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DIE INTEGRATIONSMETHODEN VON ARCHIMEDES

E. J. DIJKSTERHUIS, Utrecht

Auszug aus einem Vortrag gehalten in der Cesellschaft fiir Geschichte der

exakten Wissenschaften in Kopenhagen am 10. Marz 1953.1

Unter den vielen grossen Forschergestalten der Antike gibt es kaum
einen, der den modernen Mathematiker so unmittelbar anzusprechen und
so dauernd zu fesseln vermag wie der grosse Syracusaner Archimedes.
Dieser schuf im 3. vorchristlichen Jahrhundert eine Reihe von einzig-
artigen Werken, deren jedes auf seinem eigenen Gebiete einen Hohepunkt
griechischen Denkens bedeutet.

Das Auftreten des Archimedes fillt in die erste Zeit nach der endgiil-
tigen Kodifizierung der griechischen Mathematik in dem grossen Ele-
mente-Werk des Euklid. In diesem Werke, das alle friitheren Versuche,
die gesamten elementaren mathematischen Kenntnisse in einem ein-
heitlichen Zusammenhang zu ordnen, offenbar verdringt hat, war eine
Grundlage fiir die tiefer schiirfende Forschung geschaffen: was in den
Elementen stand, durfte als allgemein bekannt angesehen werden. Die
hohere Forschung bewegte sich vorldufig hauptsidchlich auf zwei ver-
schiedenen Gebieten: es waren die Lehre von den Kegelschnitten und
die Untersuchungen iiber Berechnung von Léngen, Flichen und Inhalten.
Das erstere dieser beiden Gebiete, das, von Menaichmos stammend,
durch Aristaios und Euklid weiter gepflegt worden war, erlebte seine
hochste Bliite, die zugleich einen der Hohepunkte der griechischen
Wissenschaft bedeutet, in den Conica des Apollonios; das zweite bildet
das eigentliche Arbeitsfeld des Archimedes, dem zwar auch die Theorie
der Kegelschnitte manches zu verdanken hat, der aber sein Eigenstes
und Eigentliches doch in denjenigen Teilen der Mathematik geleistet hat,
die als die antike Antizipation der spiteren Integralrechnung angesehen
werden kénnen. Daneben gebithrt ihm das Verdienst, durch seine Werke
iiber Gleichgewicht und Schwerpunkt und iiber schwimmende Ké&rper
die mathematische Behandlung sowohl in die Mechanik als in die Hydro-

1 Der Vortrag — mit dem urspriinglichen Titel: Archimedes und seine Bedeutung fiir
die Geschichte der Wissenschaft — ist auch im April 1951 auf dem Kongress fiir inter-

nationale Wissenschaftsgeschichte in Bremen gehalten worden; siehe Verdffentlichungen
der Gesellschaft fiir internationale Wissenschaftsgeschichte, 1952, Heft 1.

(5]



6 E. J. DIJKSTERHUIS

statik eingefithrt und damit die Moglichkeit einer mathematischen Phy-
sik iiberzeugend dargetan zu haben. Ausserdem hat er sich einen unsterb-
lichen Namen durch technische Anwendungen seiner Mechanik erwor-
ben, die aber in seiner eigenen Wertschiitzung bedeutend tiefer standen
als seine rein-mathematischen Leistungen.

Die mannigfachen Erfolge, die Archimedes auf demjenigen Gebiete
erreicht hat, das ich der Kiirze halber als das Gebiet der Integrations-
probleme bezeichnen will, sind grosstenteils schon lingst in die elemen-
tare Mathematik iibergegangen und wirken dadurch, wenn sie ohne
weiteres aufgeziahlt werden, unvermeidlich einigermassen trivial; es ist
eben die nicht zu umgehende Schwierigkeit der Geschichte der exakten
Wissenschaften, dass das, was einmal ein Hshepunkt der Forschung war, im
Laufe der Jahrhunderte erst zu dem Range einer scheinbar ganz normalen
Leistung herabsinkt, um schliesslich nur noch als Ubungsstoff fiir Anfinger
fortzuleben. Aber daraus erwéchst ihr gerade ihre eigentliche Aufgabe:
diese friiheren Errungenschaften in ihrer urspriinglichen Gestalt wieder
auferstehen zu lassen und sie der Nachwelt in dem Glanze zu zeigen, der
sie umgab, als sie noch die stolze Freude ihrer Entdecker und das Staunen
der Zeitgenossen waren. Wenn ich mich darauf beschriinken wiirde, in
Erinnerung zu bringen, dass Archimedes Grenzen fiir das Verhiltnis
des Umfangs eines Kreises zu seinem Durchmesser angab, dass er die
Mantelflichen des geraden Kreiszylinders und des geraden Kreiskegels,
die Oberfliche und den Inhalt der Kugel und ihrer Teile zu bestimmen
lehrte, die Quadratur der Parabel erfand und eine Anzahl Kubatursitze
iiber Rotationskérper zweiten Grades ableitete, alles Dinge, die heute
in den Grundlagen der Mathematik zu Hause sind, so liefe ich Gefahr, bei
Thnen eher den Gedanken an ein gelungenes Lehrbuch als den Eindruck
einer hochst genialen Leistung zu erwecken. Man muss alle diese Dinge
historisch sehen, d. h. so wie sie sich gegen den geistigen Hintergrund
ihrer eigenen Zeit, des dritten vorchristlichen Jahrhunderts, ausnehmen.
Und nun ist es ein gliicklicher Umstand fiir die Geschichte der Mathema-
tik, ein Umstand, um den die Geschichte der Physik und der Chemie
sie beneiden kénnen, dass die historische Betrachtungsweise gleichzeitig
die eigentlich mathematische ist. Der Mathematiker als solcher interes-
siert sich weniger fiir Ergebnisse als fiir Methoden; die Resultate, die
Archimedes erreicht, sind ihm weniger wichtig als die Beweisfiihrung,
durch die er sie erhiirtet. Es ist ihm natiirlich ein Leichtes, jedes einzelne
Ergebnis mit Hilfe des fast mechanisch geiibten Algorithmus der Inte-
gralrechnung nachzurechnen, aber als Mathematiker und Historiker zu-
gleich verbietet er sich diesen allzu bequemen Weg. Er will wissen, wie
Archimedes es selbst gemacht hat, von seinen Voraussetzungen aus, mit
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den technischen Hilfsmitteln, iiber die er verfiigte ; er zwingt sich also, sich
in die antike Denkweise zu versetzen, die Terminologie und die Darstel-
lungsart der originalen Abhandlungen zu benutzen, auch wenn dies
eine nicht immer leicht zu bestehende Geduldprobe fiir ihn selbst wie fiir
seine Zuhorer bedeutet.

Es ist nicht moglich, in der kurz bemessenen Zeit eines Vortrags auch
nur eine einzige Strecke dieses nicht eben leichten Weges wirklich zu
beschreiten. Man sieht sich schon gezwungen, moderne symbolische Aus-
drucksmittel zu benutzen, wenn man die Aufmerksamkeit des in dem
Punkte der Notation verwohnten modernen Horers dauernd zu fesseln
bestrebt ist. Dabei soll aber der antike Gedankengang im Wesentlichen
unangetastet bleiben; die typischen Ziige des griechischen mathemati-
schen Stiles diirfen bei der Benutzung einer algebraischen Symbolik
nicht verwischt werden.

Bevor wir aber Archimedes bei seinem eigenen Schaffen belauschen
konnen, miissen einige Bemerkungen iiber die dlteren Phasen der griechi-
schen Mathematik vorangeschickt werden.

Es lidsst sich heutzutage kaum mehr bezweifeln, dass die Griechen, als
sie anfingen, sich in systematischer Weise mit der Mathematik zu befas-
sen, also ungefihr im 6. vorchristlichen Jahrhundert, mit zahlreichen
Resultaten der babylonischen und der dgyptischen Mathematik auf dem
laufenden gewesen sind. Es steht aber andererseits fest, dass sie sich
trotz vollstindiger Anerkennung des praktischen Gebrauchswertes dieser
Ergebnisse entschieden geweigert haben, der Bekanntschaft mit tiber-
lieferten Rechenregeln den Ehrennamen eines wirklichen Wissens zu ver-
leihen. Durch das Eingreifen der griechischen Denker in den Lauf der
Mathematikgeschichte vollzieht sich die radikale Anderung, mit der die
spiateren Griechen den Namen des sagenhaften Weisen Pythagoras ver-
binden, und von der uns im 5. christlichen Jahrhundert der neo-platoni-
sche Philosoph Proklos aus antiken, ihm noch zugénglichen Quellen die
Beschreibung iiberliefert, Pythagoras habe die Beschiftigung mit der
Mathematik in eine freie Wissenschaft verwandelt, indem er ihre Grund-
lagen von hoherem Gesichtspunkte aus betrachtete und ihre Theoreme
in unstofflicher Weise und durch das Denken allein untersuchte. Das
heisst wohl nichts anderes, als dass er die rein-mathematische Behand-
lungsweise einfiihrte, bei der auf den logischen Aufbau des Systems der
grosste Wert gelegt wird und keine andere Art der Beurteilung einer
Begriffsbildung oder einer Beweisfithrung zugelassen wird als die Frage,
ob diese sich einer aufs dusserste geschirften intellektuellen Kritik gegen-
iiber zu verantworten im Stande sind.
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Die griechischen Mathematiker des 5.und 4. vorchristlichen Jahrhun-
derts haben die Aufgabe, in die aller Wahrscheinlichkeit nach ziemlich
chaotische Menge von vagen Begriffen, rohen Faustregeln und im besten
Fall plausibeln Sétzen, die ihnen in der Beriihrung mit den orientalischen
Kulturen bekannt geworden sein mdgen, eine logische Ordnung zu brin-
gen, in Angriff genommen und mit einem ungeheuern logischen Rigorismus
geldst, der bis in unsere Zeit die Atmosphire, in der Mathematik getrieben
wird, bestimmt hat. Wie stark dieser Rigorismus, dieses Bediirfnis nach voll-
kommner Exaktheit war, lisst sich wohl am deutlichsten durch die Art und
Weise illustrieren, in der sie auf zwei neue Erkenntnisse reagiert haben,
die wahrscheinlich im 5. Jahrhundert erworben sind, und die beide zur
Folge hatten, dass Schlussweisen, die immer als vollgiiltig angesehen
worden waren, ihre Uberzeugungskraft einbiissten. Es sind dies die
Entdeckung des Irrationalen und die gewonnene klare Einsicht in die
Unerschopflichkeit des Unendlichen.

Es ist plausibel anzunehmen, dass die Pythagoreer, die in der Zahl —
und das heisst nach griechischem Sprachgebrauch : der natiirlichen Zahl —
das Wesen der Dinge erblickten, und die also auch iiberzeugt waren, alle
Relationen zwischen den Dingen liessen sich durch Zahlenverhiltnisse
genau ausdriicken, anfinglich auch in der Geometrie der Uberzeugung
gelebt hatten, dass Lingen von Strecken sich immer wie zwei Zahlen zu
einander verhalten; wenn dem so ist, muss es eine ausserordentliche Er-
regung gezeitigt haben, als sich ergab, dass diese Uberzeugung schon
im ganz einfachen Fall der Vergleichung von Seite und Diagonale eines
Quadrates verfehlt war. Das hatte sehr weitreichende Folgen. Wenn sich
nédmlich das Verhiltnis zweier Strecken im allgemeinen nicht als ein
Zahlenverhiltnis ausdriicken lisst, kann man auch nicht linger sagen,
jede Strecke besitze eine bestimmte, durch eine Zahl angebbare Linge,
und dadurch fiel z. B. die Moglichkeit fort, den Satz, die Fliche eines
Dreiecks sei das halbe Produkt aus Grundlinie und Hoéhe, aufrecht zu
erhalten. Und natiirlich reichten die Folgen der Entdeckung fiir die
Geometrie noch sehr viel weiter. Der ganze Verhiltnisbegriff, der in dem
Aufbau dieses Zweiges der Mathematik einen so wichtigen Anteil hat,
schwebte nunmehr in der Luft, und eine radikale Reform warunumgénglich.

Von nicht geringerer Bedeutung mag es gewesen sein, dass man endlich
anfing, Ernst damit zu machen, dass das Unendliche wirklich un-endlich,
ohne Ende, ist, d. h. nicht in einer endlichen Anzahl von Schritten durch-
laufen werden kann. Sehr wahrscheinlich hat man anfiinglich den Satz,
der Inhalt eines Quaders sei das Produkt aus Grundfliche und Héhe,
erhirtet, indem man diesen Korper als einen Haufen aufeinander ge-
schichteter Rechtecke betrachtete, und hat in #hnlicher Weise an-
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nehmbar gemacht, zwei Pyramiden mit gleichen Grundflichen und glei-
chen Hohen seien inhaltsgleich. Bis dann eines Tages ein kritischer und
unabhingiger Geist die verfangliche Frage gestellt haben mag, ob diese
Rechtecke, aus denen der Quader bestehen sollte, eigentlich echte mathe-
matische Rechtecke seien, die dann keine Dicke besissen, oder aber
sehr diinne Quiderchen, und dadurch die Wertlosigkeit der ganzen
Beweistiihrung ans Licht brachte. Man kann ja keinen dreidimensionalen
Kérper durch Anhiufung von zweidimensionalen Flichen erzeugen; und
wenn man nicht weiss, welchen Inhalt ein hoher Quader hat, weiss man
es ebensowenig von einem niedrigen.

Wie stark dieses Dilemma die griechischen Mathematiker beunruhigt
hat, lisst sich aus einem iiberlieferten Demokrit-Fragment entnehmen,
in dem gefragt wird, ob die Schnittflichen, die entstehen, wenn man
einen Kegel durch Ebenen parallel zur Grundfliche schneidet, gleich
oder ungleich sind. Diese Frage wird mit einer Antinomie beantwortet:
sind sie ungleich, so werden sie den Kegel ungleichméssig machen, da er
treppenformige Einschnitte und Vorspriinge erhilt; sind sie aber gleich,
. so wird der Kegel wie ein Zylinder aussehen. Und die berithmten Bewe-
gungsparadoxien des Eleaten Zeno tun nichts anderes, als diese nim-
liche Denkverlegenheit angesichts der Frage nach dem Aufbau eines
Kontinuums in kinematischer Form zum Ausdruck zu bringen.

Die Uberwindung der doppelten Krise, in die das Irrationale und das
Unendliche die griechische Mathematik stiirzten, ist nach unseren heu-
tigen Vorstellungen, die aber einer festeren Begriindung noch sehr be-
diirftig sind, das Werk des genialen Mathematikers Eudoxos von Knidos
gewesen, der am Anfang des 4. vorchristlichen Jahrhunderts nach einem
Aufenthalt bei Platon in Athen und bei Archytas in Tarent in Kyzikos
an der Propontis eine Schule griindete, mit der er im Jahre 368 nach
Athen iibersiedelte. Er schuf eine Theorie der Verhiltnisse, in der dieser
Begriff so allgemein definiert wird, dass die Frage, ob die betrachteten
Grossen kommensurabel oder inkommensurabel sind, irrelevant ist, und
er lehrte eine vollkommen strenge Methode zur Behandlung der unend-
lichen Prozesse, die bei der Bestimmung von Oberflichen und Inhalten
geometrischer Gebilde auftreten. Die erste, seine Verhiltnislehre, bildet
den Inhalt des fiinften Buches der Elemente Euklids, die zweite, die in
der historischen Literatur leider den vollstindig falschen Namen Ex-
haustions(d. h. Ausschopfungs-)verfahren erhalten hat — sie beruht
nimlich auf der klaren Einsicht in die Unerschopflichkeit des Unend-
lichen —, wird im XII. Buch angewandt. Von nun an gehéren beide zu
dem ehernen Bestand der griechischen Mathematik, und Archimedes
wendet sie denn auch beide mit der grossten Prézision an. Er er-
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zéhlt in seinem Werke Uber Kugel und Zylinder, Eudoxos habe selbst
seine Methode fiir unendliche Prozesse zu einem echten Beweis des Satzes
benutzt, der Inhalt einer Pyramide sei der dritte Teil des Inhaltes
eines Prismas mit der nimlichen Grundfliche und der nimlichen Hohe
— so0 allein kann der Satz in der strengen Sprache der nacheudoxischen
griechischen Mathematik formuliert werden — und des analogen Satzes
fiir einen Kegel und einen Zylinder, welche beiden Sitze schon friiher
ohne Beweis — d. h. ohne einen Beweis, der den Eudoxischen Forderun-
gen nach Strenge Geniige leistete — von Demokrit ausgesprochen seien.

Es eriibrigt sich fiir meinen Zweck, tief auf die Eudoxische Verhiltnis-
lehre einzugehen; einiges muss aber dariiber gesagt werden. Erstens:
ein Verhiltnis zwischen zwei Grossen 4, B besteht dann und nur dann,
wenn sie, vervielfdltigt, einander iibertreffen kénnen, wenn es also zwei
Zahlen m, n gibt, so dass

n-A>Bund m-B> 4.

Ist A > B, dann kann n = 2 sein (nicht 1, denn das ist keine Zahl). Wir

nennen diese Forderung das Eudoxische Axiom ; zwei Grossen, die diesem

Axiom geniigen, heissen gleichartig. Gleichartig sind z. B. zwei Linien, zwei

Oberflichen, zwei Inhalte, zwei Zeiten, nicht aber eine Linie und eine Zeit.

Man kann also in der Bewegungslehre nicht von dem Verhiltnis einer

Strecke zu der Zeit, in welcher diese Strecke durchlaufen wird, reden.
Ich schreibe das Verhiltnis von 4 zu B

4, B),

um nicht durch die Schreibweise é oder 4 :B den Eindruck zu erwecken,
es handle sich um einen Bruch. ,

Es wird nicht versucht, das Verhiltnis (4, B) explizit zu definieren;
es wird nur davon gesagt, dass es eine gewisse Relation in Bezug auf
Grosse ist. Implizit wird der Verhiltnisbegriff definiert durch die Fest-
stellung, zwei Verhéltnisse (4, B) und (C, D) seien gleich, wenn stets

zugleich mit m-A%n'B auch m-O%n-D;

wo m und n beliebige (ganze) Zahlen bedeuten.

Der Fall des Gleichheitszeichens kommt vor, wenn die Grossen A und
B und ebenso € und D kommensurabel sind; das Verhiltnis heisst dann
¢nrds, aussprechbar; wir sagen rational.

Eine weitere Definition besagt, dass (4, B) > (C, D), wenn es ein
Zahlenpaar m, n gibt derart, dass

m-A>n-B und m-C=<n'D.




DIE INTEGRATIONSMETHODEN VON ARCHIMEDES 11

Wenn es zu zwei gleichartigen Grossen 4, B eine dritte Grosse E gibt
derart, dass (4, E) = (K, B), dann heisst das Verhiltnis (4, B) das dop-
pelte Verhiltnis von (4, E). Ebenso: wenn (4, E) = (E, F) = (¥, B), so
heisst (4, B) das dreifache Verhéltnis von (4, E).

Eudoxos beweist nun in iiberaus scharfsinniger Weise die Sitze der
Verhiltnislehre, z. B. dass aus 4 > B folgt (4, C) > (B, C) und ebenso
(C, B)> (C, A). Es wiirde uns hier zu weit fiihren, genau zu zeigen, wie
er das macht. Es muss nur noch bemerkt werden, dass der Satz, aus
(4, B) = (C, D) folge (4, C) = (B, D), in der griechischen Verhiltnislehre
im allgemeinen nicht gilt, denn wenn 4 und B gleichartig sind und ebenso
C und D, braucht A nicht gleichartig mit C' zu sein, und das Verhiltnis
(A, O) besteht also im allgemeinen nicht. Der Satz ist nur richtig, wenn
es sich um vier gleichartige Grossen handelt. In der Bewegungslehre gilt
fiir eine gleichférmige Bewegung zwar

(81, 82) = (1, 83)
(81, t1) = (825 ta) -

So viel iiber die Eudoxische Verhéltnislehre. Eingehender miissen wir
uns nun mit seiner Infinitesimalmethode beschéftigen, die das eigent-
liche Riistzeug bildet, mit dem Archimedes seine Integrationsprobleme
16st. Wie ich schon bemerkte, beruht sie auf der sehr klaren und bis in
die letzte Konsequenz verfolgten Einsicht in die prinzipielle Unmoglich-
keit, das Unendliche jemals durch Aneinanderreihung einer immer wach-
senden Zahl von Einzelschritten wirklich auszuschépfen, den Ubergang
zur Grenze wirklich zu vollziehen; sie macht Ernst damit, dass in einer
Reihe von regelmissigen, in einen Kreis eingeschriebenen Polygonen,
deren Seitenzahl in einer geometrischen Reihe mit dem Quotienten 2 an-
wichst, niemals dieser Kreis selbst vorkommen kann, dass eine konver-
gente monotone Zahlenfolge ihren Limes nicht »schliesslich« und nicht
vauf die Dauer«, sondern wirklich niemals erreicht und also auch niemals,
wie das Wort Grenziibergang vorzutduschen scheint, in diesen Limes
viibergehtq.

Mit der rigorosen Konsequenz, die das griechische Denken im allge-
meinen kennzeichnet, hat Eudoxos alle friiheren Gedankenginge, in
denen der Kreis als Polygon mit unendlich vielen Seiten oder ein Zylinder
als Anhiufung unendlich vieler ebenen Schnitte angesehen worden war,
unerbittlich aus der strengen Mathematik verbannt. Er untersagte sogar
den Gebrauch des Wortes »unendlich¢, den der strengste moderne Mathe-
matiker zum Zwecke der Abkiirzung doch gerne gestattet, und verlangte
eine auch im Wortlaut véllig finitistische Behandlungsweise.

aber nicht
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Um diese Forderung zu erfiillen, stand nur eine einzige Methode zur
Verfiigung, und zwar die des indirekten Beweises. Wenn nach einer end-
lichen Anzahl von Schritten das Resultat dessen, was spiter Grenz-
tibergang heissen sollte, sich als Vermutung gezeigt hat, soll die Unmég-
lichkeit der Unrichtigkeit dieser Vermutung durch Reductio ad absurdum

gezeigt werden.

Bei dem Studium der zahlreichen Fille, in denen Archimedes diese
Methode anwendet, lassen sich zwei Hauptformen derselben unterschei-
den, deren eine wieder in zwei Nebenformen vorkommt. Ich bezeichne

die Hauptformen durch die Stichworte:

Kompressionsmethode

Es sei die zu bestimmende Grosse (Oberfliche
oder Inhalt) 2. Man schliesst diese ein zwischen
eine monoton steigende Grossenfolge I, als
untere und eine monoton absteigende Gros-
senfolge C, als obere Grenze (bei der Bestim-
mung der Kugelfliche sind dies zwei Folgen von
ein- bzw. umgeschriebenen Rotationskérpern).
Es wird jetzt gezeigt,

a. Differenzform b. Verhiltnisform
dass die Differenz dass das Verhiltnis

n? n
durch Wahl von n | durch Wahl von =
kleiner als eine belie- | kleiner als das Verhilt-

big gewihlte Grosse ge-
macht werden kann.

nis der griosseren von
zwei beliebig gewihl-
ten Grossen zur klei-
neren gemacht werden
kann.

Die eigentliche Ableitung des Resultates be-
steht jetzt darin, dass man eine Grosse K be-
stimmt, die fiir jedes n der Ungleichheit

(1) I,<K<OC,

geniigt. Behauptet wird jetzt
2=K.

Approximations-
methode

Man approximiert die
zu bestimmende Gros-
se 2 durch die Summe
S, =a,+a,+...+a,
von 7 positiven Glie-
dern einer derartigen
Grossenfolge

Ay, By v v .y
dass die Differenz
-8,

durch Wahl von =
kleiner als eine belie-
big gewihlte Grisse ge-
macht werden kann.

Man bestimmt jetzt
K so, dass

(2) S,+R=K
und
R<a,.

Behauptet wird jetzt
2=K.
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Es sei XY+ K, dann ist entweder X' > K oder
2 < K.

Im ersten Fall wird n so bestimmt, dass

C,—I,<2—K. | (Cnl,)<(2K).
Dann ist auch

2—I,<2—K, k x,1,) < K),
also

K<I,,

was der Annahme (1) widerstreitet.
Im zweiten Fall wird n so bestimmt, dass

O,—I,<K-2. | (CnlI,)<(K2Z2).
Dann ist auch

C,—Z<EK—%, |

also

(Cn, 2) < (K, 2),
Cc,< K,

was wiederum mit der Annahme (1) in Wider-
spruch steht.

