradmass (g). Umwandlung von Gradmass (p) in
Bogenmass (x) 332-333 * Einige oft gebrauchte Zahlenwerte 334-335.

Albert Monjallon : Introduction & la méthode statistique. Librairie Vuibert,
Paris, 1954. 279 pp., 99 fig. 2000 fr.

La statistique: ses ressources, ses difficultés, ses dangers 7-10 * Collecte des
faits: Ktablissement des statistiques. Critique des résultats 11-17 * Présentation
des séries statistiques: Mise en ordre des données. Représentation graphique des
séries quantitatives. Représentation graphique des séries chronologiques. Autres
types de graphiques 18-56 * Analyse d’une série statistique: Valeurs typiques.
Indices de dispersion. Moments et grandeurs dérivées 57-100 * Les lois statistiques:
Notions sur la théorie des probabilités. Les principales lois statistiques 101-138 *
Ajustement d’une courbe & des données 139-150 * La notion de corrélation 151~
176 * Les principes de P'interprétation statistique 177-210 * Les nombres indices
211-221 * Ktude des séries chronologiques 222-245 * Appendice mathématique
247-270 * Tables I-IV 271-274 * Index 275-278.

Fritz Neiss: Einfikrung in die Zahlentheorie. S. Hirzel Verlag, Leipzig,
1952. 8113 S. DM 4.80.

Teilbarkeitseigenschaften der ganzen Zahlen 1-11 * Kettenbriiche 11-25 * Rest-
systeme 26-31 * Zahlentheoretische Funktionen 31-41 * Einzelne Sdtze 41-48 *
Algebraische Kongruenzen 49-56 * Quadratische Reste 57-66 * Das quadratische
Reziprozititsgesetz 67-76 * Quadratische Formen 77-102 * Aufgaben 103-111 =
Sach- und Namenverzeichnis 112-113.

Georg Nobeling: Grundlagen der analytischen Topologie. (Die Grund-
lehren der mathematischen Wissenschaften 72.) Springer-Verlag, Berlin,
Gottingen, Heidelberg, 1954. 104-221 S. DM 33.00, ganzl. DM 36.60.

Vorbereitungen : Vereine und Verbénde, Homomorphismen und Isomorphismen,
Raster, Filter und Ideale, Darstellungs- und Erweiterungssitze 1-40 * Topologi-
sche Strukturen: Grundbegriffe, Adhérenz und Hé&ufung, Untervereine, Stetige
Homomorphismen, Trennungsaxiome, Kompaktheit, Dichtigkeit, Zusammenhang,
Ableitung, Restklassenvereine, Produktverbinde 40-168 * Uniforme Strukturen:

BooLe-Verbinde, Homomorphismen, Konvergenz, Trennungsaxiome 169-213 x*
Anhang 213-218 * Bibliographie 219 * Sachverzeichnis 220-221.

Almar Ness: Hvor ld Vinland ? Dreyers forlag, Oslo, 1954. 246 s. N. kr.
19.00, innb. kr. 24.00.

Sagaene om Vinlandsferdene 13-42 * Hvor 14 Leiv Eiriksons Vinland ? 45-191 *
Beregninger fra navigasjon og astronomi 195-246.

Qystein Ore: Niels Henrik Abel. Et geni og hans samtid. Gyldendal
Norsk Forlag, Oslo, 1954. 317 s. N. kr. 23.00, innb. kr. 27.50.
(Anmeldt i NMT, dette hefte, s. 175.)
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Familien og barndomsarene 13-61 * Studiedrene 65-95 * Den store reisen
99-187 * De siste &r 191-256 * Epilog 259-309 * Bibliografi 311-312 * Navne-
register 313-317.

Oskar Perron: Die Lehre von den Kettenbriichen. Band 1: Elementare
Kettenbriiche. Dritte, erw. Aufl. B. G. Teubner Verlagsgesellschaft, Stutt-
gart, 1954. 64194 S. Ganzl. DM 29.40.

