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FR. LANGE-NIELSEN

De ytre omrids av Abels liv tor veere vel kjent. Men da enkelte Abel-
biografier og de fleste oppslagverker gir et noksa fortegnet billede av hans
liv og skjebne, kan det veere pa sin plass & gi en oversikt over hans levnets-
16p som en innledning til en omtale av hans videnskapelige innsats.

Niels Henrik Abel ble fodt 5. august 1802, og han déde 6. april 1829
seksogtyve ar og otte maneder gammel. Han tilhérte en embetsslekt, hans
far og farfar var prester og hans oldefar var rddmann i Bergen. Hans mor
var en kjobmannsdatter fra Risér. I hans forste barndom var forholdene
i hjemmet lyse, og 6konomien var god. Hans morfar var pa den tid en
rik mann, som bl. a. skjenket hele 2000 spesiedaler til Norges universitet
ved dets opprettelse i 1811. Under de forvirrede 6konomiske forhold i
arene efter 1814 mistet Abels morfar hele sin formue, og samtidig ble ogsa
hans foreldres 6konomiske stilling av mange arsaker meget bekymrings-
full. Abels far var en begavet mann, som hadde en meget god teologisk
embetseksamen fra universitetet i Kébenhavn. Han ble ridder av Danne-
brog for sine fortjenester av kystforsvaret i sitt prestegjeld i 1801. Han
ble valgt til stortingsmann bade i 1814 og i 1818. Men han var ingen sterk
karakter, og i hans siste levear var forholdene i hjemmet ulykkelige.
Abels mor skildres som »helt karakterlos« og drikkfeldig og ogsd hans far
14 i sine siste ar under for den samme svakhet. Faren déde i 1820 og efter-
lot enke og seks barn i stor fattigdom. Niels Henrik var familiens eneste
hap, og de store byrder som hans sérgelige familieforhold la p4 ham bade
6konomisk og pad annen méte, var den vesentligste drsak til de vanske-
ligheter han motte i sitt liv.

Hosten 1815 kom Abel inn p& Christiania Katedralskole. Skolen dis-
ponerte adskillige legater, og Abel hadde i hele sin skoletid friplass og
stipendier. Fra begynnelsen av 1818 fikk skolen en ny matematikklerer,
den senere professor Bernt Holmboe. Abel hadde ogsé tidligere klart seg
fint i matematikk, men under Holmboes vekkende undervisning tok hans
utvikling som matematiker straks en meget sterk fart, og Holmboe har
innlagt seg uvisnelig fortjeneste ved sin veiledning av Abel. Han ga ham
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privatundervisning og gjennomgikk bl. a. en rekke av Eulers verker med
ham, og han lot ham ogsa ellers lese de store klassikere. Nar Felix Klein
sier: »Abel war vollig Autodidakt« (Vorlesungen iiber die Entwicklung
der Mathematik im 19. Jahrhundert, Berlin 1926, s. 101), s& forekommer
uttalelsen meg ikke helt treffende, og dette gjelder enda mer Kleins ut-
talelse om »die wenigen ihm zuginglichen Biicher«. Det norske universi-
tetsbibliotek var i virkeligheten forbausende godt forsynt med matema-
tisk litteratur, og Katedralskolens og universitetsbibliotekets utlanspro-
tokoller viser at Abel bade i sine siste skoleir (1818-21) og under sin
studietid ved universitetet (1821-25) lante en imponerende mengde
matematiske verker. Da han i 1825 drog ut pa sin store utenlandsreise,
hadde han gjennom iherdige studier ervervet seg et grundig kjennskap
til sin samtids matematiske viden. Men det er riktig at de elementzre
forelesninger som den gang ble holdt ved Christiania universitet, ikke
kunne gi Abel noe som helst, da han alt fra skoledagene hadde kunn-
skaper som gikk meget videre.

Mellom Abel og hans lerer Holmboe utviklet det seg snart et varmt
personlig vennskap som aldri kjolnet, og som ble et av de viktigste stotte-
punkter i Abels liv. Men det var ogs& andre som stéttet ham. Holmboe
ble aldri trett av & forkynne hvilket matematisk geni hans unge elev var,
og i de smé forhold i Christiania den gang forplantet Abels ry som mate-
matiker seg ogsé til Universitetets leerere allerede for han var ferdig med
skolen. Vi har en uttalelse fra denne tid fra professor Chr. Hansteen, hvor
denne omtaler Abel som et stort geni og sier at man vil skaffe ham 6ko-
nomisk stétte nar han blir student, og man »venter da engang i ham at
see en af Jordens forste Mathematici«. Hansteen var professor i anvendt
matematikk og hadde en innflytelsesrik stilling ved Universitetet. Han
ble en av Abels virksomste velyndere.

Det er sikkert ikke mange universiteter som har mottatt en ung stu-
dent med sa stor varme og velvilje som det unge og fattige norske univer-
sitet motte Abel med, da han i 1821 hadde tatt sin studentereksamen.
Han fikk straks en plass pa Regensen, en universitetsstiftelse for fattige
studenter. For & sikre at han skulle kunne vie seg til studiene, skjét uni-
versitetets leerere sammen til en méanedlig understéttelse til ham. De
apnet ogsd sine hjem for ham. I 1823 foreerte professoren i matematikk,
Rasmusen, Abel 100 spesiedaler til en reise til Kébenhavn for at han
kunne gjore bekjentskap med danske matematikere. I januar 1824 fore-
slar universitetet at staten skal bevilge Abel et reisestipendium til utlan-
det og en fast understittelse hjemme inntil han kan tiltre reisen. Finans-
departementet og Kirkedepartementet mente imidlertid at Abel var si
ung at han fremdeles burde bli hjemme et par ar for ved universitetet &
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utdanne seg videre »i de Sprog og andre Bividenskaber, som det er tro-
ligt at han i hans endnu havende unge Alder ikke besidder i den Grad
som det kunde ansees ¢nskeligt for at han med fuld Nytte for sin Hoved-
videnskab skulde kunne anvende det paatenkte Ophold ved fremmede
Universiteters, og de bevilget ham derfor i mars 1824 et hjemmestipen-
dium pa 200 spd. arlig i inntil to 4r. At Abels utenlandsreise ble utsatt
pé grunn av de nevnte departementers holdning har senere veert kritisert
fra enkelte hold, men kritikken er neppe berettiget. Med den stotte han
nu hadde fatt kunne han arbeide uforstyrret videre, og den tiden han ennu
ble hjemme har hatt stor betydning for hans utvikling som matematiker.
Han offentliggjorde sine férste arbeider i »Magazin for Naturvidenska-
berneq, som ble redigert av Hansteen.

I august 1825 ble hans fornyede ansékning om reisestipendium inn-
vilget. Han fikk 600 spd. arlig i to &r, en for den tid ganske stor sum.
Dessverre matte han av denne bevilgning efterlate noen penger til sine
brodre, for han i september 1825 drog ut p4 sin store reise. Han oppholdt
seg i Berlin til varen 1826, fulgte si sine norske venner pa en nokss kost-
bar reise over Osterrike, Nord-Ttalia og Schweiz, var i Paris fra juli til
desember 1826 og atter i Berlin fra januar til mai 1827, da han vendte
tilbake til Christiania. Allerede under sitt forste opphold i Berlin vant han
en trofast venn i geheimerad Crelle, som i 1826 startet det beromte tids-
skrift »Journal fiir die reine und angewandte Mathematikg, til hvilket han
straks knyttet Abel som medarbeider. Det meste av Abels senere pro-
duksjon ble trykt i dette tidsskrift.

Mens Abel var i utlandet inntraff allerede hosten 1825 en begivenhet,
som senere har gitt anledning til sterk kritikk mot universitetet. Dette
innstillet nemlig Abels leerer Holmboe til stillingen som lektor i matema-
tikk efter professor Rasmusen som hadde sékt avskjed. Holmboe ble
ogsé utnevnt og dermed var universitetets eneste faste leererstilling i ren
matematikk beslaglagt. Fakultetet er i denne forbindelse naturligvis fullt
oppmerksom pa Abel. Det mener imidlertid at Holmboe vil passe bedre
til denne stilling hvor det vesentlig skal undervises i elementeer matema-
tikk, men fakultetet erkleerer samtidig at Abel er »fortrinlig skikket til
at beklede en Leererpost i den héiere Mathematik, som man maaske turde
gjore sig Haab om med Tiden at see oprettet ved Universitetet«. Fakul-
tetets uttalelse slutter med & fremheve »hvor vigtigt det vil veere, saavel
for Videnskaberne i Almindelighed, som for vort Universitet i Seerde-
leshed, at ei Student Abel tabes af Sigte«. Universitetet la adskillig vekt
pé at den nye lektor matte kunne overta undervisningen allerede i ja-
nuar 1826, og at man ikke uten skade for Abels arbeide kunne avbryte
hans utenlandsreise. Det har senere vart innvendt mot dette at Abel
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kunne ha veert utnevnt, og s& kunne Holmboe ha vikariert for ham. Det
er ikke naturlig & forlange at fakultetet skulle resonnere slik. Abel var
bare 23 ar, og han var nettopp sendt ut med et reisestipendium. Det var
derfor uvisst nar Abel i tilfelle kunne ha overtatt stillingen, og universi-
tetet var sa beskjedent utstyrt med lererkrefter, at det ble ansett nod-
vendig & f4 den nye mann straks. Fakultetet hadde den gang ingen grunn
til & anta at den stilling det her gjaldt, skulle bli Abels vesentligste chanse.
Det er heller ingen ting som tyder pi at Abel selv skulle ha f5lt universi-
tetets avgjorelse som noe skjebneslag.

En mere berettiget kritikk har veert rettet mot myndighetenes hold-
ning overfor Abel, da han i mai 1827 kom hjem fra sin reise. Reisestipen-
diet var da forlengst oppbrukt, bl. a. fordi Abel ogsa hadde méattet stotte
sine brédre. Reisen hadde dessuten falt dyrere enn beregnet, hvilket del-
vis skyldtes en overflddig kostbar reiserute, og delvis at Abel neppe var
noen fremragende konom. Den siste tiden i Berlin hadde han levet pa
1an fra Holmboe.

Ved hjemkomsten anbefalte universitetet straks en ny bevilgning til
ham. Finansdepartementet svarte imidlertid helt avvisende. Denne be-
klagelige holdning kan delvis forklares ved at reisestipendiet var ment &
dekke tiden helt til september 1827. Abel sendte da inn en ny ansékning,
som igjen ble varmt anbefalt av universitetet, og under sakens videre
behandling pekte universitetet pa at det bare gjaldt & skaffe Abel under-
stottelse i en kortere tid, da han snart ville kunne paregne & fa en stilling
som vikar for professor Hansteen, og resultatet ble at det i begynnelsen
av september 1827 ble bevilget Abel 200 spd. for aret 1. juli 1827—1. juli
1828. Departementet hadde ment at bevilgningen skulle veere forskudd
pa senere lonn, men universitetet satte seg ut over dette og bevilget
Abel belopet som et nytt stipendium.

T oktober 1827 fikk Abel mot kausjon av Holmboe og Hansteen et
banklan pa 200 spd. (som kausjonistene senere matte betale mestepar-
ten av). Fra 1. januar 1828 ble Abel vikar for Hansteen ved den militere
hoiskole, og i februar ble han — fremdeles som vikar for Hansteen — kon-
stituert som dosent ved universitetet med en 16nn pa 400 spd. arlig, fra
1. januar 1829 hevet til 600 spd. Disse ansettelser ga ham efter tidens
og landets forhold et rimelig levebrdd, men han var kommet meget for-
gjeldet hjem fra utlandet, og han matte stadig stGtte sin familie, sd hans
okonomiske stilling var fremdeles vanskelig.

Sommeren 1828 syntes det & Apne seg en mulighet for at Abel kunne f&
en stilling i Berlin. P4 grunn av visse forhindringer i Berlin kunne denne
plan ikke gjennomfsres pa dette tidspunkt. Det vidner unektelig om smé
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og fattige forhold at den nevnte plan ikke beveget Universitet og myn-
dighetene til & sette noe inn pa & skaffe Abel en varig stilling hjemme.

Selv om det kan reises berettiget kritikk mot hjemlandets behandling
av Abel efter hjemkomsten fra utlandet, s& ma det dog fremheves at
denne kritikk ofte har vert urimelig overdrevet og i darlig overensstem-
melse med de faktiske forhold. Tross alt skaffet Universitetet og hans
venner ogsé i denne tid ham dog sividt gode 6konomiske vilkar at hans
videnskapelige arbeide ikke ble hemmet. Han utfoldet i virkeligheten en
helt fabelaktig produktivitet fra han kom hjem og til han i januar 1829
ble liggende syk av tuberkulose pa Froland hovedgard, en av Norges
4 herregarder. Han dode ikke i elendighet som det har veert pastatt, men
i et av Norges rikeste hjem hvor han néd den kjeerligste pleie. To dager
efter Abels dod skriver hans venn Crelle fra Berlin at kallelsen til Berlins
universitet var endelig iorden. Han ville der ha kommet i ganske ander-
ledes gunstige forhold hva videnskapelig milj6 angikk. Men Gkonomisk
ville det neppe ha vert noen forbedring, for l6nnen var satt til 600 Tha-
ler, og med den lénn ville Abel ikke ha fatt det rummeligere i Berlin, enn
han nu ville ha hatt det hjemme om han hadde fatt leve.

*

Skjont Abel har gjort en banebrytende innsats pd mange omrader av
matematikken har Sylow [2] sikkert rett i at han forst og fremst var alge-
braiker, og han har ogsd selv sagt at ligningsteorien var hans yndlings-
studium. Hans interesse for denne teori skriver seg helt fra skoledagene.
Atten ar gammel skrev han en nu tapt avhandling hvor han mente & ha
funnet en algebraisk 16sning av den alminnelige 5tegradsligning. De nor-
ske matematikere har vel neppe f6lt seg kompetente til & bedémme av-
handlingen, og Hansteen sendte den da til professor Degen i Kébenhavn
med anmodning om at han ville fremlegge den for Det kongelige Viden-
skabsselskab. I et brev av mai 1821 skriver Degen at han gjerne vil frem-
legge avhandlingen, men at han forst vil ha metoden anvendt p4 et nu-
merisk eksempel. Abel hadde da imidlertid selv funnet feilen i sitt re-
sonnement. Degen skriver videre i det nevnte brev: »Neppe kan jeg ved
denne Anledning undertrykke det Onske, at den Tid og de Aandskreef-
ter, et Hoved som Hr. A. skjenker en i mine Oine noget steril Gjenstand,
maatte ydes et Emne, hvis Uddannelse vil have de vigtigste Folger for
hele Analysen og dens Anvendelse paa dynamiske Undersogelser, jeg
mener de elliptiske Transcendenter. Ved tilborligt Anleg for Undersogel-
ser af dette Slags vil den alvorlige Gransker ingenlunde blive staaende
ved disse ellers i og for sig selv hyst maerkveerdige Functioners mange og
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smukke Egenskaber, men opdage maghellanske Gjennemfarter til store
Partier af eet og samme uhyre analytiske Ocean«. Det siste var en i sannhet
vellykket og imponerende profeti, som har bevart Degens navn i mate-
matikkens historie. Men det f6rste rad om & forlate den »sterile gjenstande«
fulgte Abel heldigvis ikke. Han var nu blitt overbevist om at en algebraisk
l6sning av ligninger av femte og hoyere grad i alminnelighet ikke var
mulig, og han satte seg det mal & bevise umuligheten. Han nadde dette
mal og offentliggjorde sitt bevis i 1824 i en liten avhandling skrevet pa
fransk og trykt pa hans egen bekostning i Christiania. For & spare penger
hadde han redigert avhandlingen s& knapt at den ikke var lett & forsta.
Han offentliggjorde derfor senere i Berlin en utforligere redaksjon i 1.
bind av Crelles Journal (1826), men tankegangen var helt den samme.
Ved en algebraisk 16sning (en 16sning »ved rottegn« som vi kort sier) me-
nes som bekjent en losning ved hvilken ligningens rotter uttrykkes ved
ligningens koefficienter ved hjelp av de fire f6rste regningsarter og rot-
utdragning. Abel gjennomférer f6rst den enklere oppgave & bestemme
den alminnelige form for et slikt rotuttrykk, og viser sé, hva der er be-
tydelig vanskeligere, at ingen slik form kan tilfredsstille en alminnelig
ligning av 5. eller hoyere grad. Han benytter herunder bl. a. en ny setning
av Cauchy om det antall verdier en rasjonal funksjon av n storrelser kan
anta ved permutasjon av disse storrelser. Ved dette arbeide var Abel
tradt inn i rekken av de store matematikere, men det tok dessverre ad-
skillig tid for det ble erkjent.

Skjont det bryter den kronologiske fremstilling er det mest hensikts-
messig & nevne Abels senere rent algebraiske arbeider her. I alminnelig-
het kunne ligninger av hoyere grad altsi ikke loses ved rottegn. Men for
spesielle ligninger var dette mulig, og Abel stillet seg som neste mal &
bestemme hvilke klasser av ligninger som var algebraisk l6selige. Dette
emne kom han stadig tilbake til hele resten av sitt liv. I sine arbeider om
elliptiske funksjoner (hvorom senere) fant han en mengde eksempler pa
slike ligninger. Han fikk bare offentliggjort ett storre rent ligningsteore-
tisk arbeide, nemlig den beromte avhandling om den klasse algebraisk
I6selige ligninger, som eftertiden har gitt navnet de Abelske ligninger.
Denne avhandling ble sendt til Crelle i mars 1828, men ble forst trykt et
ar senere, noen dager for Abels déd. Den algebraiske loselighet beror her
pa visse rasjonale forbindelser mellom ligningsréttene. I Abels efterlatte
papirer fantes videre et likesd beromt bruddstykke av en stérre avhand-
ling »Sur la résolution algébrique des équations¢, som selv i denne ufull-
endte form inneholder fundamentale resultater. Fra et historisk syns-
punkt er det av interesse at man her i forbindelse med Abels innférelse
av et vilkarlig rasjonalitetsomrdde har ment & finne de férste spirer til
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begreper som tallegeme og dermed beslektede begrepsdannelser. (jfr. Bell
[9] s. 214).

Abel star i disse arbeider som den naermeste og mest direkte forloper
for Galois. Det er foruten hele tankegangen i den ovenfor nevnte avhand-
ling om de Abelske ligninger seerlig Abels nye og fruktbare definisjon av
en lignings irreduktibilitet og hans anvendelse av den storrelse som senere
er blitt kalt Galois’ resolvent, som har hatt betydning for Galois’ arbei-
der (jfr. Sylow [2]). Det er pa det rene at Galois har studert Abel, som er
en af de fa forfattere som han citerer. Men Galois nddde gjennom det
gruppeteoretiske synspunkt som det lykkedes ham & gjennomfére, ennu
langt videre enn Abel, og det er intet som tyder pa at Abel har sett lig-
ningsteorien fra et sa hoyt liggende utsiktspunkt som Galois.

Tiden fra Abel i 1824, 21 ar gammel, gjennomforte sitt umulighetsbe-
vis og til 1832, da Galois dode 20 ar gammel, er en helt enestaende periode
nar det gjelder ligningsteoriens utvikling. I disse otte ar gjorde denne
teori storre fremskridt enn i alle tidligere arhundreder, og ogsa storre enn
i tiden fra 1832 og til idag.