Also ist
2=K.
Diese Methode wird angewandt in den Schriften

Kreismessung, Uber
Konoide und Sphae-
roide, Uber Spiralen.

Uber Kugel und Zylin-
der.

Es sei 2 == K, dann ist
entweder X' > K oder
2 < K.

Im ersten Fall wirdn
so bestimmt, dass

28, <2—K,
also
K<8,,

was gegen (2) streitet.
Im zweiten Fall be-
stimmt man n so, dass

a, < K—2,
also p K.
Nach (2) folgt
K—8,< K-2X,
also s<8,,

was der Definition von
S, widerstreitet.

Also ist
2=K.

Diese Methode wird
angewandt in der
Schrift

Quadratur der Parabel.

Um nun wenigstens einen Eindruck davon zu geben, wie das Verfahren
bei Archimedes angewandt wird, gebe ich eine Skizze der Ableitung der
Siitze iiber Oberfliche und Inhalt der Kugel, die den Hauptinhalt des
ersten Buches der Schrift Uber Kugel und Zylinder bildet. Der Grundge-
danke besteht darin, dass die Kugel mit zwei Umdrehungskérpern ver-
glichen wird, die hervorgebracht werden, wenn man einem grossten
Kreis der Kugel homothetische regelmissige Polygone I,, und C,, mit n
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Seiten (wo n ein Vielfaches von 4 ist) ein- bzw. umschreibt und nun bei-
de Polygone sich um eine Diagonale, die ein Durchmesser des Kreises
ist, drehen ldsst. Ich nenne die Oberflichen der entstehenden Kor-
per O(l,) und O(C,), die Inhalte S(I,)
und §(C,). Zuerst wird nun mit Hilfe von
Sitzen iiber die Oberfliche eines geraden
Kreiskegels und eines Kegelstumpfes, die in
dem vorhergehenden Teil der Schrift abge-
leitet worden sind, ein Ausdruck fiir O(1,)
gefunden, der sich mittels eines planime-
trischen Hilfssatzes in das Resultat umfor-
men lisst, dass O(I,) einem Kreis gleich ist,
dessen Radius die mittlere Proportionale zu
BE =p und AE =d ist (Fig. 1), und der
“folglich kleiner als ein Kreis @ mit dem Ra-
dius d ist. Also

ol,) <@Q.

Fig. 1. In den Kreis mit Durch-
messer AE = dist ein regelmés-
siges n-Eck mit Seite 4B = z,
eingeschrieben. BE = p. Ferner
ist 0@ = Z, die Seite des um-
geschriebenen regelmaéssigen n-

0(C,) ist einer anderen Kugel einbeschrieben.
Man findet in &#hnlicher Weise, dass O(C,)

Ecks, das zu dem eingeschrie-
benen homothetisch liegt. Um
dieses zweite n-Eck ist ein Kreis
mit Durchmesser OF = D be-
schrieben.

einem Kreis, dessen Radius die mittlere
Proportionale zu d und OF = D ist, gleich
und folglich grosser als der Kreis @ ist. Man
weiss also

oI,) < Q< 0(C,) .

Weiter kann mittels eines Postulats iiber zwei nach derselben Richtung
konkave Flichen, die einen gemeinsamen ebenen Rand haben und von
denen die eine die andre einschliesst, gefolgert werden, dass die Ober-
fliche O der Kugel der Ungleichheit

o,) <0 <0/,
geniigt. Archimedes zeigt nun weiter, das Verhiltnis

(0(C,), O(1,.))

kénne durch geeignete Wahl von n kleiner gemacht werden als das Ver-
héltnis der grosseren, a, von zwei beliebig gewihlten ungleichen geraden
Linien zu der kleineren, b, also kleiner als ein beliebiges Verhiltnis, das
grosser als 1ist. Dann kann der Automatismus der Kompressionsmethode
in der Verhéltnisform, den wir in seiner allgemeinen Formulierung ken-
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nen gelernt haben, in Wirkung treten, und man erhilt das gesuchte Resul-
tat in der Form

0=¢q.

Die Oberfliche der Kugel ist somit das vierfache der Fliche ihres grossten
Kreises.
Der Beweis der Behauptung

(0(C,), 0(1,)) < (a, b)

wird so gefiihrt: man zeigt erst, dass das Verhiltnis (0(C,), O(L ) das
doppelte des Verhiltnisses (Z,, z,) der Seiten CG = Z,, und 4B =z, von
C, und I, ist und konstruiert nun die mittlere Proportionale e zu ¢ und
b. Dann ist (a, b) das doppelte des Verhéltnisses (a, ). Friiher ist schon
bewiesen, dass man zu einem vorgegebenen Kreis die Zahln immer so be-
stimmen kann, dass

(Zy 2,) < beliebiges Verhiltnis, das > 1.

Man macht nun
(Zny 20) < (@, €)

(0(C,), 0(1,)) < (a, b).

In shnlicher Weise beweist Archimedes, das Volumen der Kugel sei gleich
.dem eines geraden Kreiskegels, dessen Grundfliche der Oberfliche der
Kugel gleich ist und der den Radius der Kugel zur Hohe hat.

Schliesslich werden die beiden Sétze noch in einem Porisma zusammen-
gefasst: Wenn man um eine Kugel einen geraden Kreiszylinder beschreibt,
ist die totale Oberfliche dieses Zylinders das Anderthalbfache der Kugel-
fliche und ebenso der Inhalt das Anderthalbfache des Kugelvolumens.
Die Uberlieferung besagt, Archimedes habe auf diesen Satz so grossen
Wert gelegt, dass er die Figur der Kugel mit dem sie umgebenden Zylin-
der auf seinem Grabstein eingemeisselt wiinschte, und dass es diese Figur
war, an welcher Cicero spiter sein Grab erkannte.

Was ich hier nun kurz skizziert habe, bildet in vollstindiger Aus-
fiihrung den Inhalt von dreizehn Propositionen des Werkes Uber Kugel
und Zylinder, dessen Lektiire fiir den heutigen Leser durch die griechische
Gewohnheit noch erschwert wird, alles in Worten zu sagen und nur in
soweit eine Zeichenschrift anzuwenden, dass ein einziges Mal ein Korper
durch einen Buchstaben bezeichnet wird. Man kann natiirlich, wie ich
das hier getan habe, die Beweisfiihrung mittels einer zu diesem Zweck
eingefithrten Symbolik kiirzen und das Ganze etwas iibersichtlicher ge-
stalten. Man kann damit aber nicht zu weit gehen, wenn man den Subtili-
titen der Eudoxischen Verhiltnislehre gerecht bleiben will. Es ist immer

und folgert
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wieder zu erwigen, dass eine Formel wie $7R3 fiir Archimedes einfach
sinnlos gewesen wire, da ja R im allgemeinen nicht durch eine Zahl aus-
gedriickt werden kann.

Am meisten staunt der heutige Leser, und wenn er die erforderliche
historische Einstellung nicht aufbringen kann, &rgert er sich sogar dar-
iiber, dass die doppelte Reductio ad absurdum jedesmal aufs neue in
voller Breite vorgefiihrt wird, als wire sie noch niemals vorgekommen.
In der Schrift Uber Kugel und Zylinder kommt sie erst zur Anwendung
bei der Ableitung der Oberflichen des Zylinders und des Kegels, dann
bei Oberfliche und Inhalt der Kugel und schliesslich noch einmal bei
dem Volumen des Kugelsektors und der Oberfliche der Kugelkalotte. Der
Gedankengang ist jedesmal genau derselbe. Es trifft darum auch nicht
zu, wenn man behauptet, die griechische Mathematik habe keine allge-
meinen Methoden besessen, oder etwa die griechische Mathematik mit
Handarbeit, die moderne aber mit maschineller Produktion vergleicht.
Der griechische Betrieb ist auch eine Fabrik, aber ihre Betriebsfithrung
ist noch nicht rationalisiert.

Ich behandle jetzt die einzige bei Archimedes vorkommende Anwen-
dung der Approximationsmethode, nimlich die Quadratur der Parabel.
Es sei (Fig. 2) ACB ein Parabelsegment mit dem Scheitel ¢' und der
Grundlinie AB. Man bildet das Dreieck ABC, dessen Fliche wir mit
4 bezeichnen, und schreibt in jedes der beiden entstehenden Segmente
aufs neue derartige Dreiecke ein. Ist G' der Mittelpunkt von AC und
EGH zu CD parallel, dann zeigt man EG = 1GH, also

C NAEC = }ANAHC = 3 AABC,

£ so dass
F AAEC+ ABFC = }A.

So fortfahrend bekommt man die Folge

Vi| 1A ! 4
3 4 ) 42 3 sy
4 H D B die in der allgemeinen Formulierung des Ver-
Fig. 2. ACB ist ein Parabel- fahrens durch a,, a,, ... bezeichnet wurde.
segment mit GrundlinieABund  Qffenbar ist
Axe CD. Durch die Mitte @ von 1 1
AC geht EGH parallel zu CD. S, = A+ZA+ .. .+4—nd < X,

wo 2 die Flidche des Parabelsegmentes bedeutet, und es ist leicht, wie
es Archimedes ausdriicklich tut, zu beweisen, dass die Differenz X —S,,
beliebig klein gemacht werden kann.
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Jetzt ist nur noch die verlangte Grosse K zu ermitteln. Archimedes
zeigt
11 4

1 1
A+- . F+=4 —Ad=-A=K.
+4A+ +4” +3 4" 3

Durch Anwendung der doppelten Reductio ad absurdum ergibt sich jetzt
=K.

Bei dem Studium der Archimedischen Abhandlungen, die sich mit Inte-
grationsproblemen befassen, bleibt bei aller Bewunderung fiir die Feinheit
und Strenge, mit der alles gemacht wird, eine Frage unbeantwortet. Man
sieht, dass alles nachtriglich so bewiesen werden kann, aber man hat
fortwihrend die deutliche Empfindung, es kénne doch unmdoglich so ent-
deckt worden sein.

Nun ist es noch in unserer Zeit ein typisches Merkmal des mathemati-
schen Stiles, dass der Autor sich selten geneigt zeigt, dem Wunsche des
Lesers, nicht nur den Beweis seiner Behauptungen kennenzulernen, son-
dern auch Einblick darin zu bekommen, wie er sie gefunden hat, Rech-
nung zu tragen. Er meint, seine Schuldigkeit getan zu haben, wenn alles
logisch gut klappt, und er erkennt gar keine Verpflichtung an, den Leser
in die vielleicht gar nicht logische Art und Weise einzuweihen, wie er
seine Erfindungen gemacht, d. h. oft erfithlt oder erraten hat. In man-
chen Fillen, nimlich wenn seine Funde einer ihm selbst ritselhaften In-
tuition entspringen, wire ihm dies sogar unmdglich. Diese wesentliche
Eigentiimlichkeit der rein-mathematischen Produktion hat, wie die reine
Mathematik selber, ihren Ursprung bei den Griechen, deren Abhandlungen
aber das genannte Merkmal in noch viel schrofferer Form zeigen, als wir
es jetzt gewohnt sind. Es gibt nichts Unmenschlicheres und Unbarmherzi-
geres als ein griechisches mathematisches Werk: eine Proposition folgt
der anderen, ohne dass jemals etwas iiber Ursprung, Zusammenhang
und Zweck des Ganzen gesagt wird. Man bekommt nicht die mindeste
Fihlung mit dem Autor, dessen Personlichkeit sich hinter der glatten
Fassade seines Baues vollkommen versteckt.

Wir wiren denn auch im besonderen génzlich mit der Entstehungsge-
schichte der Archimedischen Sitze iiber Quadratur und Kubatur unbe-
kannt geblieben, wenn er sich nicht einmal herabgelassen hitte, einem
Freunde dariiber etwas schriftlich mitzuteilen, und wenn nicht ein gliick-
licher Zufall es so gefiigt hitte, dass die Schrift, in der er das getan hat,
nachdem Jahrhunderte lang nur die Uberlieferung ihres Bestehens leben-
dig geblieben war, im Jahre 1906 wieder aufgefunden wurde und entziffert

Nordisk Matematisk Tidskrift. — 2
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werden konnte. Es ist die an Eratosthenes gerichtete Abhandlung iiber
die Methode der mechanischen Theoreme, kurz Ephodos genannt, deren
Entdeckung und Publikation durch Heiberg ein grosses Ereignis in der Ma-
thematikgeschichte bildet. Seine Aufmerksamkeit war durch eine Notiz in
einem bibliographischen Werk iiber ein Palimpsest in Jerusalem mit ma-
thematischem Inhalt geweckt worden; einige dort mitgeteilte Zeilen lies-
sen ihn sofort vermuten, es handle sich um ein Archimedisches Werk. Es
ergab sich, dass man es mit einem Manuskript zu tun hatte, das eine
Anzahl Schriften des Archimedes enthielt, die in einer guten Hand des
10. Jahrhunderts kopiert waren. Einige Jahrhunderte spiter hatte man
versucht, gliicklicherweise nur teilweise mit Erfolg, das geschriebene
wiederauszuwischen, um Platz fiir ein Euchologion zu bekommen. Mit
Ausnahme einiger hoffnungslos zerstorter Seiten war der urspriingliche
Text mit Hilfe einer Lupe immer noch lesbar. Heiberg konnte so ausser
einigen bekannten Schriften ein fehlendes Stiick des 2. Buches der Schrift
iber schwimmende Korper wiederfinden und ausserdem die ganze
fehlende Ephodos.

Die Veroffentlichung der Ephodos im Jahre 1907 hat wie eine Offen-
barung gewirkt. Jedermann war immer iiberzeugt gewesen, Archi-
medes konne seine Sitze nicht so gefunden haben, wie er sie beweist,
aber niemand hatte jemals geahnt, was die Schrift unwiderlegbar ent-
hiillte, ndmlich erstens, dass bei der Entdeckung der Resultate, die in
den Werken Uber Kugel und Zylinder und Quadratur der Parabel mit-
geteilt werden, Theoreme aus der Mechanik eine wesentliche Rolle ge-
spielt hatten, und zweitens, dass dabei eine Auffassung der Konstitution
eines geometrischen Gebildes zu Grunde gelegen hatte, die als logisch
unhaltbar schon lingst aus der offiziellen griechischen Mathematik ver-
bannt war, und die in seinen publizierten Werken zu benutzen Archime-
des nie eingefallen wire. Die angewandten mechanischen Theoreme sind
der Hebelsatz und gewisse Sdtze iiber Schwerpunkte ebener oder kérper-
licher Figuren, die offiziell verpénte Auffassung aber nichts anderes als
der in den ilteren Phasen der griechischen Mathematik wahrscheinlich
als vollgiiltig angesehene Gedanke, eine Strecke bestehe aus unendlich
vielen aneinander gereihten ausdehnungslosen Punkten, eine ebene Figur
sei die Summe von unendlich vielen breitelosen Strecken, ein Korper
ebenso die Summe seiner ebenen Durchschnitte mit einer variablen
Ebene von konstanter Stellung, allgemein, jedes geometrische Gebilde
einer bestimmten Dimensionenzahl konne als Anhdufung von un-
endlich vielen Gebilden niedrigerer Dimensionenzahl, den spiter soge-
nannten Indivisibeln, betrachtet werden. Es war dies ein ebenso falscher
wie fruchtbarer Gedanke, dem, wie man immer schon gewusst hat, die
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Entwicklung der Mathematik im 17. Jahrhundert sehr viel zu verdanken
gehabt hat, von dem sich aber jetzt ergab, dass er auch der griechischen
Mathematik alsheuristisches Hilfsmittel wesentliche Dienste geleistet hatte.

Ich will jetzt zeigen, wie das Verfahren angewandt wird, und wéhle
dazu dieselben Beispiele, die zur Illustration der strengen Behandlungs-
weise gedient haben, also die Kugel und die Parabel. Der Rauminhalt
der Kugel wird in folgender Weise bestimmt.

Es sei (Fig. 3) OCAD ein grosster Kugelkreis. Der Durchmesser 04 wird
bis B verlingert, so dass OB = OA. Die Ebene durch CD senkrecht zur
Zeichenebene schneidet die Kugel in einem Kreis mit dem Durchmes-
ser CD, und iiber diesem wird der Kegel mit der Spitze O konstruiert. Der
Mantel des Kegels wird bis zur Ebene ausgedehnt, die die Kugel in 4
beriihrt, und schneidet diese in einem Kreis mit dem Durchmesser EF.
Uber diesem Kreis wird ein Zylinder errichtet, dessen Hohe der Durch-
messer AO ist. Eine variable Ebene senkrecht zu OA4 schneide die drei
Korper in Kreisen mit den Radien RP, RM, RK. Es bedeuten im fol-
genden

T(a): ein Quadrat mit der Seite a,
O(a, b): ein Rechteck mit den Seiten @ und b,
K(a): ein Kreis mit dem Durchmesser a.
Es ergibt sich: P E

T(RK)+T(RM) = T(OR)+T(RM)
— T(OM) = O(OR, 0A)

ul C
o — O(OR, PR), /Z
(T(RK)+T(RM), T(PR)) B Oy |\R |Z 4
— (O(OR, PR), T(PR)) = (OR, PR) \ L
und also auch N%
(K(KL)+K(MN), K(PQ))
= (OR, PR) = (OR, OA) .
F

Archimedes fasst nun die Strecke BA g5 3. An dom gloicharmigen Hebel AB
als Wagebalken auf, der in O unter- mit Unterstiitzungspunkt O halt der Zylin-
stiitzt ist. Br denkt sich die beiden der mit Grundfliche EF und Héhe OA
Kreise, in denen die variable Ebene die Kugel mit Durchmesser 04 und den
den Kegel und die Kugel schneidet, Kegel OEF’if:sgg:}?glevﬁcﬁ:ﬁgehmgt’
mit ihren Mittelpunkten in B aufge-

héingt und ldsst den Schnittkreis des Zylinders an seiner Stelle (in loco).
Dann hilt nach dem Hebelsatz dieser Kreis in loco die beiden anderen

2%
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Kreise in B im Gleichgewicht. Also hilt der Zylinder in loco Kegel und
Kugel in B im Gleichgewicht. Da der Schwerpunkt des Zylinders in
7 liegt und OB = 2 - 0Z ist, folgt:

Kegel OEF+XKugel = } Zylinder = § Kegel OEF ,
also
Kugel = } Kegel OEF = 4 Kegel OCD .

Archimedes erzihlt, erst nachdem er diesen Satz gefunden habe (er macht
ausdriicklich darauf aufmerksam, dass die Ableitung kein Beweis ist),
sei ihm der Gedanke gekommen, es konne bei der Kugel eine &hnliche
Beziehung zwischen Oberfliche und Inhalt bestehen wie bei dem Kreis
zwischen Umfang und Fliche. Der Kreis ist einem Dreieck gleich, das
den Umfang zur Grundlinie und den Radius zur Hoéhe hat. Wenn in
shnlicher Weise die Kugel einem Kegel gleich wire, miisste die Grund-
fliche dieses Kegels das Vierfache eines grossten Kugelkreises sein, und
so gross wire dann auch die Kugelflidche. Dieser Satz, der in der offiziellen
Publikation dem Satz iiber den Rauminhalt vorangeht und zu dessen
Begriindung dient, ist also spéter gefunden als dieser. Der Unterschied
zwischen Entdecken und Beweisen ldsst sich kaum eindrucksvoller
illustrieren.

Ich behandle jetzt nach dieser Methode die Parabelquadratur (Fig. 4).
Es sei T' der Scheitel eines Parabelsegments 7'A B und CD eine beliebige
Ordinate, die verlingert die Tangente der Parabel in B in £ schneide. Es
sei weiter AO parallel zu CD und OK = OB. Jetzt gilt nach einem ele-
mentaren Satz der antiken Lehre von den Kegelschnitten

(CD, ED) = (AD, AB), also auch (CD, ED) = (OE, OB),

also
(CD, ED) = (OE, OK).

Man denke sich nun CD nach dem Endpunkte K des gleicharmigen He-
bels KB mit dem Drehpunkt O versetzt. Dann halten CD in K und ED in
loco einander im Gleichgewicht. Macht man es so mit jeder Ordinate, dann
hiingt schliesslich das ganze Parabelsegment, als Summe seiner Linien
betrachtet, in K und hilt dort das Dreieck BOA im Gleichgewicht. Nun
liege der Schwerpunkt dieses Dreiecks in §; das ganze Dreieck kann also
als an F' hingend betrachtet werden, wenn OF = }0B. Da OK = 3 - OF,
folgt jetzt nach dem Hebelsatz:

Parabelsegment = + AOAB = 5 A\TAB,

wodurch die Parabelquadratur gefunden ist.
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Das namliche Resultat wird K
in der Schrift Quadratur der Pa-
rabel zweimal ganz streng be-
wiesen, ohne dass das geiibte
heuristische Verfahren auch nur

mit einem Worte gestreift wiir- 0
de, und zwar das eine Mal ohne, E
das andere mit Benutzung des F
Hebels.
. . N

Bei dem Studium der Epho- c R
dos erhebt sich die Frage, aus
welchem Grunde Archimedes A D B

eigentlich den in dieser Schrift  gj, 4. 47B ist ein Parabelbogen mit Scheitel 7.
gegebenen Ableitungen so aus- In B wird die Parabel von OB beriihrt. KOB ist

driicklich den Rang echter Be- eingleicharmiger Hebel mit Unterstiitzungspunkt
weise abspricht; diese Frage 0. Das Paf'abelsegme.nt, auf.gehia',ngt in K, halt
. . . . das Dreieck OAB in loco im Gleichgewicht.

wird in der historisch-mathe-

matischen Literatur bisweilen

so beantwortet, dass man darauf hinweist, in diesen Ableitungen werde
von den aus der empirischen Sinnenwelt entnommenen Begriffen Wage-
balken, Unterstiitzungspunkt, Schwerpunkt u. s. w. Gebrauch gemacht,
und das widerstreite der strengen Auffassung von der ideellen Natur
der mathematischen Objekte. Diese Auffassung muss aus folgenden Griin-
den abgewiesen werden:

1) In der bei seinen Lebzeiten offiziell publizierten Schrift Quadratur
der Parabel, fir die er also die volle wissenschaftliche Verantwortung
itbernahm, wendet Archimedes ebenfalls die baryzentrische Methode an,
und diese kann also an und fiir sich seiner Meinung nach der mathema-
tischen Strenge keinen Abbruch getan haben.

2) Die Lehre vom Hebel wird in einer speziellen Schrift Gleichgewicht
ebener Figuren axiomatisch fundiert und kann also als ein Zweig der
reinen Mathematik angesehen werden.

Diese Uberlegung weist uns nun aber auch den Weg, auf dem wir das
Motiv der Verwerfung der Ephodos-Methode zu suchen haben; es muss
in einem Merkmal der angewandten Beweisfithrung liegen, das 1) in kei-
nem der offiziell publizierten Werke vorkommt und 2) in der reinen Ma-
thematik nicht haltbar ist. Als ein solches Merkmal bietet sich aber aus-
schliesslich die Verwendung der Indivisibeln dar, und diese, nicht die An-
wendung von Begriffen und Sitzen der theoretischen Mechanik, ist der
Anlass dazu gewesen, dass alle in der Ephodos kurz und leicht gefundenen
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Resultate in den Schriften durch die komplizierten Beweise mit Hilfe der
doppelten Reductio ad absurdum unterbaut sind.

Dieser an sich schon einleuchtende Schluss wird in wirksamster Weise
durch folgende Uberlegung unterstiitzt. Der Schrift Uber Kugel und Zy-
linder liegen einige Axiome zu Grunde, unter denen als fiinftes die folgende
Aussage vorkommt:

Von zwei ungleichen Linien, ungleichen Oberflichen, ungleichen Inhalten
dibertrifft die (der) grossere die (den) kleinere (kleinerem) um eine solche
Grosse, die, hinreichend oft 2w sich selbst addiert, jede beliebig vorgegebene
Grésse von der Art der verglichenen tbertreffen kann.