Definitionen und allgemeine Formeln 1-21 * Regelmaéssige Kettenbriiche 22-60 *
Regelmiissige periodische Kettenbriiche 61-109 * Hurwitzsche Kettenbriiche —
Transzendente Zahlen 110-134 * Halbregelmissige Kettenbriiche 135-188 * Lite-
ratur 189-193 * Sachregister 194.

J. A. Schouten: Ricci-calculus. An introduction to tensor analysis and
its geometrical applications. Second edition. (Die Grundlehren der mathe-
matischen Wissenschaften 10.) Springer-Verlag, Berlin, Gottingen, Hei-
delberg, 1954. 204516 S., 16 Fig. DM 55.00, ganzl. DM 58.60.

Algebraic preliminaries 1-61 * Analytic preliminaries 61-121 * Linear con-
nexions 121-185 * Lim groups and linear connexions 185-227 * Imbedding and
curvature 227-287 * Projective and conformal transformations of connexions
287-334 * Variations and deformations 335-381 * Miscellaneous examples 381-
424 * Bibliography 425-511 * Index 512-516.

Tolfte Skandinaviska Matematikerkongressen i Lund, 10-15 augusti
1953. Forhandlingar. 164337 s. Sv. kr. 25.00. Kan bestéllas genom
Matematiska Institutionen, Lund, Sverige.

Kongressens forlopp och program * Deltagarelista * 48 féredragsreferat.

E.P. Vance: Trigonometry. Addison-Wesley Publ. Co., Cambridge
(Mass.), 1954. 84158 pp. § 3.00.

Numbers and coordinate systems 1-15 * The circular functions 16—40 * Functions
involving more than one angle 41-50 * Solution of triangles 51-73 * Inverse func-
tions and graphs 74-86 * Identities and equations 87-102 * Complex numbers
103-114 * Applications of the circular functions to periodic phenomena 115-124 *
Appendix 125-132 * Answers to problems 133-140 * Tables I-IV 141-153 * Index
155-158.

B. L. van der Waerden: Science awakening. P. Noordhoff Ltd., Gro-
ningen, 1954. 306 pp., 28 plates. Florins 19.00 (§ 5.50).

(Anmeldt i NMT, dette hefte, s. 173.)

Preface 3-8 * The Egyptians 15-36 * Number systems, digits and the art of
computing 37-61 * Babylonian mathematics 62-81 * The age of Thales and Pytha-
goras 82-104 * The golden age 106-147 * The century of Plato 148-200 * The
Alexandrian Era (330-200 B. C.) 201-263 * The decay of Greek mathematics
264-291 * Index 293-306.



OPPGAVER TIL LOSNING

Lesninger av oppgavene 43-46 sendes til oppgaveredakteren, professor R. Tambs Lyche,
Holmengrenda 7, Oslo. Slike lgsninger vil bli trykt i et folgende hefte i den utstrekning
plassen tillater, dog vanligvis bare den beste lasning av hver oppgave. Lgsninger av opp-
gaver i dette hefte mé vere sendt innen 1. mars 1955.

De ovrige oppgaver er enklere, og losninger av dem vil ikke bli trykt.

Redaksjonen er tekknemlig for forslag til oppgaver. Slike forslag kan sendes til opp-
gaveredakteren, helst sammen med forslagsstillerens egen losning.

43. En rak jimntjock trad, vars lingd &r storre &n 2, har en tiathet,
som varierar periodiskt med perioden 1. Varje lingdenhet av traden
har massan 1. Vidare antages, att var man #n klipper ut en bit av ling-
den 1, sa uppfyller dennas troghetsmoment M med avseende pd en mot
tradbiten vinkelrit axel genom dess mittpunkt relationen

M= L(1—h).

Man skall visa, att for varje tradbit av lingden s satisfierar dennas
massa m olikheten
|m—s| < A3 .

Om den férsta olikheten ersittes med M < 1(1+4k), sa foljer i stillet

lm—s| = (—g)m.

Visa 4ven att for varje hoch kmed 0 <A <1, 0 < k < 2, s4 finns det

massfordelningar, som antager de givna grénserna.
Tord Ganelius

44. En har at 32442 =52 og 1021124122 = 1324 142, Generaliser
dette slik at en finner 2¢+1 pa hverandre folgende naturlige tall der
summen av kvadratene av de q--1 forste er lik summen av kvadratene
av de g siste.