Det bor fremheves at det ikke er bare gjennom de arbeider som er nevnt
ovenfor, at Abels algebraiske interesser kommer til syne. Hans algebrai-
ske synspunkter og metoder spiller en vesentlig rolle ogsa i flere av hans
viktigste arbeider fra andre omrader enn ligningsteorien, seerlig da i be-
viset for det store Abelske teorem og i hans undersékelser over de ellip-
tiske funksjoner.

De arbeider Abel hadde offentliggjort f6r umulighetsbeviset av 1824,
ble lenge ansett for 4 veere mindre betydelige. Forst trekvart arhundrede
senere ble man oppmerksom pé at et av dem var endog meget betydelig.
Det var en avhandling som var blitt trykt pa norsk i »Magazin for Natur-
videnskaberne« i 1823. Den viktigste del av denne avhandling ble trykt
opp igjen pa tysk i 1. bind av Crelles Journal. Abel 16ser her en integral-
ligning, og det var f6rst gjennom Fredholms og Volterras oppdagelser om-
kring ar 1900, at betydningen av Abels arbeide ble klar. Tkke sa & forsta
at Abel hadde utviklet den moderne teori for integralligninger. Men som et
eksempel pa eftertidens dom kan nevnes at den amerikanske matematikk-
historiker E. T. Bell sier [9] s. 524—25: »It is customary to attribute the
origin of integral equations as a distinct department of analysis to Abel’s
solution« ......... »no analyst before Abel recognized that integral equa-
tions presented a basically novel problem in analysis.« Abel rakk imidler-
tid ikke & ta opp dette emne igjen.

£
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En meget stor del av Abels produksjon gjelder integralregningen, dette
uttrykk tatt i en noksa omfattende betydning. Det dreier seg swrlig om
tre grupper av problemer:

1) A bestemme for hvilke funksjoner f(z) integralet S f(z)dx kan uttrykkes

i endelig form ved hjelp av visse klasser av funksjoner, nemlig ved
rasjonale, eksplisitt algebraiske, eksponentielle og logaritmiske funk-
sjoner (herunder kombinasjoner av et endelig antall av de operasjoner
som karakteriserer de nevnte funksjonsklasser). Disse funksjoner be-
tegnes som elementere funksjoner.

2) A finne relasjoner mellom summer av bestemte integraler av samme
form, idet man undersoker hvilken forbindelse som m4 finne sted mel-
lom integralenes grenser for at de nevnte relasjoner skal besta.

3) Integralenes omvendingsproblem d. v. s. & studere x = ¢(u) nar
U= Sxf(t)dt. Istedenfor & betrakte det bestemte integral som en funk-

sjon av integralets 6vre grense skal man altsé betrakte integralets 6vre

grense som en funksjon av integralets verdi og klarlegge denne funk-
sjonssammenheng. (Dette problem kan vel snarere sies & tilhore funk-
sjonsteorien enn integralregningen).

De to forste problemgrupper hadde matematikerne tatt fatt pa alle-
rede pa 1600-tallet i differensial- og integralregningens forste tid. Omven-
dingsproblemet derimot ble forst fremlagt av Abel. For ham var det ikke
andre enn Gauss som for alvor hadde gitt seg i kast med det, og Gauss
hadde intet offentliggjort om disse undersokelser.

Abel erkjente i hoyere grad enn noen tidligere matematiker, at det
fantes dyptgaende forbindelser mellom disse tre problemgrupper, og denne
erkjennelse var av vesentlig betydning for de store oppdagelser han her
gjorde. Han innsé at disse problemer grep inn i hverandre, slik at under-
sokelser pa et av disse omrader kunne finne stétte i resultater fra et annet.
Han forte derfor disse undersokelser frem samtidig, hvilket serlig kom-
mer til uttrykk i det siste store, men dessverre ufullférte, arbeide han fikk
offentliggjort »Précis d’une théorie des fonctions elliptiques¢, trykt kort
tid efter hans dod.

Hva det forste problem angér, s& hadde man lenge for Abels tid nadd
88 langt at man kunne integrere de funksjonsklasser hvis integraler alltid
lar seg uttrykke ved elementere funksjoner. Man var ogsa klar over at
integraler av algebraiske funksjoner i alminnelighet ikke kunne uttrykkes
pé denne mate. Dette var dog mulig under spesielle betingelser. Abel
stillet seg da som mal & bestemme hvilke betingelser som matte vaere
oppfylt for at integrasjonen av algebraiske differensialer skulle kunne ut-
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fores ved elementeere funksjoner, og det er typisk for ham at han fore-
satte seg & bestemme alle disse tilfeller. Selv om han ikke kunne gjennom-
fore hele dette program, si nadde han dog vesentlige resultater. Efter
bestemte uttalelser i det nettopp nevnte siste arbeide har han dessuten
pa dette felt sittet inne med meget, som han ikke fikk offentliggjort, og
som dessverre heller ikke hans efterlatte papirer gir noen meddelelse om.

Innenfor problemgruppe 2) forela det for Abels tid et fundamentalt
resultat, nemlig de elliptiske integralers addisjonsteorem, som var opp-
daget av Euler. Ved et elliptisk integral forstaes et integral av formen
SR (x, ]/f(—x))dw, hvor R er en rasjonal funksjon og f(x) et polynom i x av
3. eller 4. grad. Navnet er en historisk tilfeldighet, det skriver seg fra at
ellipsens buelengde uttrykkes ved et slikt integral. Et elliptisk integral
kan i alminnelighet ikke uttrykkes ved elementzre funksjoner. Matema-
tikerne stillet seg da den oppgave a undersoke om grensene i to bestemte
elliptiske integraler av samme form kunne fikseres slik at summen (eller
differansen) av de to integraler fikk et elementeert uttrykk. Efter at en
rekke forskere hadde arbeidet med slike og lignende problemer kom Euler
frem til sitt addisjonsteorem, som kan skrives pa folgende form:

S”” dt +Sy dt :Sz dt
oV (I—)(1—k22) o) (A—)(1—k2%) %)/ (1—12)(1—k??)

hvor

L VA=) (1—ky) +y) 1 —a*)(1—F?)
o 1—k2x?y? )

Resultatet er altsa at summen av to elliptiske integraler av samme form
kan uttrykkes ved bare ett integral, hvis det siste integrals grense avhen-
ger algebraisk som ovenfor angitt, av de to forste integralers grenser.
Herav folger videre at summen av et vilkarlig antall slike integraler er
lik et eneste integral hvis grense kan uttrykkes algebraisk ved grensene
for integralene i summen. (Alle elliptiske integraler kan ved variabeltrans-
formasjoner overfores til tre normalformer. I alle tre har kvadratroten
den form som ovenfor er brukt. Ovenfor er gjengitt addisjonsteoremet
for de sidkalte integraler av forste slags. Euler fant ogsa tilsvarende
addisjonsteoremer for elliptiske integraler av annen og tredje slags).
Den oppdagelse som av mange regnes som Abels ypperste, det store
Abelske teorem som det ofte kalles, er en meget vidtgaende generalisa-
sjon av Eulers addisjonsteorem. Ogsa Abel behandler her integraler av

formen SR (%, y)dx hvor R er en rasjonal funksjon av x og y, men istedenfor

som Euler & gi ut fra at y er bestemt ved ligningen y? = f(x) hvor f er et
polynom i z av 3. eller 4. grad, lar Abel y veere definert ved en alminnelig
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algebraisk ligning F(z, y) = 0, som er av nte grad i y og hvor koeffi-
sientene for de forskjellige potenser av y er hele rasjonale funksjoner av
x. Nar y er bestemt pad denne méite har man senere kalt integralet

SR(x, y)da for et Abelsk integral. Det Abelske teorem sier da, kort gjen-

gitt, at integralgrensene kan bestemmes slik at en sum av Abelske inte-
graler kan uttrykkes ved elementeere funksjoner nermere bestemt ved
algebraisk-logaritmiske funksjoner.

Tr+u

leR(x, ydat. ..+ SITR(x, y)da+ SWR(x, g . .+ S R(w, y)de —

algebr.-logaritmisk funksjon av grensene x;, @y, ... -

De nedre grenser betraktes som konstanter og angis ikke her. De 6vre
grenser , . .., &,,, tilfredsstiller visse algebraiske relasjoner. Abel stiller
videre det sporsmal hvor mange av disse 6vre grenser som er bestemt
ved de Gvrige, og kommer til det overméde viktige resultat at dette tall
ikke avhenger av antall integraler i summen, men bare av ligningen
F(x, y) = 0. Dette minste antall avhengige integraler er ovenfor beteg-
net med u, og vi kan da skrive

y=r Ty Y=U Trty
3\ R yas = =3\ R, y)iat-
r=1 r=1
algebr.-logaritm. funksjon av (@, s, . . ., %p,) -

Tallet u avhenger altsé ikke av r, som kan velges vilkérlig, slik at summen
av et hvilketsomhelst antall integraler kan uttrykkes ved summen av et
bestemt antall integraler-elementere funksjoner. For de elliptiske inte-
graler er efter Eulers addisjonsteorem y = 1. Tallet x har man senere
kalt integralets slekt eller ogsad den slekt som karakteriserer kurven
F(z,y) = 0. Dette slektsbegrep har vist seg & vaere av fundamental be-
tydning i de algebraiske funksjoners teori.

Det Abelske teorem er av overmade stor rekkevidde. Jacobi karakteri-
serer det i 1832 i flgende ord: »Wir halten es, wie es in einfacher Gestalt
ohne Apparat von Calcul den tiefsten und umfassendsten mathemati-
schen Gedanken ausspricht, fiir die grosste mathematische Eintdeckung
unserer Zeit, obgleich erst eine kiinftige, vielleicht spéte, grosse Arbeit
ihre ganze Bedeutung aufweisen kann.«

Og Mittag-Leffler skriver i sin Abelbiografi [6], [7] at det Abelske teo-
rem fremdeles, hundrede ar efter Abels fédsel, betegner hoydepunktet i
matematikkens utvikling.

Det fremgar av Abels efterlatte papirer at han har funnet sitt store
teorem i studietiden i Christiania for utenlandsreisen. Ogsa hovedlinjen i
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beviset, som er av rent algebraisk natur, foreligger i hans opptegnelser
fra denne tid. Han arbeidet videre med disse problemer under sin reise,
og straks efter ankomsten til Paris i juli 1826 tar han fatt p4 redaksjonen
av en stor avhandling, som han ville forelegge for Académie des Sciences
(Institut de France), og som skulle gi en inngdende fremstilling bade av
addisjonsteoremet i sin generelle form og av en rekke spesialtilfeller som
skulle vise dets slagkraft overfor de klasser av algebraiske funksjoner
som matematikerne hittil hadde beskjeftiget seg med. Abel la meget ar-
beide p& denne avhandling, og vi har flere vidnesbyrd om at han selv var
forndyet med resultatet. Han viste personlig avhandlingen til Cauchy,
ymen han vilde neppe kaste Ojnene paa den. Og jeg tér uden Bram sige
at den er god. Jeg er nysgjerrig efter at hore Institutets Dom¢ (brev til
Holmboe av 24. oktober 1826). Avhandlingen ble ogsa fremlagt for Aka-
demiet den 30. oktober 1826 og Legendre og Cauchy ble oppnevnt til &
bedémme den.

Nar Abel nu hadde fatt fremlagt denne avhandling for datidens mest
hoytstaende videnskapelige forum, si kunne han hape at han derved
skulle vinne en seier av avgjérende betydning for sin fremtid. Han hadde
iallfall gode grunner til & tro og hape det. Det er neppe noen annen av-
handling i matematikkens historie som av eftertiden har veert i den grad
overhopet med superlativer som denne Abels Pariser-avhandling. Et par
eksempler: »eine der grossartigsten mathematischen Abhandlungen, die
je geschrieben wurden« (Krazer [15]). »Il n’y a peut-étre pas, dans I'hi-
stoire de la Science, de proposition aussi importante obtenue & 1’aide de
considérations aussi simples.« (Picard [16] s. 437).

Men det gikk ikke som han ventet. Istedenfor en seier kom denne av-
handling p& grunn av en rekke sorgelige tilfeldigheter til & betegne Abels
storste og smerteligste nederlag. Cauchy var opptatt med sine egne epoke-
gjérende arbeider, og Abels avhandling ble liggende ulest. I de siste dager
av desember 1826 matte Abel forlate Paris uten & ha hort et ord om sin
store avhandling. Efter et nytt opphold i Berlin kom han i mai 1827 hjem
til Norge (jfr. foran).

Abel rettet aldri noen direkte henvendelse til Akademiet i Paris for & -
fa rede pa hva det var blitt gjort med hans avhandling, men hosten 1828
sendte han til Crelles Journal en avhandling som behandlet et viktig
spesialtilfelle av det Abelske teorem, nemlig det sakalte hyperelliptiske
tilfelle hvor ligningen F(z, y) = 0 har formen y? = f(z) hvor f(z) er et
polynom i z av nte grad. Det var som nevnt kjent gjennom Eulers addi-
sjonsteorem at hvis n = 3 eller 4, si er slekten u = 1. Abel viste nu at
hvisn = 5 eller 6 sd er 4 = 2, for n = 7 eller 8 er u = 3 0. 5. V.

I innledningen til denne avhandling som ble trykt i desember 1828,
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uttaler Abel ogsd det generelle teorem og nevner at han i 1826 har innle-
vert en avhandling om dette til Akademiet i Paris. Avhandlingen av
desember 1828 vakte straks stor oppsikt. Legendre gir i januar 1829 i et
brev til Abel uttrykk for sin store begeistring uten & veere oppmerksom
pa at dette spesialtilfelle (det hyperelliptiske) ogsé var behandlet i Pari-
seravhandlingen som fremdeles 14 ulest hos Cauchy. Og Jacobi skriver i
mars 1829 til Legendre og spér hvordan i all verden en slik avhandling
har kunnet bli oversett av Akademiet. Jacobis brev forte til at avhand-
lingen ble funnet frem igjen og det ble avgitt en hastverksuttalelse om den
i juni 1829. (Abel var dod i april). Derefter kom avhandlingen igjen pa
avveier, og den ble forst trykt i 1841, hvorpa manuskriptet forsvant, —
for alltid trodde man. (Angiende nwrmere enkeltheter henviser jeg til
min avhandling [13].) Hosten 1952 hendte sa det overraskende at Viggo
Brun fant det aller meste av originalmanuskriptet til Pariseravhandlin-
gen i et manuskriptbibliotek i Firenze [11], [12].

Men Abel vendte enda engang tilbake til sitt store teorem. Julen 1828
reiste han til Froland hovedgard for & tilbringe ferien sammen med sin
forlovede som var guvernante der. Den 6. januar 1829, »et datum mera
minnesvirdt i kulturens historia &n konungars och kejsares och enskilda
linders mirkesdagar« (Mittag-Leffler [6]) skrev han en liten avhandling
hvor han pa snaue to sider gir beviset for den forste store hovedsats i
Pariser-avhandlingen. Avhandlingen ble trykt hos Crelle en ukes tid for
Abels dod. Det er den siste avhandling Abel rakk & skrive.

®

Innenfor den problemgruppe 3 som foran er betegnet som integrale-
nes omvendingsproblem gjorde Abel en oppdagelse som fikk en bide
vidtrekkende og dyptgdende innflytelse pa hele eftertidens matematiske
utvikling, nemlig oppdagelsen av de elliptiske funksjoner.

Eulers addisjonsteorem for de elliptiske integraler er anfort foran.
Euler var selv fullt oppmerksom péa det spesialtilfelle som fremkommer

ved & sette k = 0:
c dt v dt ‘o dt
R
01/1-——t2 ol/l—t2 ()Vl—t2
2= x]/l—y2—{—y[/1—x2 .

Hyvis vi kaller det forste integral for u, det annet for v og det tredje for w,
s8 far vi ved & anvende omvendingen pé disse integraler:

x=sinu, y=sinv, z=sinw
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og addisjonsteoremet gir i dette tilfelle bare den bekjente sats at hvis

o UV =W
Sa er +

sin w = sin %}/ 1—sin? v-+sin v[/l——sin2 % = sin % cos v-}-cos u sin v.

Spesialtilfellet viser hvor enkel sammenhengen blir nar vi her gjennom-
forer omvendingen og altsi betrakter integralets 6vre grense som funk-
sjon av integralets verdi istedenfor & betrakte integralets verdi som en
funksjon av den 6vre grense.

Det er bemerkelsesverdig at hverken Euler eller hans nermeste efter-
folgere, av hvilke serlig ma nevnes Legendre, forsokte & anvende den
samme tankegang pa de elliptiske integraler (£ = 0).

Formentlig tilskyndet av Degens profetiske rad kastet Abel seg over
studiet av de elliptiske integraler, seerlig Legendres arbeider over samme.
Senest i forste del av 1823 hadde han funnet frem til omvendingen som
nettopp var den »maghellanske gjennemfart«, som Degen hadde forutsett
uten & ane hvor den 14, og han styrte snart for full fart inn i det nyopp-
dagede analytiske ocean. »Mit dem Blicke des Genies erfasste dieser (Abel)
sogleich im Beginne seiner wissenschaftlichen Laufbahn den Gedanken
der Umkehrung des elliptischen Integrals, an dem Euler und Legendre,
beide wihrend der Arbeit eines Menschenalters, voriibergegangen waren.
Er stellte sich die Aufgabe, nachdem man doch die Analogie dieses Inte-
grals mit dem Arcussinus immer wieder betont hatte, endlich auch das
Analogon des Sinus zu schaffen.« (Krazer [15]). Han fant at nar det ellip-
tiske integrals 6vre grense betraktes som en funksjon av integralets verdi,
s8 kommer man frem til en funksjonsklasse med seerdeles bemerkelses-
S dt o S’” dt
0 l/l-—t2 s 1t
forer til enkeltperiodiske hele transcendente funksjoner, si er de om-
vendte funksjoner av de elliptiske integraler dobbeltperiodiske funksjoner,
men de er ikke hele funksjoner, idet de i hvert periodeparallellogram har
poler (hvor funksjonsverdien blir uendelig). Disse elliptiske funksjoner
som eftertiden har kalt dem, er dobbeltperiodiske, meromorfe funksjoner.