Andererseits haben wir schon das Eudoxische Axiom kennen gelernt,
das zwei Grossen der Forderung unterwirft, jede von beiden konne so oft
zu sich selbst addiert werden, dass das Resultat die andere iibertrifft. Es
erhebt sich hier zuerst die Frage, in welchem Verhéltnis das von Archi-
medes formulierte Axiom zu dem Eudoxischen steht. Diese Frage wird in
der Literatur in der Regel so beantwortet, dass man die Archimedische
Forderung einfach als eine Wiederholung der Eudoxischen auffasst und
darum entweder vom Eudoxischen oder vom Archimedischen Axiom re-
det, auch wohl dariiber streitet, welche Benennung wohl den Vorzug
verdiene. Nun muss es aber als dusserst unwahrscheinlich betrachtet
werden, dass Archimedes neben den anderen originellen Axiomen der
Schrift Uber Kugel und Zylinder auch noch einmal, und zwar ausfiihrlich
und nachdriicklich, ein bereits von Eudoxos ausgesprochenes und allge-
mein bekanntes Axiom einfach aufs neue formuliert hitte. Tatsdchlich
ist dieses Axiom auch keine Wiederholung des Eudoxischen, sondern
eine hochst notwendige Erginzung desselben; es sagt aus, dass wenn
zwei Grossen gleichartig sind (ein Verhéltnis zu einander haben), auch
ihre Differenz mit ihnen gleichartig ist, was Euklid in den Beweisen der
Verhiltnislehre zwar benutzt, aber nirgendwo postuliert hatte; offenbar
ist ihm der Gedanke, man koénne es bezweifeln, niemals gekommen.
Archimedes aber sieht ein, diese Aussage kénne nicht nur bezweifelt
werden, sondern sie werde in der Indivisibelnlehre sogar tatséchlich ver-
neint: wenn nimlich ein Korper die Summe paralleler Durchschnitte ist,
kann jeder Durchschnitt als die Differenz zweier Korper aufgefasst wer-
den, ist dann aber mit keinem dieser Korper gleichartig.

Man braucht sich also gar nicht dariiber zu streiten, ob man Kudoxi-
sches oder Archimedisches Axiom sagen soll, denn es handelt sich um
zwei verschiedene Aussagen, von denen die letztere den sehr bestimmten
Zweck hat, den Gedanken der Indivisibeln oder der geometrischen Ato-
mistik a limine auszuschliessen.

Dass Archimedes in der Schrift Gleichgewicht ebener Figuren einen Zweig
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der Mechanik, niamlich die Statik, mathematisch zu behandeln gelehrt
hatte, mag, wie sich gezeigt hat, fiir sein mathematisches Werk eine
betrichtliche Bedeutung besitzen. Von noch viel grosserer und noch prin-
zipiellerer Wichtigkeit ist es, wenn wir es vom naturwissenschaftlichen
Standpunkt aus betrachten. Er zeigte hier namlich die Méglichkeit, ein
Stiick Naturwissenschaft rein axiomatisch zu fundieren und es auf der
dadurch gewonnenen Grundlage in vollkommner Strenge aufzubauen. Er
verhalf dadurch der pythagoreisch-platonischen Uberzeugung, die Struk-
tur der physischen Welt sei von mathematischer Natur und die Mathe-
matik also ein wesentliches Element der Physik, zu neuem Ansehen
und eréffnete der Mathematisierung der Naturwissenschaft den Weg, auf
dem sie in spiteren Jahrhunderten ihre grossten Triumphe feiern sollte.

Nicht weniger wichtig war es aus dem némlichen Gesichtspunkte, dass
er auch die Hydrostatik der mathematischen Behandlung zuginglich
machte. In dem ersten Buche der Schrift Uber schwimmende Korper
leitet er das noch immer nach ihm benannte hydrostatische Gesetz vom
Auftrieb aus vorangestellten Axiomen ab, und in dem zweiten gibt er
neue Proben seiner unerhérten mathematischen Genialitit durch einfach
staunenswerte Untersuchungen iiber die stabilen Gleichgewichtszusténde
schwimmender Rotationsparaboloide. Diese Untersuchungen gehoren zu
den schonsten Erzeugnissen des Archimedischen Genius.

Archimedes hat in der Antike keine Nachfolger gehabt. Er ist sogar
selbst ziemlich weitgehend in Vergessenheit geraten, und eigentlich
hat sich nur die Kunde von gewissen technischen Errungenschaften,
von seinem Planetarium, seiner Wasserorgel, von einem grossen von ihm
entworfenen Schiff und vor allem von den ballistischen Werkzeugen und
Brennspiegeln, mit denen er, wie die Legende berichtet, im zweiten pu-
nischen Krieg seine Vaterstadt gegen die Rémer verteidigen half, erhalten.
Das spitere Altertum kennt ihn nur noch als Mechaniker, und im friihen
Mittelalter ist es nicht anders gewesen. Seine Schriften haben aber in der
Wiederbelebung der Wissenschaft im 16. und 17. Jahrhundert auf ho-
herer Stufe das nimliche geleistet wie die Elemente des Euklid auf ele-
mentarem Niveau: sie erdffneten den westeuropiischen Gelehrten die
Wunderwelt der griechischen Mathematik und, indem sie ihnen un-
geahnte Moglichkeiten erschlossen, gaben sie ihnen gleichzeitig den méch-
tigen Ansporn, erst die Hohe des antiken Konnens zu erreichen und
dann in eigener Forschung dariiber hinaus zu gehen.

Archimedes gehért nunmehr ganz der Geschichte an; in dieser wird
er aber ewig fortleben als einer der grossen antiken Begriinder der mo-
dernen Mathematik.



NAGOT OM LABORATIV
METODIK VID MATEMATIKUNDERVISNINGEN

FREDRIK EHRNST

Jag hade for flera ar sedan tillfélle att ahora en lektion, under vilken
lsiraren genomgick division i allméinna brak. Han hade tidigare inlart in-
vertering, och nu deklarerade han: Man skall multiplicera med divisorns
inverterade viirde. Den ene efter den andre av eleverna fick st& upp och
rabbla upp denna ramsa, och sedan fick de triningsrikna. Denne lérare
var mycket uppskattad av forildrarna, dérfor att han bibringade barnen
fasta kunskaper. Undervisningen utmirktes av ordning, reda och disci-
plin. Strax efterat fick jag folja en annan larares framstillning av samma
omrade. Denne borjade med nagra huvudrikningsuppgifter av foljande
typ: 1} kg kaffe kostade 9 kr. Vad kostade da 1 kg ? Sedan barnen limnat
sina svar, fick de redogora for hur de kommit fram till sina resultat. En
hade forst riknat ut, att kg kostade 3 kr, den andre insig, att 3 kg maste
kosta 18 kr, och den tredje forvandlade forst 13 till decimalbrak. De
olika metoderna gavs namn, t. ex. Petterssons metod och Karlssons metod.
Q4 diskuterades vilkens sitt som var bist. Det hela byggdes upp succes-
sivt och forde si smaningom fram till divisionstekniken vid allménna
brak. Undervisningen priglades av arbetsgliddje och trivsel. Det tog emel-
Jertid sin tid. Da jag fragade liraren, om man kunde begira, att alla ele-
verna skulle fatta inneborden av division med allméinna brék, fick jag
till svar, att han varngjd, om ungefér tre fjardedelar av klassen var aktiva
och medverkade vid denna uppbyggnadsprocess. I alla héndelser fick
man ej halla pa for linge med den utan rétt snart overgd till fasta normer
och regler. Minnet blev annars belamrat med olika metoder att begagna
vid de fran varandra ritt skilda uppgifter, som férekom. Barnen behova,
papekades det, nigra fasta linjer att ga efter. De acceptera lirarens auk-
toritet, och forr eller senare ér det endast regeln, som star kvar, vigen
fram till den &r bortglomd.

Dock haller jag fore, att det &r ménga viirdefulla moment, som gar
forlorade, om man ej strivar efter att fi elevernas medverkan vid inlér-
ningsprocessen. Kunskaperna skall e] mélas pa utan helst vixa till ini-
fran. Och detta giller pa alla stadier. Man skall emellertid ha klart for

[24]
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sig det mal man strévar efter att uppna pa den tillmétta tiden. Giiller det
undervisningen pa en teknisk skola, s& ar det vil de matematiska kun-
skaperna, som &r frimsta malet. Bleverna skall lira sig hantera vissa
hjalpmedel, logaritmer, derivator, integraler, fér att kunna 16sa uppgif-
ter, som de stalls infér i andra émnen sasom i fysik, mekanik m.fl. Vid
vara allméinna liroverk har matematikundervisningen dessutom som vik-
tigt mal att frimja elevernas allménna intellektuella utveckling. Man
ger dem uppgifter, dér de t3 soka sig fram pa olika vigar. Deras formaga
av initiativ, att arbeta pa egen hand och att mer eller mindre sjélvstén-
digt genomfora en undersdkning skall befrimjas.

Men mangen gang glommer eller férsummar man denna malsdttning
vid undervisningen. Léraren dominerar i alltfor hog grad, da han medde-
lar kunskaperna. Satserna serveras firdiglagade i elegant skick. Ibland
efter en forelisning i matematik vid hogskolan onskade mina kamrater
och jag, att vi hade fatt ta del av de tankeprocesser, associationer m. m.,
som hade fort fram till satsen i dess slutliga skick. Vi onskade fa en in-
blick i sjilva forskningsarbetet. Detsamma giller mangen ging inom
ckolans virld. Man bér ej ha for brattom att komma fram till »formeln« i
dess generella slutliga form utan i stillet dgna viss tid &t forberedande
speciella problem med givna talvirden. Eleverna skall vinjas att sjilva
gora de successiva generaliseringar, som krivs. Pa s sitt blir lektionen en
undersékning, som i viss mén paminner om gangen vid laborationerna i
fysik. Léraren endast ger smé impulser, och det ar eleverna, som verkar.

Jag vill ge ett exempel pa hur en sédan undersokning kan tillga. Det &r
en forsta realring, och man har dgnat nagon tid &t repetition av algebra
och geometri. Vi borjar med en triangel A BC, dér vinkeln 4 &r 90° och B ar
60°. Jag ber eleverna berékna vinkeln » mellan bissektriserna till vinklarna
B och C. Sedan detta ir gjort, ber jag dem gora samma berikning, om vink-
eln B r 55° och fragar sedan: Vad skall vi nu gora? Flera ér beredda att
fortsitta med vinkeln B = 50° etc., men néigot ljushuvud vill kanske
angripa det generellt och sitta vinkeln B = B. Sedan man funnit, att
» — 135° oberoende av f, fragar jag dem, om nagon har nagot uppslag
till vidare undersokning. De forsta nog inte innebérden i fragan, men jag
foreslar da sjalv en motsvarande understkning, om vinkeln 4 = 60°.
Sedan kommer av sig sjilvt problemet, om vinkeln 4 ir exempelvis 120°.
Att ur dessa tre virden soka finna ut lagsambandet kan vara lockande,
men det ir inte litt for flertalet elever pa detta stadium att genomfora
den generella undersskningen dé vinkeln 4 ir godtycklig (= «) och dess-
utom vinkeln B ir variabel (= B). Den formel man kommer fram till,

(2.9
v = 900+TZ’ 4r ju intressant, men man bor papeka for eleverna, att de
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inte ha nagon stérre anvindning av den vid problemlésning. Det dr inte
formeln i och for sig utan undersékningen, som &r av virde. En eventuell
fortsittning av uppgiften kan gilla beréikningen av vinkeln mellan bissek-
triserna till yttervinklarna vid B och C. Sedan later jag « g& mot noll,
linjerna bli parallella, och man kommer fram till satsen, att vinkeln mellan
bissektriserna till ett par motstillda vinklar (vid parallella linjer) dr 90°.

Ett annat exempel dr foljande: I stillet for att ge eleverna definitionen
pé ett prisma tar jag med till klassen pa en bricka en del stereometriska
kroppar: tre-, fyr- och femsidiga prismor, nagra rita, nagra sneda, en del
parallellepipeder, raka och sneda pyramider, parallellt och icke parallellt
stympade pyramider, reguljira polyedrar, cylindrar och koner. Jag ber
nagra elever i tur och ordning sortera ut de kroppar, som enligt deras upp-
fattning dro prismor. Slutligen gér jag sjalv uppdelningen och ber ele-
verna soka formulera nagon definition pa prismor. Hir giller det att ur
ett heterogent material finna ut de visentliga gemensamma egenskaper,
som tillkomma vissa medlemmar i mingden. Jag vill p4 detta séitt upp-
6va elevernas formaga att klassificera.

I véara géngse lirobdcker finns manga uppslag till liknande diskussio-
ner och undersokningar. Det géller endast att tillvarataga dem. Storsta
hindret att i storre utstrickning ordna undervisningen pé detta sitt dr
vél att liraren har for brattom — han skall hinna med »kursen« —. Han
drivs av en kénsla att lektionen blir effektiv endast om han far verka och
lara bort s& mycket som mdojligt. Eleverna skall kunna de metoder han
lart dem till vissa typexempel. Detsamma géller for 6vrigt och kanske i
dnnu storre utstrickning inom geometrien. Eleverna skall enligt som-
liga ldrare i framsta rummet sikert behéirska bevisen for vissa satser.
Samma motsatsforhallande, som hir nimnts rérande formerna for under-
visningen i matematik, géller f. 6. i andra dmnen t. ex. kristendom, dir
ytterligheterna utgoras av »katekesplugg« och »fri diskussion 6ver religio-
nens probleme.

Till slut vill jag framhalla, att det nog 4r ménga matematiklirare, som
var och en pa sitt hall provar sig fram pa liknande vigar, som jag ovan
antytt. Det faller sig emellertid s& svart att orda om det, och &nnu min-
dre benégen dr man att skriva om det. Men man bor ej draga sig for att
delgiva kolleger erfarenheter och ron fran sin egen undervisning.

Det skulle vara intressant att f& reda péa olika forsék och strévanden, som gjorts i mate-
matikundervisningen for att f& den mera intressevéickande for eleverna. NMT :s lisare éro
valkomna att sénda in bidrag, som belysa sddana pedagogiska fragor.

Anm. fran red.

vt



MONTE CARLO-METODEN*

GERMUND DAHLQUIST

1. Inledning. T rapporter om verksamheten vid amerikanska matema-
tikmaskiner har det ofta ndmnts, att problem behandlats med en ny
teknik med det fantasieggande namnet »Monte Carlo-metoden«. Den inne-
bér, att man konstruerar et hasardspel, vari medelvdrdet for en eller flera
storheter satisfierar en given ekvation, genomfor spelet ett stort antal ganger
och wppskattar de sokta storheterna med traditionella statistiska metoder.

Metoden har tydligen i och for sig ingenting med matematikmaskiner
att gora, mer in att den ofta kriver ett arbete av saddan omfattning, att
sidana maskiner &r nodvindiga. Den leder ocksd vanligen till enkla
rikneprogram, vilket dr en stor fordel i samband med matematikma-
skiner. Nagra statistiker har forargat sig 6ver det nya namnet och pé-
pekat, att metoden #r identisk med ett forfarande, som linge anvints
for studium av problem inom sannolikhetskalkylen, bl. a. under beteck-
ningen »artificial sampling«. Fordelningen av »Student’s ¢« erholls t. ex.
forst pa detta sitt. Den kinde engelske statistikern Karl Pearson
gjorde talrika tillimpningar av metoden fér studium av fordelningar i
sadana fall, da analytiska och numeriska metoder blev obekvima. Det
var for dessa indamal, som hans elev Tippett forfirdigade en mycket
anvind tabell 6ver slumpvisa tal (prandom numbers«), som innehaller
siffror, som kan betraktas som oberoende observationer av en stokastisk
variabel, som med lika stora sannolikheter antar vart och ett av virdena
0,1,2, ... 9. Senare har Kendall och Babington Smith [12] gjort sa-
dana tabeller av liknande anledning.

Kanske har nagon lisare resignerat vid ett forsck att berikna sanno-
likheten, att favoritpatiensen skall g& ut. Kombinatoriska formler blir

* Nordisk Matematisk Tidskrift bringer her en artikkel som i vanskelighetsgrad ligger
til dels betydelig over det vanlige niva. Nar redaksjonen likevel har funnet det riktig &
ta inn artikkelen, skyldes det at den gir en verdifull oversikt over et nytt og viktig felt
av matematikken, og et felt hvor en samlet fremstilling hittil har veert savnet.

Vi haper at de fleste lesere ihvertfall kan studere visse partier av artikkelen med utbytte.
Redaksjonen mener at det av og til kan vere berettiget & bringe litt vanskeligere stoff,
nar en bare — som i dette tilfelle — passer pa at hvert hefte ogsa inneholder tilstrekkelig
av elementeere artikler.

[27]



28 GERMUND DAHLQUIST

lsitt mycket tunga, och det kan vara svart att se, hur man bér approxi-
mera. Det enklaste (och roligaste) sittet att fa resultatet med t. ex.
109, noggrannhet #r att ligga patiensen kanske négra hundra génger
och fora statistik 6ver resultatet, om sannolikheten inte &r alltfor liten.
Detta #r pa sitt och vis en naiv tillimpning av Monte Carlo-metoden,
men i likhet med de andra exemplen inbjuder redan problemets ursprung-
liga, formulering till denna ansats. Nagot spel behover inte konstrueras.

Det finns alltsd problem, som kan formuleras bade matematiskt och i
hasardspelsterminologi, dér en direkt statistisk 1osning &r vird att be-
akta. Inom matematiska statistiken finns en stor klass av matematiska
problem i témligen generell form, t. ex. multipelintegraler, linjira ekva-
tionssystem, rand- och egenvirdesproblem vid differentialekvationer,
andra typer av funktionalekvationer. Fragan ér nu: nir &r den statistiska
ansatsen nagot att ténka pa vid numeriska problem? Idén att denna
fraga bor studeras systematiskt, &r troligen av betydligt senare datum
an de nimnda exemplen. I detta sammanhang bor bl. a. v. Neumann,
Ulam och Wilks nimnas!). Tyvirr maste man nog siga, att tillimp-
ningarna pa de klassiska numeriska problemstillningarna hittills inte
varit sirskilt framgangsrika. Traditionella numeriska metoder sasom
t. ex. elimination eller nigon typ av iteration, ger vanligen mycket storre
noggrannhet med samma arbete. Med undantag for multipelintegral-
problemen kiinner forfattaren &nnu inte nagot exempel p&4 motsatsen.

Trots detta fortjinar metoden att diskuteras. Ménga viktiga speciella
numeriska problem innehaller statistiska element (t. ex. i atomfysiken,
operationsforskningen, trafikteorin eller genetiken), och fér sédana pro-
blem ger Monte Carlo-metoden ibland en direkt angreppspunkt, som
man kan siitta i gang arbete med och #ven na preliminira resultat med,
innan man hunnit utveckla den limpliga formen fér problemet till be-
handling med approximationsmetoder av konventionell typ. (Jamfor
patiensproblemet!) Man bér emellertid minnas, att den statistiska formu-
leringen inte #ir entydigt bestdimd av problemet, och vi skall se i avsnitt
3 och 7, att man kan vinna mycket genom att modifiera den nérmast till
hands liggande ansatsen.

En kombination av Monte Carlo-metoden med traditionella metoder
har med framgang provats av Kahn [10, 11, 14] m. fl. pa atomfysikali-
ska problem, och de mojligheter, som dppnar sig hérigenom har &nnu inte
belysts helt. Vidare dr det inte uteslutet, att man kan f& resultat av
typen: »For invertering av stora matriser av den eller den speciella struk-
turen, som dr vanlig i den eller den teorin finns det en Monte Carlo-

1 Utvecklingen av teorin for stokastiska processer pa senare ar har troligen varit en av
inspirationskallorna.
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metod, som #r overligsen alla traditionella eliminations- och iterations-
forfaranden, nir man endast kriver en noggrannhet av négra procent,
som dir &r tillricklig.« Men sikerstillda resultat av den karaktéren sak-
nas én sa lange.

2. Bestimda integraler. Vi skall forst betrakta ett enkelt exempel.
L&t  och y vara tva oberoende observationer av en stokastisk variabel,
rektangulirfordelad i intervallet (0, 1). Sannolikheten att x2+y? <1 &r
da tydligen lika med arean av den del av enhetscirkeln, som ligger i forsta
kvadranten, dvs. k. Talet 7 kan alltsd uppskattas med fcljande »spel«:
Tag t. ex. fyra pa varandra foljande siffror i Kendall-Smiths tabeller,
och 14t dem vara fyra decimaler i #. Vi ndjer oss med den noggrannheten.
For y tages de fyra foljande siffrorna. Rikna ut 2?4y Upprepa detta
med N punkter (z, y). Berikna relativa frekvensen f av punkter, for vilka
x24-y? < 1, och multiplicera denna med 4.

Metoden har ett forsumbart systematiskt fel genom avrundningen. (Detta
minskas f. 6. ytterligare, om man korrigerar z och y med 4 - 10— fore
bersdkningen av x2-y%) Betydligt viktigare &r den relativa medelav-
ljiﬂm—l: Med t. ex. 100

N 9YN

punkter far man alltsd ungefir 5% relativ medelavvikelse. Om man i
stillet drar systematiska stickprov genom att dela in enhetskvadraten i
forsta kvadranten i 10 x 10 kvadratiska rutor, s& kommer medelpunk-
terna till 79 av rutorna att ligga inom cirkeln, varav }w ~ 0,79. Systema-
tiska felet i denna uppskattning r endast 0,6%. Enligt kinda resultat
i geometriska talteorin (se [13]) dr for stora N detta systematiska fel
o(N-253), och man kéinner ocksé en grins at andra hallet: felet avtar inte
snabbare &n N-3/4, Hir ar alltsd den systematiska stickprovsdragningen
Kklart gynnsammare én den slumpvisa. Simpsons regel och andra formler,
som bygger pa polynominterpolation ger naturligtvis mycket stérre nog-
grannhet per punkt én biigge dessa forfaranden. Vid berikning av arean
av en yta, som definieras genom olikheter, ger visserligen stickprovs-
metoderna enklare funktionsberéikningar och dérigenom ett enkelt rakne-
program och mindre arbete per punkt, men i stort sett &r den rena stick-
provsmetodiken utan intresse i tvd dimensioner.

I flera dimensioner stiller sig saken annorlunda. Lt K vara en kub
i den k-dimensionella euklidiska rymden, med axelparallella kanter av
lingden 1. Varje kant indelas i 2! lika stora delintervall, vilket ger en in-
delning av kuben i N = h~* kuber K, (»=1,2, .. .N), vardera av volymen

R*. Vi skall jamfora tre uppskattningar av multipelintegralen I = S fdx,
K

vikelsen, som enligt en kiéind formel &r
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dir f(z) dr en funktion av vektorn z = {&®, 2@, ... x®}, definierad i
kuben K, och som déir har kontinuerliga partiella derivator av fjarde
ordningen.

Forst betraktar vi den systematiska provtagningen. Lat x, x,, .. .2y
vara medelpunkterna av kuberna K,, K,, ...Ky. Integralen approxi-
meras av medeltalet av storheterna f(x,). Av Taylor’s formel foljer efter
integration:

h2
M) \fdo = 1 [f(@)+ 5 727 (w) +00]
Ky
dir
02 0% 02
2 = __ _
VE= ax<1>2+ax(2)z+ +ax<k>2'

Alltsa &ar

2 N-2/k

h
Sfdw—*Zf p S V) O == IS{VZf-derO(’#)-

Det systematiska felet avtar alltsa inte snabbare dm N —2/%, eftersomiallménhet

S Ve de 0.
K
Betrakta sedan den enklaste Monte Carlo-metoden. Antag da, att
¥y, Ty, ... Xy & N oberoende observationer av en stokastisk variabel X,

som har en homogen sannolikhetsfordelning i K. Satt
B 1
=% %’ [

D4 ar medelvirde och varians?) for S:

EIS] = B/(X)) = \f@)de = 1

K

D8] = 1 BB = | {prae—1
K

Medelavvikelsen for S avtar alltsd s& snabbt som N-1/2, och det &r snab-
bare &n vad det systematiska felet avtar vid den systematiska provtag-
ningen, nédr k > 5. Hir har vi alltsa ett fall, dir Monte Carlo-metoden
kan vara en effektiv numerisk metod3).

2 Beteckningssittet foljer i huvudsak Cramér [1].
3 Thomas [15] kommer till ett annat resultat i denna fraga. Forfattaren kan inte inse,
att Thomas’ argumentering ar bindande.
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En motsvarighet till Simpsons regel far man genom att i (1) approxi-
mera h2V/2f pa enklaste sitt med centraldifferenser. Med denna formel
blir felet av storleksordningen A* = N—%%, som &r béttre &n Monte Carlo-
metoden for k < 8.

Nu bor man i numeriska sammanhang alltid ta asymptotiska uppskatt-
ningar med en nypa salt. For hoga virden pa k, 1at oss siga for k& > 6,
méste N vara mycket stort for att A = N-/% gkall kunna betraktas som
»litet«. Detta innebdr emellertid inte enbart, att asymptotiska formler
blir tvivelaktiga, utan #ven att de argument, som kunde ténkas tala
for anvindningen av ett regelbundet gitter, vacklar. Det ar darfor tdnk-
bart, att Monte Carlo-metoden i praktiken konkurrerar framgangsrikt
med den generaliserade Simpsonska regeln dven for & < 8. Om integra-
tionsomradet dr mer invecklat, t. ex. definierat av en eller flera alge-
braiska olikheter, tillkommer svarigheter vid randpunkterna, om man
anvinder ett kubiskt gitter, och dessa &ér vésentliga vid hogre dimensions-
tal, ty antalet randpunkter dr av storleksordningen A~-*-Y = AN. D&
far man vilja mellan att komplicera rikneprogrammet eller att minska
noggrannheten.