Vis at en analog likning ikke kan bestd om en erstatter kvadratene

med tredje- eller fjerde-potenser.
Red.
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45. f(x) = f(®y, @y, ..., %) &r en skaldr funktion, definierad utanfor
origo. Visa att ytintegralen

{r@(e, mas,

ddr n dr den yttre enhetsnormalen i punkten z til en sluten yta S som
inte gar genom origo, 4r invariant vid alla deformationer av S da och

endast d& f(z) &r homogen av graden —k. Lars Hormander

46. La « og f vaere to gitte positive tall. Velg a, og b, slik at 0 < a; < b,
og definer tallfglgene {a,} og {b,} ved

_oay, -+pb,,

, n=1273,.
2

Apy1 = V(X(L ﬁbn ’ n+1 -
Finn vilkaret for at de to tallfglger skal konvergere, spesielt at de skal
konvergere mot positive grenseverdier og at de konvergerer mot en felles

positiv grenseverdi. R. Tambs Lyche

47. Bestem summen 2 —

gn’
H. Killingbergire

48. Konstruer med passer alene midtpunktet mellom to gitte punkter.

49, Av den harmoniske rekke

i+2+3+ -I— -l-
utelates de ledd der nevneren n er et tall som, skrevet i titallsystemet,
inneholder siffret 9. Vis at den rekken som da fremkommer er kon-
vergent.

LOSNINGER
Oppgave 23.

Néar funksjonene F,(z), n =1, 2, 3, ..., er kontinuerlige for alle ver-

dier av z, og F, (x) konvergerer uniformt mot null nar n — oo, sa vil
x

funksjonene SF" (6)dt som kjent ha de samme egenskaper. Da funk-
0
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sjonene f,,®)(x) har disse egenskaper, vil folgelig det samme veere tilfelle
med uttrykkene

FaD(@)—fn(0)
Fu8D(@)—fu 5 (0) =2 £, E(0)
£ ) -0)—a £, 0-D0) 5 [ E00)

.................................................

! Ly c—1
fa@—=faO)—2 fu (0 —5; fu (0)—.. — 1)Tf"(’ )(0) .

Summen av disse uttrykkene mé da ogsé konvergere uniformt mot
null nar n — . Denne sum kan skrives

v

31,0~ Zf QOP @), Po) = z—i:

=0

For k forskjellige x-verdier x;, i=1,2, ...,k eksisterer grenseverdiene

k-1
lim }'f W) = ¢4

n—>o0 v=0

folgelig eksisterer ogsa grenseverdiene

lim 2 fn(”)(O)P (@) = ¢i 5

n—>00 y=

og dermed grenseverdien

k
lim Zf @ 0)2 AP, () = X Aicqs
n—>oco0 v=0 i=1

der 2,1 =1,2,....kerk vilkarlig valgte tall.

Da P,(x),v = O 1 2, ,k—1, er k lineeert uavhengige polynomer
av grad <k, mé determmanten med elementene a; = P;_y(x;) veere
forskjellig fra null. For hver verdi av v er det derfor muhg entydig &
bestemme tallene 1; slik at

k 1 for j=v
2 A Py(w) = .
i=1 0 for j=Fv,

og folgelig eksisterer grenseverdien

lim f,%(0) = élici = f¥(0)

n—>o0
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=
for alle v =0, 1,2, ..., k—1. Men da ma J'f,%(x) for alle verdier av z-
v=0
k-1
konvergere uniformt mot ' f®(0)P,(x), som er et polynom av grad < k.
v=0

Johannes Kvamsdal
Ogsé riktig lest av Jakob Ivar Try.

Oppgave 35.

o (2n+1)!
i = 1T 2

n=1

A+D- - (+n—1) 1

n! on

= (1—}” =2)2.
Haakon Waadeland

Ogsé riktig lest av Johannes Bjernsen, V. Gamst, H. Killingbergtrs, Anders Lodemel
og Jakob Ivar Try.

Oppgave 36.