Allerede for utenlandsreisen har Abel funnet de elliptiske funksjoners
fundamentalegenskap, den dobbelte periodisitet. Under oppholdet i ut-
landet gjorde han en rekke nye oppdagelser om de elliptiske funksjoner
(jfr. Abels brever i [2]). I Paris har han hoyst sannsynlig studert Cauchys
berémte avhandling av 1825 om integrasjonsveier i de komplekse talls
plan, og han har herved lert meget som kom ham til nytte for de ellip-
tiske funksjoners teori, selvom hverken Abel eller hans nermeste efter-
folgere vaget & legge Cauchys nye teori til grunn for sin fremstilling.

verdige egenskaper. Mens omvending av integralene S
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I september 1827 utkom forste del av Abels avhandling »Recherches
sur les fonctions elliptiques« i Crelles Journal. Det var en stor avhandling,
den férste del opptar 90 sider i Abels samlede verker [1], og avslutningen
som ble trykt i mai 1828, 26 sider. »Es ist dies die grosse Fundamental-
publikation, mit der fiir das mathematische Publikum, da Gauss ja seine
Resultate zuriickgehalten hatte, die Theorie der elliptischen Funktionen
— in Gegensatz zu Legendres Theorie der elliptischen Integrale — be-
ginnt« (Klein [8]). Abel meddeler straks i begynnelsen at avhandlingen
skal behandle de omvendte funksjoner. Han utvikler addisjonsteoremene
for disse og beviser ved hjelp herav den dobbelte periodisitet. Han be-
stemmer s funksjonenes nullpunkter og poler. Derpé behandler han det
sakalte multiplikasjonsproblem, idet han viser at hvis = ¢(x) er en el-
liptisk funksjon av « (x er integralets 6vre grense, o integralets verdi),
s& kan p(m«) uttrykkes rasjonalt ved ¢(«) og to elliptiske hjelpefunksjoner
(m helt rasjonalt tall). S& behandles divisjonsproblemet som bestar i &
bestemme ¢(x) ved hjelp av ¢(m«x). Dette problem forer til meget interes-
sante algebraiske resultater, idet Abel her finner klasser av algebraisk
16selige ligninger av nte grad. Ut fra sin forkjerlighet for ligningsteorien
erkleerer Abel at denne side av undersskelsene har hans swrlige interesse.
I tilknytning til disse algebraiske undersckelser meddeler han sin bersmte
sats om lemniskatens deling, en fullstendig analogi til Gauss’ resultater
for cirkelen. Endelig folger utviklingen av de elliptiske funksjoner i uen-
delige produkter og rekker. I denne siste forbindelse innférer Abel de
funksjoner som senere under navn av thetafunksjoner ble gjort til gjen-
stand for inngédende undersokelser av Jacobi, og som med andre beteg-
nelser og i en noe annen form av ham ble brukt som grunnvoll for teorien.

Allerede i forste del var det lagt et fullstendig grunnlag for hele den
senere utvikling av de elliptiske funksjoner, selv om den sikalte trans-
formasjonsteori for de elliptiske integraler (hvorom senere) forst kom i
annen del. Det er ogsa her den dobbelte periodisitet som gir nokkelen. I
annen del behandler Abel ogsa den sakalte komplekse multiplikasjon (jfr.
[17] og [18]). Det er nevnt foran at ¢(mex) kan uttrykkes rasjonalt ved
®(«) hvis m er hel rasjonal. Abel viste at det ogsa finnes hele komplekse
tall £ slik at @(kx) kan uttrykkes rasjonalt ved g(x) og at & i s fall ma
tilhdre hva vi idag kaller et kvadratisk-imagineert tallegeme. Abels opp-
dagelser i forbindelse med denne komplekse multiplikasjon har fort til
vesentlige resultater i algebra og tallteori, og spesialister pa disse felter
betegner disse oppdagelser som hoydepunktet i hans produksjon (jfr. Fue-
ter [19]).

De elliptiske funksjoner og de mangfoldige teorier som — pé de for-
skjelligste omrader av matematikken — tok sitt utspring fra denne kilde,
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har hatt en enorm betydning for hele det 19. arhundredes matematiske
utvikling. Virkningene har veert meget store i funksjonsteori, algebra,
tallteori, gruppeteori og analytisk geometri, og de elliptiske funksjoner
har ogsé funnet fruktbare anvendelser i mekanikken og i andre grener av
den anvendte matematikk. Det er meget forstielig at den tyske mate-
matiker Richelot for over hundrede ar siden betegnet de oppgaver som
de elliptiske funksjoner stillet den matematiske videnskap overfor, som
»die Aufgaben welche diesem Jahrhundert zur Losung anheimfielenc.
Som et eksempel pa var egen samtids dom kan nevnes Bells uttalelse
([9] s. 395): »Abel revolutionized the subject, and at the same time opened
the floodgates of nineteenth-century analysis, in 1827. .. .«.

Foruten fundamentalpublikasjonen »Recherches. . .« fikk Abel skrevet
enda syv storre eller mindre avhandlinger om de elliptiske funksjoner.
De seks ble offentliggjort for hans déd, den syvende var den fér omtalte,
ufullférte »Précis. . .«. Denne overordentlige arbeidsinnsats hadde imid-
lertid ogsa en ytre foranledning, nemlig den sdkaldte kappestrid mellom
Abel og Jacobi. Denne kappestrid, »der fiir jeden Mathematiker ein un-
vergleichliches Interesse bietet« (Klein [8]), betegner en dramatisk og ofte
omtalt episode i matematikkens historie. Men til tross for den citerte ut-
talelse av Klein er det neppe mange som har studert kappestridens forlop
i detaljer.

Carl Gustav Jacob Jacobi var f6dt 10. desember 1804, og han var altsi
to ar yngre enn Abel. Han var fra 1826 privatdosent ved universitetet i
Koénigsberg og ble i januar 1828 professor der. Han var medarbeider i
Crelles Journal fra sommeren 1826. Han offentliggjorde fra hosten 1827
til véren 1829 en rekke korte avhandlinger om elliptiske integraler og
elliptiske funksjoner. For det meste ble det i disse arbeider bare fremsatt
satser uten bevis. Bevisene kom i Jacobis beromte lzerebok »Fundamenta
nova theoriae functionum ellipticarum« som ble ferdigtrykt i mai 1829,
og som i mange &r var den mest benyttede lerebok i dette emne ved
Europas universiteter. Jacobi déde i 1851. Han var en av sin tids tone-
angivende matematikere, og han gjorde en fremragende innsats pa mange
forskjellige omrader av matematikken.

Det oppstod efterhvert den tradisjon at Abel og Jacobi hver for seg og
uavhengig av hverandre hadde oppdaget de elliptiske funksjoner og alle
deres viktigste egenskaper, og at deres arbeider i 1827—29 i stadig vek-
selvirkning hadde skapt den nye teori, idet de gjensidig hadde kunnet
stotte seg p&4 hverandres arbeider. Denne oppfatning av kappestridens
forlép har dog tydeligvis hatt sine motstandere, for da Jacobis elev Bor-
chardt i 1875 offentliggjorde en meget interessant brevveksling mellom
Jacobi og Legendre i Crelles Journal protesterte han i en innledning heftig
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mot »une grave erreur historique« som holdt pa & spre seg, idet det var
blitt hevdet at det var Abel alene som hadde oppdagerretten. Borchardst
finner derfor grunn til & gjenta pastanden om de to konkurrenters uav-
hengighet og jevnbyrdighet. En av dem som ikke var enig i dette var
Mittag-Leffler (jfr. [6],[7]), og han skrev i den anledning til C. A. Bjerknes,
som i forste omgang var enig med Borchardt, men som efter mere inn-
gdende studier kom til det resultat at den tradisjonelle oppfatning gj orde
Abel stor urett. Bjerknes behandler kappestriden inngdende i sin Abel-
biografi [3], og han gar her lenger enn Mittag-Leffler, idet han beskylder
Jacobi for & ha benyttet seg av resultatene i férste del av Abels »Recher-
ches« uten & medgi dette faktum. Beskyldningen ble gjentatt i den fran-
ske utgave av Bjerknes’ bok [4], som fremkalte indignerte protester, spe-
sielt fra tysk og fransk hold. Det ble bebudet at det skulle komme inn-
gaende imotegielser av Bjerknes’ fremstilling av kappestriden mellom
Abel og Jacobi. Det er ikke blitt stort av disse imétegéelser, til tross for
at de fleste matematikere har kviet seg ved & godta Bjerknes’ pastand
for s vidt sakens moralske side angar.

Forste del av Abels »Recherches¢ (jfr. foran) utkom 20. sept. 1827.
Praktisk talt samtidig kom et hefte av »Astronomische Nachrichten«
(redigert av Schumacher) som inneholdt to brever (til 8.), datert 13. juni
og 2. august 1827, fra Jacobi, og hvor denne uten bevis fremsetter en
vidtgaende sats om de elliptiske integralers transformasjon. Denne trans-
formasjonsteori gir ut pa ved en rasjonal variabelsubstitusjon y = f(x)
& transformere et elliptisk integral til et annet av noyaktig samme form,
men med en annen verdi av den sakalte modul k£ (se formlene i Kulers
addisjonsteorem foran). En slik transformasjon (fremsatt av engelsman-
nen Landen) var kjent allerede fra 1775. Den ble gjerne fremstillet i tri-
gonometrisk form, men den svarer, som Jacobi har gjort oppmerksom
pé, til en rasjonal transformasjon av 2. grad. Legendre interesserte seg
sterkt for transformasjonsteorien, serlig fordi den kom til nytte ved den
numeriske beregning av elliptiske integraler, og Legendre hadde nylig til
sin store glede funnet en ny rasjonal tranformasjon av 3. grad, men dette
siste funn kjente Jacobi ikke til, da han sendte sine brever til »Astrono-
mische Nachrichten«. Han uttaler her den viktige sats at det finnes rasjo-
nale substitusjoner av en hvilketsomhelst heltallig grad n, ved hvilke et
elliptisk integral overfores til et annet av samme form. Den 5. aug. 1827
skriver Jacobi et brev til Legendre, hvor han meddeler bade den nevnte
sats og en annen sats av lignende art (det sikaldte komplementere teo-
rem) og viser hvorledes de nye satser kan nyttiggjores til numeriske be-
regninger. Brevene til Schumacher og Legendre beveger seg helt i den
eldre teoris tankebaner, idet de bare taler om elliptiske integraler og ikke
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inneholder noe som helst om det vi kaller elliptiske funksjoner, d. v. s. de
omvendte funksjoner av integralene.

Legendre ble henrykt over Jacobis resultater, ikke minst fordi de falt
helt innenfor rammen av Legendres egen teori og ikke betegnet noe brudd
med Legendres egen tankegang. Han fremla dem i Académie des Sciences
i november 1827 og ledsaget dem med de sterkeste lovord, som ogsa
fant veien til dagspressen, og som med et slag gjorde Jacobi sa berdmt
som en matematiker kan bli i denne verden.

I september forela altsa de nevnte to samtidige publikasjoner. Dermed
begynner kappestriden mellom Abel og Jacobi, — eller rettere sagt, der-
med er den i virkeligheten avgjort.

Efter Jacobis brev av 12. april 1828 til Legendre er det pa det rene at
han da han 5. aug. 1827 skrev sitt brev til Legendre, ikke hadde funnet
noe bevis for sine transformasjonssetninger. Han vendte seg nu forst til
andre emner og skrev i august tre avhandlinger som ikke hadde noe med
elliptiske funksjoner a gjore.

Schumacher var ikke begeistret over nakne satser uten bevis, og 5.
november skriver han til Jacobi med en inntrengende anmodning om &
sende beviset. Jacobi daterer s& 18. november 1827 en avhandling som
bringer beviset, og som kom i»Astronomische Nachrichten«i januar 1828.
Her innférer nu ogsd Jacobi den omvendte funksjon av det elliptiske
integral. Han bruker andre betegnelser enn Abel, idet han betegner den
omvendte funksjon med sinam u, en betegnelse som ble dominerende
helt til slutten av arhundredet. Forovrig legger han ikke seerlig vekt pa
de omvendte funksjoner. De annonseres med ordene: »Notatione nova
simplicioreque abhinc utar«. (Jeg vil herefter benytte en ny, enklere be-
tegnelse). Han viser at sinam u er enkeltperiodisk, men den dobbelte
periodisitet, som seerlig karakteriserer de elliptiske funksjoner i motset-
ning til de trigonometriske, forekommer ikke. Det finnes ingen henvisning
til Abels arbeide.

Det er saerlig i det begivenhetsforlop som her er skildret at Bjerknes
fant grunnlag for sin beskyldning mot Jacobi. Han fant det utenkelig at
ikke Jacobi skulle ha sett Recherches i god tid f6r 18. november. Det hefte
av Crelles Journal hvor Recherches stod, inneholdt nemlig ogsa en av-
handling av Jacobi, som dessuten hadde flere andre avhandlinger lig-
gende til trykning hos Crelle, og som derfor méatte veere spent pa hvert
nytt hefte. Da Jacobi pa denne tid strevet med & finne beviset for sine
transformasjonssetninger, matte han vere meget interessert i enhver ny
avhandling om elliptiske integraler og funksjoner, mente Bjerknes. Bjerk-
nes visste ikke nar Recherches kom til Konigsberg, men han antok at
vedkommende hefte matte ha kommit dit senest en méned for Jacobi
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18. november daterte sitt bevis. Ved en pussig tilfeldighet vet vi nu at
Recherches er kommet til Konigsberg adskillig f6r Bjerknes antok. I sin
Jacobi-biografi [20] meddeler Koenigsberger nemlig at universitetsbiblio-
teket i Konigsberg i et brev av 4. oktober 1827 klager til Crelles Journal
over at det siste hefte er sendt med posten, hvilket har pafort biblioteket
en portoutgift pa en Thaler, og dette ansees overflodig, »da gar keine Eile
notig ist«. Koenigsberger tilfyer i direkte forbindelse hermed: »Zunéchst
ging dieses Heft aber an Bessel, der erst nach einiger Zeit Jacobi davon
Mitteilung macht: »Es ist ein neues Heft des Crelleschen Journals ange-
kommen (B. 2, H. 2) mit einer Abhandlung tiber elliptische Transcenden-
ten von Abel. Sie werden mir am besten sagen konnen, ob der Gesichts-
punkt unter welchem er sie ansieht, interessant ist.« Denne Bessels med-
delelse er iallfall interessant. For det forste viser ordene rerst nach einiger
Zeit« at Koenigsberger har visst ndr Jacobi fikk meddelelsen. Da Koenigs-
berger hevder Jacobis uavhengighet av Abel, ville han sikkert ha oppgitt
tidspunktet hvis det hadde ligget meget naer fér 18. november eller efter
denne datum. Jacobi har derfor formentlig fatt meldingen i god tid for.
For det annet er den siste setningen om »der Gesichtspunkt unter welchem
er sie ansieht« av betydelig interesse. Det er ikke godt & forsta at det her
kan siktes til annet enn »omvendingen«. Det var jo den som betegner det
nye synspunkt i Recherches. Nu fremhever Koenigsberger gang pa gang
det neere, daglige personlige samarbeide mellom Jacobi og Bessel, han
taler bl. a. om »der iiber den Gang der Untersuchungen Jacobis genau
unterrichtete Bessel«. Det er vel da ikke for dristig & slutte av den citerte
meddelelse fra Bessel til Jacobi at hvis Jacobi pa det tidspunkt skulle ha
gjennomfort omvendingen og oppdaget en klasse dobbeltperiodiske funk-
sjoner, s& har han jallfall ikke nevnt noe om det til Bessel, hvilket er pé-
fallende. Bessel hadde f. eks. fatt skriftlig meddelelse om Jacobis trans-
formasjonssetning, fér den ble sendt til Schumacher. Koenigsberger pé-
star ilke at Jacobi ikke i forbindelse med Bessels meddelelse har sett Re-
cherches, men tilfyer mere forsiktig: »Zu einem wirklichen Studium der
recherches wird Jacobi nach allem was wir wissen wohl kaum vor Ende
des Jahres gekommen sein.«

Den siste antagelse er neppe riktig. Det foreligger nemlig et brev av
12. januar 1828 fra Jacobi til Legendre, og brevet viser at han pa det
tidspunkt har gjennomarbeidet hele den utkomne del av Recherches me-
get, grundig og at han har omskrevet Abels resultater til sin egen betegnel-
sesmate. Den storste del av brevet bestar i et referat av Recherches. Han
nevner blant meget annet Abels funn av den dobbelte periodisitet uten
med et ord & antyde at Jacobi p& sin side hadde innfért de omvendte
funksjoner og funnet periodisiteten. Jacobis avhandling av 18. november,




NIELS HENRIK ABEL 83

hvor han selv innférer de omvendte funksjoner, var pa det tidspunkt
ennu ikke utsendt. Han bebuder denne avhandling i brevet til Legendre
uten & gi noen detaljer om dens innhold og uten & hevde at det bevis
som der er gitt, er funnet uten kjennskap til Recherches. Det er i det hele
tatt en besynderlig motstrid mellom brevet av 12. januar 1828 og enkelte
senere uttalelser av Jacobi. Det er riktignok forst flere 4r senere (i 1832)
at Jacobi uttrykkelig sier at ogsé han har funnet den dobbelte periodisi-
tet. Han sier det ikke i sine arbeider fra arene 1827-29, og i det nettopp
nevnte brev tillegger han altsi uten reservasjoner Abel @ren for denne
oppdagelse.

Da Legendre kort efter mottok Jacobis avhandling av 18. november
1827 oppdaget han at beviset for det sakalte komplementere teorem ennu
manglet. Efter en tid purret han Jacobi efter dette bevis. Dette Legendres
brev kryssedes med et brev av 12. april 1828 fra Jacobi, som der leverer
beviset for det komplementewre teorem ved hjelp av Abels formler fra
Recherches. (vPour démontrer ceci, il faut remonter aux formules analy-
tiques concernant la multiplication, données la premiére fois par M. Abel«).

Dette star altsa i et privatbrev. I Jacobis offentliggjorte arbeider gis
ingen direkte henvisning til Abel for dette bevis’ vedkommende. I mel-
lomtiden (juni 1828) hadde Legendre funnet et bevis som ikke bygget pa
de nevnte abelske formler. Legendre hadde lenge meget vanskelig for &
sette seg inn i og for & forsone seg med Abels tankegang, som bygget
helt pa de omvendte funksjoner, og som derfor fjernet seg meget sterkt
fra Legendres egen.

I Jacobis brev av 12. april finner man videre hans konfidensielle (»Ce
n’est donc que pour vous, Monsieur, que j’ajoute le suivant«) erklering
om det heuristiske resonnement som forte ham til de satser som han i
august 1827 meddelte Schumacher og Legendre. Ogs& her er det uklar-
heter for si vidt som han sier at han fér 5. august har funnet en ligning
som han i brevet av 12. januar 1828 hadde betegnet som »théoréme fon-
damental de M. Abel«. Uoverensstemmelsen forklares kanskje lettest ved
4 anta med Bjerknes at det dreier seg om det samme resultat skrevet pa
to helt forskjellige mater, férst med direkte, men efter Recherches med
yomvendte« betegnelser. I s fall gir uttalelsen ingen opplysning om nér
Jacobi innforte omvendingen. At bevisene forst er funnet senere sies ut-
trykkelig, men ikke nar de ble funnet.

Abel hadde i begynnelsen av februar 1828 fullfért annen del av Recher-
ches, som inneholdt en fullstendig teori for de elliptiske integralers trans-
formasjon med alle beviser gjennomfért pa grunnlag av de omvendte
funksjoner og deres dobbelte periodisitet, For avsendelsen til Crelle (12.
febr. 1828) ble han oppmerksom pé Jacobis transformasjonssats fra sep-
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tember 1827. Den gjorde ikke storre inntrykk pa ham, og han noyet seg
med & f&ye til en efterskrift, hvor han peker pa at Jacobis sats er inneholdt
som spesialtilfelle i en av hans egne formler i den nettopp fullforte av-
handling, hvorpa han gjennomfsrer beviset i detalj ogsa i den spesielle
form som Jacobi uten bevis hadde gitt denne sats. Annen del av Recher-
ches med denne tilfyelse ble som nevnt trykt i mai 1828.