Som exempel kan nidmnas, att man redan fér den fyrdimensionella
enhetssfirens volym {n2 med 4* = 256 punkter erhaller en relativ medel-
avvikelse pad c:a 99 med slumpvis provtagning, medan det systema-
tiska relativa felet &r c:a 4%, med samma antal regelbundet ordnade
stickprov i forsta »kvadranten.

Ett nidgot mer invecklat exempel behandlade forfattaren for ett par
ar sedan pa den svenska relimaskinen BARK — enbart i experiment-
syfte. Det gillde att berikna gravitationspotentialen @ mellan tva ho-
mogena klot K, och K, med massan 1 och radien 1 och centralavstidndet
10. Sittes gravitationskonstanten lika med 1, s& &r resultatet som bekant
® = 0,1. Om P; och P, dr tva godtyckliga punkter i respektive klot
med inbordes avstind r,,, omgivna av masselementen dP; resp. dP,,
s& giller

o= JeEiicy

r
Ky Ko 12

Denna (sexdimensionella) integral kan tolkas som medelvirdet av 1/ry,,
om P, och P, viljes slumpvis i kloten. BARk forsags med slumpvisa
koordinater z, y, 2z, som var rektanguldrfordelade i intervallet (—1, 1)
(se avsnitt 4), men endast de koordinat-triplar for vilka x24-y24-22 <1
accepterades. Riakningarna avbrots, nidr 500 accepterade punktpar er-
hallits. Skattningen av E[l/ry,] blev 0,10004. Medelfelet i medeltalet
skattades till 0,00028, vilket stimmer med det teoretiska vérdet.
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For att f4 1000 accepterade punkter behdvdes 1894 forsok, varur man
f. 5. kan erhalla uppskattningen wa 6000/1894 ~ 3,17.

Det hiir exemplet visar bl. a. att det ibland horda pastdendet att
»Monte Carlo-metoden kan med en rimlig méngd arbete endast ge 2 & 3
decimala siffror« maste preciseras. Daremot géller det allmént, att medel-
avvikelsen endast avtar proportionellt mot kvadratroten ur arbets-
méngden.

3. sImportance sampling«. Till gkillnad fran andra statistiska provtag-
ningsproblem har man vid Monte Carlo-metoden frihet att vilja sjilva
populationen, som stickprov skall dras ur. Vi skall se pa ett enkelt exem-
pel av Kahn [11], att valet av population kan inverka starkt pa meto-
dens effektivitet. Lat A vara ett omride med volymen 1. Integralen

I— gf(x)dx

4
kan tolkas som medelviirdet E[f(X)], dér X &r en stokastisk variabel
med homogen fordelning i 4. Den kan emellertid tolkas allmdnnare som

X
E [%ﬂ , dir X nu betyder en variabel med sannolikhetstétheten g(z)
g

i omradet 4, ty - f(z)
= \ — . g(x)dx .
49 ()
Antag, att x;, ,, ... Zy dr en serie oberoende observationer av X. Hur

beror variansen av skattningen

1 Y f,)
§=_ Yy
Nﬁg(v)

pa valet av g(x)? Medelvirde och varians ar

xX
Z,

e
BiS] = I, DS] = ﬁ<§{g(x)} 9(2) da—I ) .

Mindre varians betyder storre noggrannhet per arbetsmingd. Problemet
att soka minimum av D2[S] med bivillkoren \‘g(x)dx =1, g(x) >0 kan
behandlas med variationskalkyl. (Man sitter limpligen g(x) = h(x)%)
Resultatet dr, att minimum intréffar, d& g(x) dr proportionell mot |f(z)|,

e @l
\ 1/ (@) da

A

g(x) =
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Varje intervall bor representeras i proportion till dess betydelse for slut-
resultatet. Detta kallas »importance sampling«. Sadan provtagning ger
visentliga forbattringar, i synnerhet da f(z) varierar inom vida grénser.
Om f(z) = 0 i hela intervallet, si &r minimivariansen noll, vilket f. 6.
da kan inses direkt. Nagon bokstavlig tillimpning av detta resultat kan
det inte bli tal om; i fallet f(x) > 0 skulle en sadan ju kréva, att man

kinde S f(x)dz, dvs. att problemet redan vore 16st! Men resultatet visar,

4

att det nirmast till hands liggande populationsvalet inte alltid &r det
biista, och det ger en »tumregel« av allmén rickvidd: man bor forsoka
dimensionera ett Monte Carlo-spel s, att sannolikheten for varje mojligt
spelforlopp star ungefir i proportion till medelvirdet for dess bidrag till
slutresultatet. Om spelets lingd &r en statistisk variabel, s& méaste man
iven ta hinsyn dirtill. Man bor ocksd tinka pé, att mer komplice-
rade stickprovsforfaranden vanligen kraver mer forberedelsearbete och
att de dven kriver lingre tid per genomfért spel 4n en mer rakt pa sak
gaende metod.

4. Slumpvisa tal. I stiillet f6r roulette eller térning anvénder man vid
Monte Carlo-spelen vanligen serier av slumpvisa tal for att dirigera de
sannolikhetsméssiga valen. I forordet till Kendall-Smiths tabeller och
den dir citerade litteraturen diskuteras nagra principiella och praktiska
problem, som #r gemensamma, for all produktion och prévning av sadana
serier. Det giller framfor allt att undvika frekvensfelaktigheter och
korrelationer i serierna. Hir skall vi endast ta upp nagra synpunkter
pi anvindningen av slumpvisa tal vid matematikmaskiner.

Det primitivaste sittet dr att alstra de slumpvisa talen utanfor maski-
nen, direkt eller indirekt i en form, som kan lisas av maskinens inmat-
ningsorgan, t. ex. pa halremsa eller halkort. Vid nagra forsok med arti-
ficiella tidsserier, som nyligen gjorts pad BARK [7], stansades i forvig
négra tusen siffror fran Kendall-Smiths tabeller pa en hélremsa, som
sedan listes in i maskinen. Eftersom behovet av slumpvisa tal ofta blir
mycket stort — flera miljoner binira siffror till ett problem &r inte
onaturligh — s6ker man girna efter andra méjligheter. Tva fragor ligger
d4 nira till hands:

1. Kan man utnyttja nagon naturlig killa f6r att alstra slumpvisa tal
direkt till maskinen, t. ex. elektronrérsbrus eller radioaktivitet ?

2. Kan man fran en given, relativt liten méngd av tal alstra en storre
serie »slumpvisa tal« genom att utféra foreskrivna aritmetiska eller kom-
binatoriska operationer ?

Néagra matematikmaskiner, bl. a. Manchester Electronic Computer,

Nordisk Matematisk Tidskrift. — 3
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har ett organ for automatisk produktion av slumpvisa tal. Frekvensfel-
aktigheter kan elimineras genom en enkel princip (se [17]), som nog
bast forklaras i slantsinglingsterminologi. Antag, att Per och Pal wvill
singla slant rittvist med en slant, som de misstinker vara felaktig. Man
kan dock anta, att kasten blir oberoende och att man har en konstant
sannolikhet p for krona. De far da singla tvd génger, varvid fyra maj-
ligheter finns, med sannolikheterna p? pg, ¢p, q2. (Vi siitter ¢ = 1—p.)
Endast de tv4 mellersta alternativen godtas. Om det andra alternativet,
dvs. krona-klave, intriffar, sa vinner Per. Om det tredje alternativet,
dvs. klave-krona, intriffar, si vinner Pal. Om den forsta eller fjarde
mojligheten intriffar, si méste man kasta pa nytt, tills nagot av de ac-
cepterade alternativen intréffar. Detta spel &r tydligen rittvist, felak-
tigheten hos slanten kan endast paverka spelets lingd. Om p = }, méste
i medeltal vartannat tvakastsforsok underkénnas, om t.ex. p = }, s
underkinns i medeltal 5 forsok av 8.

Vad betriffar den andra fragan, si rekommenderar Karl Pearson
sadana forfaranden i forordet till Tippetts tabeller. Man kan ldsa en
tabell forst vagritt, ddrefter lodritt och sist diagonalt eller nagot lik-
nande. Kendall [12, p. IX] avrader déremot frén sidant pa grund av
risken for korrelationer mellan olika forssk. Vid den ovan beskrivna
potentialberikningen pd BARK stansades tvé cykliska remsor med fyr-
siffriga decimala tal i intervallet (0, 1) ur Kendall-Smiths tabeller. Den
ena remsan innehdll m tal, den andra innehdll n tal, m och n relativa
primtal. (I det aktuella fallet var m = 139, » = 159.) Bark bildade
summan modulo 1 av ett tal # fran den ena remsan och ett tal y fran den
andra remsan. Lat 2, 2y, ... vara den sé uppkommande serien. Den har
tydligen perioden mm. Lat oss avbryta serien efter en period. Man kan
visa, att om z och y r oberoende observationer av en rektangulirforde-
lad variabel, s& &r tva godtyckliga tal z,,z, i serien parvis oberoende,
men talen i en period ar likvél inte dmsesidigt oberoende, ty man har
exempelvis relationen

=0 (modl).

2 Zutm ™ Ruin + Rutmin

Den distinktionen &r annars ganska ovanlig i praktiska sammanhang.
Det beskrivna forfarandet, som alltsd producerar mn tal ur m-n
givna, torde trots det 6msesidiga beroendet vara anvindbart i manga fall.
Exempelvis har alla moment av forsta och andra graden réitta medel-
viirden. Forfarandet har inte aterfunnits i litteraturen.

Vid amerikanska maskiner har man férsékt ga @nnu lingre i samma
utrymmesekonomiska riktning. I en foreslagen metod (se [14], pp. 33—35)
utgar man fran ett enda, sig fyrsiffrig tal z,, varefter man successivt
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bildar z,., av de fyra mellersta siffrorna i z,2. Exempel: z, = 1563,
202 = 02442969, z, = 4429, 2, = 19616041, z, = 6160, etc. I Los Angeles
har man gjort 16 experiment, varvid samtliga slutade med nollf6ljder eller
med perioder med hogst fyra tal. Langden av serien till det forsta upp-
repade talet var i medeltal 52, den lingsta av serierna hade 104 tal.
Med tiosiffriga tal har man haft storre framgang i ett studerat fall. Flera
varianter finns beskrivna.

I en metod, som anvisats av Lehmer, definieras z, av kongruensen

2, =24 - k* (mod M),

diar M &r ett stort tal, t. ex. 108-4-1, och k &r en primitiv rot modulo M.
z, kan enkelt beriknas rekursivt. Standardprov pa denna metod har gett
tillfredsstédllande resultat.

Om Z #ar en rektangulidrférdelad variabel i intervallet (0, 1), s& har
W = F-1(Z) fordelningsfunktionen F (w). Dérigenom &r problemet att
ta stickprov ur en godtycklig f6rdelning i princip aterfort pa det behand-
lade fallet. Ibland &r andra sdtt att alstra en fordelning lampligare. Mer
information om dessa ting finns i v. Neumann’s artikel i [14] och i en
oversiktsartikel av Votaw och Rafferty [17].

5. Matrisproblem. Vi skall betrakta ett spel, dir en bricka kan flyttas
mellan m olika punkter

Bis Bos B - B -

Flyttningen sker vid en diskret serie tidpunkter n = 0, 1, 2, .... Vid en
flyttning fran R; till B; multipliceras ett kapital, som brickan fér med
sig, med en faktor »;;. Denna flyttning har sannolikheten p;;, som an-
tages vara oberoende av hur brickan kommit till %;, och den beror inte
heller explicit av n. Sidana spel behandlas i teorin for »random walk«
eller allménnare i teorin fé6r Markoffkedjor (se [4]). Vi antar vidare, att
det for varje punkt 9B; har definierats en sannolikhet p;, =1—Xp,;

for att spelet skall sluta, samt att det &r mojligt att frén varje plinkt
By nd en punkt PB;, dir p; > 0, antingen direkt eller indirekt. Man kan
da visa, att ett spel med sannolikheten 1, dvs. nistan sikert, har ett
slut. Satt

Ai5 = V45 Py5 -
Betrakta matrisen
(L2%] a12 LI alm
A — ) F2r Be2 - Qo

3*
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Vi skall nu tolka den transformation, som formedlas av matrisen A.
Lat e; vara den i-te koordinatvektorn (skriven som radmatris), dvs. en
vektor, vars i-te komponent #r 1, medan ovriga komponenter ar noll.
Om spelarens kapital fére en flyttning &r K och om brickan ligger i B;,
s& bestdimmes situationen av kapitalvekiorn

a=K-e;.

Antag att brickan sedan flyttas till ;. Kapitalvektorn efter flyttningen
ar da @’ = Kuvy; - ;. Lat medelvdrdet for kapitalvektorn efter n flyttningar
vara a®™ = {“1("), 0‘2("), . (xm(n)} ,

diir den i-te komponenten alltsé betyder sannolikheten for att brickan
efter n flyttningar ligger i %B;, multiplicerad med det av denna héndelse
betingade medelviirdet for kapitalet. Ur definitionerna och sannolikhets-
kalkylens additionssats foljer, att den i-te komponenten for a®+D) &r

(x’i(n“—l) = vai(xr(n) vri = 2 (xv(n)avi ’
v v

xmt) — g™ . A ,

alltsé

vilket &r den sokta tolkningen av matrisen A. Om kapitalvektorn vid
spelets borjan ar fullt bestdmd, s& &r alltsa

ax® — q©®. A"
Enligt en kind sats i matriskalkylen &r f6r stora virden pa n
a® =a® A" ~cl"-r,

om A har ett egenvirde A,, vars modul &r storre &n alla andra egenvér-
desmoduler till 4. Den motsvarande egenvektorn ér r;. Om a(® inte &r
en av de undantagsvektorer, som gor att ¢ blir noll, si kan man alltsd
genom en statistisk analys av kapitalvektorfsljden a® vid ett antal spel
f8 en uppskattning av dtminstone det storsta egenvirdet och den mot-
svarande egenvektorn for A*).

Summan av alla de (positiva och negativa) kapitalméngder, som under
spelets gang passerar punkten B; &r lika med j-te komponenten av vek-

torn 0o
r=2a®.
n=0
Denna vektor har medelvirdet®)
4 T allménnare fall galler en mer komplicerad asymptotisk relation.

5 Om brickan stannar i samma punkt flera génger i f5ljd, skall kapitalet raknag for
varje gang.
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Er]l=a® =a® - A" =a©- - (I-A4)7,
n=0 =

n=0

under forutsiattning, att serien konvergerar. Det villkoret giller sikert,
om alla egenvirden f6r matrisen A ligger i det inre av enhetscirkeln. Om
brickan startar med kapitalet 1 i B,, s& dr alltsaé medelvirdet for vek-
torn r = r® lika med den ¢-te raden i inversen till matrisen I—A.

Om B idr en given matris, vars egenvirden ligger i ett halvplan (t. ex.
om B #r positivt definit), s finns det tydligen ett tal z, sa att zB =I1—A,
dir A uppfyller de ovan angivna villkoren. D kan B inverteras med ett
spel av den just beskrivna typen. Man viljer forst for varje punkt 9B,
sannolikheten p, for att spelet skall avbrytas. Elementen a; i A kan
sedan p& odndligt ménga sitt spjilkas upp i tva faktorer v; och p,;,
s& att p,; blir ett mojligt system av Gvergangssannolikheter till ett spel.
Om man spelar ett stort antal spel, som alla startar i 9, och bokfér vid
varje spel den kapitalméngd r;;, som under spelets gang passerar punk-
ten B, s kan man uppskatta medelvirdet for r;;, som dr lika med ele-
mentet (7, §) i inversen till 7—A.

Om man goér bokféring for varje punkt $,, s& kan man samtidigt fa
en hel rad i inversen till B, och dirigenom ocksd den ¢-te komponenten
till den kolumnvektor, som satisfierar ekvationssystemet

B-u=">b,

ddr b dr en given kolumnvektor. Man kan f. 6. dra ut betydligt mer in-
formation ur ett spel genom att inte enbart anvinda den fullstindiga

kedjan
sBi_,sle.> SBn"
utan dven delkedjor

g’Bi'n - s’Ejmrl e S’Igjn—}—? IR

Déarigenom kan man ofta fa hela inversmatrisen samtidigt.

Den hér beskrivna metoden har presenterats av Wasow [18]. Tidigare
hade en variant av denna idé foreslagits av v. Neumann och Ulam.
Se dven [3, 5].

Vid valet av stoppsannolikheter och vid faktoriseringen av matris-
elementen har man stor frihet. Man bor d4 forscka favorisera de flytt-
ningar, som har utsikt att leda till spelférlopp, som ger stora bidrag i
forhallande till sin lingd. Faktoriseringen behover inte vara konstant
fran spel till spel, varfor tidigare erfarenheter kan ge god hjélp. Till och
med inom samma spel kan man byta uppdelning.

Elementen i matrisen A" dr summor av n-lediga produkter av ele-
menten i matrisen 4. Varje sddan produkt
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Qs Qs

151 %5152 %

jgja...a

In—1Jn

motsvarar exakt ett mojligt spelforlopp med n flyttningar

Bi > By~ By, > Vi~ -+ > Bi > Fis

och ger det férviintade bidraget frén detta speciella forlopp till slut-
kapitalet i punkten ;. Medelvirdet av bidraget fran ett speciellt
torlopp dr darfor bestdmt av matrisstrukturen och av valet av z och kan
inte paverkas av en fornuftig faktorisering. Daremot kan spelférloppets
sannolikhet paverkas.

Att tvangsmissigt avbryta alla spel efter n flyttningar innebdr ett
systematiskt fel. Det &r i sjilva verket samma fel som begas, nidr man
avbryter Neumannserien

(I—A)1=I+A+A4%+ ...
efter A”. Det ir ocksa ekvivalent med att avbryta det klassiska itera-
tionsforfarandet for 16sning av ekvationssystemet B-u = b:
V=4 -24+2-b; x@ =0,

efter berikningen av a®+,

6. Differens- och differentialekvationer. Randvérdesproblem vid lin-
jara differensekvationer utgor en speciell klass av linjira ekvationssy-
stem. Foljande exempel ir kanske av ett visst intresse. Betrakta ett rut-
niit (gitter) i xy-planet, dir varje ruta &r en kvadrat med sidan h. Lat
u,, vara en funktion, definierad i gitterpunkterna (rh, sh), dir r och
s ar hela tal. Antag att u,, satisfierar den partiella differensekvationen

ur+1,s+ur—1,s+ur, s+1+ur, s=1 0

(2) Ups — 4

i de gitterpunkter, som ligger i det inre av t. ex. en rektangel
0<z<(@th, 0<y<@+Lh,

och som dessutom i gitterpunkterna pa denna rektangels sidor antar
foreskrivna virden (randvirden). Detta randvardesproblem ger i sjilva
verket ett system av ekvationer med ab obekanta storheter u,%). Ekva-
tion (2) ér vilkind i numeriska sammanhang: man far den, om man i
Laplace’s ekvation

6 Alla de obekanta u,, skall alltsd (trots dubbelindiceringen) uppfattas som en vektor i
ab dimensioner.
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%u %
ox? T oy
approximerar derivatorna med finita centraldifferenser.

Betrakta nu ett spel av den typ, som beskrevs i avsnitt 5, dir en
bricka flyttas mellan gitterpunkterna i xy-planet. Antag att sannolik-
heten Gverallt dr 1 for en flyttning till var och en av de fyra grannpunk-
terna i rutnitet. Startkapitalet dr %, och alla kapitalfaktorerna v;; sit-
tas lika med 1, utom vid Gvergang till en randpunkt, dir de skall vara
noll. Spelet startar i den inre grannpunkten till en randpunkt %, och
det kan avbrytas, nir randen uppnas igen, eftersom kapitalet dé &r slut?).
Om man tillimpar tankegingen (eller resultaten) i avsnitt 5, finner man,
att medelvirdet fér det kapital, som gar genom punkten (rh, sh) under
ett spel ar en funktion av (r,s), som satisfierar (2) i rektangelns inre
gitterpunkter, antar randvirdet 1 i B, och &r lika med 0 i ovriga rand-
punkter. Allminnare randvérdesproblem behandlar man genom att
variera den vid starten anvinda randpunkten, si att produkten av start-
kapital och anvindningsfrekvens blir proportionell mot randvirdet i
punkten.

Man kan ocksé vinda pa spelet. Man startar i en punkt, dir man
onskar kénna losningen. Spelet slutar, néir randen uppnatts, varvid man
skall f& en vinst, som ér lika med randvérdet i den uppnadda punkten.
Vinstens medelvirde dr lika med virdet i startpunkten av l6sningen
till det givna randvérdesproblemet.

Fran fysikalisk synpunkt &r det inte 6verraskande, att det 4r ett sam-
band mellan Laplace’s ekvation och random walk-spel med obegransad
spellingd, eftersom Laplace’s ekvation ger grédnsvérden, da ¢ — oo, for
losningar till differentialekvationen

Ve PV PV
(3) 2y +ay2),
som forekommer i teorin for diffusion, dér teoretiska fysiker (bl. a.
Ehrenfest) sedan linge har anvéint random walk som modell. Om man
tvangsmissigt avbryter varje spel efter » flyttningar, s& ger medelvir-
det for det kapital, som dessforinnan gitt genom punkten (rh, sh), om
b &r litet, en approximation till virdet i punkten

x=rh, y=sh, t=nh?
av den 16sning till (3), som forsvinner for ¢ = 0 och antar de foreskrivna

7 Man skulle ocksé kunna starta i $, med startkapitalet 1, men d& avbryts i genomsnitt
2 av alla spel redan efter en flyttning, vilket &r onddigt och dessutom okar variansen.
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randvirdena vid varje tidpunkt ¢ > 0. Dessa medelvirden, som vi skall
beteckna u,,™, satisfierar i inre punkter rekursionsformeln

Uy = } - (ur+l,s(n)+ur—1,s(n)+ur,s+1(n)+ur,s—1(n)); Ups® = 0.

Denna formel kan ocks direkt anvindas fér approximativ 18sning av
(3), om At = k2. Den har dven anvints for iterativ l6sning av (2), men
den #r da betydligt mindre effektiv &n vissa andra eliminations- och
iterationsmetoder.
Egenvirdesproblem for Schrodingerekvationen
2 2
oy Py

L E V) v =

kan, om V > 0, behandlas med nistan samma spel: flyttningssanno-
likheterna behdver inte &ndras, men kapitalfaktorn skall vara lika med
e—WV B4 51 varje flyttning fran punkten P = (rh, sh). Kac och Don-
sker [9] har prévat metoden pa ett endimensionellt fall, som kan l6sas
iven med analytiska metoder, ndmligen V(x) = «2. Det minsta egenvar-

det ar da 1/]/2~ 0,71. Med 100 spel & 2000 flyttningar erholls medel-
talet 0,75. Deras teoretiska analys av metoden startar inte fran differens-
ekvationen utan fran vissa asymptotiska satser i sannolikhetsteorin. De
har ddrigenom kunnat generalisera metoden till att omfatta dven sé-
dana random walk-spel, dir férflyttningarna har en given kontinuerlig
fordelning. Vid anvindning av normalférdelning fick man med 200 spel
4 endast 100 flyttningar uppskattningen 0,74.

Thomas [15] har jimfért Monte Carlo-metoder och traditionella nume-
riska metoder p& nigra speciella problem, bl. a. just pd l6sningen av
Laplace’s ekvation. Resultatet ér dir, liksom vid de andra problem han
betraktat, ganska nedsliende fér Monte Carlo-metoden. I ett speciellt,
rimligt, tredimensionellt fall uppskattade han, att Monte Carlo-metoden
skulle kriva 310 arbetsenheter fér en noggrannhet av 1°/y,, medan
en s. k. extrapolerad relaxationsmetod kréver 3-107 arbetsenheter. Det
4r svart att se av Thomas’ kortfattade framstéllning, om han refererar
till den hir beskrivna metoden eller nagon annan. Vidare &r hans labora-
tioner med storleksordningar inte helt évertygande, varfér det kan tin-
kas, att hans siffror ar alltfor pessimistiska.