La M vare en n-dimensjonal punktmengde, og anta at m er den
undermengde som bestar av de punkter P, som er slik at M er stjerne-
formet med hensyn pa P.

Enten er m nullmengden, eller den inneholder minst ett punkt P,.
Gjennom P, trekkes en vilkarlig rett linje L. Snittet mellom L og m har
enten P, som eneste punkt, eller det inneholder minst ett punkt P, 4= P;.
Er Q et vilkarlig punkt i M, s4 mé alle punkter pa forbindelseslinjene
P.Q og P,Q tilhere M. Er R et vilkarlig punkt pa P,Q, mé derfor alle
punkter pa forbindelseslinjen P,R ligge i M, og dermed alle punkter i
(og pa randen av) trekanten P,P,Q. Er S et vilkarlig punkt pad P,P,,
sa vil folgelig alle punkter pa forbindelseslinjen S@ ligge i M, altsd méa
S, og dermed alle punkter pa P,P, tilhore m. Herav fglger at m ma
vaere en konveks punktmengde.

Haakon Waadeland

PRISOPPGAVER FOR NORSKE GYMNASELEVER

Resultat av oppgavekonkurransen for 1954:

I konkurransen (arrangert av Norsk Matematisk Forening) ble Kronprins Olavs premie
(kr. 100) og diplom gitt til Helge Arnulf Tverberg, elev av 5 R, Sydneshaugen skole, Bergen.
Diplomer ble tildelt Jens Erik Fenstad, 5 R, Trondheim Katedralskole, Arne Haaland,
5 Ra, Drammen off. h. almenskole, og O. Arnfinn Laudal, 5 R, Mandal komm. h. almen-
skole. Oppgavene sto i NMT, Bind 1 (1953), s. 174-175.

Nordisk Matematisk Tidskrift. — 13
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Oppgavekonkurranse for 1955:

Den beste samlingen besvarelser pa oppgavene nedenfor vil bli tildelt H. K. H. Kron-
prins Olavs premie pé 100 kr. Eventuelt vil det bli delt ut ekstrapremier. I konkurransen
kan alle norske gymnasiaster vere med og dessuten de som tar examen artium i 1955,
men ingen kan vinne hovedpremien mer enn en gang. Oppgavene er slik at en kommer
fram ved hjelp av realgymnasets pensum. Jo enklere og mer elementa®re lgsningsméater en
kan finne, dess bedre. Oppgavene ber droftes og greies ut s& fullstendig som rad er.

En sender lgsninger til rektor Kay Piene, Skjerstadvn. 2a, Smestad, Oslo, innen 1. 8.
1955, ledsaget av en erklering om at oppgavene er selvstendig lest. Oppgi skole og klasse.

1. Ellipsen b%?--ay?® = a?b? er gitt. Der trekkes en fritt valgt tangent
til ellipsen. En normal til tangenten skal regnes & ha slik retning at
vinkelen v som den danner med z-aksen, skal tilhgre samme kvadrant
som tangeringspunktet. Ellipsens hgyre toppunkt kalles 4, og det punktet
som ligger symmetrisk til 4 med tangenten til symmetriakse kalles P.
Kall AP for r, og finn r uttrykt ved v, a og b.

Nar v gar fra 0° til 360° beskriver P en kurve som blir symmetrisk
om z-aksen. Bevis geometrisk at denne kurven fir en tangent i 4 som
faller sammen med xz-aksen.

Kurven kan ogsa tenkes beskrevet av et fast punkt pa en ellipse som
beveger seg i forhold til den gitte. Gjor rede for denne bevegelsen, og
angi hvilket punkt som beskriver kurven.

Skriv abscissen  til et punkt pa kurven uttrykt ved v, a og b. Utled
den homogene likningen i sinv og cosv som bestemmer mulige maksimal-
og minimalverdier av x. Sett sd @ = 2 0g b =1 og finn de verdiene av v
som gir maksimal- eller minimalverdier av 2. Finn de tilsvarende z-verdier.