Et ganske annet inntrykk gjorde J acobis fér nevnte avhandling av
18. november 1827, som ikke kom Abel i hende for i april. Postgangen
til Norge om vinteren var i de tider meget langsom. Det har tydeligvis
berort Abel sterkt at denne Jacobis avhandling innforer omvendings-
tanken uten & nevne Recherches som dog hadde foreligget for offentlig-
heten to maneder fér Jacobis avhandling ble avsendt og 3—4 maneder
tor den ble trykt. Abel reiste imidlertid ingen prioritetsstrid. Han noyet
seg med 4 skrive en stor avhandling hvor han betraktet hele transforma-
sjonsteorien fra et langt mere generelt og hoytliggende synspunkt -enn
Jacobi hadde anlagt, og denne avhandling (datert 27. mai 1828) sendte
han il »Astronomische Nachrichten« hvor den utkom i juni eller juli 1828.
Abel ytret aldri et nedsettende ord om Jacobi, men at han har tenkt
sitt kan man se av at han i et brev til Holmboe betegner avhandlingen som
ymin dodelse af Jacobi«. Dodelse er et selvlaget jargonuttrykk, »was im
Memorial [2] mit »exécutions, von Bjerknes [4] mit ymortification« iiber-
setzt wird, und wofiir wir im Deutschen wohl »Abschlachtung« sagen
wiirden« (Krazer [15], note 27). Denne avhandling ble fra alle sider beteg-
net som et virkelig mesterverk, og Jacobi skriver om den i et brev til
Legendre: »Elle est au-dessus de mes éloges comme elle est au-dessus de
mes propres travaux¢. Abel skrev som nevnt enda en rekke viktige ar-
beider om de elliptiske funksjoner. Det er betegnende at han i disse arbei-
der tar for seg og beviser setninger som J acobi efterhvert fremsetter uten
bevis i sine korte notiser i Crelles Journal i 1828.

For en som i dag studerer kappestridens forlop er det nermest ubegripe-
lig at det noensinne har veert tale om jevnbyrdighet mellom Abel og Ja-
cobi nar det gjelder oppdagelsen av de elliptiske funksjoner og oppbyg-
ningen av deres teori. En slik jevnbyrdighet pasties da heller ikke lenger
fra tysk side (jfr. Krazer [15] og iseer Faber [23] i hvilket siste verk det
gis et ganske kort og efter min mening uklanderlig historisk resumé av
Abels og Jacobis innsats).

Om Bjerknes’ angrep pa Jacobis moral vil det vel alltid vere delte
meninger. Mange vil vel foretrekke Mittag-Lefflers forklaring ([6], [7]) som
gar ut pa at Jacobi tenkte om Abels tanker og omsatte dem til sitt eget
formelsprog, som avvek adskillig fra Abels, og da kjente han dem ikke
lenger igjen, men trodde at de var hans egne. Det er mulig man kunne
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komme spérsméalet nsermere, hvis man kunne f adgang til hele korrespon-
dansen mellom Jacobi og Bessel og mellom Jacobi og Crelle. Men en ting
kan det neppe vere delte meninger om, og det er at den méaten pa hvil-
ken Jacobi citerer — eller rettere sagt ikke citerer — Abel, den er iallfall
hoyst utilfredsstillende for & bruke et meget mildt uttrykk. Det er nevnt
foran at Jacobi i den private korrespondanse med Legendre gir Abel stor
honnor. Men billedet er et annet nadr man kommer til Jacobis offentlig-
gjorte arbeider. Der er omtalen av Abels arbeider overordentlig sparsom
pa det felt det her gjelder. Et seerlig drastisk eksempel er en avhandling
datert 21. juli 1828 og trykt i Crelles Journal om hésten. Jacobi medde-
ler her — som vanlig uten bevis — en del resultater vedrérende de ellip-
tiske funksjoner. Denne avhandling er den forste hvori Jacobi direkte
omtaler de elliptiske funksjoners dobbelte periodisitet, og han under-
streker her ganske sterkt betydningen av denne fundamentalegenskap.
Abel og hans arbeider nevnes overhodet ikke i avhandlingen. P4 det tids-
punkt har Jacobi bevislig studert bade férste og annen del av Recherches
meget ndye og antagelig ogsa »Solution d’un probléme général. . ... « (Do-
delsen). Det er da helt utillatelig & unnlate & nevne den mann som hadde
skapt hele teorien for de dobbeltperiodiske funksjoner og som s& klart
hadde vist hvilket overordentlig effektivt forskningsmiddel nettopp den
dobbelte periodisitet er. Hvis Jacobi ville hevde at han uavhengig av
Abel hadde funnet den dobbelte periodisitet, sa burde han iallfall ha sagt
det her.

Seerlig uheldig er det at Abel er sa helt utilstrekkelig citert ogsé i »Fun-
damenta nova«, for efterat denne samlede leereboksfremstilling var ut-
kommet var det naturlig nok forholdsvis f4 som sokte til Abels og Jacobis
originalavhandlinger. I et brev av januar 1829 til Legendre lover Jacobi
at han i férste del av Fundamenta nova skal gjore rede for hva som spe-
sielt tilhorer Abel. Dette 16fte ble ikke holdt. Riktignok begynner Funda-
menta nova med en hyldest til Abel, hvor det sies at Abel pid en beun-
dringsverdig mate har gjennomfort en undersckelse av de elliptiske inte-
gralers addisjon og multiplikasjon. I ordene »nostra laude majore« (som
her tar sikte pa forste del av Recherches) gjenlyder ordene »elle est au-
dessus de mes éloges«, men det tales i denne forbindelse ikke om de om-
vendte funksjoner, og henvisningen gir ikke noesomhelst inntrykk av hva
Abel har utrettet. Henvisningen er i det hele tatt meget uklar og gjelder
bare forste del av Recherches, ingen av Abels andre fundamentale arbei-
der nevnes med et ord i hele verket. Senere nevnes Abel en eneste gang
til, helt en passant, i forbindelse med multiplikasjonen. Men Abel nevnes
overhodet ikke i forbindelse med innférelsen av de omvendte funksjoner
eller ved den dobbelte periodisitet eller ved transformasjonen eller ved
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utviklingen i uendelige produkter og rekker o.s. v., og denne iynefal-
lende mangel kompenseres ikke ved en hyldest i alminnelige vendinger i
bokens forste linjer.

Abel hadde mange skuffelser i sitt liv. Det er nesten en tilfredsstillelse
4 tenke pa at han ble spart for 4 se Fundamenta nova som forst utkom
efter Abels dod. Hadde han vert i sin fulle kraft kunne han nok ha hevdet
sine rettigheter. Men hvis han hadde fatt se Fundamenta nova pé sitt
dodsleie métte det ha blitt ham en bitter skuffelse.

®

Abel gjorde en vesentlig innsats pa ennu et viktig omride av matema-
tikken, nemlig leren om uendelige rekker. Han star her ved siden av
Cauchy som en av grunnleggerne av den moderne rekketeori, som han
beriket med nye satser, og han er samtidig en av de fremste representan-
ter for den rensende kritikk, som i begynnelsen av det 19. drhundrede
gjorde seg gjeldende overfor de synsmater som pé dette felt hadde preget
de fleste av det 18. arhundredes matematikere.

I tiden for sin utenlandsreise hadde Abel selv behandlet uendelige rek-
ker med adskillig lettsindighet. Han hadde bl. a. ivrig studert Euler og
denne store lzeremester oppfordret som bekjent ikke til synderlig forsik-
tighet i omgangen med rekker. Abel har formentlig alt for sin reise hatt
sine tvil om holdbarheten av de eldre matematikeres slutninger, for alle-
rede i den forste tid i utlandet kommer hans kritikk pa dette felt i full
virksomhet, bl. a. under innflytelsen av Cauchys »Analyse Algébrique«
fra 1821, en bok som han tydeligvis har fatt tak i kort efter ankomsten
til Berlin. Men ogsa i dette utmerkede verk fant han en feil pa et ikke
uvesentlig punkt.

Abel skriver i et brev til Holmboe av 16. januar 1826: »Divergente
Reekker er i det Hele noget Fandenskab, og det er en Skam at man vover
at grunde nogen Demonstration derpaa. Man kan faae frem hvad man
vil naar man bruger dem, og det er dem som har gjort saa megen Ulykke
og saa mange Paradoxer ......... Jeg har i det hele faaet Ojnene op
paa en meget forbausende Maneer; thi naar man undtager de allersim-
pleste Tilfzelde for Ex: de geometriske Reekker, saa gives der i hele Mathe-
matiken nsesten ikke en eneste Rekke, hvis Sum er bestemt paa en streeng
Maade.« I et brev til Hansteen av 29. mars 1826 hevder han et lignende
synspunkt (jfr. [2]).

T 1826 skrev han s sin store avhandling om binomialrekken, som ble
trykt i Crelles Journal. Om denne avhandling skriver Knopp i sin be-
kjente leerebok »Theorie und Anwendung der unendlichen Reihen« (Berlin
1922): »Die Entdeckung der Binomialreihe durch Newton bildet einen
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der grossen Marksteine in der Entwicklung der mathematischen Wissen-
schaften .......... Spater hat Abel diese Reihe erneut zum Gegen-
stand von Untersuchungen gemacht, die einen wohl gleich wichtigen
Markstein in der Entwicklung der Reihentheorie bilden.«

Euler var den férste som ga en gjennomfért behandling av bino-
mialrekken for reell variabel og en hvilkensomhelst reell eksponent.
Cauchy utvidet undersokelsene til kompleks variabel. Abel tok i sin av-
handling skrittet fullt ut, idet han lot bade den variable og eksponenten
vere hvilkesomhelst komplekse tall. Han loste konvergenssporsmalene
fullstendig, idet han ogsd undersékte forholdene pa konvergenscirkelen
og klarla i hvilke punkter ps konvergenscirkelen rekken er divergent
eller konvergent og bestemte rekkens sum i de punkter pa konvergens-
cirkelen hvor rekken konvergerer.

I en innledning til avhandlingen beviser Abel seks alminnelige setninger
om uendelige rekker. Innholdet av disse meget vesentlige setninger finnes
idag i alle storre lereboker om rekker. Her fremla han bl. a. den Abelske
partielle summasjon som har vist seg & veere et sa nyttig verktoy. Videre
den Abelske grenseverdisats (ogsa kalt den Abelske kontinuitetssats) som
sier at hvis en potensrekke konvergerer i et punkt (ogsd om vedkommende
punkt ligger pa konvergenscirkelen), sa vil rekkens sum ved radial til-
naerming til nevnte punkt kontinuerlig neerme seg rekkesummen i punktet.
Kontinuiteten strekker seg altsé i tilfelle helt ut til konvergenscirkelen.
Beviset beror i virkeligheten pa at rekken er uniformt konvergent i det
lukkede intervall som avsluttes i vedkommende konvergenspunkt. Be-
grepet uniform konvergens ble forst definert og klarlagt lenge efter Abels
dod, men han var ogsé her en vesentlig forloper. Videre finnes i den nevnte
innledning den tidligere ikke beviste sats at selv om to rekker bare kon-
vergerer betinget, si vil den rekke som dannes av dem ved den alminne-
lige produktregel, saifremt den konvergerer, ha en sum som er lik produk-
tet av de to forste rekkers summer. Beviset er en enkel og elegant an-
vendelse av grenseverdisatsen.

Abel fikk bare offentliggjort en eneste liten avhandling til som handlet
spesielt om uendelige rekker. Det er »Note sur un mémoire de M. Oli-
vier ..... ¢, som ble trykt i Crelles Journal i begynnelsen av 1828. Av-
handlingen som er p& bare tre sider er et fullendt lite mesterverk, og den
er dessuten meget lettlest. Noten til Olivier egner seg godt som avslutning
pa denne oversikt over Abels arbeider. Den gir sa & si Abel i et notteskall,
idet den ogsd leverer en frapperende illustrasjon til en hyppig citert,
prinsipiell programerklering av Abel. Programerkleringen finnes i det
efterlatte arbeide »Sur la résolution algébrique des équations« og
lyder sa:
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» En effet on se proposait de résoudre les équations, sans savoir si cela était
possible. Dans ce cas, on pourrait bien parvenir & la résolution, quoique cela ne
£t nullement certain; mais si par malheur la résolution était impossible, on aurait
pu la chercher une éternité, sans la trouver. Pour parvenir infailliblement & quelque
chose dans cette matiére, il faut donc prendre une autre route. On doit donner au
probléme une forme telle qu’il soit toujours possible de le résoudre, ce qu’on peut
toujours faire d’un probléme quelconque. Au lieu de demander une relation dont
on ne sait pas si elle existe ou non, il faut demander si une telle relation est en effet
possible. Par exemple, dans le calcul intégral, au lieu de chercher, & I’aide d’une
espéce de tdtonnement et de divination, d’intégrer les formules différentielles, il
faut plutdt chercher &’il est possible de les intégrer de telle ou telle maniére. En pré-
sentant un probléme de cette maniére, ’énoncé méme contient le germe de la solu-
tion, et montre la route qu’il faut prendre; et je crois qu’il y aura peu de cas ou
I’on ne parvient & des propositions plus ou moins importantes, dans le cas méme
ol 'on ne saurait répondre complétement & la question & cause de la complica-
tion des calculs. Ce qui a fait que cette méthode, qui est sans contredit la seule
scientifique, parce qu’elle est la seule dont on sait d’avance qu’elle peut conduire
au but proposé, a été peu usitée dans les mathématiques, c’est extréme complica-
tion & laquelle elle parait étre assujettie dans la plupart des problémes, surtout
lorsqu’ils ont une certaine généralité; mais dans beaucoup de cas cette complica-
tion n’est qu’apparente et s’évanouira dés le premier abord. J’ai traité plusieurs
branches de I’analyse de cette maniére, et quoique je me sois souvent proposé des
problémes qui ont surpassé mes forces, je suis néanmoins parvenu & un grand nom-
bre de résultats généraux qui jettent un grand jour sur la nature des quantités dont
la connaissance est 1’objet des mathématiques. «

Olivier hadde skrevet en avhandling i Crelles Journal hvor han pastod
at hvis i en rekke med reelle, positive ledd a,, a4, ..., a,,. .., na, — 0 nar
n — oo, s& er rekken konvergent, og hvis na, - 4 > 0, s& er rekken di-
vergent. Det siste er riktig, men den forste del av satsen motbeviste Abel

d 1
idet han ved en enkel regning viste at rekken }'——— er divergent.
n=2 n 10

Det var ingen tilfeldighet at Abel valgte dette eksempel. I et efterlatt
arbeide »Sur les séries« som dessverre forst ble offentliggjort i 2. utgave
av hans verker (1881), men som er skrevet i 1827, beviser han de bekjente
logaritmiske konvergenskriterier som sier at rekken

1

“~ n-logn-loglogn- ...- (log,n)"™

er konvergent hvis « > 0, men divergent hvis « = 0 (senere gjenoppdaget
av flere, bl. a. av Bertrand).

Det ville ikke veere serlig grunn til & dvele ved Abels note til Olivier,
hvis han der bare hadde noyet seg med & arrestere en feilaktig pastand.
Men nu kommer tankegangen fra den ovenfor nevnte programerklering
frem, idet Abel stiller spérsméalet: Er det overhodet mulig 4 finne en
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funksjon g(n) som er slik at hvis ¢(n)a, — 0 nar n - co s& konvergerer
rekken, og hvis ¢p(n)a, — 4 > 0 s& divergerer den? Det er et problem som
unektelig synes ganske krevende, men Abel l6ser det med lekende letthet.
Han beviser forst f6lgende hjelpesetning:

Hvis rekken ag+a,+a,+...+a,+ ... er divergent, si er ogsi rekken
ay @y g a,
“0+a0+a1+a0+“1+a’2+ o +“0+a1+ ety

divergent. (Denne nyttige hjelpesetning utgjor en del av den setning som
i moderne lerebdker kalles Abel-Dinis sats. Resten av denne sats finnes
i det vesentlige i »Sur les séries« og ble gjenoppdaget av Dini).

Derefter forutsetter Abel at det finnes en funksjon ¢(n) med de ovenfor

+...

1 .
nevnte egenskaper. I sa fall ma rekken 3’ poren) veere divergent, for her er
p(n
@(n)a, = 1. Videre ma under samme forutsetning rekken

1

p(n)
21 1(p 1

o e T )

veaere konvergent, for her gar g(n)a, mot 0. Men efter den ovenfor angitte

1
hjelpesetning er ogsa den siste rekken divergent hvis ' —(—) er divergent.
p(n

Altsé finnes det ikke noen slik funksjon ¢(n).

Dette resultat er det forste ledd i en lang rekke undersckelser ut igjen-
nom hele det 19. arhundrede, undersékelser som prévet a gi svar pd spors-
malet: Er det mulig & finne noe genereli kriterium til & skille mellom
konvergente og divergente rekker? Forst henimot ar 1900 var det helt
klart at svaret er nei.

Det er vel begrunnet nar Abels franske biograf Peslotian [5] skriver om
noten til Olivier: »Si I'on n’a point le temps de lire I’oeuvre d’Abel, du
moins peut-on méditer sur ces quelques pages; il n’en est pas qui mon-
trent mieux sa merveilleuse lucidité d’esprit et son admirable faculté
d’invention.«
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DET GJENFUNNE
MANUSKRIPT TIL ABELS PARISAVHANDLING

VIGGO BRUN

Abels avhandling »Mémoire sur une propriété générale d’une classe
trés-6tendue de fonctions transcendantes« ble fremlagt i Académie des
sciences i Paris den 30. oktober 1826. Legendre og Cauchy ble oppnevnt
som kommiseerer. Den 29. juni 1829 avga de en rapport. Abels ded var da
blitt kjent i Paris. Rapporten slutter slik:

»Da forskjellige omstendigheter har forsinket fremleggelsen av denne
rapport, skal vi her {4 bemerke at Abel har valgt & la trykke en del av sin
Mémoire i Crelles journal. Dette kunne ha gitt oss anledning til & gi var
rapport som en muntlig rapport. Men vi har nylig fitt underretning om
at denne unge matematiker, som var s lovende og som allerede hadde
ydet videnskapen si store tjenester, er avgitt ved deden mens han enna
forberedte nye avhandlinger. Denne skjebnesvangre nyhet kunne fa oss
til & frykte at matematikerne skulle bli bergvet kjennskapet til det ar-
beidet som vi har foran oss.

Det er derfor vi har funnet det rimelig & foresla for akademiet & bevare
et av forfatterens hedersverk (titres de gloire) ved & innsende hans ar-
beid i samlingen Savants étrangers.« Den er undertegnet av Legendre og
Cauchy, men var skrevet med Cauchys hénd [5].

Men denne plan kom ikke til utforelse. Forst da Holmboe i sin utgave
av Abels samlede verker av 1839 beklager seg over at det har vaert umulig
4 fa tak i Abels Parisavhandling bestemmer man seg i Paris til 4 trykke
avhandlingen. Den kom inn i Savants étrangers i 1841, tolv ar etter Abels
ded. Matematikeren Libri fikk i oppdrag & tilse trykningen. I Poggen-
dorfs Handwoérterbuch finner man fglgende notis om ham: »Libri-Carucei
dalla Sommaja, Guglielmo Brutus Icilius Timoleon. — Greve, professor i
matematikk i Pisa til 1830, da han som politisk flyktning forlot sitt fed-
reland og reiste til Paris. Der ble han 1833 naturalisert, ble snart pro-
fessor i analyse ved Sorbonnen, generalinspekter ved universitetet og de
offentlige biblioteker, ble medlem av videnskapsselskapet. Men lot i 1848
alle disse stillingene i stikken og flyktet til England, da han ble anklaget
for tyveri av begker og handskrifter (til en verdi av over 500 000 fr.)