7. Ett atomfysikaliskt exempel. En skur av partiklar (t. ex. neutroner)
tréinger in i en platta. En individuell partikels bana i plattan kan be-
skrivas som en random walk. Den har en sannolikhet uds fr en kolli-
sion i ett intervall av lingden ds, dir u #r en funktion av partikelns
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energi och plattans egenskaper. Vid en kollision kan en partikel bli ab-
sorberad, eller ocksa kan den undergé en riktnings- och energiéindring.
Saledes kan en partikel antingen reflekteras, absorberas eller slippas
igenom. Man vill nu veta hur stor brakdel av partikelskuren, som trén-
ger igenom plattan och hur mycket energi dessa partiklar for med sig.

Detta &r en forenklad version av ett problem, som behandlats av
Kahn [10, 14] och andra. Det verkar vil upplagt for en direkt tillimp-
ning av Monte Carlo-metoden och har i sjilva verket betytt mycket for
metodens utveckling. Det beklagliga #r emellertid, att sannolikheten for
genomtringning #r av storleksordningen 10-¢ & 10719, s& att en ren
imitation av det naturliga skeendet &r meningslos for dndamalet.

En partikels tillstind bestdms av tre koordinater (x, «, y), som anger
lage, energi och hastighetsriktning. Man kénner en funktion
f(x, «, y, ', &', y") som ger sannolikhetstitheten for att en partikel i till-
standet (z, «, ) efter niista kollision skall vara i tillstindet (x', o, ).
Hir ar , « och y egentligen kontinuerliga variabler, men lit oss ideali-
sera och antaga, att man har ett andligt antal diskreta tillstand. Situa-
tionen #r d4 densamma som vid matrisproblemen. Det dr lampligt att
associera ett »kapital« till neutronen och att faktorisera den verkliga
overgingssannolikheten f = uf*, diir v &r en kapitalfaktor, och f* ar
den fiktiva overgangssannolikheten, som anviindes vid rikningen. Lat
&(x, x, y) vara en uppskattning (erhallen genom gissning och tidigare
erfarenheter), av »betydelsen« (importance) av tillstandet (z, %, y), var-
med menas sannolikheten, att en partikel som vid ett tillfalle ar i till-
standet (z, x, y) kommer att tringa igenom plattan. Da ger, enligt Kahn,

formlerna
D', o', y") D(x, x, )

D@, oy) @,y

fr=f-

en faktorisering, som utan att inféra nagot systematiskt fel vil favori-
serar de for sammanhanget viktiga dvergingarna. Spelet avbryts, nar
en partikel absorberats, reflekterats eller slippts igenom. I det sistnimnda
fallet noteras férutom »kapitalet« &ven riktningen och energin.

v.Neumann har anvisat en elegant variant, kind som »klyvnings-
tekniken«. Man indelar (z, &, y)-rymden i omraden av olika betydelse,
skilda genom ytorna

D(x, x, y) = 270,

Vid en passage fran ett mindre betydande omréde till ett mer betydande
later man partikeln klyvas till tva partiklar, vardera med halva vkapita-
let«. Vid en passage i omvénd riktning far man vilja mellan att avbryta
spelet eller att fortsitta det med fordubblat kapital. Valet sker med en
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slantsingling eller motsvarande. Denna teknik for inte in nagot systema-
tiskt fel utan koncentrerar bara uppmirksamheten till de intressanta
spelen.

8. Under de senaste dren har Monte Carlo-metoden provats inom flera
vetenskaper. Nagra problemtitlar kan ndmnas: en matematisk modell
av fotografiska emulsioner har utarbetats av Froberg [6]. King [14]
har beriknat effekten av den uteslutna volymen pa antalet konfigura-
tioner av polymerkedjor med ett givet antal linkar, ett problem som
dittills saknat angreppspunkt. Geografiska problem rérande migration
och kulturspridning har behandlats av Hagerstrand [8]. Ett annat
viktigt tillimpningsomrade #r operationsforskningen, dir man ofta mo-
ter matematiska problem av siregen typ. Dir kan det vara mojligt att
behandla problem med Monte Carlo-metoden mera realistiskt d4n vad
gingse analytiska och numeriska metoder tillater.

I manga problem &r Monte Carlo-tekniken kanske inte den definitiva
behandlingsmetoden, men den kan likvil géra stor nytta, ty redan en
ganska blygsam tillimpning kan ge sidana informationer om storleks-
ordningar o.dyl., som ir noédvindiga for en teoretisk analys, som ju
nistan alltid méste starta med en serie beslut om idealiseringar och
approximationer.
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OM TO GEOMETRISKE STEDER VED
LIGESIDEDE HYPERBLER

SIGURKARL STEFANSSON

Vi begynder med at repetere nogle velkendte fakta vedrgrende hyper-
bler:

En hyperbel kaldes ligesidet, nar dens asymptoter er vinkelrette pé
hinanden. Det af en hyperbeltangent mellem asymptoterne afskarne
stykke halveres af roringspunktet. En diameter i hyperblen halverer alle
de korder, som er parallelle med tangenterne i dens skzringspunkter med
hyperblen. Arealet mellem asymptoterne og en variabel tangent er kon-
stant.

0

Fig. 1.

P4 fig. 1 er OA og OD en ligesidet hyperbels asymptoter, I og m to af
dens tangenter, som skeerer asymptoterne i 4 og B, henholdsvis C og D.
Lodlinien fra O pa m skeerer denne i E. Lodlinien fra O pa I skeerer denne
i F ogmiF,. En linie gennem F, parallel med FE skaerer OF i E,. Troek-
kes forbindelseslinien mellem #, og 4B’s midtpunkt M, kan man bevise,
at trekanten OF,M bliver ligedannet med trekanten OF,N, hvor N er

[44]
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midtpunktet af DC, idet vinklerne ved O er lige store, og ligeledes for-
holdene mellem de hosliggende sider. Om vinklerne har man nemlig

/ MOE, = / COE,— / COM = / D— / A;
/ NOF, = / NOD— / FOB =/ D— / A,

og af ligestorheden af trekanterne OAB og OCD folger

B D
A?-OF=~C-’2—-0E eller OM - OF = ON - OF,

saledes at
OM OE OF,
ON OF OF,

Hermed er beviset fuldfort. Ved hjelp af denne ligedannethed loses let
folgende opgave, senere citeret som opgave 1:

Bestem en ligesidet hyperbel af centret O og to tangenter I og m.

Man finder forst punkterne E, F, F, og E,; derefter afsstter man
vinklen OE,M lig den kendte vinkel OF,N (samme omlgbsretning). Her-
ved fas punktet M, hvorefter asymptoterne let bestemmes.

Opgaven behandles ganske pa samme made, selv om O ligger i den
spidse vinkel mellem de givne tangenter.

Lad trekanten PQR pa fig. 1 vaere indskrevet i den ligesidede hyperbel,
og lad I og m veere de tangenter, som er parallelle med P@ og PR. Diame-
trene OM og ON vil da g& igennem midtpunkterne H og L af disse trekant-
sider. Kaldes den tredje sides midtpunkt K, bliver / LKH = / FTE;
og da endvidere / LOH = / FOE og firkant OFTE er indskrivelig,
gelder dette sidste ogsd om firkanten OLKH. Herved bevises let den
kendte setning:

I. Det geometriske sted for centrerne i de ligesidede hyperbler, der gdir
1gennem vinkelspidserne 1 en fast trekant, er dennes nipunktscirkel®.

Et sidestykke til ovenstdende bliver at soge det geometriske sted for
centrerne i de ligesidede hyperbler, som rgrer siderne i en fast trekant.
Da en om en ligesidet hyperbel omskreven trekant altid er stumpvin-
klet, behgver man kun at tage stumpvinklede trekanter i betragtning.
P4 fig. 2 er C den stumpe vinkel i trekant 4 BC. Man kan begynde med
at bestemme de ligesidede hyperbler, som har AC til den ene asymptote,
men rgrer de to andre sider af trekanten i punkter, som ligger i det ende-

1 En trekants nipunktscirkel gar igennem sidernes midtpunkter, hejdernes fodpunkter
og midtpunkterne for liniestykkerne mellem hgjdeskaringspunktet og vinkelspidserne.
g P Y. ] gSp g P
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lige. Lad et punkt D mellem 4 og C vere centrum for en saddan hyperbel;
den anden asymptotes skaringspunkter med 4B og BC betegnes H og H,.

E, 0 0
Z I
N,
D‘l
P,
S 0, ¢\
S
D —E
Fl
A B
P L
r 0
Fig. 2.

Ved til de lige store trekanter DCH, og DHA at addere firkan-
ten HDOB ses, at trekanterne BHH, og BCA er lige store, saledes ‘at
BH - BH, = BA - BC eller “

BH BC
BA ~ BH,

Idet M betegner fodpunktet pa AC af hojden fra B, fas af to par ens-
vinklede trekanter

BH MD BC MC
BA MA’ BH, MD
Indse®ttes dette ovenfor, fis
MD MC
MA~ MD
eller

MD?*= MA - MC .

Herved er hyperbelcentret D bestemt. Af de ensvinklede trekanter
BMC og AMQ, hvor @ betegner hgjdernes skzringspunkt, finder man
MA - MC = MB- M@, saledes at ligningen ovenfor ogsi kan skrives
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MD?* = MB- MQ .

D ligger derfor péa cirklen over BQ som diameter.

Ved analoge betragtninger — hvor man dog i stedet for addition af
arealer anvender subtraktion — findes et hyperbelcentrum D, p& AC’s
forleengelse i samme afstand fra M som D. Vi har da vist:

Hyperbelcentrerne D og Dy pi AC er skeringspunkterne mellem linien
AC og den cirkel Z, som har B til diameter, hvor @ er hojdernes skeerings-
punkt. D og D, deler AC harmonisk.

Analogt geelder:

Hyperbelcentrerne E og E, pi BC er skeringspunkterne mellem linien
BC og den cirkel, som har AQ il diameter.

Da @ er radikalcentrum for de cirkler, som har trekantens sider til
diametre, er

QN - QA =QL-QC =QM-QB.

Ved betragtning af de retvinklede trekanter AE,Q og BD,() ses, at disse
produkter ogsa er lig med kvadraterne g2 pa QE, og @D,. En inversion
med dette produkt til inversionspotens og inversionscentrum i ¢ vil fore
punkterne N, M og L over i A, B og C, hvoraf fglger:

Den omskrevne cirkel F og nipunkiscirklen F, er inverse figurer med in-
versionscentrum i ¢ og inversionspotensen g2

Ved denne inversion fores trekantsiden AC over i cirklen Z, hvoraf
folger, at D og D, m4 ligge fast. Det samme geelder E og K, og ligeledes
S og 8,, skeringspunkterne mellem F og F;. Disse 6 punkter vil da alle
ligge pad samme cirkel med centrum i @ og radius g. Denne cirkel I vil vi
kalde trekanten 4 BC’s polarcirkel.

Det er let at udtrykke o ved den omskrevne cirkels radius R og linie-
stykket OQ = e (Eulers linie). Hertil kan man benytte, at P og P, er
. inverse punkter (fig. 2):

3

¢f = QP OF = (e_R)(§+§) =55

Vez_Rz
0= 5

Man kan ogsé udtrykke g ved R og trekantsidernes kvadratsum, som jeg
vil betegne med d?, idet d er diagonalen i en kasse med dimensionerne
a, b og c. Af

BL = a cos B
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fas
BL a
B = = B = 2R B
sind sinAd 008 008 5
og af
CM = —acosC
fas
QM = CM cot A = —_—a—~ cos A cos C = —2R cos 4 cos C'.
sin 4

Herefter bliver

0= QM - QB = —4R? cos A cos B cos
8R2—d?
5

1
= 2R?[2—(sin? A -+sin? B+-sin? 0)] = 4R2—§ (@ +-b%+c?) =

B Vst—E—Z
0= PR

b

altsa

Ved sammenligning af de fundne udtryk for g2 fas

e2—R? = SR2—(2,
d. v. s.
e2+d? = (3R)?
eller -
e = J/OR2—dz.

Ovenstdende betragtninger tyder pa, at polarcirklen netop er det sagte
geometriske sted for centrerne i de ligesidede hyperbler, som rerer den
stumpvinklede trekants sider. Ved beviset for denne swtning, som gér
tilbage til Steiner!, kan vi udelade polarcirklens skeringspunkter med
trekantens sider.

Pa figur 3 er O centret for en vilkarlig af disse hyperbler, koordinat-
akserne X og Y dennes asymptoter, @ hgjdernes skeringspunkt, Z den
cirkel, som har B@ til diameter, I, cirklen gennem O med centrum i .
Kan man nu bevise, at cirklerne I, og Z har trekantsiden 4C til radikal-
akse, fremgar straks deraf, at cirklen 7; ma veere identisk med polar-
cirklen I.

X-aksens skeringspunkter med trekantens sider betegnes med («, 0),
(8, 0) og (v, 0); Y-aksens skeeringspunkter med siderne kan fglgelig be-

L2 12 2

tegnes ved (O, —> s (O, E) , (O, ~—>, hvor %% er produktet af de stykker,
N v

som en hyperbeltangent afskeerer af asymptoterne.

1 Werke 2, S. 677.
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Fig. 3.
Ligningen for BC bliver
x Yy
& k2o

eller
P+ o2y = «k?,

for siden 4B analogt:
k2492 = yk?.
Idet « = v, tas heraf B’s koordinater
A )
(x—l—y’ x4y )
Ligningerne for trekantens hojder A, og h, bliver henholdsvis
k? B2 oy
)
at+y k oty
o8 L ( o
— =" |z—m]).
4 e oc—i—ﬁ)

Ved at lose disse to ligninger fas for @’s koordinater:

() = (

Nordisk Matematisk Tidskrift. — 4
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afy(o+p+y)—k* k4(0¢/3+/37/+067)—(0¢/37)2)
() (x+9)(B+y)" k(at-B)(x4y)(B+y) /

Cirklerne I, og Z har ligningerne

(9 =

x2—2xx+y?—2y,y = 0
og
B2 — (21 +25) 2+ Y2 — (Y1 +Y2) Y = —21%3—Y1Ys -

Heraf fas ved subtraktion

(Ta—21)T+ (Yo—Y1)Y = T:1%2+Y1Ys »

hvilket er radikalaksens ligning.
Ved indsettelse af de ovenfor fundne udtryk for #,, y,, z, og ¥, fas for
koefficienterne i radikalaksens ligning

0‘2,))2_*__[04
PR = 0
T R e B T
o 132(0‘2))2_’_]04) B ﬂZn
Yo— Y1 = e

kA(o+B) (a+y) (B+y) k2
iy +Y1Ys = P .

Ved indswttelse af disse udtryk for koefficienterne i radikalaksens ligning
fas denne pa formen

Batpty = i,

hvilket netop er ligningen for trekantsiden AC. Punktet O ligger altsi pa
polarcirklen. Tilbage har vi nu at bevise, at et vilkarligt punkt p& polar-
cirklens periferi er centrum for en ligesidet hyperbel, som rgrer alle sider
i trekanten 4 BC. Dette er allerede bevist for polarcirklens skeringspunk-
ter med trekantens sider.

Ifolge lgsningen af opgave 1 findes der altid en og kun en ligesidet
hyperbel, som rgrer to givne linier og har centrum i et givet punkt, som
ikke ligger pa nogen af linierne. Lad dette vaere et punkt O af de buer,
hvori polarcirklen deles af den stumpe vinkel C’s hosliggende sider, og
lad os bestemme den ligesidede hyperbel, der har O til centrum og rgrer
disse. Lad os dernzest treekke den tangent til denne hyperbel, som er paral-
lel med AB og ligger pa samme side af C' som denne. Lad os kalde denne
tangents skeringspunkter med de andre tangenter for 4, og B,. Trekan-
terne ABC og 4,B,C vil da blive ligedannede med lighedspunkt i O, og det
samme Vil blive tilfzldet med deres polarcirkler. Idet lighedspunktet C'
ligger inden i begge cirkler og ligedannethedsforholdet er positivt, kan de
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to cirkler ikke have noget punkt feelles, medmindre de falder helt sammen.
Ifolge den allerede beviste del af s@tningen vil punktet O sikkert ligge pa
polarcirklen for A4,B,C, og idet O netop var et punkt af AB(’s polar-
cirkel, ma de to cirkler vere identiske. Hermed er beviset fuldfert, og vi
har da, idet vi sammenfatter:

En stumpuvinklet trekants polarcirkel er den cirkel, som ligger fast ved den
inversion, som forer vinkelspidserne over i hgjdernes fodpunkter. Den har
centrum 1 hgjdernes skeeringspunkt.

Polarcirklen deler de sider, som den skeerer, harmonisk, og disse delings-
punkter ligger ogsi pd de cirkler, som har til diametre forbindelseslinierne
mellem en vinkelspids og hajdernes skeringspunkt.

Polarcirklen gdar igennem skeringspunkterne for trekantens omskrevne
cirkel og dens nipunkiscirkel.

I1. Polarcirklen er det geometriske sted for centrerne i de ligesidede hyper-
bler, som rorer trekantens sider.

For polarcirklens radius ¢ gelder formlerne

Vez—m 8R*—d?
= O = B —
e 2 g e 5
hvor e er Eulers linie og d diagonalen i en kasse med dimensionerne a, b
og c.
For Eulers linie gelder formlen

e= V9_Rz—d2 .

Endvidere geelder folgende ssetning:
En stumpvinklet trekant er sin egen polare figur med hensyn til sin polar-
cirkel.

Nar en i en ligesidet hyperbel indskreven trekant ABC udarter pd en
sadan made, at to af dens vinkelspidser A og B konvergerer mod det
samme punkt S, vil dens nipunktscirkel konvergere mod en cirkel gen-
nem punktet 8, midtpunktet af C'S og projektionen af C pa hyperblens
tangent i S.

Heraf folger:

Ta. Det geometriske sted for centrerne i de ligesidede hyperbler, som rorer
en fast linie t © et fast punkt S og gir igennem et fast punkt C, er en cirkel
gennem C, S og C’s projektion pd t.

Néar en om en ligesidet hyperbel omskreven trekant udarter pa en sidan
méade, at roringspunktet for siden 4B konvergerer mod rgringspunktet S
for siden OB, vil dens polarcirkel konvergere mod en cirkel, der rorer
OB i C og har centrum pa normalen fra S pa AC. Heraf fis:

4*
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ITa. Det geometriske sted for centrerne i de ligesidede hyperbler, som rorer
en fast linie m og en anden fast linie 1 i et givet punkt S, er en cirkel, som
rorer 1 i skeeringspunktet for 1 og m og har sit centrum pd normalen fra S
pa m.

Ved hjelp af de fire seetninger I, Ta, IT og ITa vil man veere i stand til
at bestemme en ligesidet hyperbel af fire elementer i 7 tilflde af 9, hvil-
ket fremgar af folgende oversigt.

1. 4 punkter. Lgses ved I.

2. 3 punkter og en tangent. Loses ved I (se nedenfor).

3. 3 punkter og tangenten i et af dem. Loses ved I og Ia.

4. 2 punkter og tangenten i dem begge. Lgses ved Ia eller IIa.

5. 2 punkter, tangenten i et af dem og en tangent til. Loses ved Ia og
ITa.

6. 2 punkter og 2 tangenter.

7. 1 punkt med tangent og to tangenter. Loses ved II og Ila.

8. 1 punkt og 3 tangenter.

9. 4 tangenter. Loses ved II.

Lgsningen af opgave 2 er ikke sa umiddelbart indlysende som de andre.
Lad 4, B og C vere de givne punkter, ! den givne tangent. Gennem et
punkt P af [ vil der ifglge tilfelde 1 kunne bestemmes en ligesidet hyper-
bel, som ogsé gar igennem A4, B og C og skerer | anden gang i P,. Idet
afhengigheden mellem P og P, er en en-entydig algebraisk afhsengighed,
hvor P og P, kan ombyttes, er den en involution pa linien /. Er denne
involution hyperbolsk, vil dens dobbeltpunkter netop vare rgringspunk-
terne for de segte ligesidede hyperbler. Traekker man hgjderne i trekanten
ABC, vil de skeere [ i tre punkter, som i den ovennavnte involution svarer
til I’s skeeringspunkter med trekantens sider, hvorefter eventuelle dob-
beltpunkter kan findes.

Ved behandlingen af de andre opgaver kan man i nogle af tilfaeldene
veelge imellem flere forskellige kombinationer af de anferte geometriske
steder.

I opgaverne ovenfor kan to givne tangenter specielt veere parallelle.
En tangent med rgringspunkt kan i visse tilfeelde erstattes af en asymp-
tote, et punkt af en asymptoteretning. Sivel nipunktscirklen som polar-
cirklen kan da udarte til en ret linie, en fwlles diameter for den pageel-
dende samling ligesidede hyperbler.
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Den 15 november 1953 holls pa Matematiska Institutionen i Lund en
diskussion om gymnasiets matematikkurser, arrangerad av Féreningen
i Lund fér matematisk-naturvetenskaplig undervisning. Inledare voro
undervisningsradet C. E. Sjostedt och professor O. Frostman, Stock-
holm. I den livliga diskussion som f&ljde yttrade sig en rad talare represen-
terande universiteten, skolorna och Skoloverstyrelsen, vars representant
i sitt inledningsanférande redogjorde for forslaget till nya kursplaner i
matematik ps gymnasiet. Fran universitetshall framfordes krav pi att
vissa for fortsatt utbildning visentliga moment skulle beredas plats i
kursen, och som exempel nimndes frimst exponential- och logaritm-
funktionerna samt deras derivator.

Ett stencilerat referat av diskussionen har utséints till medlemmarna
i foreningen, och det &r en omarbetning av detta som foljer nedan.

Inledningsanforande av undervisningsradet C. E. SJOSTEDT:

Kursplanerna i matematik fér det nya gymnasiet ha #nnu ej fast-
stallts av Kungl. Maj:t. Ett av Skoloverstyrelsen (SO) utarbetat forslag
till kursplaner har av Kungl. Maj:t aterremitterats til SO med uppdrag
att ytterligare skiira ner kurserna. De anbefallda nedskérningarna komma
huvudsakligen att genomforas i de detaljerade metodiska anvisningar,
som nu héilla pa att utarbetas.

Férst och frimst skall i dessa anvisningar minimikursen klart precise-
ras. Den nya uppliggningen av matematiken kommer att karakteriseras
av tre skilda kurser med olika slutmal, nimligen kurserna for a) real-
linjens matematiska gren, b) dess biologiska gren och c) den allménna
linjens sociala gren.

I ett tidigare forslag, som utséints pd remiss till liroverken, forutsattes
samlisning mellan allminna linjen och reallinjen pa gymnasiets ligsta-
dium och mellan reallinjens biologiska gren och allménna linjens sociala
gren pa dess hogstadium. Orsaken till férslaget om samlésning var bristen
pa matematiklirare. Remissyttrandena gingo emellertid i klart negativ
riktning, och d& dessutom vid en berdkning antalet genom en ev. sam-
ldsning inbesparade lirarekrafter visade sig vara relativt liten, overgav

(53]
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man inom SO det nimnda forslaget till fsrmén for det ovan angivna med
tre helt skilda kurser. Vinsten av en sidan uppdelning kan knappast
overskattas.

Nir timtalet for dmnet matematik ar 1933 genom davarande eckle-
siastikministerns nyck skars ned, blev situationen hopplos och man kan
inte klandra dem som tv4 ir senare medverkadeiférslaget om specialkursen
pa gymnasiet. Det har emellertid varit mycket besvirligt med en skrivning
gemensam for dem, som lédst enbart allménna kursen, och dem som é&ven
haft specialkursen med.

Reallinjens matematiska gren kommer sannolikt att leda fram till
samma resultat som det som nu nas av elever, som lisa bade allmin kurs
och specialkurs, detta trots den beskirning, som skall dga rum. Nu blir
man pd den matematiska grenen av med en barlast av for matematik
mindre begdvade elever. Detta tycks ej ha fullt beaktats av matematik-
lirarna, ej heller att allménna linjen och reallinjen enligt forslaget icke
skola samlisa. P4 allménna linjen komma framdeles elever av siadan typ
att gd, som nu &ro realister, men som, da de natt upp i de hogre ringarna,
visat sig allt mera humanistiskt instéllda, dels sidana som nu &ro latinare
men ha matematik som tillvalsémne.

Reduktionen av timtalet maste medféra en rationalisering av kur-
serna. Sddana moment, som ej behovas, skall rensas bort.

De metodiska anvisningarna komma att innehalla en detaljerad kurs-
plan med preciserade direktiv. P4 den dir angivna minimikursen kan
liraren sedan bygga vidare, i den méan klassens standard sa medger.