2. Funksjonene y = atgz,
Y1 = a;tg (@ +)
og Yo = A tg(z+p)

er definert for alle reelle z, unntatt de som gjer =, -+« eller z+f =
(k+3)m, hvor k er et positivt eller negativt helt tall eller null. Finn a,
og en trigonometrisk funksjon av uttrykt ved a, a, og & nir y, = y+y1,
for alle de verdier av « funksjonene er definert for. a, a,, a,, & og p er
reelle tall.

3. Funksjonene y = asinx ,
Y1 = ay8in (2+a)
og Y = aysin (z+p)

er definert for alle reelle 2, nir a, a,, a,, « og p er reelle tall.
Finn a, og en trigonometrisk funksjon av f uttrykt ved a, @, og «
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nar y, = y-+y, for alle de verdier av x funksjonene er definert for.
Konstruer a, og vinkelen § nar a, @, og « er gitt, 0 < o <z og a og a,
positive. Anvendelse: Bestem ¢ og ¢ slik at asinz+bcosz = csin (z4¢),
for alle x.

4. Et tetraeder 7T er gitt. Hjornene skjeres vekk ved hjelp av plane
snitt slik at der fremkommer et polyeder 7'; med 12 hjerner. Deretter
gjentas den samme prosess med 7'y, slik at en etter n ganger har fatt et
polyeder T',. Finn antall flater, hjorner og kanter av polyederet T',.

5. I trekanten ABC er AC =1 og BC = n. Finn den innskrevne
sirkels radius r som funksjon av x, hvor z er den halve sum av sidene i
trekanten. La maksimum av r vare r, og de tilhgrende verdier av
og vinkel C' vare x, og C,.

1) Finn z,, ro og Cy nir n = 1.

2) Bestem 7 slik at z, = 2, og bestem = slik at 2, = 2n.

3) Sett @, = f(n). Denne funksjon har en spesiell egenskap som for-
klarer sammenhengen mellom resultatene fra 2). Hvilken egenskap?

4) Bestem n slik at z, = %1/2, og bestem x, nar n = ‘/2—{—1/5.

5) Vis at 60° < C, < 90° og at C - 90° nar n — co.

6) Vis at nar x, er et helt tall si er n irrasjonal, og at nir n er et helt
tall s& er z, irrasjonal.

6. Gitt en sirkel med sentrum O og et punkt P utenfor sirkelen. En
spker de rette linjer gjennom P som avskjerer buer pa 120° av sirkelen.
Bevis riktigheten av folgende konstruksjon: Med OP som side kon-
strueres en regular trekant OPQ, og sirkelen om @ gjennom O og P
gkjeerer den gitte sirkel i 4 og B. Linjene PA og PB er da de sokte linjer.
Prov & generalisere oppgaven.

PRISOPGAVER FOR DANSKE GYMNASIEELEVER

Foreningen af Matematiklerere ved Gymnasieskoler og Seminarier i Danmark
udskriver herved nedenstdende prisopgaver for danske gymnasieelever og kursus-
elover til studentereksamen. Opgaverne enskes behandlet sd fuldstendigt som
muligt, og der legges vaegt pd en omhyggelig og overskuelig fremstilling.

For den bedste besvarelse udsattes en premie p& 100 kr., og der kan eventuelt
uddeles ekstrapraemier.

Besvarelserne indsendes senest 1. april 1955 til lektor Holger Jensen, Sundvej 8,

13*
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Hellerup. Besvarelserne skal ledsages af en erkleering om, at opgavelesningerne er
selvstendigt arbejde. (Benyttelse af litteratur dog tilladt).

1. Vis uden anvendelse af tabel, at ligningssystemet

2 6 1
—V———, cosB = —-l/——, cosC = —
4cos10° 4cos10°

"~ 2cos 10°
har et lgsningsswt, der er vinkler i en trekant.

cosd =

2. I nedenstdende talfolge
1 2

1
) b 2’

3
11 1

|

) ER

[ GRS
ol =

) b

der som elementer indeholder alle broker Z’_’ hvor p og ¢ er positive hele
tal, star der forud for elementet P alle sadanne brgker og kun sadanne,

hvor enten 1) summen af teller og neevner er mindre end p-+gq, eller
2) summen af teeller og nevner er lig med p+g, samtidig med at naev-
neren er mindre end g.