[91]
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fra de offentlige biblioteker. I 1850 ble han for dette i fraveer demt til
ti ars tukthusstraff.

Libri hadde forresten ennu en @refull stilling i Paris. Han var pro-
fessor ved Collége de France. Det er ganske morsomt & lese hva Lebes-
gue sa om Libri da han omtalte sine forgjengere i embedet ved sin tiltre-
delsesforelesning i 1922 i Collége de France. Lebesgue sa:

yLibri som var mere historiker enn matematiker foreleste ikke her
lenger enn til 1846. I 1848 flyktet han til England. Forelesningene ble
overtatt av Hermite. La oss vere takknemlige overfor Libri for at han
har tillatt oss & innskrive Hermites srefulle navn blant lererne ved
dette institutt og la oss glemme den rolle Libri spilte.«

Man far si at Lebesgue her uttrykker seg med ekte fransk diskresjon.

I Savants étrangers kan man etter Abels avhandling lese folgende
tilfgyelse av Libri:

yDa Akademiet har gjort meg den @re & overlate til meg & overvake
trykningen av denne memoiren, har jeg beflittet meg pa & rette, si meget
som mulig, trykkfeilene. Men da jeg imidlertid ikke har hatt manuskrip-
tet forhanden (sous les yeux) da jeg leverte korrekturarkene si kan jeg
ikke smigre meg med at jeg alltid har hatt held med meg i dette. Det har
forekommet meg at det enkelte steder (seerlig i folgene av og de numeriske
utviklinger etter ulikhetene 103) er noen ungyaktigheter i regningen,
men jeg har ikke trodd meg berettiget til & forandre noe i dette smukke
arbeid. Jeg har da fatt Akademiets tillatelse til her & trykke denne noten,
som jeg ikke kan avslutte uten enné engang & uttrykke min beundring
for denne bersmte matematiker fra Christiania, hvis alt for tidlige ded
var si stort et tap for videnskapen.

Da Sophus Lie og Sylow arbeidet med utgivelsen av Abels samlede
verker, gjorde de store anstrengelser for & f& tak i manuskriptet til Abels
Parisavhandling. T en note skriver de: »Det har forekommet oss meget
gnskelig & sammenligne den trykte Mémoire med originalen, og Sophus
Lie fikk i 1874 av Académie des sciences i Paris tillatelse til & undersoke
og benytte Abels manuskript, men det ble konstatert i akademiets ar-
kiver at manuskriptet ikke hadde befunnet seg der etterat avhandlingen
var trykt.

Det har hittil veert naturlig & tro at det tapte manuskript kunne be-
finne seg hos en eller annen manuskriptsamler. Libri kunne jo ha solgt
det. Eller det kunne — som Klein pastar i Vorlesungen iiber die Ent-
wicklung der Mathematik im 19. Jahrhundert — veere »endgiiltig ver-
lorens.

Da jeg i oktober i fjor besgkte Florens spurte jeg professor Sansone
om man der hadde noen literzre etterlatenskaper etter Libri. Sansone
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viste meg da et sertrykk av Giacomo Candidos avhandling fra 1942:
Sulla mancata publicazione, nel 1826, della celebre Memoria di Abel.

Det fremgikk av denne at en avskrift »fatta dal Libri« av Abels av-
handling med en paskrift av Legendre skulle finnes i biblioteket More-
niana i Florens. Legendres paskrift var gjengitt i Candidos bok. Den
lyder slik:

sDenne Mémoire er forst blitt overgitt til M. Legendre som har bladet
i den, men idet han sa at skriften var litet leselig og de algebraiske tegn
ofte darlig formet, oversendte han den til sin kollega M. Cauchy med
oppfordring om & ta seg av rapporten. M. Cauchy som var opptatt av
andre saker og som ikke hadde mottatt noen paminnelse om & beskjeftige
seg med Abels avhandling, ettersom denne bare hadde oppholdt seg i
Paris noen fa dager etter fremleggelsen av hans Mémoire i Akademiet,
og ikke hadde sgrget for at noen skulle fglge saken likeoverfor kom-
misserene — si har, sier jeg, M. Cauchy glemt i lgpet av svert lang tid den
avhandling av Abel som han hadde til forvaring. Det var ikke for henimot
mars maned 1829 at de to kommiserer fikk vite, gjennom en meddelelse
som en av dem mottok fra en tysk videnskapsmann, at Abels Mémoire,
som hadde vert presentert for Akademiet, inneholdt — eller turde inne-
holde — serlig interessante analytiske resultater og at det var forbau-
sende at man ikke hadde avgitt noen rapport i Akademiet. P4 grunn av
dette sokte M. Cauchy etter Mémoiren, fant den og ville til & skrive en
rapport, men kommisszrene ble holdt tilbake ved den betraktning at
M. Abel allerede i Crelles Journal hadde offentliggjort en del av sin
Mémoire som var presentert for Akademiet, og at han sannsynligvis
ville fortsette & offentliggjgre resten, og at siledes Akademiets rapport
som bare kunne vezere muntlig ville bli ubetimelig. P4 dette tidspunkt
far vi pludselig melding om M. Abels ded — et frygtelig tap for viden-
skapen — hvilket synes oss n & gjere rapporten ngdvendig for & bevare
for oss om mulig i samlingen Savants étrangers et av forfatterens heders-
verk.«

Dette var jo av stor interesse og kanskje ennu mer opplysningen om at
der fantes en avskrift av Abels avhandling. Skulle Libri virkelig ha patatt
seg det store arbeid & avskrive hele Abels avhandling ? Og hvorfor skulle
han i s fall ha kommet med sitt tillegg om at han ikke hadde manu-
skriptet forhdnden (sous les yeux) da han leste korrektur? Men umulig
var det jo ikke! Han kunne jo ha gjort det for & gjore manuskriptet mere
tydelig for typografene. Vi vet endogsa at det har vert planer om en slik
avskrift ved Libri.

I et brev fra Paris av 11. april 1832 fra Minister Lowenhielm skriver
denne, antagelig til Hansteen:
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»Af Sal. Abels hiir efterlemnade arbeten har jag icke kunnat & redo pa
flere #n hans Mémoire sur les fonctions transcendentales. Den fanns hos
herr Cauchy, och skulle af herr Liberi afskrivas, di denne i den géngse
farsoten insiuknade — hos herr Gergonne har efterfragan skett men han har
icke dnnu svarat.«

Det var med stor spenning jeg sammen med professor Procissi gikk til
biblioteket Moreniana oppe ved Lorenzokirken. Skulle det kanskje veere
Abels originalmanuskript som var oppbevart der ? Procissi hjalp meg med
4 finne frem manuskriptet. Der 14 de gulnete bladene tett beskrevet, »par
N. H. Abel, Norvegien« stod der. Den skriften skulle jeg vel kjenne! Det
matte vel vere Abels egen! Og hvorfor skulle ogsa Libri ha foretatt en
slik avskrift, hvis hensikten var & gjore teksten tydeligere for typografene ?
Bokstavene var smé og plassen utnyttet til det ytterste, begge sider av
arkene beskrevet. P4 siste side sto Abels adresse i Paris: »Rue Ste Mar-
guerite No 41 faub. St. Germain«.

Var det virkelig over disse papirene Abel hadde sittet beyet i Paris,
da han avsluttet den avhandlingen, om hvilken han skrev til Holmboe:
»Jeg tor uden Bram sige at den er god.« Det kunne neppe veere tvil om
at dette var det bergmte forsvunne manuskript, det vil da si en tredje-
del av det. Midtpartiet — hele to tredjedeler av avhandlingen — manglet.
Nu visste jeg jo at man tidligere hadde latt seg narre. Jeg fikk derfor en
italiensk fotograf til & ta en mikrofilm av manuskriptet med pategningen
pi omslaget, angivelig skrevet av Legendre, og dessuten av et brev,
skrevet av Libri. Filmen ble sendt til Matematisk Institutt i Oslo hvor
Tambs Lyche og Johansson kom til samme resultat som meg. De over-
sendte s& kopiene til rettskjemiker Bruff. Han sammenlignet kopiene
med et ark, utlant fra Universitetsbiblioteket, som var betegnet som:
Den eldste kjendte redaksjon av »Det abelske teorem«. Bruffs medde-
lelse konkluderer med folgende uttalelse: »De anforte og en lang rekke
andre likhetspunkter virker helt overbevisende og jeg kan etter foretatt
undersgkelse uttale som min bestemte overbevisning at originalene til
de innsendte fotografier av manuskriptet er skrevet av Niels Henrik
Abel personlige. Senere har Bruff ogsd undersokt skriften pa omslaget
om Abels avhandling. Han har sammenlignet skriften med kopier av
brev fra Legendre til Sophie Germain fra drene 1817-1821, tilsendt fra
Paris av M. Taton. Konklusjonen av undersgkelsen var at det ikke kan
herske tvil om at paskriften pa omslaget om Abels avhandling er skrevet
av Legendre personlig.

Men hvor var det blitt av midtpartiet av avhandlingen? Jeg skrev i
véares til professor Sansone og spurte om det kunne veere noen mulighet
for & finne mere av manuskriptet i Moreniana. I mai fikk jeg som svar
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Forste side av Abels Parisavhandling.
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den gledelige nyhet at det hadde Iyktes professor Procissi, ved & gjennom-
g4 samlingen ark for ark & finne resten av manuskriptet — pa 8 sider
neer. Kopier av de nyfunne sider ble oversendt til Matematisk Institutt
i Oslo.

Jeg har sammenlignet kopien av Abels manuskript til hans »Mémoire
sur une propriété générale d’une classe trés-étendue de fonctions trans-
cendantes« med den trykte tekst i »Mémoires présentés par divers savants
3 I’académie royale des sciences de I'institut de France« (Tome septieme,
1841).

Jeg har funnet ca. 36 spraklige uoverensstemmelser av temmelig uve-
sentlig art. Libri har f. eks. rettet Abels »Comme on sait« til »Comme on
le sait« og Abels ven remarquant que¢ til »puisque« og videre Abels
»qu’on fait« til »qu’on fasse«.

Under memoirens titel har Abel skrevet »par N. H. Abel, Norvegien«
mens Libri har »par M. N. H. Abel, Norwégien«.

Nar det gjelder faglige uoverensstemmelser ma en si at Libris korrek-
turlesning har veert ganske omsorgsfull. Man har inntrykk av at Libri
har studert avhandlingen i detalj. Flere steder har Libri tilfgyet henvis-
ninger til tidligere formler. Som eksempel nevner jeg at Abel foran formel
(39) setter »en remarquant que« mens Libri har tilfgyet: »d’apres (23),
(24), (25) et (35)«. Av uoverensstemmelser i formlene har jeg funnet om-
kring 46. En del er rettelser av skrivfeil hos Abel. Men savidt jeg kan se
er ingen av uoverensstemmelsene av den art at det vil veere av stor
betydning for en bedre forstaelse av Abels avhandling. I Sylows og Lies
utgave av Abels samlede verker er allerede de fleste av trykkfeilene hos
Libri rettet. Formel nr. 103 som Libri serlig nevner i sitt tillegg, som
han folte seg usikker overfor, befinner seg pa en av de 8 sider av Abels
manuskript, som ikke er gjenfunnet. Forgvrig har Sylow en bemerkning
om denne formelen i sine noter.

Til slutt skal jeg nevne et annet manuskript, som befinner seg i Bib-
lioteca Nazionale i Rom. Professor Heegaard fant det i 1942 og mente &
ha funnet originalen til Abels Parisavhandling. Etter krigens slutt fikk
vi tilsendt kopier av manuskriptet og rettskjemiker Bruff undersgkte
dem, men erklerte at han »nermest fant det utelukket at det kunne
veere skrevet av Abel«.

Romamanuskriptet er pa det aller neermeste identisk med den trykte
tekst i Savants étrangers som Libri forestod. Jeg har undersgkt de steder
hvor det er uoverensstemmelse mellom Abels manuskript og Libris trykte
tekst. Her har Romamanuskriptet overalt samme tekst som Libri med
undtagelse av fire steder, nemlig felgende steder i Savants étrangers:
side 188 linje 5, side 231 formel 115, side 245 linje 6 og side 262 linje 4.
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Alle disse steder har det vistnok vert lett & oppdage feilene for en opp-
merksom avskriver. Ogsa Sylow har rettet disse feilene med undtagelse
av den siste.

Det mest sannsynlige er vel at Romamanuskriptet er en avskrift av
den trykte avhandling i Savants étrangers. Det kunne vel ogsé tenkes
at Libri selv eller en medhjelper hadde forfattet det for & selge det eller
for & gjere det tydeligere for typografene, som allerede bergrt. Men det
er hevet over tvil at det er Abels manuskript som har vert i trykkeriet.
T margen finnes flere steder ordene: »Savants étrangers flle . . .« tilfgyet.
Man kan ogsd se at typografen hver gang han er kommet en side ned i
den trykte tekst i Savants étrangers har satt en strek i Abels manuskript.

I Romamanuskriptet er ogs& Libris tillegg som er tatt med i Savants
étrangers gjengitt, men skrevet med en annen hind enn selve avhand-
lingen i samme Romamanuskript. Handen synes ikke & veere Libris.
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DEN FYRDIMENSIONELLA RYMDEN

ROLF NEVANLINNA
Artikel tryckt i Arkhimedes, band 1, 6versatt av Hakan Simberg.

Den geometrisk-fysikaliska rymden, vid vilken vi &ro bundna och till
vilken vi forldgga det konkreta fysiska skeendet, 4r tredimensionell : denna
grundegenskap uppfatta vi som ett ovedersigligt sakférhallande. Som en
intuitiv nédvindighet tvingar sig denna uppfattning pd oss med saddan
makt, att det kan forefalla lekmannen fafingt att i detta sjalvklara fak-
tum soka finna nagon mera vitthirande problematik. Det oaktat har inte
endast det filosofiska eller matematiska teoretiska tinkandet, utant. o. m.
en sidan realvetenskap som fysiken i olika sammanhang stillts infor
detta problem; just inom fysiken har man blivit nédsakad att rikna med
mdjligheten av rymder med ett stérre antal dimensioner. Aven den stora
allménheten kinner till Einsteins relativitetsteori, som innebér ett stor-
slaget forsok att beskriva det fysikaliska skeendet sisom en slags fyr-
dimensionell geometri i den s. k. Minkowski- eller shéindelse«-rymden. Tre
av de fyra dimensionerna &ro var vanliga geometris rymd-dimensioner
medan den fjirde dr tiden.

Denna framstéllning s6ker icke att beskriva relativitetsteorins speciella
virld. Min avsikt &r att allménnare klargéra vad man kan mena d& man
talar om rymder av hogre dimension: hur det dr mojligt, att den mate-
matiska forskningen under de senaste hundra &ren har kunnat utveckla
geometrierna i hogredimensionella rymder till lika fullstindiga teorier,
som den vanliga plan- eller rymdgeometrin, vilkas askidliga innebérd
omedelbart kan uppfattas &ven av icke-matematikern, dirfor att de svara.
mot var omedelbara askadning av den tredimensionella rymden.

Forst maste vi gora klart for oss, vad vi egentligen mena nir vi siiga
att rymden har tre dimensioner. Lit oss tinka att vi befinna oss i ett
rum: det &r en liten, sluten del av rymden. Rummet har en viss bredd,
en viss lingd och en viss hojd. Just dessa dro dess tre dimensioner. For
en fjirde dimension eller fér &nnu flera finnes dir ej plats. En position i
detta rum bestimmes av tre tal, av vilka ett anger bredden, t. ex. av-
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stdndet fran sidoviiggen, ett annat lingden, avstandet fran bakviggen
och det tredje hojden, det vinkelrita avstandet fran golvets plan.

Matematiskt uttryckes detta pa foljande sitt: vart rum bestammer ett
rymdkoordinatsystem, vars begynnelse-
3 punkt befinner sig t. ex. i den vinstra
bakre vrin och vars lingd-, bredd- och
héjdaxlar dro golvets bakre kant, dess sido-
kant och skirningslinjen mellan viggarnas

% D x5 plan, som stir vinkelréitt mot golvet. Den
—— ! geometriska och den fysikaliska, forskningen
0 M arbetar just med koordinatsystem av detta

2
slag; dessa téinkas konstruerade i virlds-
rymden. Att rymden #r tredimensionell be-
tyder att en punkts position i rymden
(fig. 1) bestdmmes av #re mitetal eller koordinater, z,, z,, Zs, 1 ett visst
koordinatsystem.

Sdsom kiinnetecken pa att rymden dr tredimensionell behéver man
emellertid inte anviinda detta speciella sitt att lokalisera en punkt med
tillhjalp av ett koordinatsystem bestémt av tre mot varandra vinkelrita
axlar. Det finnes éven andra siitt att bestimma en punkts position. S
anger man vanligbvis t. ex. ett ortslige pa jordytan med geografiska
koordinater, lingden och bredden. En tredje koordinat ingar redan diri
att orten ligger pa jordytan, alltsa pé jordradiens avstind fran jordens
medelpunkt. Om vi nu tinka oss denna radie fordnderlig, s& forstar man,
att en godtycklig punkt i rymden kan bestimmas 88, att man anger dess
avstand fran en godtyckligt vald fast utgangspunkt O och dessutom punk-
tens geografiska lingd och bredd p4 den sfir, vars medelpunkt &r punkten
O och som gir genom den givna, valda punkten. Nu behévs det alltsa
igen tre tal eller koordinater for att bestimma punktens position; detta
dr kiirnan i utsagan att rymden #r tredimensionell.

Annorlunda &r det med sddana delar av rymden, vars dimensionstal &r
lagre. En yta, t. ex. ett plan, har endast tva dimensioner, och diir bestim-
mes en punkts position p4 motsvarande sitt med tvd koordinater. P§ en en-
dimensionell del av rymden, dvs. Pé en linje, ricker det med en enda
koordinat fér att faststilla en punkts lage, forutsatt att dven i detta fall
koordinatsystemets i och for sig godtyckliga begynnelsepunkt fastslagits.

For att riktigt uppfatta rymdens tre dimensioner ér det nyttigt att till
en bérjan uppehélla sig vid dess en- och tvi-dimensionella delar, vid ytor
och linjer, samt vid de samband och skiljaktigheter som rada mellan en-
dimensionella linjer, tvadimensionella ytor och tredimensionella kroppar.

X

P (x1, x5, x3)

X2
Fig. 1

*

TR —
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Endast med stéd av dessa analogier blir det mojligt att bilda sig en upp-
fattning om rymder av hgre dimension, dér den omedelbara geometriska
askadningen inte mera star till buds.

Mina drade lisare ha mahinda nagon gang list »lattfattliga« framstall-
ningar som 6nska lyfta pa det férhéinge som skiljer oss frén den hemlig-
hetsfulla fyrdimensionella vérlden. Detta sker ofta genom ett tankeex-
periment i rakt motsatt riktning: man forflyttar sig fran var tredimen-
sionella virld till en tvadimensionell och férsoker leva sig in i den upp-
fattning tvadimensionella »ytvarelser« méste ha om sin egen rymd, som
helt saknar den tredje dimensionen.