Den nimnda rationaliseringen méste ifraga om varje kursmoment
goras med utgangspunkt fran fragan: »Vad kommer jag att ha for nytta
av detta lingre fram % P4 gymnasiets lagstadium blir det da en ganska
stark reduktion av den traditionella kursen. I det f6ljande skall ndrmast
kursen for reallinjens matematiska gren behandlas. Pa lagstadiet dir
har man att géra eleverna vil fértrogna med elementér algebra och ele-
mentér geometri. Det dr nédvindigt att ge dem en ordentlig tréining inom
de omraden, p4 vilka man sedan skall bygga vidare. Speciellt far repeti-
tionen av realskolans geometrikurs icke férsummas. Brister i detta hin-
seende ha tidigare férekommit pa sina héll, och konsekvenserna dirav
ha kunnat géra sig mérkbara dnda upp i de hogsta ringarna. Nodvén-
digheten av den ovan nimnda repetitionen av realskolans geometri pa-
pekas ocksa sirskilt i de nya metodiska anvisningarna.

Trigonometrikursen kommer att radikalt skéras ner. Trigonometri-
ens grunder, som skall lisas under de tvéa forsta gymnasiearen, kommer
att omfatta foga mer 4n vad som nu ldses pa latinlinjen. P4 reallinjens
matematiska gren tillkommer sedan bl. a. additions- och subtraktions-
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teoremen samt begreppet radian och de trigonometriska funktionernas
derivator, medan kapitlet om trigonometriska ekvationer ej skall dgnas
nagot mera betydande arbete. Allménna linjens trigonometrikurs blir
lika med den nuvarande latinlinjens. P4 reallinjens biologiska gren blir
den nagot emellan matematiska grenens och den allm#nna linjens.
Frimst kommer hir att medtagas s mycket trigonometri, som fysiken
kréver.

Aven kursen i rymdgeometri skall minskas, mest p4 allméinna linjen,
minst pd reallinjens matematiska gren. Biologiska grenen skall lédsa min-
dre stereometri, &n som nu hor till allminna kursen. Nedskérningarna
gar mest ut over de geometriska tillimpningarna. Kapitlet om serier
kommer att kvarstd oférindrat, men om sammansatt rinta skall man
lisa mindre &n nu pa reallinjen, medan fér allménna linjen ingen reduk-
tion géres pa detta avsnitt. I studentskrivningarna skall uppgifter pa
sammansatt rinta ges fér allménna linjen, men ej f6r ndgondera grenen
av reallinjen. (Speciella trigonometriska ekvationer skall ej heller limnas
som skrivningsuppgifter i studentexamen pé reallinjen, men enkla tri-
gonometriska ekvationer kunna upptrida som tillimpningar i problem
av annan art.)

Sannolikhetskalkyl och statistik &ro icke avsedda att utgéra nagra
tyngande moment i den nya kursen. Inga studentproblem skall limnas
pa dessa omraden. — Endast definitionen pa matematisk sannolikhet
och nagra elementira tillimpningar dirav skall tas med. — Aven ifriga
om statistik asyftar man blott en orientering, ingen omfattande teori.
Enkla tillimpningar, frimst i samband med begreppen medelvérde, sprid-
ning, felberdkning och korrelation skola férekomma.

Den nya kursen avser att ge funktionsliran en dominerande plats.
Aven pa allminna linjen skall man ha en ritt fyllig kurs i funktionslira
med enkla tillimpningar. P4 denna linje skall analytiska geometrien
huvudsakligen utgéra en inledning till funktionsliran (réta linjen). Pa
reallinjens biologiska gren skall nagot mera analytisk geometri medtagas:
rita linjen enligt nuvarande allménna kursen (ej normalformen, ej heller
berikning av vinkeln mellan tva réita linjer). — Reallinjens matematiska
gren skall lisa analytisk geometri till ungefir samma omfattning som
nuvarande specialkursen; dock skall svarare problem ifriga om ellips
och hyperbel uteslutas men teorien behandlas i samma utstrickning som
forut. — Funktionsldran skall p4 allménna linjen omfatta hela rationella
funktioner, pa reallinjens biologiska gren detsamma som nuvarande all-
ménna kursen. Detta senare bor ga bra att lira in, ndr man far ett en-
hetligt elevmaterial. P4 reallinjens matematiska gren blir kursen i funk-
tionsldra i det hela identisk med nuvarande specialkursens.
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Man har diskuterat, huruvida exponential- och logaritmfunktionern.
kunna behandlas pé reallinjens matematiska gren. I metodiska anvis-
ningarna tas med ett moment hirom, men avsnittet om dessa funk-
tioners derivata blir ej obligatoriskt. Det har synts virdefullare att i
stillet dgna storre intresse at derivatkalkylens grunder. Dessa ha pa
sina hall hittills varit forsummade. Ldraren bor i detalj syssla med dessa
saker och férbereda begreppet derivata genom en méingd exempel.

Begreppet integral skall komma med i den nya matematikkursen.
Négon integralkalkyl skall lisas pa allménna linjen, mera pa reallinjens
biologiska gren och #n mera p& dess matematiska. Enkla yt- och volym-
berdkningar skola genomforas. — Inférandet av integralbegreppet kom-
mer dock icke att innebéra nagon mera betydande utvidgning av kurs-
omfanget.

Talaren uttryckte avslutningsvis férhoppningen, att den nya matema-
tikkursen tack vare rationaliseringen och trots det reducerade timtalet
skall innebéra en forbéttring av matematikens stillning pa gymnasiet.

Inledningsanférande av professor O. FROSTMAN:

Det finns knappast nagot skolimne som &dr sa hart tyglat av foérord-
ningar vare sig med hénsyn till omfanget eller framstallningsmetoden
som matematiken. Nagot svingrum for den enskilde ldrarens initiativ
finns inte. Anvisningarna f6r bedémningen av skrivningsuppgifterna ha
blivit f6r definitiva. Ej heller dr det lyckligt, att de skriftliga proven
88 helt dominera d&mnet. Problemens svarighetsgrad har i viss man okat,
samtidigt som kursinnehallet har urvattnats. Okningen av svarighets-
graden hos de givna uppgifterna beror frimst pa att antalet arbetsmo-
ment per uppgift genomsnittligt har stigit. Sddana problem bli svara att
hinna med men kréva ej nigot stérre matt av matematisk fantasi. —
Skolans arbete forvandlas nu till ett rutinarbete inom ett innehallsméssigt
begrinsat omrade. — Enligt undervisningsradet Sjostedt skall i de me-
todiska anvisningarna minimikursen noga fixeras. Man fragar da: »Skall
de skriftliga uppgifterna ges blott pa minimikursen %« D4 l6per man risk
att omradet for problemgivningen &nnu mer begrinsas, att rutinarbetet
Okas och matematikundervisningen urartar.

Ett exempel pa en sadan olycklig utveckling limnar latingymnasiets
matematik. Kursen gjordes i 1933 ars stadga s snév, att de medicinska
fakulteterna icke godtog den som grund fér likarnas yrkesutbildning.
Vid 40-talets slut hade trots detta kuggningsprocenten i studentexamen
i matematik blivit abnormt hog. Som nyss papekats, leder en alltfér
stark begrinsning av kursomfanget ofta till konstlade problem. S& ges
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f. 1. pa allminna kursen ofta uppgifter, i vilka man skall studera funk-
tionen y = P,(x), dir P, &r ett andragradspolynom i z, men parabelns
viktiga egenskaper ingd ej i kursen. Likasa studerar man i en mangfald
uppgifter funktionen y = Py(x), déir P; &r ett tredjegradspolynom i z,
men den motsvarande kurvans intressanta egenskaper, som néra sam-
manhinga med att den har en medelpunkt, kan man ej ordentligt f& fram,
dirfor att den fullstindiga teorien for inflexionspunkter ej faller inom
kursomradet. Inflexioner med horisontell tangent forekomma ofta i de
givna problemen. Méanga elever tro, att alla inflexionstangenter &ro hori-
sontella.

Det kan synas onddigt att kritisera nu existerande kurser, men det
bor understrykas, att det forgdngnas misstag ej far upprepas. — Det vore
lyckligare, om kursen vore s& stor som mojligt i férhallande till timtalet,
men de skriftliga uppgifterna gjordes littare. Det kunde laimpligen ges
ett par svara uppgifter, resten litta. Ba eller AB borde ej vara s svart
for eleverna att uppné. Det stora arbete, som nu nedligges p& problem-
losning, ger forhallandevis klent utbyte.

Formelsamlingen utesluter kunskapsprov och kan kanske slopas. —
Nu kombineras i problemen ofta alltfér heterogena element. Exempel:
Bestim i funktionen y = z3-}ax?-+5x+3 konstanten a s, att y, y’ och
y'’ for @ = 2 bilda en aritmetisk serie. — Om fér ménga moment ingé
i ett och samma problem, blir bedémningen av losningen besvérlig.

Det #r emellertid litt att kritisera daliga problem, mycket svarare att
astadkomma goda. I varje fall dr det mycket tidsodande.

Talaren var ense med undervisningsradet Sjostedt, att man dgnat for
mycken tid &t trigonometriska ekvationer. P4 detta omrdde hade mycket
okynne bedrivits. Han uttryckte vidare en viss &ngslan, att grinserna
for problemomradena skulle dragas alltfér snivt och beklagade, att
problem pa binomialteoremet ej lingre fa tas med i skrivningen.

Aven hos lirare moter man en stark opinion fér mindre och mindre
kurser, men lirarna glémmer dé, att detta leder till firre och mindre
problemomraden och dérmed till svarare problem.

Talaren 6vergick sedan till att detaljerat skiirskida vissa omraden i
matematikkursen.

Den trigonometriska formelapparaten kan ej undvaras pa den mate-
matiska grenen, men for mycken exercis bér undvikas. Han hélsade med
tillfredsstéllelse, att onaturliga triangelsolveringsproblem skulle utrensas.

Inom analytiska geometrien &r koordinatbegreppet och valet av ett
lampligt koordinatsystem viktigt. Stérre uppméarksamhet borde dgnas
&t dessa grundliggande saker. Eleverna ha ofta svart att inse, att koor-
dinatsystemet kan véljas fritt och ej behover vara givet pa forhand.
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Det skulle vara fordelaktigt, om funktionsliran finge en bredare bas.
P4 rationella kurvskaror har under senare ar alltfér mycket arbete ned-
lagts, och alltfor mycket intresse har dgnats at extrempunktsproblemet.
Man skulle redan nu i skolan kunna visa, att (1+4z/n)" &r stindigt vixande
och skulle sa kunna komma fram till funktionen ez,

Ménga lirare frukta kanske, att en del nya saker i funktionsliran ej
kan férstds av eleverna. Man fir ta mycket liberalt pa begreppet »for-
sta¢. Hur blygsamma ansprak man &n har pa begripandet, maste man
8nda rikna med att en stor del av vara elever ej fatta det matematiskt
vésentliga. Redan de rationella talen och de negativa talen bereda svi-
righeter ur definitionssynpunkt och man maste ta askadningen till hjilp.
Som exempel anfordes slutligen, att det éir mycket f3 elever, som verk-
ligen begripit faktorteoremet.

Professor L. GArpING visade med en rad exempel, att det matematiska
stoff, som nu behandlas i skolan &r mycket gammalt, det yngsta fran
1600-talet, och frigade: »Har det sedan 1600-talet kommit fram négot
inom matematiken, som &r virt att tagas upp i skolan % Den stringa
teorin f6r grinsvirden, komplexa tal och irrationaltal 4r av senare datum
och har fundamental betydelse inom matematiken. Annu behandlas
dessa begrepp intuitivt i skolan. Aven om de i sin stringaste utformning
varken kan eller bor tas upp dir, kommer skolan forr eller senare att
bli tvingad till en betydligt mera ingiende behandling av dessa begrepp
dn vad som nu dr fallet.

Talaren varnade bl. a. fér inférande av beteckningen (f(z)dx for obe-
stdmd integral. Beteckningen #r onédig, da de integraler (primitiva
funktioner) som férekomma kan skrivas upp direkt utan detta hjilp-
medel. Den har sitt existensberittigande i andra sammanhang genom
att den ger det ritta resultatet {flg()lg’(t)d¢ vid variabelsubstitution
och genom den bekvima formeln fér partiell integration. Dessa form-
ler kommer séikert inte med i skolan.

Slutligen kommer eleverna troligen att f4 svarigheter pa grund av att
de i beteckningen foér den obestimda integralen forsoker tilldela Sym-
bolen f(x)dx nagon mystisk betydelse. Detta kommer sikert att ge an-
ledning till manga missuppfattningar och fel av olika slag.

Fil. lic. L. SANDGREN skisserade ett forslag till inférandet av exponen-
tialfunktionen pa gymnasiet. Metoden (NMT, Bind 1, Hefte 4, pp- 156—
160) gar ut pd att bland funktioner av typen y — a® sika den (med
a = e), vars derivata i punkten (0, 1) blir = 1 och for vilken foljaktligen
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allmént giller dy/dx = e®. Talaren antydde ocksa, hur man visar, att
det existerar en derivata i nimnda punkt. Fran derivatan for y = e”
kommer man sedan litt over till derivatorna fér y = a® och y = “log x.
Térdelen med metoden &r att man pa ett mycket askadligt sitt kan over-
tyga sig om existensen och entydigheten av talet e. For skolans del torde
det inte vara nodvindigt med de stréinga bevisen harfor. Framstéllningen
blir s& enkel, att den bér kunna anvéndas éven pa reallinjens biologiska
gren och pi allmédnna linjen.

Om man lade ner mindre arbete pa att losa komplicerade uppgifter
inom de hela rationella funktionernas omréide, t. ex. sddana som uppgift
nr. 8 i studentskrivningen & reallinjen (allmén kurs) v.t. 1952, vilka sakna
matematiskt intresse, s& skulle man vinna tid f6r inférandet av exponen-
tialfunktionen.

Undervisningsradet SsosTEDT Onskade, att formelsamlingen slopas.
Tor inflexionspunkt med horisontell tangent borde beteckningen »ter-
rasspunkt« inféras. Prof. Frostman ansag matematiken hart tyglad. Dock
4r minimikurs och rittelsemall avsedda att vara en hjilp 4t mindre vana
larare. Talaren skulle vara glad att slippa rittelsemallen, men en larare-
forening hade bett att fi den. Lérarna ha fritt val att utéver minimi-
kursen ta med s& mycket, som klassens standard tillater. — Endast
for betyget godkind skall skrivningsuppgifterna nodvindigtvis falla
inom minimikursens omrade.

Han instimde i mycket av den kritik, som prof. Frostman framfort,
men hur skall svarigheterna undvikas ? Gar man igenom kursen grundligt,
kan problemdrillen undvikas.

Talaren belyste sin instéllning till denna fréga genom en bild, ur-
sprungligen emanerande fran norskt lararehall: Skall man lira en pojke
att hitta genom en tét skog med en massa slingrande vigar, sa skall
man inte lira honom alla de olika viigarna, utan lira honom att anvénda
kompassen. — Talaren har 14 skrivningar per ar att svara for och &r
tacksam for forslag fran matematiklirarnas sida till lampliga naturliga
problem.
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CarL HYLTEN-CAVALLIUS — LENNART SANDGREN: Plan geometri.
Hermods, Malmo, 1953. 15+293 s. Sv. kr. 21.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 67.)

Att en ny lirobok i matematik p4 hogskolestadiet kommer ut #r alltid
en mycket intressant héndelse — i féreliggande fall 4r det fraga om en
bok av s hég kvalitet bade i pedagogiskt avseende och med tanke pa
urvalet av sakinnehall, att hiindelsen maste rubriceras som en sensation.
Det slutgiltiga omdomet om en lirobok, det m4 gilla vilket undervisnings-
stadium som helst, kristalliseras naturligtvis inte ut, forrin boken varit
i bruk ett antal 4r och visat, vad den duger till, ur de studerandes syn-
punkt. Men sivitt anmélaren kan se, méste den bli ett utomordentligt
hjilpmedel for de ett- och tvabetygsstuderande vid universiteten och
hégskolorna vid studiet av geometrikurserna — bade for dem som vilja
lasa in kursen snabbt och fér dem som vilja tilligna sig gedigna geome-
triska kunskaper.

Det forefaller, som om férfattare och férliggare av lirobocker forst
under de senaste decennierna borjat gora klart for sig, vilken betydelse
en boks typografi har for att géra studiet av boken lustbetonat och dir-
med effektivt. En bok med aldrig sa fortriffligt sakinnehall riskerar att
inte komma till sin réitt hos en stor del av lisarna, om bristerna i typo-
grafiskt avseende ir alltfér stora. I detta fall &r typografien tvirtom
mdonstergill: det giller bade stilsorterna och varierandet av dem och de
bortat 300 utomordentligt klara och vilritade figurerna. Antagligen finns
det ett eller annat tryckfel, ndgot som i en matematisk text kan vara
besviirande, men anmélaren har fér sin del, trots ivrigt letande efter fel,
icke funnit négra.

Forfattarna borja boken med en timligen utférlig framstéillning av
vektorer i planet, inklusive den skalira produkten. De motivera i bokens
forord detta med, att vektorbegreppet spelar en framtridande roll inom
olika grenar av ren och tillimpad matematik, och att man dessutom har
nytta av det vid behandlingen av parallellkoordinatsystem. Jag ar inte
alldeles 6vertygad om, att det &r idealiskt ur pedagogisk synpunkt; det
torde nog vélla en del studerande vissa svéarigheter att plotsligt kastas
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inien relativt oprovad begreppsvirld. A andra sidan erbjuder det meto-
diskt stora fordelar, och bokens férsta fyra kapitel, vilka behandla rita
linjen, parallellkoordinatsystem, speciellt ritvinkliga system, och koor-
dinattransformationer, bygger genomgdende pa vektorframstillningen.

Det foljande kapitlet, betitlat likstéllighet, triangelgeometri och har-
monisk delning, &r en verklig fyndgruva for elementargeometriska sat-
ser. Jag vet mig inte nagonstéides ha list en si koncentrerad och &ndé
overskadlig och lattillgéinglig framstéllning av hithérande fragor. Man
noterar som ett kuriosum, att forfattarna mena, att en punkt, som be-
finner sig mellan en strickas dndpunkter, delar strickan i ett negativt
delningsférhallande. Det &r ju en konventionssak, men det torde vil
vara vanligare att definiera delningsforhallandet med motsatt tecken
mot vad forfattarna gora.

Efter ett 6verskadligt kapitel om cirkeln, omfattande harmoniska och
ortogonala cirklar, cirkelknippen, pol och polar samt inversion, foljer ett
intressant kapitel om linedira avbildningar, bl. a. kongruenstransforma-
tioner, affina avbildningar, transformationsgrupper, parallell- och cen-
tralprojektion i rymden. Kégelsnitten behandlas dels (forst) syntetiskt
sdsom snitt i en rotationskon, dels i ett sirskilt kapitel analytiskt. De
rent geometriska aspekterna trida pa ett lyckligt sitt i forgrunden fram-
for de algebraiska.

Boken avslutas med ett kapitel om homogena koordinater samt ett
om kiigelsnitten ur projektiv synpunkt, varvid framstéllningen féres
nagot utdver gillande tvabetygskurs.

En lirobok i matematik #r ingen bra lirobok, om den inte innehéller
rikligt med exempel, bade sddana som demonstrationsriknas av forfatta-
ren och sddana, som lisaren far rikna for att utréna, om han tillgodogjort
sig innehallet. Foreliggande bok innehéller 100 exempel av det forra sla-
get och 500 av det senare (med svar i allménhet). Ett ordentligt sak-
register avslutar.

Bade forfattare och forlag dro att gratulera till sin utomordentliga

skapelse. Sven Hilding

Lars HORMANDER — LENNART SANDGREN: Matematisk problemsam-
ling for tvd betyg. Lunds Studentkéars Intressebyra, Lund, 1954. 55 s.
Sv. kr. 8.00.

Den problemsamling, som hérmed féreligger, dr indelad p4 samma sétt
som den i Lund 1942 utgivna samlingen. De bada forfattarna tillkénna-
ger i férordet:



62 LITTERATUR

»Vid utarbetandet av denna problemsamling har vi huvudsakligen
anvént oss av tvéd killor: Tentamensskrivningar, som givits for tva betyg
i fil. kand.- och dmbetsexamen under de senaste tio aren, och problem,
som sammanstillts for seminariedvningar vid Lunds Universitet. Dessut-
om har utnyttjats ett 50-tal problem ur Matematisk problemsamling,
2-betygskursen (Lund 1942).

Forsok har gjorts att indela problemen i kapitel efter deras innehall . . .«

Hiftet innehaller 300 problem med svar. Till ett 50-tal av problemen
finnas dessutom kortfattade anvisningar. Problemen har fordelats pa
foljande sitt: Algebra 59 st. (férdelade pa 2 kapitel), analys 187 st. (10
kap.) och geometri 54 st. (2 kap.).

De utvalda problemen ér tillimpningar pa de viktigaste momenten i
2-betygskursen. De ér i allménhet vil valda, méjligen kunde firre alge-
braproblem medtagits till f6rman fér geometrin. De 50 uppgifterna ur
den férra samlingen kanske ocksd kunde utbytts mot »farskare« tenta-
mensproblem.

Samlingen &r vilredigerad och férefaller att vara noggrant genom-
arbetad. Man onskar blott, att de virdefulla anvisningarna voro fler.
Héaftet kommer sikert att gora samma lycka som lundasamlingen av ar
1942, vilken det tydligen avser att ersitta.

Hans Riesel

Stic HyaLmaRrs: Teoretisk fysik. Almqvist & Wiksell, Stockholm, 1953.
255 s. Sv. kr. 28.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 67.)

Denne lerebog i teoretisk fysik tilsigter, som forfatteren siger, at
stillsammans med nigon lamplig lirobok i teoretisk mekanik ge en kort-
fattad framstéillning av principerna fér den teoretiska makrofysikens.
Bogen er udarbejdet pa grundlag af forelesninger, som forfatteren har
holdt for fysikstuderende pa Stockholms Hogskola. Forfatteren har valgt
at skrive i en usedvanlig kortfattet stil, der muligger, at bogen dekker
et stort omrade. Samtidig udmarker bogen sig ved en overordentlig
klarhed og er serdeles omhyggeligt udarbejdet. Det har veeret forfatte-
rens hensigt at omtale principperne, hvorfor han ikke har medtaget mange
eksempler, og opgaver er udeladt.

Eftersom bogen omfatter de fleste af makrofysikkens discipliner, er det
yderst bekvemt, at den indledes med et kapitel, hvori der gives en over-
sigt over de matematiske hjelpemidler og en gennemgang af teorien for
vektorfelter. Dette kapitel tjener samtidig som en nyttig formelsamling.
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Det herefter folgende korte afsnit om hydrodynamik ger leseren for-
trolig med en simpel og anskuelig anvendelse af vektorfelternes teori.

Et hovedafsnit i bogen omfatter teorien for elektromagnetisme. For-
fatteren har naturligt valgt den seedvanlige oplegning af dette emne.
Som udgangspunkt velges saledes beskrivelsen af statiske elektriske og
magnetiske felter i det tomme rum. Derpé redeggres for det mere kom-
plicerede tilfeelde af stationsre felter i stoffer. Efter en diskussion af kva-
sistationeere felter opstilles de fuldsteendige Maxwellske ligninger. P4 ba-
sis heraf behandles bl. a. energi-impulssetningen og de retarderede elek-
tromagnetiske potentialer hidrgrende fra kontinuerte fordelinger af strom-
me og ladninger. Det kan noteres, at forfatteren med sterste omhu redegor
for de »skiligen ointressanta« muligheder for enhedsvalg i elektrodynamik-
ken. I fortsettelse af elektrodynamikken gennemgas de vigtigste principper
i optikken i et kort afsnit. Der gives en udmerket klar fremstilling
af sammenhangen mellem den geometriske optik og belgebeskrivelsen.

Det afsluttende stgrre afsnit om termodynamik fortjener seerlig om-
tale. Forfatteren har gjort sig umage for at klargere grundbegreberne i
termodynamikken, der jo ofte anses for en vanskelig disciplin, og i det
hele er stilen bredere end i de foregaende afsnit. Samtidig har forfatteren
ogsd i dette afsnit kunnet gennemfore en klar matematisk beskrivelse.
Efter indferelse af forste hovedseetning gives der en redeggrelse for luft-
arters egenskaber. Dernast diskuteres anden hovedsatning og nogle af
dens konsekvenser. Entropibegrebet behandles dog ikke s& udferligt som
det gvrige, og en omtale af termodynamikkens tredie hovedseetning havde
veeret gnskelig. Man far et lille indblik i irreversible processer og i trans-
formationer mellem de forskellige termodynamiske variable. Til sidst
gives en kort fremstilling af kemisk termodynamik.