Hvilket nummer har elementet 2'3

Hvad hedder det element, der har nummer 1001?%

3. Vis, at de punkter (z, y), hvis koordinater tilfredsstiller ligningerne

(1) y = Vawt1+)1—a
eller
2) y=Vdat1—)1—a

ogsd tilfredsstiller ligningen
(3) yt—6ay? 26202 —4y? = 0.

Undersog og tegn den kurve, der fremstilles af (3), idet man bl. a.
bestemmer de punkter af kurven, hvor der er tangenter parallelle med
akserne.

Angiv de dele af denne kurve, hvis punkters koordinater tillige til-

fredsstiller (1) eller (2).
Bestem for enhver vzerdi af a antallet af lesninger i hver af ligningerne

Vart1+)1—2z=a
Vazt+1—)1—a=a.

og
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4. Lad a og I veere to p& hinanden vinkelrette linier, der skeerer hin-
anden i punktet O, og lad F veere et fast punkt pa a, forskelligt fra O.

Bestem den punktmeengde M i planen al, hvis punkter P ved felgende
forskrift (ideal linseafbildning) lader sig afbilde i tilsvarende punkter P,:
Gennem P tegnes en linie parallel med a; dens skeeringspunkt med !
betegnes ved L; P afbildes da i skeeringspunktet mellem linierne LF
og PO.

Bestem endvidere mengden M, af billedpunkter.

Bevis folgende setninger om den siledes definerede afbildning:

1) Nar P gennemlober de punkter, der er felles for en ret linie og M,
s4 gennemlober P, de punkter, der er felles for en tilsvarende ret linie
og M,.

2) Nar tre linier tilhorer et liniebundt (eventuelt et parallelbundt),
s& tilhgrer de tre tilsvarende linier ligeledes et liniebundt.

3) Det geometriske sted for toppunkterne af de liniebundter, der svarer
til parallelbundter, er en ret linie gennem F, vinkelret pa a.

4) Idet P, er det punkt, som afbildningen ferer P over i, og idet P,
ligger symmetrisk med P, med hensyn til I, forer den givne afbildning P,
over i et punkt P, der ligger symmetrisk med P med hensyn til I.

5. I et interval, der indeholder tallet 0, er defineret en n+1 gange
differentiabel funktion f(t), hvis (n+1)* differentialkvotient f®+V(f) er
kontinuert. Idet p < n+1, og x tilherer definitionsomradet for f(t), skal
man bevise, at

T o

@ -1 P ¢
W e =00+ |, /et

Bevis ved hjzlp af (1) formlen

x , x® x?
(2) [ (@) =f(0)+1—,f (0)+af (0)+---+Ef(p)(0)+---
an @ n
+ o+ @t
n! 0!
Bevis, at sidste led i (2) konvergerer imod 0, nir n — oo, forudsat at
f@+1(t) er begrenset i intervallet 0 <¢ < .
Bevis ved hjelp af (2), at
xz x% 28 2221

sine =gty TN gyt

Udled pa lignende made uendelige raekker for cosz, ¢” og In(l1+4x).
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PRISTAVLING FOR SVENSKA GYMNASISTER

Forsoksvis anordnas genom Nordisk Matematisk Tidskrift en pristéavling for
svenska gymnasister. Var och en av de tre utgivande svenska foreningarna har
stéllt 50 kr. till disposition, varigenom ett forsta pris om 100 kr. och ett andra pris
om 50 kr. kan utdelas.

For deltagande i tévlingen fordras, att losningar inséndas till minst fyra av
nedanstéende uppgifter. De bésta l6sningarna komma i mn av utrymme att
publiceras i NMT. Gymnasister frdn ovriga nordiska linder kunna deltaga utom
tdvlan.

Losningar, atfoljda av en férsdkran att de &ro sjalvstandigt utarbetade, inséindas
senast den 1 mars 1955 till: Nordisk Matematisk Tidskrift, Matematiska
Institutionen, Lund. Bifoga uppgift om namn, klass och ldroverk.