Ett sadant tankeexperiment #r inte nadgon onyttig lek: just denna vig
leder till den ritta uppfattningen av hogre dimensioner. Déarfor ber jag
mina lisare f6lja med pa en tankeexkursion till den tvadimensionella
rymden.

Dirforinnan vill jag kort hiinvisa till att det med héinsyn till ménniskans
fysiska organisation inte ér sjélvklart, att just den tredimensionella upp-
fattningen utvecklar sig och inrotar sig sésom nagonting entydigt sékert.
Vara biologiska livsbetingelser &ro i sjilva verket inte alltfor vitt skilda
fran dem, som gilla fér tvddimensionella ytvarelser.

For det forsta dr niamligen var rérelsefrihet begrinsad till en tvadi-
mensionell yta, nimligen jordytan eller atminstone till dess omedelbara
nirhet. Pa teknikens nuvarande standpunkt kunna vi hoja oss ovanfor
jordytan eller skinka oss under den strickor, som inte dverstiga & promille
av det sviingrum, som jordytan ger oss i vagrit led. Darfor kan var kun-
skap om rymdens tredje dimension, i hojd- och djupled, som omedelbar
upplevelse endast i mycket sma lokala omgivningar, sisom i vart arbets-
rum, jamféras med det som vi erfara i egenskap av ytvarelser, dvs. i vig-
rit led.

En tvadimensionell uppfattning star oss nira dven av en annan, biolo-
gisk anledning. Véar rymdupplevelse grundar sig framst pa synintryck,
som uppsta som projektioner pa dgats tvadimensionella néthinna. Visei
sjalva verket med hjilp av tvadimensionella ytbilder; djupverkan i vart
synintryck beror pa att vara tva ogon motta olika projektioner, vilka
sammansmiltas till en helhet (stereoskopiskt seende). Till denna férnim-
melse av »djup« bidrar ytterligare det att vi &ro rorliga varelser. Nar vi
réra oss forindras vart synfilt pa ett oregelbundet sitt. Detta leder till
bildandet av en tredimensionell rymduppfattning. Hirvid ar strévan efter
s& stor »stabilitet eller sinvarians« som méjligt, en ledande princip. Denna
tendens till invarians visar overhuvud likt en rod trad vigen for de
minskliga begreppens och uppfattningarnas utvecklingshistoria fran det
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undermedvetnas djup till den ménskliga kunskapens higsta toppar. Den
omformar speciellt var rymduppfattning dven dirigenom, att den, som
vi uttrycka det, korrigerar vart perspektiviska seende, genom att for-
#ndra var priméra, subjektiva synbild (med centrum i 6gat) till en homo-
gen rymduppfattning som &r oberoende av observationscentrum.

Just emedan var fysiska organisation star nira det tvadimensionella,
kunna vi dven i all avbildning, som védjar till synintryck, utan svarighet
orientera oss med hjilp av plana bilder. I dessa frammanar var fantasi
latt den felande tredje djupdimensionen.

Lingre skall jag inte folja var tredimensionella naturliga rymdupp-
fattnings utvecklingshistoria med dess psykologisk-biologiska problem.
Ovanndmnda anmirkningar avse endast att papeka, att vi inte ge-
nomgripande avvika fran fingerade tvadimensionella ytvarelser, vars in-
tryck vi nu skola soka klargora. Dessa varelser dro fysiskt och biologiskt
annu simre utrustade dn vi, och vi skola forestilla oss, att de leva helt
bundna till den tvadimensionella virlden utan nagon mdéjlighet att kunna
bli medvetna om en tredje dimension.

Vi tédnka oss nu dessa tvadimensionella individers levande pa en yta,
till exempel ett plan, och forestilla oss att detta plan befinner sig i var
tredimensionella virld. Fran dess hojder betrakta vi tredimensionella
varelser de primitiva ytvarelsernas rorelser och verksamhet. Utrustade
med vara intellektuella férutsittningar skulle de otvivelaktigt skapa sig
en plangeometri, en vanlig euklidisk geometri. Jag faster uppmérksam-

heten vid ett par geometriska detaljer, som sédkert
vore bekanta for dem dels som praktiska erfaren-
(x{,x)) ‘heter (t.ex. som resultat av métningar) dels som
teorem i den teoretiska geometrins system. En

X2

4 Ox1, %) punkt P:s position skulle dessa varelser sikert
~ x;  bestimma medels ett rétvinkligt koordinatsystem,
o~y — x gemom att ange punktens tva koordinater x;, , i
F1 , detta system. Punkten P:s avstand r fran koor-

ig.

dinatsystemets begynnelsepunkt eller origo skulle
de berikna ur Pytagoras teorem: kvadraten pa avstandet r dr lika med
summan av kvadraterna pa kateterna z, och z, (fig. 2):

12 = 2,2 1,2 .

Vinkeln & mellan strickan OP och x;-axeln skulle de liksom vi bestimma
ur formlerna

Xy . Xy
cosox = —, sing=—.
r r
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Om nu P’(z,’, z,’) 4r en annan punkt i planet, s giller for den

rlg — x1/2_|_x212
och

4 ’

, % x
cos &' = —
r

2 v °

Vinkeln o mellan stralarna OP’ och OP skulle ocksa vara plana varelser
berdkna ur formeln

cos w = cos (&' —a) = cos &’ cos ax-+sin &’ sin & =
’ ’
%1%, + 2oy

B Vx12+x22 Vx1’2+x2'2 -

De tva uttryck, som vi ha anfért hir ovan, och som ge storleken av
avstandet mellan tva punkter och storleken av vinkeln mellan tva rita
linjer, innehalla i sjdlva verket i sammantréingd form hela plangeome-
trin. Sedan Gauss’ och Riemanns tider veta vi nimligen hur man, da
dessa bada metriska grundstorheter dro bekanta, kan utveckla hela geo-
metrin enligt differentialgeometriska principer med anviandande av varia-
tionskalkyl. Och om vi nu antaga, att vara téinkta ytvarelser ha haft sin
egen Gauss och sin egen Riemann, sé skulle ocksa de med tillhjalp av dessa
grundformler ha utvecklat en fullstindig plangeometri. Och denna skulle
bli samma geometri, som vi kéinna fran vara plangeometriska larobocker.

Detta dr ju i och for sig ingenting Gverraskande. Men en vacker dag
kan det intriffa, att geometerna i var ytvirld uppfinna den tredje dimen-
sionen, fastin denna dimension for dem é#r lika gatfull som den fjarde
dimensionen fér oss. Hur skulle de kunna komma denna mysteriosa tredje
dimension p4 sparen? Det skulle siikert inte ske sasom en askadlig upp-
levelse, ty deras geometriska &skiddning vore nog oaterkalleligt bunden
vid den tvidimensionella virlden. Men de tvadimensionella matemati-
kerna skulle kanske resonera pa foljande sitt:

Ur var geometriska &skadning kunna vi inte uppticka en tredje di-
mension. Den kunna vi finna endast med hjilp av den abstrakta av-
bildning av geometrin pa aritmetiken, som den analytiska geometrin inne-
haller. Denna analytiska framstillning av geometrin kaninte uppfattas
geometriskt, men den dr i varje fall till sin byggnad en exakt bild av den
geometriska, konkreta virlden, den #r som man séiger isomorf med denna.

Vad visar d& den analytiska geometrin ? For det f6rsta, att en punkts
position i den tvadimensionella virlden uttryckes medels tva koordinater.
Om det alltsd finnes en tredimensionell virld, méste en punkts position
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i motsvarande analytiska geometri kunna uttryckas med tre koordinater
&y, %o, %3, av vilka de tva forsta dro vara vanliga plankoordinater, och den
tredje anger koordinaten i den tredje dimensionens riktning.

84 langt drsaken klar. Men hur skola geometerna komma de geometriska,
lagar pd spéren, som styra den askadligt obegripliga tredimensionella
virlden ? I det faktum, att en punkt i denna virld bestimmes av tre tal
%1, 5, &3, innehélles i och for sig ingenting om byggnaden av det geome-
triska systemet. Till detta siiga geometerna: Vi kunna inte uppticka
dessa lagar endast genom att studera en askidlig geometri. Men det &r
mojligt att finna dem, om man granskar den bild av den askadliga geome-
trin, som den analytiska geometrin utgor, och formellt generaliserar den
pé ett sa enkelt sétt som mojligt. Detta sker genom analogislut utgaende
frdn det, som vi kénna till om den tvidimensionella analytiska geome-
trin.

Men — som ovan papekades — den tvadimensionella analytiska geo-
metrins grundlagar kunna sammanfattas i de tva formler, som ge av-
stdndet mellan tva punkter och vinkeln mellan tv4 rita linjer. Den natur-
liga slutledningen #r dérfor foéljande: For

X
3 P (xi xl %)) att dessa grundlagar skola gilla ocks4 i den
R tredimensionella geometrin, méste man
' endast gora den korrektion som blir néd-
r PlxiyXe,x3) " O L .
r véndig, nér den tredje dimensionen och mot-
@ X X3, svarande tredje koordinat x; kommer till.
) — Man behéver inte linge granska ifraga-
X2 varande uttryck for att inse att den enda
/ y
X5 naturliga generaliseringen av den tvadimen-
Fig. 3 sionella analytiska geometrin 4r féljande:
1g.

Avstandet r fran koordinatsystemets
origo O till en godtycklig punkt P(x,, x,, x;) beriknas fortfarande »py-
tagoreiskt« sdsom kvadratroten ur de tre koordinaternas kvadratsumma

(fig. 3): p = V;i2+x22+x32 ,

och vinkeln w mellan tva stralar OP och OP' (P’ = P'(z,, %', 3')) ur

formeln ’ ’ '
Xy %y oy +X3%s

Var+ar+a? Va2 +a, 2 a2
Om vi enas om detta, &ir hela den tredimensionella geometrin i princip
skapad. I enlighet med de tidigare nimnda differentialgeometriska prin-
ciperna blir ndmligen &ven den tredimensionella geometrin fullt bestimd,

sa snart de tva grundstorheterna, avstindet mellan tva punkter och vin-
keln mellan tva rita linjer, dro givna.

COsS w =




104 ROLF NEVANLINNA

Nir de tvadimensionella ytvarelserna pa detta sitt ha skapat den tre-
dimensionella euklidiska rymdens analytiska geometri, har deras geome-
triska instinkt inte bedragit dem. De regler fér geometrin de pa ovanbe-
skrivet sitt uppstéllt iro ndmligen exakt de samma som vi kénna fran
var vanliga rymdgeometri (jmf. fig. 3). Diarmed bli alltsd ytvarelserna i
sténd att utveckla den tredimensionella rymdgeometrin till samma full-
stindighet, som vi ha kunnat gora det. De skulle kunna samtala med oss
om de geometriska relationerna i den tredimensionella rymden med en
sddan noggrannhet, att vi, nir vi horde deras tal, alls inte kunde ana, att
de helt och hallet sakna férméaga att bilda sig motsvarande geometriska,
askadning av den tredje dimensionen.

Nir lekminnen i ytvirlden av sina vetenskapsmén fa hora om den
tredimensionella rymdens geometriska egenskaper, skulle de visst nog
genast fraga om det inte vore mojligt att forklara dessa ting dven dskdd-
ligt. D& skulle matematikerna sjilviallet raka i trangmal, och deras for-
klaring skulle inskrénka sig till ungefar £6lj ande:

yDen tredimensionella virlden kunna vi inte uppfatta genom en askad-
lig generalisering av det som vi kéinna till om den tvadimensionella vérl-
den. Vi maste noja oss med de observationer, som vi kunna gora iden ana-
lytiska geometrin, och dessa sakna naturligvis alla geometriska kvaliteter.
Onska vi binda dessa observationer vid var vanliga geometriska askad-
ning, maste vi dirfor noja oss med ytavbildningar av skeendet i den tre-
dimensionella virlden. Detta kunna vi dstadkomma genom att projiciera
de tredimensionella fenomenen pa var egen tvadimensionella virld«.

Uppfordrade att giva sidana avbildningar skulle de kanske som av-
bildningsobjekt vilja den tredimensionella rymdens for oss vilbekanta
reguljiira kroppar, den reguljira tetraedern, oktaedern, ikosaedern, ku-
ben och dodekaedern (fig. 4). Med tillhjilp av den analytiska geometring

AN
N

Fig. 4

metoder skulle de tvadimensionella matematikerna kunna projiciera
dessa kroppar i planet. Genom att betrakta dessa plana projektioner
kunde man naturligtvis skapa sig nagon slags uppfattning om vad de
avbildade tredimensionella kropparna askadligt innebiira. For oss tredi-
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mensionella varelser racker det i sjdlva verket fullstindigt med att be-
trakta dessa projektioner i planet. Emedan vi redan ha en uppfattning
av den tredje dimensionen, kompletterar var fantasi utan svarighet yt-
projektionerna i djupled, s& att vi dven i de plana figurerna se motsva-
rande tredimensionella kroppar i deras symmetriska fullindning. For de
tvadimensionella varelserna méste naturligtvis dessa figurer bliva betyd-
ligt mera svarbegripliga. De framstéa for dem som en oregelbunden anhop-
ning av linjer och ge inte nagon direkt uppfattning av figurernas reguljira
karaktir. Men en viss antydan &ven i denna riktning kunde projektio-
nerna i varje fall ge.

Det foregdende tankeexperimentet har gjorts med en tendens, som an-
tagligen redan har klarnat for lasaren. Vi forflytta oss nu frdn den tva-
dimensionella virlden till var egen ordinira tredimensionella vérld. Det
ar kanske nu littare att forstd hur man skall s6ka komma vidare till den
fjirde dimensionen, vars &skidliga innebord férblir gatfull f6r oss ofull-
komliga ménniskor i den tredimensionella virlden. Vara matematiker ha
i sjalva verket vid konstruktionen av den fyrdimensionella rymden for-
farit p4 alldeles samma sétt som vi ha forestéllt oss att de tvadimen-
sionella geometerna anvinde, da de skapade den tredimensionella
virlden. Den fyrdimensionella geometrin har utvecklats med ledning av
de analogier som gilla nidr man 6vergar fran den tvidimensionella ana-
lytiska geometrin till den tredimensionella. For den askadliga uppfatt-
ningen ligger grinsen for vidare generalisering ovillkorligen vid tre di-
mensioner. Men med tillhjilp av tal har en exakt bild av geometrin kun-
nat konstrueras, och i denna virld, den analytiska geometrin, finnes det
inga hinder fér obegrinsad generalisering. Vi resonera lika som de tva-
dimensionella geometerna:

I den fyrdimensionella virlden méste en punkts position bestimmas av
fyra kordinater x;, ®,, ¥3, ¥,. Avstandet (r) mellan tva punkter samt vin-
keln (w) mellan tva rita linjer beriknas, som en direkt generalisering av
de tva- och tredimensionella fallen, alltsa pa foljande sétt:

2 = @ x2 w2422,
X2, 2575 x5y’ + 2,2,

Va2 tatadtad Va, ay a2 +a,

CoOs w =

Ur dessa grundlagar kunna vi nu bygga upp den fyrdimensionella geo-
metrin in i minsta detaljer. Detta sker dter med anvindande av de ovan-
ndmnda differentialgeometriska principer som utvecklats av Gauss och
Riemann redan for mer &n hundra ar sedan. Nu #r det utan vidare klart
hur denna generalisering fortséttes till hogre dimensioner, till fem-, sex-
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osv. dimensionella rymder. Utvecklingen av den hogredimensionella geo-
metrin pa denna grund fordrar inte ens nagra sirskilt djupa matematiska
kunskaper. For att losa den fyrdimensionella rymdens problem récker
det till med de kunskaper, som en vanlig matematikstuderande inhamtar
under de tva forsta studiedren.

Kanske lisaren nu narmare intresserar sig for fenomenen i den fyrdi-
mensionella rymden. Riknetekniskt behirskar man fullstindigt dem,
fastdn savil matematikerna som lekméinnen icke kunna férbinda dem
med en direkt, geometrisk, 4skadlig innebord. Ur rikedomen pé fenomen
i den fyrdimensionella rymden vélja vi igen ett speciellt exempel, ném-
ligen de reguljira kropparna. Nér jag i det féljande kort anfér deras
kinnetecken, maste man minnas att kropparna dro fyrdimensionella. De
begriinsas alltsd inte av tvadimensionella ytor, liksom kropparna i var
rymd, utan av tredimensionella kroppar, och mellan dessa begrénsande
tredimensionella kroppar befinner sig den gatfulla fyrdimensionella rym-
den. De fyrdimensionella reguljira kropparna begrinsas i sjilva verket av
vara vilbekanta reguljira kroppar, tetraedrar, oktaedrar, ikosaedrar,
kuber och dodekaedrar.

I den fyrdimensionella rymden finnes det varken mer eller mindre &n
sex reguljiira kroppar. I det foljande granska vi i korthet deras byggnad.
Férst och frimst finnes det reguljira fyrdimensionella kroppar som be-
grinsas av tredimensionella reguljira tetraedrar; det existerar tre olika
kroppar av detta slag. Den enklaste fyrdimensionella reguljéra kroppen
begrinsas av fem tetraedrar och antalet hornpunkter ér likasa fem. Sedan
finnes det en kropp med 16 begrinsande reguljéra tetraedrar, medan antalet
hornpunkter &r 8. Ytterligare har man en reguljir kropp begrénsad av
reguljira tetraedrar, men av mycket mera komplicerad art &n de fore-
nimnda: antalet grinstetraedrar dr hir hela 600 och hérnpunkternas
antal dr 120. Utom dessa kroppar finnes det en sddan fyrdimensionell
reguljiir kropp, som begriinsas av tredimensionella kuber. Denna &ér den
s. k. fyrdimensionella kuben, med 8 begréinsande tredimensionella kuber,
medan antalet hornpunkter ar 16. Den femte fyrdimensionella reguljira
kroppen begrinsas av reguljira oktaedrar; antalet begrinsande vanliga
tredimensionella oktaedrar ir 24 och hérnpunkternas antal ar likasa 24.
Den sjitte och sista reguljira kroppen i den fyrdimensionella rymden &r
redan synnerligen komplicerad i det den begréinsas av hela 120 reguljéra
tredimensionella dodekaedrar och antalet hornpunkter stiger till 600.

Om man nu fragar sig vilken askadlig innebérd kunde férenas med
dessa svarbegripliga kroppar blir svaret precis detsamma, som geome-
terna i den tvadimensionella virlden gav: Det finns endast tva metoder
dértill. Antingen néja vi oss med att kunna karakterisera och understka
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kropparna pé rent analytisk vig, dvs. medels tal, eller ocksa ¢nska vifa en
mera omedelbar geometrisk-adskadlig uppfattning av dem. Emedan vi en
géng for alla sakna mojligheter att askadligt uppfatta den fjirde dimen-
sionen, méste vi d4 ndja oss med den metod som beskrevs i det fore-
gdende: ndmligen att projiciera kropparna i var ligre, tredimensionella
rymd. Hérvid bor man observera att projektionerna fran den fyrdimen-
sionella rymden pa véar vanliga rymd naturligtvis éro tredimensionella,
alltsa »vanliga« kroppar.