Som det fremgar af det ovenstidende, kan de forskellige afsnit i bogen
leeses uafthengigt af hinanden. Forfatteren har, som neevnt, sammen-
fattet de matematiske forudsetninger i forste kapitel. Hvad angar de
fysiske grundantagelser, er disse ogsé fremstillet i en knap og klar postu-
latagtig form. Det har ikke varet bogens hensigt at redegere for det
vanskelige problem om den eksperimentelle basis for og begrsensningen
af de fysiske antagelser, der geres i bogen.

Det mé fremh=ves, at bogen forst og fremmest er verdifuld for fysik-
studerende i tilknytning til foreleesninger. Den vil dog ogsa veere velegnet.
- til studium for den, som vil genopfriske sine kundskaber inden for den
klassiske teoretiske fysik.

Der er tradition for at fremstille den klassiske mekanik pa klar mate-
matisk form. Det er bogens fortjeneste, at den fremstiller de gvrige:

klassiske discipliner pa samme vis. P. Kristensen. J. Lindhard
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ErNst 8. SELMER: Differensial- og integralregning. Akademisk Forlag,
Oslo, 1954, 84315 s. N. kr. 30.00.

(Innholdsfortegnelse i NMT, dette hefte, s. 69.)

P4 ethvert undervisningstrin, hvor matematikken doceres, vil der al-
tid kunne rejses sporgsmal, for det ferste det forholdsvis let besvarede
om det rimeligste emnevalg, og nar dette er besvaret, det langt vanske-
ligere spergsmal om den grundighed, hvormed de enkelte omrader inden-
for det fastlagte stof ber behandles. Om det sidstnsevnte spergsmal vil
der altid vere delte meninger, og de forskellige synspunkter vil og kan
aldrig forenes. I Danmark er der gennem arene skabt en rodfestet tradi-
tion for, at man overalt giver den mest eksakte behandling af det mate-
matiske stof, og netop pa et tidspunkt, hvor man i hvert fald for det
matematiske gymnasiums vedkommende har folt, at man dog pi enkelte
punkter burde lette behandlingen af visse grundlags- og eksistenssporgs-
mal en smule, er det hgjst interessant at stifte bekendtskab med dette
omfattende vark, hvor behandlingen p4 vasentlige punkter helt afviger
fra den gaengse.

Bogen, der i forste reekke er bestemt for universitetsstuderende med
matematik som hjelpefag, specielt gkonomer, er skrevet i en let og frisk
stil, der virker umiddelbart suggererende. Den giver med sit begransede
-omfang en introduktion i et endog meget stort antal af differential- og
integralregningens anvendelsesomrader. Udover behandlingen af differen-
tiation og integration for funktioner af een variabel findes en mere ud-
forlig gennemgang af rekkeleren, specielt potensrakkernes teori, et
mindre afsnit om komplekse tal og et omfattende afsnit om funktioner
af flere variable, hvori ogsd behandles vzsentlige dele af rummets
analytiske geometri.

Det har tilsyneladende for bogens forfatter veeret et hovedsynspunkt
overfor leseren pa intet sted at ove vold mod dennes sunde fornuft. Be-
handlingen af graensevardibegrebet bliver derfor ganske kortfattet, og
begrebet kontinuitet i een variabel defineres simpelthen ved, at den til
funktionen svarende kurve er sammenhzngende. Ligeledes behandles
differentialregningens middelveerdiseetning ved en anskuelsesbetragt-
ning. Der kunne nezevnes adskillige andre eksempler af tilsvarende art,
saledes for eksempel indfgrelsen af begrebet omvendt funktion, hvor alle
«de sedvanlige vanskeligheder slet ikke treder frem i lyset, men hvor
bogens leesere sikkert alligevel vil have fornemmelsen af fuld forstaelse.

Enhver, der underviser i matematik, har sikkert den for si vidt be-
synderlige erfaring, at dele af det underviste stof i den trykte fremstil-
ling virker tungt og vanskeligt tilgzngeligt, medens det talte ord i selve
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undervisningen langt lettere bringer over vanskelighederne. Man mé4 be-
undre den serpreegede indsats, som forfatteren af denne bog har gjort
ved at bringe den trykte fremstilling langt mere ner den mundtlige, end
man sedvanligvis ser. Ved denne sjeldne evne har forfatteren gjort bo-
gen ligefrem underholdende. Dertil ma yderligere fojes, at bogen er for-
synet med en endog meget lang raekke af velvalgte eksempler.

Uanset, om man er enig med forfatteren i den valgte behandlingsform
eller ikke, m4 bogen pi det varmeste anbefales til ngjere studium af
enhver, der underviser i matematik, det veere sig i gymnasiet eller ved
den hgjere undervisning. Den er ved hele sin form et kraftigt indleg i
den aldrig afsluttede diskussion, hvordan matematik ber doceres, nar
man vil afveje behandlingens dybde og stoffets fremstilling med elevernes
absorptionsevne, og den vil hos enhver leser anspore til dyb eftertanke.

Kar Rander Buch

MOTTATTE BYUKER

Staff of the Bateman Manuscript Project (editor A. Erdélyi): Higher
transcendental functions, I and II. McGraw-Hill Book Co., New York,
Toronto, London, 1953. 264302 pp. and 174396 pp. sh. 49/— and 56/6.

Volume I: The gamma function 1-55 * The hypergeometric function 56-119 *
Legendre functions 120-181 * The generalized hypergeometric series 182-201 * Fur-
ther generalizations of the hypergeometric function 202-247 * The confluent hyper-
geometric function 248-295 * Subject index 296-300 * Index of notations 301-302.

Volume II: Bessel functions 1-114 * Functions of the parabolic cylinder and of
the paraboloid of revolution 115-132 * The incomplete gamma functions and related
functions 133-152 * Orthogonal polynomials 153-231 * Spherical and hyperspherical
harmonic polynomials 232-263 * Orthogonal polynomials in several variables
264-293 * Elliptic functions and integrals 294-383 * Subject index 384-392 =
Index of notations 393-396.

L. B. Benny: Mathematics for students of engineering and applied science.
Oxford University Press (Geoffrey Cumberlege), London, 1954. 74783
pp- sh. 35/

Limits — convergence of series — binomial, exponential and logarithmic series
— hyperbolic functions 1-38 * Imaginary and complex quantities — Demoivre’s
theorem — algebraic equations 39-69 * Determinants 70-81 * The elements of
plane co-ordinate geometry 82-124 * The elements of solid co-ordinate geometry
125-162 * Vectors and vector products 163188 * Differentiation and its applica-
tions 189-229 * The expansion of functions in series — the theorems of Taylor
and Maclaurin 230-259 * Integration 260-318 * Applications of integration 319-
377 * Differential equations 378-441 * Functions of more than one independent
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variable — partial differentiation and its applications 442-499 * The integration
of linear differential equations in series 500-516 * Fourier series — harmonic ana-
lysis 517-541 * Partial differential equations 542—-581 * Multiple integrals and their
applications 582-630 * Spherical trigonometry 631-664 * Differentiation of vec-
tors 665-685 * Errors of observation — method of least squares 686-704 * Exer-
cises 705-732 * Answers 733-780 * Index 781-783.

L. Bergman: Schwingende Kristalle. Dritte Auflage. B. G. Teubner
Verlagsgesellschaft, Stuttgart, 1953. 52 S., 51 Fig. Kart. DM 2.60.

Die piezoelektrischen Erscheinungen 5-20 * Die piezoelektrischen Kristalle im
hochfrequenten Wechselfeld 20-31 * Die Anwendung der schwingenden Kristalle
in der Hochfrequenztechnik und Elektroakustik 31-38 * Die Anwendung der
schwingenden Kristalle in der Ultraschalltechnik 39-45 * Die Bedeutung des Ul-
traschalles in Wissenschaft und Technik 45-51 # Schrifttumsverzeichnis 52.

Ludwig Bieberbach: Theorie der gewohnlichen Differentialgleichungen
auf funktionentheoretischer Grundlage dargestellt. (Die Grundlehren der
mathematischen Wissenschaften 66.) Springer-Verlag, Berlin, G6ttingen,
Heidelberg, 1953. 9338 S. DM 36.00, ganzleinen DM 39.60.

Die grundlegenden Existenzséitze 1-20 * Singuldre Stellen bei gewohnlichen
Differentialgleichungen erster Ordnung 21-33 * Das Verhalten der Loésungen von
dw/dz = (aw-bz)/(cw+dz) fiir konstante a, b, ¢, d im Punkte (0, 0) 34—46 * Ausser-
wesentlich singulédre Stellen zweiter Art 46-81 * Differentialgleichungen erster
Ordnung im Grossen 81-107 * Lineare Differentialgleichungen zweiter Ordnung im
Kleinen 108-182 * Differentialgleichungen der Fucasschen Klasse 182-189 * Die
hypergeometrische Differentialgleichung 189-257 * Die BEssELsche Differential-
gleichung 257-289 x Differentialgleichungen der Fucesschen Klasse mit vier
singuldren Punkten 289-302 #* Differentialgleichungen mit periodischen Koeffi-
zienten 302-323 * Einiges iiber nichtlineare Differentialgleichungen zweiter Ord-
nung 324-335 * Namen- und Sachverzeichnis 335-338.

Paul F. Byrd and Morris D. Friedman: Handbook of elliptic integrals
for engineers and physicists. (Die Grundlehren der mathematischen Wis-
senschaften 67.) Springer-Verlag, Berlin, Géttingen, Heidelberg, 1954.
12+355 S., 22 Fig. DM 36.00, ganzleinen DM 39.60.

Introduction 1-7 * Definitions and fundamental relations 8-41 * Reduction
of algebraic integrands to Jacobian elliptic functions 42-161 * Reduction of tri-
gonometric integrands to Jacobian elliptic functions 162-181 * Reduction of
hyperbolic integrands to Jacobian elliptic functions 182-190 * Tables of integrals
of Jacobian elliptic functions 191-222 * Elliptic integrals of the third kind 223-239
* Table of miscellaneous elliptic integrals involving trigonometric or hyperbolic
integrands 240-248 * Elliptic integrals resulting from Laplace transformations
249-251 * Hyperelliptic integrals 252-271 * Integrals of the elliptic integrals 272—
281 * Derivatives 282-287 * Miscellaneous integrals and formulas 288-296 * Ex-
pansions in series 297-306 * Appendix 307-350 * Bibliography 351 * Index 352-
355.
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Helfred Christoffersen: Regning og matematikk i realskolen. (Fabritius
pensumoversikter til repitisjon.) Fabritius & Senner, Oslo, 1954. 80 s.
Aritmetikk og algebra 5-34 * Praktisk regning 35-55 * Plangeometri 56-80.

Walter Grossmann : Grundziige der Ausgleichungsrechnung nach der Me-
thode der kleinsten Quadrate nebst Anwendungen in der Geoddsie. Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1953. 8261 S., 54 Abbildungen.
Ganzleinen DM 19.80.

Grundziige der Fehlerlehre 6-47 * Ausgleichung von direkten Beobachtungen
48-58 * Ausgleichung von vermittelnden Beobachtungen 59-142 * Ausgleichung
von bedingten Beobachtungen 143-220 * Anhang 221-253 * Schrifttum 254 * Na-
men- und Sachverzeichnis 2556-261.

Stig Hjalmars: Teoretisk fysik. Almqvist & Wiksell, Stockholm, 1953.
255 s. Sv. kr. 28.00.

(Anmeldt i NMT, dette hefte, s. 62.)

Vektorfilt 13-33 * Hydromekanik 37-48 * Det elektrostatiska féltet i vakuum
51-74 * Det elektrostatiska filtet i materiella medier 75-94 * Faltet fran perma-
nenta magneter 94-98 * Det stationéra elektromagnetiska fialtet 98-118 * Det
kvasistationira elektromagnetiska féltet 119-125 * Det allménna elektromagnetiska
faltet 125-142 * Geometrisk optik 145-156 * Vagoptik 156—-172 * Elektromagnetisk
optik 172-181 * Termodynamikens férsta huvudsats 185-200 * Termodynami-
kens andra huvudsats 200-221 * Irreversibla processer och jamviktsvillkor 221—
231 * Kemisk termodynamik 231-243 * Beteckningar 244-248 * Register 249-255.

Carl Hyltén-Cavallius och Lennart Sandgren: Plan geometri. Hermods,
Malmo, 1953. 154293 s. Sv. kr. 21.00.

(Anmeldt i NMT, dette hefte, s. 60.)

Vektorer 1-9 * Parallellkoordinatsystemet och réta linjen 10-26 * Skalér produkt
och ratvinkliga koordinater 27—-41 * Koordinattransformationer 42-53 * Likstéllig-
het, triangelgeometri och harmonisk delning 54—69 * Cirkeln 70-92 * Lineédra av-
bildningar 93-106 * Syntetisk kégelsnittsgeometri 107-141 * Analytisk kégel-
snittsgeometri 142-190 * Speciella egenskaper hos ellips, hyperbel och parabel
191-205 * Homogena koordinater 206-244 * Kégelsnitten fran projektiv synpunkt
245-282 * Svar til 6vningar 283—-289 * Index 290-293.

Olaf Ingebrigtsen og Kay Piene: Oppgavesamling for realskolens og
gymnasets 2 forste klasser. Tredje, reviderte opplag. J. W. Cappelens For-
lag, Oslo, 1954. 128 s.

Oppgaver i aritmetikk—algebra 5-59 * Oppgaver i geometri 60-84 * Blandede
oppgaver 85-128.

George Jaffé: Drei Dialoge iber Raum, Zeit und Kausalitit. Springer-
Verlag, Berlin, Gottingen, Heidelberg, 1954. 211 S. Kart. DM 9.60.

Die Dialoge schliessen sich an Berkeley’s Three Dialogues between Hylas and Phi-
lonous an. Die beiden ersten Dialoge erscheinen hiermit in zweiter Auflage (Zwei
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Dialoge diber Raum und Zeit, Akademische Verlagsanstalt m. b. H., Leipzig, 1931).
Der dritte Dialog wird hier zuerst veroffentlicht.

Lyman M. Kells: Elementary differential equations. 4th ed. McGraw-
Hill Book Co., London, 1954. 10+4266 pp. sh. 30/—.

~ Definitions and elementary problems 1-12 * Applications 13-28 * Differential
equations of the first order and the first degree 29-49 x Applications involving
differential equations of the first order 50-63 * First-order equations of degree
higher than the first 64-73 * Linear differential equations with constant coeffi-
cients 74-95 * Applications of linear equations with constant coefficients 96-123 *
Miscellaneous differential equations of order higher than the first 124-135 * Applica-
tions 136-149 * Differential equations in more than two variables. Existence theo-
rems 150-162 * Solution by series and by methods involving successive approxima-
tions 163-182 * Partial differential equations of the first order 183-201 * Partial
differential equations of order higher than the first 202-219 * Applications of par-
tial differential equations 220-240 * Answers 241-262 * Index 263-266.

W. Lietzmann: Der Pythagoreische Lehrsatz. Siebente Auflage. B. G.
Teubner Verlagsgesellschaft, Stuttgart, 1953. 96 S., 73 Fig. Kart. DM 3.60.

Einiges aus der Geschichte des pythagoreischen Lehrsatzes 5-13 * Zerlegungs-
beweise 13-32 * Der pythagoreische Lehrsatz im euklidischen System 32—40 x Py-
thagoreischer Lehrsatz und Ahnlichkeitslehre 40-51 * Berechnungen mit Hilfe der
pythagoreischen Gleichung 51-57 * Funktionsbetrachtungen 57-67 * Pythago-
reische Zahlen 68-79 * Das Fermatsche Problem 79-92 * Einiges tiber die Litera-
tur zum pythagoreischen Lehrsatz 92-95 * Namenverzeichnis 96.

W. Lietzmann: Wo steckt der Fehler? Dritte, erweiterte Auflage. B. G.
Teubner Verlagsgesellschaft, Stuttgart, 1953. 185 8., 121 Fig. Kart.
DM 5.80.

Tauschungen und Fehlschliisse 9-64 * Trugschlisse 65-116 * Warnzeichen aus
der Analysis des Unendlichen 117-184 * Namenverzeichnis 185.

Rolf Nevanlinna: Hindeutige analytische Funktionen. (Die Grundlehren
der mathematischen Wissenschaften 46.) Springer-Verlag, Berlin, Go6t-
tingen, Heidelberg, 1953. 10+ 379 S. DM 46.50, ganzleinen DM 49.50.

Einleitung 1-3 * Konforme Abbildung ein- und mehrfach zusammenhéngender
Gebiete 4—22 * Losung des DiricELETschen Problems fiir ein schlichtes Gebiet
22-37 * Funktionentheoretische Majorantenprinzipien 37—67 * Beziehungen zwi-
schen nichteuklidischen und euklidischen Massbestimmungen 67-114 * Punkt-
mengen vom harmonischen Mass Null 114-163 * Erster Hauptsatz der Theorie der
meromorphen Funktionen 163-184 * Beschrinktartige Funktionen 185-217 =
Meromorphe Funktionen endlicher Ordnung 217-236 * Zweiter Hauptsatz der
Theorie der meromorphen Funktionen 237-264 * Anwendung des zweiten Haupt-
satzes 264—286 * Die Riemannsche Fliche einer einwertigen Funktion 286-314 *
Der Typus einer Riemannschen Flache 314-327 * Die Amrrorssche Theorie der
Uberlagerungsflichen 327-362 * Literaturverzeichnis 363-370 * Namen- und Sach-
verzeichnis 371-379.
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Rolf Nevanlinna: Uniformisierung. (Die Grundlehren der mathe-
matischen Wissenschaften 64.) Springer-Verlag, Berlin, Gottingen,
Heidelberg, 1953. 10+ 391 S. DM 46.50, ganzleinen DM 49.50.

Einleitung 1-9 * Algebraische Funktionen 10-40 * Begriff der RiEMANNschen
Fliche 40-100 * Funktionentheoretische Grundsétze 100-135 * Existenzsétze
135-162 * Geschlossene RiemanNsche Flichen 162-196 * Der RIEMANNsche Abbil-
dungssatz 196-214 * Gruppen von linearen Transformationen 214-240 * Unifor-
misierung 240-274 * Schlichtartige Flichen 275-311 * Offene RrEMaNNsche Fléchen
311-384 * Literaturverzeichnis 385-387 * Namen- und Sachverzeichnis 388-391.

R. Rothe: Héhere Mathematik 11. Neunte, verbesserte Auflage. (Teub-
ners Mathematische Leitfiden, Band 22.) B. G. Teubner Verlagsgesell-
schaft, Stuttgart, 1953. 210 S., 98 Abbildungen. Kart. DM 6.50.

integralrechnu.ng 9-85 * Unendliche Reihen, insbesondere Potenzreihen 85-141 *
Integrale, die von einem Parameter abhingen. Linienintegrale. Integrale im Kom-

plexen 141-162 * Von den Determinanten und den Vektoren nebst Anwendungen
162—-205 * Register 206-210.

R. Rothe: Hohere Mathematik 111. Sechste, verbesserte und erweiterte
Auflage. (Teubners Mathematische Leitfiden, Band 23.) B.G.Teub-
ner Verlagsgesellschaft, Stuttgart, 1953. 242 S., 166 Abbildungen. Kart.
DM 8.20.

Krumme Flichen und krummlinige Koordinaten des Raumes 9-32 * Linien-

integrale im Raume. Doppelintegrale und mehrfache Integrale 33-122 * Gewdhn-
liche Differentialgleichungen reeller Verdnderlicher 123-236 * Register 237-242.

R. Rothe — 1. Szab6: Hihere Mathematik VI. (Teubners Mathemati-
sche Leitfiden, Band 45.) B. G. Teubner Verlagsgesellschaft, Stuttgart,
1953. 251 S., 54 Abbildungen. Kart. DM 17.60.

Einige ausgewihlte Sitze aus der Funktionentheorie und ihre Anwendungen auf
spezielle Funktionen 11-62 * Weiterfiihrung der Theorie der gewdhnlichen linearen

Differentialgleichungen 63—114 * Spezielle lineare Differentialgleichungen 114211 *
Partielle Differentialgleichungen 211-247 * Register 248-251.

Ernst S. Selmer: Differensial- og integralregning. Akademisk Forlag,
Oslo, 1954. 84315 s., 113 fig. N. kr. 30.00.

(Anmeldt i NMT, dette hefte, s. 64.)

Funksjoner 1-40 * Derivasjon 41-80 * Anvendelser av differensialregningen 81—
127 * Rekkeutviklinger 128-157 * Komplekse tall 157-167 * Integrasjon 167-200 *
Anvendelser av integralregningen 200-230 * Funksjoner av flere variable 231-288 *
Formelsamling 289-292 * Fasit til ovelsesoppgavene 293-315.

George B. Thomas: Calculus. Addison-Wesley Publishing Co., Cam-
bridge (Mass.), 1953. 614 pp. $ 6.50.

The rate of change of a function 9-39 * Derivatives of algebraic functions 40-78 *
Applications 79-113 * Integration 114-185 * Applications of integration to physics
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186-214 * Polar coordinates 215-223 * Transcendental functions 224-259 * Hyper-
bolic functions 260-280 * Methods of integration 281-329 * Vectors and parametric
equations 330-361 * Solid geometry and vectors 362-400 * Partial differentiation
401-452 * Multiple integrals 453-473 * Infinite series 474-535 * Differential equa-
tions 536-559 * Answers to problems 560-601 * Formulas from elementary mathe-
matics 603-608 * Index 609-614. .

L. Fejes T6th: Lagerungen in der Ebene, auf der Kugel und im Raum.
(Die Grundlehren der mathematischen Wissenschaften 65.) Springer-
Verlag, Berlin, Géttingen, Heidelberg, 1953. 10+ 197 S. DM 24.00, ganz-
leinen DM 27.00.

Einige elementargeometrische Sitze 1-28 * Sétze aus der Theorie der konvexen
Korper 28-55 * Lagerungs- und Uberdeckungsprobleme in der Ebene 55-99 *
Packungs- und Deckungswirtschaftlichkeit einer Scheibenfolge 99-113 * Extre-
maleigenschaften der reguléren Polyeder 113-157 * Irregulire Lagerungen auf der
Kugel 157-171 * Lagerungen im Raum 171-189 * Literaturverzeichnis 189-193 *
Namen- und Sachverzeichnis 194-197.

Ernst Trost: Primzahlen. (Elemente der Mathematik vom hoheren
Standpunkt aus, II.) Verlag Birkhiuser, Basel, 1953. 95 S. Brosch.
SFr. 13.50.

Grundlagen und erste Ubersicht 7-19 * Zahlentheoretische Funktionen 19-24 *
Allgemeine Primzahlkriterien 24-34 * Spezielle Primzahlen 34-43 * Primzahlsum-
men 43-49 * Allgemeine Aussagen iiber n(x) und p, 50-66 * Elementarer Beweis
des Primzahlsatzes 66-73 * Elementarer Beweis des Satzes iiber die arithmetische
Progression 73-78 * Die Siebmethode 79-88 * Die Goldbachsche Vermutung 89-93 *
Literaturverzeichnis 94-95.

Siegfried Valentiner: Vektoranalysis. (Sammlung Goschen 354.) Walter
de Gruyter & Co., Berlin, 1954. 138 S., 19 Fig. DM 2.40.

Einleitung 7-12 * Rechnungsregeln der Vektoranalysis 13-80 * Anwendungen
in einigen physikalischen Gebieten (Potentialtheorie, Hydrodynamik, Elektrizi-
tédt) 81-108 * Lineare Vektorfunktionen, Dyaden, Tensoren 109-134 * Formelsamm-
lung 135-138.

R. Zurmiihl: Praktische Mathematik fir Ingenieure wund Physiker.
Springer-Verlag, Berlin, Gottingen, Heidelberg, 1953. 11 + 481 S., 115
Abbildungen. DM 28.50.

Einfilhrung. Hilfsmittel 1-9 * Gleichungen 9-91 * Lineare Gleichungen und
Matrizen 91-166 * Interpolation und Integration 166—221 * Ausgleichsrechnung
221-265 * Darstellung willkiirlicher Funktionen 265-318 * Differentialgleichungen :
Anfangswertaufgaben 319-375 * Differentialgleichungen: Rand- und Eigenwert-
aufgaben 376-474 * Sachverzeichnis 475-481.