1. n &r ett positivt heltal. Visa att
135 2n—1 1

—_———

246 2n <V§L'

2. I en given ellips dragas tva godtyckliga konjugatdiametrar. Frin
en punkt pa ellipsen ser man dessa under vinklarna u och ». Visa att
uttrycket cot?u-cot?v endast beror av ellipsens excentricitet.

3. Som bekant #r sinz < x for > 0. Bestdm det minsta virde pa
a for vilket sinz > x—aa® da x> 0. Anvind sedan resultatet for att
visa, att d& 0 <z < 740 (= 4°5) kan sinx ersittas med med ett fel,
som #r mindre dn 104

4. En sfir tangerar de tre sidoytorna i en tresidig pyramid och utskar
av bottenytan en cirkel. Cirkelns yta varierar med sférens radie. Visa
att da cirkelns yta &r s4 stor som méjligt, sférens radie &r aritmetiska
mediet av radierna till den i pyramiden inskrivna och den vid bottenytan
vidskrivna sfiren. Visa dessutom, att cirkelns radie d& dr geometriska
mediet av de nimnda sfirernas radier.

5. En yta S och en fix punkt P i rummet &r givna. Vafje plan genom
P som skiir ytan 8, bildar en skéirning, som &r en cirkel eller en punkt.
Visa att S #r ytan av en sfir.

6. Ett antal féremal dro givna. Bland dem finnas nagra, som ér:olika,
till firg och nagra som ér olika till form. Bevisa, att det existerar minst
tva féremal, som ir olika till bade firg och form.
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SUMMARY IN ENGLISH.

P.KusTaanaEMO and B. Qvist: Finite geometries and their application.

A »block design« and the corresponding finite geometry are defined by: 1° There
are v different elements (points) and » blocks (lines), each containing r different
elements, where v = 72—7r+1. 2° Two blocks have only one element in common.
3° Two elements determine a block uniquely.—Some properties of the resulting
blocks are mentioned.

In a Galois-field GF, of the residues to a prime modulus p, points and lines are
defined by their coordinates and coefficients respectively (in homogeneous or in-
homogeneous form). The resulting system is a finite geometry. A few combinatorial
examples are shown, but most of the article deals with physical applications. The
principle of quantized matter and energy is well known, but can be carried further
in a finite geometry, where some physical phenomena will get a more »natural¢
explanation, e.g. the expanding universe.

The »positive« numbers in GF, can be taken as the quadratic residues of p,
but the sum of two such residues may be a non-residue, i.e. negative. This difficulty
is overcome by choosing p such that all the numbers 1, 2, 3,. . ., 10% (say) are positive
(and — 1 will be negative if p = —1 (mod 4)). The ordinary physical laws will then
fail only for very small or very large numbers, i. e. in microcosmos or macrocosmos.

OrAFUR DANIELSSON: Some elementary geometry.

A convex quadrangle (see fig. p. 156) is divided by the diagonals into 4 triangles.
M and N are the median points in one pair of opposite triangles, H and K the points
of intersection of the altitudes in the remaining pair. It is shown that MN and HK
intersect at right angles.

THOGER BaNG: Large prime numbers.

The article treats the history of the Mersenne primes M, = 2"—1. Already
Euclid connected these primes with the so called »perfect numbers«. Fermat
gave the first useful criteria for primality of M,, and Euler established the »record«
prime My,. In the last century, Lucas showed that My, is a prime, by means of
the test named after him:

Letc, = 2 and cppy = 2¢,°—1. Then M, > 3 (n odd) is a prime if and only if
M, divides c,_;.

A simple proof of Lucas’ theorem is given, based on trigonometric functions for
complex arguments.

In 1952, the electronic computer Swac determined several new Mersenne primes,
the largest one—and the largest prime known today—being My (Written out in
full on p. 167). In the diagram p. 160, all known primes M, are shown (indicated
by n, in a logarithmic scale), grouped after the time of their discovery.

Lars GARDING and LENNART SANDGREN: New plans and methodical in-
structions for the teaching of mathematics in the Swedish gymnasium.

The new curriculum puts more emphasis on analysis, with a corresponding reduc-
tion of geometry and trigonometry. In spite of a certain criticism, the authors find
the new plans and the teaching instructions satisfactory.
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