Fig. 5

Det kan ha sitt intresse att se exempel pa sadana projektioner. I fig 5.
finner man till hoger projektionen pa vér tredimensionella rymd av den
ovan nimnda reguljira fyrdimensionella tetraedern, som begrinsas av 5
reguljéra tredimensionella tetraedrar. Till jamforelse aterges i figuren till
viinster projektionen pa ett plan av en vanlig tredimensionell tetraeder.
For att uppfatta figurerna kan det vara bra att tinka sig tetraedrarna
konstruerade péa foljande sitt. Vi borja med en stricka, vars lingd ar
lingdenhetens. Utanfér denna striicka viljes déirefter en punkt som, for-
enad med strickans bada #ndpunkter, later en liksidig triangel uppsta.
Utanfor triangelns plan viljes dédrefter en ny punkt s att, da den sam-
manbindes med bastriangelns hérnpunkter, alla férbindelsestrickor ater
dro lika ldnga som lingdenheten. S8 uppstar var vanliga reguljira tre-
dimensionella tetraeder. Denna konstruktion kan nu fortsittas till hogre
dimensioner. Utanfor var tetraeder och samtidigt utanfér hela var tre-
dimensionella rymd, i den fjirde dimensionens riktning viljes en femte
punkt sé, att nir den férbindes med alla fyra hérnpunkter i var reguljira
tetraeder, sa bli sammanbindningsstrickorna alla lika langa som lingd-
enheten. Pa detta sitt uppstir den fyrdimensionella, reguljira tetrae-
dern. Den har alltsé en vanlig tetraeder som bas. Vidare begrinsas den
av fyra andra tredimensionella, reguljira tetraedrar, och dessa ha kon-
struerats s, att den femte hoérnpunkten, som befinner sig i den fjirde
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dimensionens riktning, har sammanbundits med alla hérnpunkter i den
tredimensionella bastetraederns fyra sidotrianglar.

Vi skola &nnu granska de tvé projektionerna i fig. 5 nagot nérmare.
Till vinster dr den tredimensionella tetraedern projicierad i planet. I denna
plana figur blir den yttersta stora triangeln dubbelt téckt. A ena sidan
ar den en bild av en sidotriangel, 4 andra sidan delas den i tre delar som
var och en ir projektion av en av var tetraeders sidotrianglar. P4 motsva-
rande sitt finner man i den figur som forestiller projektionen av den fyr-
dimensionella tetraedern, en vanlig tredimensionell tetraeder ochinom den
en punkt, som dr bild av den femte hérnpunkten. Projektionens yttersta
storsta tetraeder dr bild av en av den fyrdimensionella tetraederns gréns-
tetraedrer. Aven i detta fall &r projektionen dubbelt tickt. Projektio-
nerna av fyra griinstetraedrar ligga innanfér den yttersta tetraedern och
de forstnimndas gemensamma hérnpunkt avbildas pad den femte horn-
punktens projektionspunkt i figurens mitt.

Ytterligare har jag tagit med nagra projektioner av den fyrdimensionella
Luben, som nist efter tetraedern ir den enklaste av de fyrdimensionella
reguljira kropparna. Vi kunna ténka oss, att kuben uppstér pa foljande
sitt: Man utgar igen fran lingdenheten. Denna paralleliforskjutes vinkel-
ritt at sidan en lika lang stricka. Pa detta sitt uppstar en kvadrat.
Kvadraten, som vi téinka oss placerad framfér oss i den vanliga rymden,
hojes dérefter vinkelritt mot sitt plan en striicka lika med lingdenheten.
D4 uppstar en kub, vars undre bas &r var ursprungliga kvadrat, och vars
ovre bas ir samma kvadrat, i dess forflyttade lige. Utom dessa tvé kva-
drater har kuben till sidor fyra nya kvadrater, som uppstatt som orter
for baskvadratens fyra sidor vid parallellférskjutningen av denna. P&
samma sitt fortsitter man nu i den fjirde dimensionen. Den vanliga kub
vi nyss ha konstruerat, forskjutes nu en viigstricka lika med lingdenhe-
ten i den fjirde dimensionens riktning, som ér vinkelrdt mot var egen
rymd. D4 uppstar en kropp, som har den ursprungliga kuben till undre bas
och till 6vre bas samma kub, efter det den forskjutits en vig lika med
lingdenheten. Utom av dessa tvé kuber begrinsas kroppen av sex andra
kuber, som svara mot parallellférskjutningar i den fjirde dimensionens
riktning av den ursprungliga kubens sex sidokvadrater. Den fyrdimensio-
nella kuben begrinsas av 8 vanliga kuber, antalet hornpunkter &r 16, och
av dessa hora 8 till den undre baskuben, medan de &vriga 8 dro horn-
punkter i den Gvre baskuben.

Den bésta bilden av den fyrdimensionella kubens byggnad f& vi, om
vi betrakta dess projektioner i den tredimensionella rymden. I fig. 6 se
vi bredvid varandra projektioner av de tredimensionella och fyrdimen-
sionella kuberna. Det iir hir fraga om perspektivbilder, som uppkomma
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Fig. 6

som projektioner av den forstnimnda kuben i ett tvadimensionellt plan
resp. i var tredimensionella rymd, fran punkter som ligga nira utanfor
dem. Darfor &r i den vénstra figuren bilden av kubens frimsta kvadrat
stor. Projektionen dr igen dubbelt tickt. Den stora yttersta kvadraten
sonderfaller ndmligen i fem delar, av vilka var och en representerar en av
kubens fem ovriga sidokvadrater, sedan den framsta limnats ur rik-
ningen. Emedan vi ha férmégan att uppfatta tre dimensioner bereder det
inte oss nagon svarighet att se denna plana figur som en rymdfigur: Vi
se in i kuben genom en av dess sidokvadrater. P4 alldeles motsvarande
sitt ar rymdfiguren till hoger konstruerad. Den utgor en perspektivbild
av den fyrdimensionella kuben. Den grinskub, som ligger nérmast pro-
jektionscentrum, projicieras pa den stora, yttersta kuben. Denna dr igen
dubbelt tickt. Inom den finnes néamligen projektionerna av de 7 6vriga
grinskuberna. Den minsta, innersta kuben ér projektionen av den grins-
kub, som &r lingst borta fran iakttagaren, medan de sex Svriga, som ha
deformerats av perspektivet, forbinda de bada yttersta baskuberna.

Vilket utseende en fyrdimensionell kropps projektion far i den tredi-
mensionella virlden, beror naturligtvis p4 i vilken riktning kroppen pro-
jicieras, och vilken slags projektion man anvinder. En speciellt intressant
bild av den fyrdimensionella kuben far man genom parallellprojektion.
Vi tédnka oss att solen i den fyrdimensionella viirlden belyser var fyrdi-
mensionella kub. Dess parallellprojektion pa den tredimensionella rymden
motsvarar dd den skugga den fyrdimensionella kuben kastar pa var
virld. Bilden till hoger i fig. 7 visar den skugga, som uppstar ifall den
fyrdimensionella kuben belyses s&, att en av dess diagonaler &r parallell
med solstrilarna och dessa faller vinkelritt mot var tredimensionella
virld.
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Fig. 7

Hur ser skuggan av den fyrdimensionella kuben ut i detta fall? Det ar
igen skil att férst granska skuggan av en vanlig tredimensionell kub pa
ett plan. Kuben tinkes placerad sé, att en av dess diagonaler &r parallell
med lJjusstralarna fran en oéndligt avligsen ljuskélla. Till vinster i fig. 7
ser man denna skugga eller parallellprojektion. Vid férsta ogonkastet
forefaller figuren att vara en planfigur, nimligen en reguljir sexhorning,
som pa tva olika sitt dr delad i tre romber. Men vart 6ga, som har vant
sig vid djupintryck, kan utan svarighet uppfatta figuren sdsom en rymd-
figur. Den reguljira sexhérningen blir nimligen i rymden en kub. Den
begrinsas av sina sex sidokvadrater, som p& grund av perspektivet i
figuren se ut som romber. Av kubens 8 hérnpunkter téicka tvd varandra
i figurens mittpunkt. Den diagonal, som férenar dessa hérnpunkter, star
vinkelriatt mot bildplanet.

P3 motsvarande sdtt har figuren
till hoger i fig. 7 uppstatt. Dar ser
man en projektion av den fyrdimensio-
nella kuben. Figuren begrénsas av 12
kongruenta romber (deras form &terges
i fig. 8; cosinus fér rombens mindre
vinkel 4r }). Figuren har 14 horn-
punkter. Dessa éro bilder av den fyr-
dimensionella kubens hérnpunkter. Fig. 8
Bilderna av de tvé sista hérnpunk-
terna sammanfalla i figurens mittpunkt, psd samma sitt som i plan-
figuren till vinster. Denna tredimensionella kropp, som kallas rombdode-
kaeder, kan sammansittas av fyra kongruenta »sneda« kuber och detta
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Fig. 9

kan ske pa tvé olika siitt. I vartdera fallet skall man pa lampligt sdtt
vilja fyra av de 8 sidokanter, som stéta ihop i figurens centrum, till sido-
kanter i snedkuberna. Vi f4 alltsa tva uppdelningar, som exakt motsvara,
uppdelningen av sexhorningen i tre romber. Fig. 9 visar ytterligare hur
rombdodekaedern utgiende fran en viss uppdelning i snedkuber kan
spjalkas pé tre olika siitt i tvd par av snedkuber. I figurerna ser man
griansytorna mellan rombdodekaederns fyra snedkuber. Snedkuberna iro
bilder av den fyrdimensionella kubens grinskuber, och de ticka tillsam-
mans rombdodekaedern dubbelt. Deras antal ar alltsa i sjilva verket 8.
— Lésaren ir kanske intresserad av att veta att detta slags kroppar, romb-
dodekaedrar, forekomma i naturen i form av granatkristaller. Man kan

]
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alltsi siga att granatkristallen #r skuggan av en fyrdimensionell kub pa
var tredimensionella vérld.

T det foregaende ha vi, for att kunna ge en viss askadlighet at beskriv-
ningen av den fyrdimensionella virlden, varit tvungna att ty oss till sér-
skilt enkla figurer. Med analytiska metoder kan den dock behirskas full-
stiandigt, sisom vi sett i det foregaende. Ur framstillningen har lisaren
kanske fatt den uppfattningen, att den matematiska teorin for det fyr-
dimensionella endast &r ett slags tankelek, utan nagon stérre principiell
betydelse. Sa &r emellertid inte fallet. Det som den matematiska forsk-
ningen uppnéatt pa detta omrade bor tagas pa fullaste allvar. Redan det
faktum, att manniskans psyke med tankens kraft kan befria sig fran de
tranga grinser var »tillfilliga« fysiska organisation stiller for oss, dr fgnat
att vicka undran hos envar som har formagan att uppfatta vad som &r
betydelsefullt. Men dessa resultat ha inte endast abstrakt virde. Rie-
mann, ett av minsklighetens storsta genier, utvecklade den flerdimensio-
nella geometrin mycket lingre in vad viidet foregaende ha redogjort for.
Han begriinsade inte sina undersokningar till endast n-dimensionell eu-
klidisk geometri, utan utvecklade den allménna s. k. Riemann’ska geo-
metrin, som i en godtyckligt méngdimensionell rymd innehéller full-
stéindig kunskap bade om den euklidiska och om mycket allménna former
av icke-euklidisk geometri. Under de forsta aren av vart arhundrade
foretog var tids stora matematiker Hilbert en generalisering, som forde
betydligt lingre i en annan riktning. Han inforde namligen rymder, vars
dimensionstal dr odndligt stort.

Dessa bada allménna teorier, Riemanns allménna geometri och teorin
for Hilberts betydligt mera generella rymder, har haft en enorm betydelse
f6r matematikens vidare utveckling. De ha, lingt utanfér den »renac
matematikens omrade, bada haft en avgorande andel i skapandet av den
fysikaliska virldsbild, som representeras av tva av den exakta forsk-
ningens storsta skapelser i modern tid, relativitetsteorin och atomfysiken,
kvantteorin.

Redan i borjan av denna artikel antyddes, att relativitetsteorin fram-
stiller det fysikaliska skeendet medels en fyrdimensionell geometri. I
denna shindelse«-virld utgdras punkterna inte av de vanliga punkterna
i var rymd, utan av fysikaliska hdindelser, eller med andra ord av det,
som sker shir och nu«. En sddan hindelse karakteriseras av fyra tal,
nimligen tre koordinater fér orten och en fjirde koordinat for tiden. I
denna mening 4r »hindelse-virlden fyrdimensionell. Detta konstaterande
ir i och for sig inte dgnat att forvina. Men det intressanta &r, att den
fysikaliska »héndelse«-virlden kan uppfattas som en fyrdimensionell
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geometri, emedan inom denna fyrdimensionella méngd av hindelser de
tidigare beskrivna metriska grundlagarna gilla. For att detta skall vara
riktigt, bér man till koordinater vilja tre ortskoordinater och till fjirde
koordinat tiden, eller noggrannare sagt, tiden multiplicerat med imagi-

néra enheten ¢ = ]/——1. Allt detta forutsitter dessutom, att tiden inte
uppfattas som en absolut storhet utan srelativt«, s& som Einstein gjort.

Ingen som kénner till saken kan undgd att kéinna djup undran 6ver
att det fysikaliska skeendet pa detta sitt kan geometriseras. Man bor
némligen observera, att de avsedda geometriska momenten inte har
»patvungits« fysiken: denna geometriska struktur har funnits dir pa for-
hand, s& att siga »predestinerad«. Vissa fysikaliska lagar #ro till sin natur
en géng for alla sidana, att sa fort man gér de smé férindringar som 6ver-
géng fran absolut till relativ tid forutsétter, s4 upptrider den geometriska
strukturen omedelbart i den fysikaliska »hiindelse«-virlden. I denna kan
man d& definiera de metriska grundlagarna: fér det forsta, avstandet
mellan tvd hindelser medels ett pytagoreiskt uttryck, som paminner om
det vi ovan anvinde, och fér det andra, vinkeln mellan tva »hindelse«-
linjer medels en formel av ovanndmnd typ. Det var i sjilva verket ganska,
latt for Einstein att, sedan Minkowski och han hade beskrivit den spe-
ciella relativitetsteorin sasom ett slags fyrdimensionell euklidisk geome-
tri, 6vergh dirifran till den allméinna relativitetsteorin, Einsteins gravita-
tionsteori. Dérvid kunde han utan vidare begagna sig av det, som Rie-
mann mer dn 50 ar tidigare hade skapat, nidr han byggde upp sin all-
ménna n-dimensionella differentialgeometri.

Kvantfysiken, och speciellt det séitt att framstilla denna storartade
teori, som man kénner under namnet vigmekanik, bygger viisentligt pa
teorin for Hilberts rymd. Nér Hilbert pa sin tid skapade denna teori hade
han sjilvfallet inte en tanke pa nagra fysikaliska tillimpningar. Emedan
dessa begrepp dro ritt svarfattliga, dr det i detta sammanhang inte méj-
ligt att ens antyda hur en oéndligt-dimensionell geometri kan ha en mot-
svarighet i atomernas virld. Envar, som gjort bekantskap med littera-
turen pa detta omrade, har observerat, att i den vagmekanik de Broglie
och Schrodinger skapade, spelar den s. k. teorin for egenvirden en grund-
laggande roll. Enligt den moderna atomteorin bilda elektronerna i atomen
endast i vissa jimviktsligen ett stabilt system. Nir en elektron 6vergar
fran ett jimviktslige till ett annat intriffar en energistralning, som till
sitt belopp dr en jimn multipel av Plancks verkningskvantum. Denna
stralning aterspeglas i spektrallinjernas lége i atomens spektrum. I den
matematiska avbildningen av dessa relationer motsvaras berikningen av
spektret av det matematiska problemet att bestimma egenvirdena for
Schrodingers differentialekvation. Och teorin for egenvirdena i sin tur
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behandlas med tillhjilp av teorin fér Hilberts rymd. Egenvérdenas for-
delning avspeglas i bestdmmandet av yortogonala« koordinatsystem i vissa
Hilberts rymder och sadana ortogonala avbildningar av dessa rymder pa
sig sjilva, att vinklarna mellan de oéndligt manga koordinataxlarna
forbli rata.

Dessa korta hénvisningar till tillimpningar av hogre dimensionell geo-
metri mé ricka till for att Svertyga lisaren om, att det har faktiskt dr
fraga om djuptliggande begrepp. Lekmannen fragar kanske, om det &r
nodvindigt att beskriva dessa forhallanden medels ett svarbegripligt
och abstrakt matematiskt symbolsprak, som just genom dessa egenskaper
4r motbjudande for de flesta. Svaret blir att det &r oundgiingligt : talens
viirld bildar det enda naturliga materialet, for att avbilda de invecklade
relationer, som styra det fysikaliska skeendet. Detta beror pa att talen
ha tvenne egenskaper, som ge dem en sirstéllning i forhallande till andra
av minniskorna anvinda avbildningsmaterial. For det forsta besitter
talens virld en enorm bildbarhet: talen sjilva stilla namligen inga re-
striktioner pa de konstruktioner man vill utféra med dem. Utom denna
frihet har talbegreppet en annan egenskap, som pé& sitt och vis &r av
motsatt natur, ndmligen en absolut noggrannhet. Tack vare dessa tva egen-
skaper, sin stora smidighet och sin absoluta exakthet, framsta talen som
det idealiska hjilpmedlet att uttrycka de invecklade och fint differen-
tierade relationer, som styra de fenomen, som #ro tillgingliga for exakta
metoder.

Avbildningar av den konkreta virlden, som omedelbart kan iakttas
och uppfattas, i mer och mer abstrakta komplex av talbegrepp, ger, sedan
man hunnit till ett tillrackligt hogt stadium, regelbundet 1on f6r modan.
De allméinna idéer som lata sig uttryckas endast pa detta abstrakta hogre
plan, projicieras s& att siga tillbaka pa utgangspunkten, den askadliga,
konkreta virlden. De kasta sitt ljus inte endast dver detta begrénsade
utgangsomrade, utan de belysa ofta pa ett overraskande sitt dven en del
andra konkreta fenomen. Sambandet mellan dessa och utgangsomrédet
hade kanske varit domt att forbli forborgat, om den ménskliga tanken
icke djiarvts hoja sig fran sin bundenhet vid det konkreta till idéernas
fria virld. Galilei ville vil betona just denna djupt symboliska innebdrd
hos de matematiska teorierna nir han yttrade sina berémda ord : naturens
bok ér skriven i matematisk skrift.
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Gymnasieskoler og Seminarier i Danmark

For de rene hasardspil som terningspil og lignende har man som be-
kendt matematiske teorier. Det var jo netop spil af denne type, som den
matematiske sandsynlighedsregning har at takke for sin opstaaen. Men
der findes ogsaa en mere kompliceret type hasardspil, det bedst kendte
eksempel er pokerspillet, hvor udfaldet ikke udelukkende er bestemt af
tilfeldigheder, men hvor ogsaa spillernes dygtighed, evne til at geette
modpartens taktik, til at skjule deres egen, o. 1. har indflydelse paa spil-
lets udfald. Man kunde maaske veare fristet til at tro, at for saadanne
spil vilde det veere haablost at soge en matematisk behandling. Vi skal
nu ved en simplere, men fundamental type af saadanne hasardspil vise,
hvorledes det alligevel er lykkedes von Neumann at give en matematisk
teori [1]. Til slut skal vi angive en simplificeret type af pokerspil, som von
Neumann paa grundlag heraf har veeret i stand til at behandle.