OPPGAVER TIL LYSNING

Losninger av de signerte oppgaver 22-28 sendes til oppgaveredakteren, professor
R. Tambs Lyche, Holmengrenda 7, Oslo. Slike lesninger vil bli trykt i et folgende hefte i
den utstrekning plassen tillater, dog vanligvis bare den beste lgsning av hver oppgave.
Losninger av oppgaver i dette hefte ma vere sendt innen 10. august 1954.

De enklere, ikke signerte oppgaver er stillet av redaksjonen, og lesninger av dem vil
ikke bli trykt.

Redaksjonen er takknemlig for forslag til oppgaver. Slike forslag kan sendes til oppgave-
redakteren, helst sammen med oppgavestillerens egen lesning.

22. Ett omrade i planet med ytan 8 &r belagt med en massa med tat-
heten 1. Visa, att omradets troghetsmoment med avseende pa en god-
tycklig axel vinkelrit mot planet dr = S2/2x. Nér intréaffar likhet ?

Lars Hormander

23. Funktionerna f,(x),n = 1, 2, 3, ..., dr definierade for alla 2 och
har k kontinuerliga derivator. Vidare gar f,®(x) likformigt mot noll d&
n — oo, Visa att om

k-1
lim 3 f,0()
n—>o00 v=0

existerar for k olika x-virden, si existerar det for alla x och &r ett poly-

nom av grad < k.
Tore Herlestam

24. Evaluate

2
. d g2 (1—q)
lim Z .
g—>1- r=0 (1—¢*) (1—¢") ... (1—g*)

Martin G. Beumer

25. Om o dr ett tal > 1 skall man beridkna volymen av det n-dimensio-
nella omrade, som definieras av olikheterna

o
Ty X%, Xy 2%, ., Ty 22, T

Svensk 2-betygsskrivning, dec. 1953. Generaliserat.
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26. Bevisa identiteten

2n

2 (—1y——=1log2- 2——2

rv=1 vlvvn-l—lv

log v log v

och anvind denna for att visa att

% 1
2 —1y ﬁ_ O'log2—13(log2)? ,

diar C dr Eulers konstant.

Tore Herlestam

27. When # is an integer, and ¢(n) is Euler’s indicator, prove:

V%_n<<p(n)<n for n>2.

Martin G. Beumer

28. La x,, @y, ..., x, vere reelle variable. La 4, = |a,| vere deter-
minanten med elementene a,; = |v;—;|. Beregn det n-dobbelte inte-
gralet

-

1
g SA dzyde, ... de, .

o
<

R. Tambs Lyche

29. P4 en sirkelbue AB ligger » punkter 4,, 4,, ..., 4,. Hvor mange
konvekse brukne linjer kan en trekke fra 4 til B med knekkpunkter i ett
eller flere av punktene 4,, 4,, ..., 4,*%

30. Gitt en rotasjonskjegle og et punkt P innenfor den. Sgk de plane
snitt som har P till brennpunkt.

31. La « og A vare gitte reelle tall, 2 > 1. Tallfelgen {a,} er definert ved
@y =&, Qppqy = A", n=1,2,3,....

Undersgk for hvilke verdier av « og 1 tallfglgen {a,} konvergerer. (Smlgn.
lgsning av dansk prisoppgave i NMT, Bind 1, s. 179-181.)

32. La AC vzre en korde gjennom et brennpunkt B i et egentlig
kjeglesnitt. Vis at om D er det punkt pa styrelinjen der tangentene i
A og C motes, sd er / ABD rett.

La to egentlige kjeglesnitt i et plan ha et felles brennpunkt B og bergre
hverandre i et punkt P. Vis at skjeeringspunktet @ for styrelinjene ligger
pa fellestangenten i P og at / PBQ er rett.

e ————————————— i

——
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33. La (a;, b;) og r; for ¢ = 1, 2, 3 veere sentrene og radiene i tre sirkler.
Finn vilkéaret for at de tre sirkler har en felles tangent.

34. Idet ay, a,, ..., a, er n positive tall (n > 2), som opptyller betin-
gelsen ‘

a;+ay+...Fa, =1,

skal en finne den minste verdi av produktet

o)) ()

LOSNINGER

Oppgave 19.
Riktig lost av E. Bohn, A. Lodemel og H. Sandum.

Oppgave 20.
La & og &, bety 41. Tilfellet L, parallell med L, (1—I* = 0) er ikke
tatt med.
En enhetsvektor
S = o+ fa,+y(a; X ay)

bestemmes slik at s - @; = &,¢;, §° @Gy, = &,¢,. Det gir

. £,61—E5C5l B £9Co— €160

o= " 1=r

V( 1—¢,2) (1—c5%) — (1 —£,8561C5)?
v= 1—I2 '

Den negative verdi av y er ikke tatt med, da den bare ville gi enhets-
vektorer som er motsatt rettet de vi na har. Er |d| lengden av det sokte
linjestykke, mé for passe verdier av ; og ¢,:

at,+b,+ds—ayt,—b, = 0.

Multipliseres denne likning skalart med @, X @,, finnes
(b—by) - (@, X a,)

Y (1—er?) (1 —ca?)— (I—erea0102)°

og ved skalar multiplikasjon med a,—la, finnes

d =

2



74 OPPGAVER

_ (b,—b,) - (al—laz)__
1—172

t od .

Er y = 0 blir det ingen lgsning hvis ikke (b,—b,) + (a; X a,) = 0, dvs.
linjene skjeerer hverandre, og da kan d velges fritt. De sgkte linjers lik-
ninger kan skrives

(b;—b,) " (a;—la,)

= st I ——ocd]al—{—bl .

Anders Lodemel
Ogsé riktig lest av E. Behn, J. I. Try og P. Wulff Pedersen.

Oppgave 21.

a. ABC idr en triangel, dir A = 90°. O er bisektrisernas skirningspunkt.
Drag linjerna OD, OE, OF och OG, s& at de halvera de vinklar, som BO
och (O bilda med normalerna fran O mot triangelns sidor. 40D, DOE,
EOF, FOG, GOA, BDE och CF@ &ro de 7 sékta trianglarna.

Bevis: Vinklarna vid 4, D, E, F och G iro spetsiga, ty héjderna fran
0, B och C falla inom deltrianglarna. Ytterligare ar

/ AOD == 90°—3A+}(90°—3B) < 90°, / DOE = 90°— 4B < 90°,
/ EOF = }(90°—1B)+1(90°—1C) < 90°, osv.

b. Varje triangels vinkelsumma &r 180°, siledes #r medelviirdet av
vinklarna i alla deltrianglarna = 60°.

Om 4 = 90° méaste den delas i minst tva delar, och 4, B och C bilda
minst 4 vinklar i deltrianglarna. Dessa vinklars medelviirde dr < 60°,
Saledes &r medelvirdet av de dterstiende vinklarna > 60°, I vissa punkter
av den figur, som bildas, d4 ABC uppdelas i spetsvinkliga deltrianglar,
térekomma 3 eller flera vinklar, som tilsammans utgéra ett halvt varv.
I andra punkter kan férekomma 5 eller flera vinklar, som tilsammans
bilda ett helt varv. Ett medelviirde som #r > 60°, erhalles endast d4 ett
helt varv delas i 5 delar, och séledes méste nagon sidan punkt forekomma.
De 5 dér sammanstotande trianglarna bilda en utat konvex femhorning*.
For at erhélla en triangel maste man til den foga ytterligare minst 2
trianglar. Siledes krivs 7 spetsvinkliga deltrianglar.

Johan Stark
Ogsé riktig lest av A. Bager, E. Bohn og A. Ledemel. .

* De 5 sammenstetende trekanter mé tilsammen danne en mangekant med minst 5
sider. For & utfylle denne til en trekant kreves minst to nye trekanter, og dette kan bare
skje om mangekanten er en femkant som da blir konveks.

Red.
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MOTEREFERATER FOR 1953 FRA DE
UTGIVENDE FORENINGER

NMT vil i 1. hefte av hvert bind gi metereferater fra foregdende ar for de ut-
givende foreninger. Denne gang gir vi ogsé en kort redegjerelse for Matematiklk-
seksjonen i Norsk Lektorlag, p. g. a. denne seksjons spesielle karakter.

DaANSKE MATEMATISK FORENING.

Folgende foredrag har veret holdt i foreningen:

9.2 V.Jergensen: Om en analytisk funktions veerdiomrdde. (Anvendelse af Ahl-
fors’ udvidelse af Schwarz’ lemma.)
2.3 J.T. Steffensen: Nogle treek af mit liv som matematiker og aktuar.
23.3 E. B. Schieldrop, Oslo: Tippetoppens bevegelse belyst ut fra et bestemi centralt
teorem.
30.3 W. Feller, Princeton, New Jersey: Differentialekvationer och halvgrupper.
25.4 J.G.van der Corput, Amsterdam: The calculus of asymptotic residues.
4.5 B. Segre, Rom: Algebraic geometry and topology.
6.5 B. Segre, Rom: Algebraic and differential geometry.
7.5 B. Segre, Rom: Geometry upon an algebraic variety.
28.9 D. Gale, Providence, Rhode Island: Games and their solutions.
14.10 W. Kaplan, Ann Arbor, Michigan: A generalization of Gross’ star theorem.
19.10 E. Hemmingsen, Syracuse, New York: Om matematikundervisningen ved
amerikanske skoler og universiteter.
9.11 A. E. Heins, Pittsburgh, Pennsylvania: A class of boundary value problems n
diffraction theory.
11.11 A. F. Andersen: En klassisk rcekkescetnings udviklingstrin gennem de sidste
halvtreds dr.
7.12 C. M. Christensen: Om formelle potensreekker.

Endvidere har foreningens medlemmer veret indbudt til 3 foredrag i Selska-
bet for de eksakte videnskabers historie, holdt af E. J. Dijksterhuis, Utrecht:

9.3 Mathematik und Physik in ihrer Bedeutung fiir das Denken Blaise Pascals.
9.3 Die Mechanik im 17. Jahrhundert und ihre Bedeutung fir die Entwicklung der
Physik.
10.3 Archimedes und seine Bedeutung fiir die Geschichte der Wissenschaft.

Videre til 2 foredrag i Fysisk Forening:

27.4 K. O. Nielsen: Om elektronregnemaskinens fysiske principper.
11.5 C.-E. Froberg, Lund: Matematiska metoder vid rikning med elektronrikne-
maskiner.

[75]
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8.3
20.10
21.10
21.10

15.4
5.5

22.5
9.9

30.9
6.10

10.10
18.11

16.12

4.2

3-7.8

KRONIKK

FORENINGEN AF MATEMATIKLARERE VED GYMNASIESKOLER OG
SEMINARIER I DANMARK.

(Fredericia) og 17.3 (Kebenhavn). T. Bang: Store primital.

M. Pihl: Det historiske isloet 1 matematik- og fysikundervisningen (diskussion).
C. M. Christensen: Tilncermet beregning 4 skolen.

G. Schmidt-Nielsen: Matematikkens stilling pd seminarierne (diskussion).

FINLANDS MATEMATISKA FORENING.

O. Tammi: Sileiden funktioiden koeffikienttiprobleemasta [Koefficientproble-
met for slita funktioner]. .

L. Myrberg: Posititvisista harmonisista funktioista Riemannin pinnalla [Po-
sitiva harmoniska funkiioner pd en Riemannsk yta).

R. Nevanlinna: Dirichlet’n periaatteesta osittaisdifferentiaaliyhtildiden teo-
riassa [Dirichlets princip 4 teorien for partiella differentialekvationer].

P. Kustaanheimo: Finiittisestd maailmankuvasta [Om en finit virldsbild].

H. Cramér, Stockholm: Ndgra problem rorande stokastiska processer.

L. E. J. Brouwer, Amsterdam: Die Ordnung im Kontinuum.

O. Lehto: Rajoitetunluontoisista funktioista [Funktioner med begransad ka-
rakteristik].

W. Kaplan, Ann Arbor, Michigan: Uber schlichte, beinahe konvexe Abbild-
ungen.

W. Haack, Berlin: Uber die Randwertaufgabe der partiellen Differential-
gleichungen vom gemischien Typus.

P. J. Myrberg: Algebrallisista iteraatioista [Om algebraiska iterationer].

S. Mattila: Satunnaisfunktion Laplace-transformaatiosta [Laplacetransforma-
tion av stokastiska funktioner].

L. Myrberg: Poisson’in differentiaaliyhtildsti avoimilla Riemannin pinnoilla
[Poissons differentialekvation pd éppna Riemannska ytor].

FINLANDS MATEMATIK- OCH FYSIKLARARFORBUND.

Arsmote. Foredrag av

L. Kotkatlahti: Korjaustuntien lukumddrdin korjaamisesta [Héjandet av
korrigeringstimmarnas antal].

Excursions- och féreldsningsdagarna i Joensuu:

K. Viisila: Differentiaalit ja niitten kiyttd [Differentialer och deras anvind-
ning].

K. Viisdla: Differentiaali- ja integraalilaskennan opettamisesta lukiossa [Un-
dervisningen av differential- och integralrikning © gymnasiet].

W. Hypponen: Pohjois-Karjalan malmikentistd, [Om Nordkarelens malmdi-
strikt].

K. Viisala: Matematiikan, fysitkan ja kemian asema wudistetussa lukiossa ja
ylioppilaskirjoituksissa [Matematiken, fysiken och kemin i det reformerade
gymnasiet och i studeniskrivningarna].

K. Viisdla: Kokonaisluwuista ideaaleihin [Fran hela tal till idealer].

. O. Laukama: Didaktisista nikokohdista audiovisuaalisten vilineiden kiytossd

[Didaktiska synpunkter vid anvindandet av audiovisuella apparater].
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V. Heinonen: Audiovisuaalisten vilineitten paikallisesta organisatiosta [Den
lokala organisationen vid anvindandet av audiovisuella apparater].
Dagarnas program upptog dessutom flere excursioner till omgivningens gruv-
distrikt, liroanstalter och fabriksanldggningar.
Tnom férbundet verkar pé olika hall i Finland 7 matematik- och fysiklararklub-
bar. Varje klubb har sina egna méten med foredrag, forelédsningar och diskussio-
ner. Ar 1953 hade Helsingfors klubb 6 méten.

]L.SLENZKA STARDFRAEDAFELAGID.

Der blev holdt 6 moder. Medernes hovedemner var felgende:
1. T. Einarsson: Om tyngdemdlinger.
L. Asgeirsson: Undersogelser i forbindelse med Hadamards tre cirklers seetning.
. S. Stefansson: Om hyperbelkonstruktioner.
. V. Ogmundsson: Om hyperkomplekse tal.
. L. Asgeirsson og S. Stefansson: Beretninger fra modet i Lund.
6. b. Karlsson: Om radiale kreefters virkninger © aksiale kompressorer.

QU W

Foreningen uddelte bogpremier til dem, som fik udmserkelse i matematik til
studentereksamen.

NoORSKE MATEMATISK FORENING.

5.3 R.Tambs Lyche: Det gjenfunne Abelmanuskript.
5.3 1I.Johansson: En unedig pedagogisk vanskelighet ved grensebegrepet.
4.9 . Ore, New Haven, Connecticut: Sannsynlighetsregningen @ renessansen.
29.9 XK. E. Aubert: Om entydig produktspaltning og idealteors.
17.11 P. Hoel, Los Angeles, California: Statistical confidence bands for polynomial
curves.

NorSK LEKTORLAGS MATEMATIKKSEKSJON.

Matematikkseksjonen i N. L. er ingen vanlig forening, med lover, styre osv.
Men alle matematikklerere som er medlemmer av N. L. er dermed ogsd med i
Seksjonen. Nar N. L. holder sine landsmeter (hvert tredje 4r), pleier det & vere
moter for de enkelte fag, likess er det ved de distriktsvise kretsmeter som holdes
en eller to ganger i aret gjerne slike moter.

I Bergen og i Trondheim er det en egen seksjon for leererne i de matematisk-
naturvitenskapelige fag, som holder moter ogsa utenom kretsmotene. Endelig er
det i Oslo en egen Matematikkseksjon som har meter en eller to ganger hvert se-
mester.

Om disse foredragene foreligger det melding:

25.10 i Halden krets. L. Wethe: Feilregning ¢ undervisningen, spesielt ¢ realgymna-
sets fysikk.
25.10 i Bergens realistseksjon. Aa. Kvamme: Samfunnsregningen.

Matematikkseksjonen i Oslo:
17.2  G. @strem: Fra matematikkundervisningen i den hoyere skole i Sverige. (Med
demonstrasjon av lerebgker og eksamensoppgaver.)
16.4 I.Johansson: Samspillet mellom fantasi og logikk 4 teoridannelsen.
20.10 A. Neess: Logikk og matematikk. :
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SVENSKA MATEMATIKERSAMFUNDET. i

21.2 Mote i Stockholm:

M. Tideman: En extremalegenskap hos avbildningen av en cirkel pd en reguljir
polygon.

G. Dahlquist: Stabilitet vid numerisk integration.

A. Pleijel: Ndgra olikheter for konvexa kurvor med begrinsad krékningsradie.

H. Bergstrém: Generaliserade poissonfordelningar som gransférdelningar.

8. Comét: Anvandning av snabba elektroniska maskiner pd berdkning av sym.-
metriska gruppens karaktdrer.

L. Carleson: En variationsmetod vid Painlevés problem.

O. Hanner: Hilenberg-Steenrods axiom fér homologiteors.

13.6 Mote i Uppsala:
L. Hulthén: Variationsprincipen for kontinuerliga spekira.
S. Lyttkens: Ett problem om indikatordiagram for hela funktioner.
B. Andersson: Eit svingningsproblem (inom balkteorien).

24.10 Mote i Stockholm:
H. Radstrém: Dekomposition av konvexa punktmdingder.
L. Carleson: Ett problem sammanhdimgande med axelsymmetriska strémmingar.
L. Hérmander: Om Cauchys problem vid ljusekvationen.
H.Wold: De statistiska metoderna ur naturvetenskaplig och samhillsveten-
skaplig synpunks.
8. Lundqvist: Ett problem om icke-linjdra svingningar vid elektriska system.
B. Andersson: En uppskatining av Gabriels konstant.
B. Kjellberg: En sats om funktioner av exponentialtyp.

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING
1 Lunp.
15.11 Hostsammantride. Foredrag av
T. Gustafson: Om det svenska och europeiska atomenergiarbetet.

Vidare férekom en synnerligen livlig diskussion om gymnasiets matematikkurser
med inledningsanféranden av C.E. Sjéstedt och O. Frostman. Ett utférligt
referat finnes p4 annan plats i detta hifte.

FORENINGSNYTT

FORENINGEN FOR MATEMATISK-NATURVETENSKAPLIG UNDERVISNING I LUND

avholl sitt arsmote pa Fysiska Institutionen i Lund séndagen den 11 april 1954.

Till styrelse valdes: Lektor A. Leide, ordf., rektor J. Hemmingsson, v. ordf., lek- ‘
tor B. Adell, sekr., adjunkt E.Malmsjs, kassaférv. Arbetsutskott: Ordf., sekr.

samt prof. Edlén och Smith. Efter rsmétet holls f6ljande foredrag:

G. Arvidsson: Ndgra synpunkter pé MKSA-systemet och dess anvindning inom
skolkurserna.

K. Lundmark: Frdgor och problem infér sommarens totala solférmérkelse.

T. Wilner: Experimentell atomfysik (med demonstrationer).
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FORENINGEN FOR MATEMATISK-NATURVETENSEAPLIG UNDERVISNING
I STOCKHOLM

avholl sitt arsméte den 4—5 januari 1954, forsta dagen i Saltsjobaden och andra
dagen i Tekniska museet, Stockholm. Till styrelse valdes: Lektor E. Knave, ordf.,
lektor F. Ehrnst, v. ordf., lektor B. Gustaver, sekr. och skattmist. Arbetsutskott:
Ordf., v. ordf., sekr., lektor G. Beskow och lektor K. Persson. Efter &rsmotet
holls foljande foredrag:

A. Leide: Granskning och eftergranskning av studentstilarna © matematik och
Sfysik (diskussion).

N. Herlofson: Radioastronoms.

B. Lindblad héll ett orienterande anférande om Stockholms observatorium.
Direfter skedde visning av observatoriet och dess instrument.

E. Ingelstam: MKSA-systemet som grund for skolans fysikundervisning.

T. Althin: Ett tekniskt museums roll ¢ undervisningen. Med demonstrationer
av T. Wilner.

I. Hjerpe demonstrerade kemiska skolférsék och visade ny kemimateriel.

K. Lindberg, Kéln, och 8. Lindholm demonstrerade fysikaliska skolférsék och
visade ny fysikmateriel.

UTNEVNELSER

Til professor i matematik ved Danmarks Tekniske Hgjskole: Dr. phil. Erling
Folner.

Till professor vid Abo Akademi: Docenten G. af Héllstrom.

Till bitridande professor vid Tekniska Hogskolan, Helsingfors: Fil. dr. O. Lokki.

Till docent vid Helsingfors Universitet: Fil. dr. O. Tammi.

Till docent vid Kauppakorkeakoulu, Helsinki (Finska Handelshogskolan): Fil.
dr. S. Mattila.

Til rektor ved Menntaskélinn a8 Laugarvatni: Dr. Sveinn Pordarson.

Til professor ved Norges Tekniske Hogskole, Trondheim: Dr. philos. Henrik
Selberg.

Til lektor ved Oslo Universitet: Cand. real. Johannes @stvold.

Till professor vid Stockholms Hégskola: Fil. dr. Lennart Carleson.

Till professor i matematik vid Tekniska Hogskolan: L. G. Borg.

Till laborator vid Tekniska Hogskolan: Fil. dr. Hans Radstrom och fil. dr.
Ulf Hellsten.

Till docent vid Uppsala Universitet: Fil. dr. Bengt Stolt.

Till docent vid Lunds Universitet: Fil. dr. Tord Ganelius.

DOKTORGRADER

Dissertationer vid Helsingfors Universitet:

28.3.53 Y. Kilpi: Uber lineare normale Transformationen im Hilbertschen Raum.
23.5.53 J. Hintikka: Distributive Normal Forms in the Calculus of Predicatives.

Disputats ved Kgbenhavns Universitet:
29.4.54 A. Jensen: A Distribution Model Applicable to Economics.
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PRISOPGAVER FOR DANSKE GYMNASIEELEVER

I prisopgavekonkurrencen for 1954, arrangeret af den danske matematik-
leererforening, indkom 24 besvarelser. 1. preemie (100 kr.) tildeltes Anton Jensen,
III G mn., @stre Borgerdydsskole, Kobenhavn. 2. preemie (50 kr.) tildeltes Erik
Jansen, II G mn., Christianshavns Gymnasium, Kebenhavn. Opgavernes tekst
findes i NMT, Bind 1 (1953), s. 175—177.

SUMMARY IN ENGLISH

E. J. DurSTERHUIS: The integration methods of Archimedes.

Written in German. See p. 5.

FrREDRIK EHRNST: Reflexions on heuristic teaching of mathematics.

The advantage of guiding the pupils in a natural way up to definitions and
theorems is illustrated by elementary examples. Time insufficiency should not pre-
vent the teacher from employing such heuristic instruction to a certain extent.

GERMUND DAHLQUIST: The Monte Carlo-method.

The article is a survey of some important applications of the Monte Carlo-method
in statistics and numerical analysis. Comparisons as to speed and accuracy are
made with conventional methods. The article contains the following sections:

1. Introduction. 2. Multiple integrals in n dimensions, with an application on
the Swedish relay computer BArk. 3. Importance sampling. 4. Ways of generating
random numbers, including a formation of sums modulo 1 of two different se-
quences, used on the above-mentioned computation on Bark. 5. Matrix inversion
by a random walk method. 6. Numerical solution of partial differential equations
by the same method. 7. The passage of a shower of particles (e.g. neutrons) through
a slab. 8. Mentioning of some other applications.

A comprehensive list of references is given.

SIGURKARL STEFANSSON : T'wo loci connected with the equilateral hyperbola.

Tt is shown that the locus of the center of an equilateral hyperbola passing
through the corners of a fixed triangle, is the nine-point circle of this triangle. The
corresponding locus if the hyperbola touches the sides of the triangle, is another
circle. Coincidence of two of the defining, fixed elements is also considered. The
results are used to solve several construction problems for the equilateral hyper-
bola.

The teaching of mathematics in the Swedish gymnasium.

Report from a discussion at a meeting in Lund, where an official plan for revision
and reduction of the mathematical courses was presented. Several aspects of the
present and proposed curriculum were criticised, especially by university teachers.
A simple introduction of the exponential and logarithmic functions (cf. NMT,
Vol. 1, 1953, pp. 156—60) was suggested.