III 1 2 i ... n

1 | K(1,1) K(1,2) ... K(1,5) ... K(1,n)
2 | K@2,1) K2,2) ...K2,j) ... K2 n)

;77: K(m,1) K(m,2) ... K(m,j) ... K(m,n)

Vi betragter et spil med to deltagere I og II. Spillet bestaar i, at I valger
et vilkaarligt af tallene 1, 2, ..., m og II velger et vilkaarligt af tallene
L, 2, ...,n. Den ene spiller ved ikke, hvad den anden vzlger, men de
kender begge to paa forhaand ovenstaaende tavle, som er at forstaa saa-
ledes, at hvis spilleren I har valgt 4, og spilleren II har valgt j, saa vinder

8 [115]
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spiller I belgbet K (i, j) fra spiller II. Her er der naturligvis tale om for-
tegnsregning, K’erne kan baade vzre positive og negative, og en negativ
gevinst skal naturligvis betyde et tilsvarende tab. (Ellers vilde det jo
ogsaa se trist ud for spiller II). Vi kan sige, at tavlen er spiller I's gevinst-
tavle. Spiller II’s gevinsttavle faas ved at skifte fortegn paa alle K(3, j).

Hvilke overvejelser kan I nu anstille paa grundlag af den forelagte
gevinsttavle, for han veelger sit tal ¢ ? Han har ikke nogen indflydelse paa,
hvilket tal IT velger, men I kan i hvert fald slutte, at hvis han (I) veelger
i, vil hans gevinst w, lige meget hvad II gor, veere

= (i) = min K(i, ) ,
J
d. v. s. det mindste af tallene i tavlens ’te horisontale reekke. Der er der-
for en vis samling 7’er, som er serlig fordelagtige for ham, nemlig de ¢’er,
for hvilke @(é) er storst mulig. Vi setter
v, = max ¢(¢) = max min K(3, j) ,
i i g

d. v. s. den sterste af minimumsveerdierne i de forskellige horisontale rek-
ker. Den omtalte maengde af ’er er da mengden

A =T[ilg(t) =],

d. v. s. mengden af de ¢, som har @(i) = v;.
Vi ser, at hvis I velger sit ¢ fra meengden A4, vil hans gevinst w, lige
meget hvad II gor, vaere > v,, altsaa

(1) u;gvl:

medens han, hvis han velger sit i uden for 4, og spiller II veelger sit j
passende, vil faa en gevinst < v;.

Ganske analoge betragtninger kan spiller II anstille. Idet hans gevinst-
tavle faas af tavlen ovenfor ved at skifte fortegn paa K(i, j), ses det, at
han skal betragte funktionen

p(j) = max K, j) ,
starrelsen ¢
v, = min y(j) = min max K(3, j)

og mangden J i

B =[j|v(j) = vl -
Resultatet af II’s betragtninger bliver, at hvis han veelger sit j fra meeng-
den B, vil hans gevinst —w, lige meget hvad I gor, veere =—uw,, altsaa

(2) —wW = —y,




ELEMENTER AF VON NEUMANN’S SPILTEORI 117

medens han, hvis han valger sit j uden for B, og spiller I velger sit ¢
passende, vil faa en gevinst <—wv,.

Af (1) og (2) sluttes, at hvis baade I og II spiller »fornuftigt« i den
nevnte forstand, vil
(3) v=Sw=0,.

Der er nu et vigtigt specialtilfeelde, i hvilket disse simple betragtninger
allerede kan siges at vere afsluttende, nemlig det tilfeelde, hvor v, = v,,
og (3) derfor bestemmer w entydigt. Lad os f. eks. teenke os, at vi betragter
et spil med v; = v, = 2. Hvis I spiller fornuftigt i ovennavnte forstand,
vil han hver gang, lige meget hvad II ger, vinde mindst 2. Saafremt I
spiller fornuftigt, kan II altsaa ikke undgaa at tabe mindst 2 hver gang.
Paa den anden side vil II kunne indskrenke sit tab til 2 ved at spille
fornuftigt i ovennwevnte forstand. Retferdigt kan et saadant spil natur-
ligvis kun kaldes, hvis den felles veerdi af v’erne er 0. Hvis begge da spiller
fornuftigt i ovennsevnte forstand, vil gevinsten hele tiden vere 0.

Eksempel.
sempe RH 1 2 3 4 5

1 |—3 2 —1 —3 —1 v, =v,=0
2 1 1 0 0 0 A={2,4i
3 |—8 —2 —1 —4 —1 B = {3,5}.
4 0 1 0 2 0

5 |—5 6 —1 5 0

Vi gaar derefter over til at behandle det mere interessante tilfeelde,
hvor »; < v,. Som et eksempel teenker vi os et gjeblik, at v; = —2 og
v, = 2. De tidligere simple betragtninger er gyldige, der er en vis fornuft
for Ii at veelge ¢ fra A og en vis fornuft for II i at velge j fra B, men de
giver ingen afsluttet teori for spillet, thi spiller begge »fornuftigt«, er det
eneste, vi kan sige om I’s gevinst w, at den ifglge (3) ligger mellem —2 og
2, og bl. a. er fortegnet for w altsaa uafgjort.

For at opstille en teori for det almindelige tilfeelde v, < v, maa vi
betragte spillet fra en statistisk synsvinkel. Som spillet var defineret,
bestod det i, at I valgte sig et vilkaarligt tal ¢ blandt tallene 1, 2, ..., m,
og II valgte sig et vilkaarligt tal j blandt tallene 1, 2, ..., n, uden at de
kendte hinandens valg, men begge med kendskab til gevinsttavlen. Lad
os betragte to snit gennem I og II’s hoveder for at se, hvorledes vi kan
fortolke den proces, at I og II velger et tal som neevnt.

Det ligner to rouletter (fig. 1). Paa den forste er der sandsynligheden
g, =0 (X = 1) for, at + kommer ud, paa den anden er der sandsynlig-
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Fig. 1.

heden 7, = 0 (2'n; = 1) for, at j kommer ud. Vi vil da se saaledes paa
det: I veelger sig en sandsynlighedsvektor ? = (&, & - &), 20,

2E, = 1. II velger sig en sandsynlighedsvektor ;: (P> Nas ++ o5 Ny)s
n; = 0, 27m; = 1. Der er da for I en forventet gevinst (middelveerdi for
gevinsten) N
W =K, n) = ZK(i>j)§i77j;
0 J

idet sandsynligheden for, at spiller I’s shjerneroulet« kommer ud paa ¢ og
samtidig spiller II’s »hjerneroulet« kommer ud paa j, er &;7;, ogi det til-
feelde er gevinsten jo K (¢, j).

For spillet betragtet paa denne maade kan vi lave en forventet ge-
vinsttavle (for I) ganske svarende til den oprindelige gevinsttavle, nemlig

\\ II >
I ~_ n
>

> >
& K(, ) ,

men her er der uendelig mange indgangsvardier 2 for I og uendelig mange

>
indgangsverdier # for II.

Tor dette spil kan vi anstille de analoge simple betragtninger til dem, vi
indledte med. Spiller I skal altsaa betragte funktionen

&(F) = min K(E, 7), 1)

n

starrelsen
> . > >
V, = max &(&) = max min K(§, 7)
: Poa

1 Her og i det umiddelbart felgende er grunden til, at de omtalte (absolutte) maxima
og minima eksisterer, at hvert af dem, som man let viser, tages af en kontinuert funktion
paa en lukket begreenset meengde i et euklidisk rum.
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og maengden

A=[E0@ =T
Hyvis T veelger sin Z-vektor fra A, vil hans forventede gevinst W, lige
meget hvilken Z-vektor II veelger, altid veere = ¥V, altsaa
(1) W=V,

og for et Zuden for A risikerer han en mindre forventet gevinst end V.
Spiller II skal analogt betragte funktionen

> > >
¥(n) = max K(&, ) ,
3
storrelsen N
V, = min ¥(y) = min max K(, #)
n a f
og maengden

B=[n| %) =Vil.
Hyvis II veaelger sin ;—vektor fra B, vil hans forventede gevinst — W,
lige meget hvilken E-vektor I veelger, altid veere = —V,, altsaa
(2') —W=-7,,

og for et ; uden for B risikerer han en mindre forventet gevinst end — V.
Af (1') og (2') sluttes, at hvis baade (1) og (2) spiller fornuftigt i den
naevnte forstand, vil

(3) V,SW<TV,.

Det er let at vise, at v; < V, og at V, < v,, men lad os forbigaa det
lille bevis herfor og straks gaa over til at bevise den overraskende

Hovedsztning. Der gelder altid V, = V,, [2].

Paa forhaand ved vi ifelge (3'), at V; < V,.

Efter hvad vi tidligere har sagt for specialtilfeeldet v, = v,, folger af
hovedsatningen, at de forangaaende betragtninger (1'), (2’) giver en af-
rundet teori for spillet. Efter beviset for hovedssetningen skal vi belyse
dette nermere ved et gennemregnet eksempel.

Bevis for hovedsetning. Vi forer beviset i tilfeeldet m = n = 2, men det
gaar analogt for vilkaarlige m og n. Gevinsttavlen har i det nevnte til-

feelde formen
1 m 2
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I en z,x,-plan afseettes »sgjlepunkterne« (K,;, Ky) og (K, K,,) samt
de to grundpunkter (1,0) og (0, 1). Der er nu to muligheder (fig. 2).
Enten (tilfeelde 1°) ligger nulpunktet i det indre eller paa randen af den
konvekse polygon, som udspandes af de fire punkter (firkant, trekant
eller tokant), eller ogsaa (tilfeelde 2°) ligger nulpunktet uden for denne

polygon.

X?.
(KII’KZI)
0,1) (KK o)
(1.0) =

Fig. 2.

1°. T dette tilfzelde kan man forsyne de fire punkter med ikke-negative
masser ¢, £,, $;, $; med summen 1, saaledes at tyngdepunktet for de fire
masser ligger i (0, 0). Vi har da

(0, 0) = #1(Kyq, K1) +-15(K g, Kop)+81(1, 0)+85(0, 1),
altsaa
Kty +Kyota+8, = 0, Koty +Koptat8, = 0.

Her kan ¢, og t, ikke begge vare 0, da i saa fald ogsaa s, og s, maatte
veere 0, hvilket er umuligt, da massernes sum var lig med 1. Vikan da sette

t t,
Tttty T 4,

N1 med 7, =0, 7, =0, 9,470, =1

og faar
Kiym+Kmy =0, Kyn+Kpm, < 0.

Men heraf folger for dette %, 7,

m;ax (K 111+ K 19m2)é1 4 (Ko + Koana)éa] = 0,

3
men saa meget mere er da

Vy= min mfx [(K11ﬂ1+K12772)§1+(K21771+K227]2)52] =0.

0 £
Vi har altsaa vist, at i tilfeeldet 1°er V, < 0.
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2°. T dette tilfeelde findes en halvplan a,2,+a,%, > 0 med begrens-
ningslinie genném (0, 0), som helt indeholder polygonen. Da (1, 0) og
(0, 1) ligger i halvplanen, er a; > 0 og a, > 0. For de to sgjlepunkters
vedkommende faas
. 0 Ky +a,Kp >0, a,K;540,Ky> 0.
Vi setter
a, @y

_ — —1
& tita,’ &, Grta, med & >0, &> 0, &+§,

K&+ Kgby > 0, Kipbi+Kyby > 0.
Men heraf folger for dette &,, &,

min [(K1151‘|—K21§2)771+(K12§1+K2252)7]2] = 0 (endda > 0),

n
men saa meget mere er da

V, = max min [(K1151+K2152)771+(K1251+K2252)772] =0.

> >

& g
Vi har altsaa vist, at i tilfeeldet 2° er ¥, = 0.

Af disse to resultater folger, at det er umuligt, at V;, < 0 < V,.

Hvis vi her kunde erstatte tallet 0 med et vilkaarligt tal e, vilde hoved-
setningen naturligvis veere vist. Dette opnaas nu meget elegant ved i
stedet for det oprindelige spil at betragte spillet med gevinsttavlen

R 2
1 |Kyy—w|Kp—o
2 |Ky—ow|Kyp—o,

og faar

hvor vi har subtraheret w fra alle K’erne. Udtrykket K for dette spil er

> > > >
K., n) = Z(Kij—w)fmj = ZKijEinj_w = K(,7)—o,
)

Y

altsd det oprindelige K minus w. Det analoge gelder da V, og V, for
dette spil. Anvendes derfor resultatet ovenfor paa dette spil, faas, at det
er umuligt, at V,—w < 0 < V,—w, d. v. s. det er umuligt, at V< w < V,.
Da  her er et vilkarligt tal, er altsaa virkelig V,= V,, for paa for-

haand vidste vi jo, at V,<V,. Hermed er hovedsatningen bevist.

Eksempel. (Beregnet for praktiske anvendelser!)

Nl 1 2 3
1| 120 —40 —20

2]1—60 20 11
3 20 —9 —1
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Vi bemerker forst, at v; = —9, v, = 11, 4 = {3}, B = {3}. Lad os
derefter gaa over til at bestemme storrelsen V = V; = V, og mangderne
A og B. N

Vi sgger samtlige &’er, der tilfredsstiller uligheden

> >
(4) K(, ) = (12051"“6052“1‘2053)’71‘!‘(—4051+20§2—9§3)772+

(— 20,4+ 11€,—&,)s = ¢ for alle 7,

idet vi samtidig gnsker, at c’et paa hgjre side af uligheden er det storste

tal, for hvilket systemet har mindst en lgsning Z Idet

> >
V = max min K(&, ) ,
: o

er dette maksimale ¢ netop vort V. Idet endvidere maengden A bestaar

> > >
af de £, for hvilke min K(&, 5) er sterst mulig, ses det, at A netop udgeres

n >
af samtlige af de omtalte &’er.
Idet summen af #’erne er 1, kan (4) skrives paa formen

(5) (12051“60§2+2053—C)771+(—4051+2052_9§3—0)772+
(—20&,+11&,—&—c)ns = 0 for alle Z

Dette krav er ensbetydende med systemet af uligheder

(6) 120, —60&,4-20&,—¢ = 0
(7) —40&,4208,— 95—c =0
(8) —20&,+11&,— &—c =0,

thi (6), (7), (8) faas af (5) ved successivt at indseette (de lovlige!) ;-vekto-
rer (1, 0, 0), (0, 1, 0), (0, 0, 1), og (5) kan faas af systemet (6), (7), (8) ved
multiplikation med 7, 75, 75 (= 0!) og addition. Vi skriver nu (6) og (7)
som

(9) —27E,— 3¢ = 120&,—60&, = —20&+c ,

og ved at sammenholde yderledene heri faas
(10) do < —T&, .

Da & = 0, maa i hvert fald ¢ =< 0. Vi prgver nu, om det storste af disse
¢, altsaa ¢ = 0 kan benyttes. Af (10) faas da & = 0 og af (9) &, = 2§,
altsaa & = 1, &, = %, & = 0, og dette stemmer virkelig ogsaa i (8), thi
—20122_0 = 3> 0 (endda med effektivt ulighedstegn, medens (6) og
(7) var opfyldt med lighedstegn).
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Hermed er vist, at V = 0, altsaa at spillet er retfeerdigt, og at vek-
N :
toren & = (4, %, 0) er den eneste vektor i A. Endvidere ser vi af samme

udtryk for K(E, jy), som vi benyttede i (4), at

> > >
W =K, n) = §n; for § = (4, 3,0).

Dette er I's forventede gevinst, hvis han spiller fornuftigt, d. v. s. veelger
tallet 1 med sandsynligheden 3, tallet 2 med sandsynligheden £ og tallet 3
med sandsynligheden 0. Han kan f. eks. indrette en lille privat roulette
til det formaal. Og denne forventede gevinst vil veere positiv, hvis blot
II veelger tallet 3 med positiv sandsynlighed #;.

.. Paa ganske analog maade beregner man, at B bestaar af den ene vektor
7= (4 % 0), og at . N

—W = —K(&n) = 1& for = (1, 1, 0) .

Dette er II’s forventede gevinst, hvis han spiller fornuftigt, d. v. s. veelger
tallet 1 med sandsynligheden %, tallet 2 med sandsynligheden £ og tallet
3 med sandsynligheden 0. Han kan £. eks. indrette en lille privat roulette
til dette formaal. Og den forventede gevinst vil vere positiv, hvis blot I
veelger tallet 3 med positiv sandsynlighed &,.

Ved et umiddelbart blik paa skemaet er det aldeles ikke oplagt, at I og
IT skal veelge numrene 3 med sandsynligheden 0. Ved at veelge 3 har I
chancen for at vinde 20, selvom han ganske vist ogsaa har muligheden
for at tabe 9 og 1. Ved at veelge 3 har II chancen for at vinde 20 eller 1 og
den ene tabsmulighed 11. Bemerk igvrigt, at de elementere mangder
A og B begge er {3}, saa det er altsaa kun en fordel, hvis modstanderen
kender den elementewere del af spillets teori (men naturligvis helst ikke
mere). Da spillet er retfeerdigt, kan man lade modstanderen vealge, om
han helst vil veere I eller II.

Til sidst skal vi kort omtale, hvorledes det er lykkedes von Neumann
at behandle et (ganske vist temmelig simplificeret) pokerspil ved hjelp
af den neevnte teori.

Det simplificerede pokerspil spilles af to personer I og II, som hver faar
tildelt 5 kort fra hvert sit seet spillekort. Der er to meldinger, hgj og lav,
svarende til et stort belob a og et lille belgb b (@ > b > 0). Spillerne melder
uafhengigt af hinanden efter at have set deres egne kort (f. eks. kan man
teenke sig, at de hver noterer deres melding paa en lille seddel). Derefter
sammenlignes meldingerne. Hvis begge har meldt hgjt, sammenlignes
handerne, og den, der har den sterkeste haand (efter sedvanlige poker-
regler), faar udbetalt belobet a af den anden ; hvis heenderne er lige steerke,
er gevinsten 0. Hvis begge har meldt lavt, sammenlignes henderne, og
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den, der har den steerkeste haand, faar udbetalt belgbet b af den anden;
hvis henderne er lige sterke, er gevinsten 0. Endelig, hvis den ene har
meldt hgjt, og den anden har meldt lavt, har den, der har meldt lavt,
muligheden for enten at »forhgje sin melding« eller for at »passe«. I forste
tilfeelde gaas derefter frem som ved to heje meldinger; i sidste tilfeelde
sammenlignes kortene ikke, og den, der passer, maa betale det lille belab
b til den anden.

Vi kan sige, at der er tre meldinger ¢ = 1, 2, 3: Melding 1 bestaaende i
hoj melding, melding 2 bestaaende i lav melding, men med den skjulte
hensigt at forhgje, hvis det bliver nodvendigt, og melding 3 bestaaende i
lav melding og med den skjulte hensigt at passe, hvis det kommer paa
tale.

Tor at faa pokerspillet til at blive et spil af den ovenfor behandlede
type »opfatter« von Neumann det paa folgende noget teoretiske maade.
Han forestiller sig, at spillerne, for de faar tildelt deres kort, planlegger,
hvorledes de vil melde paa enhver af de mulige heender. Vi nummererer
samtlige mulige heender efter voksende styrke med numrene 1, 2, ..., S.
Vi kan da sige, at I veelger sig en strategi (i1, g + - -5 0g), d.v. 8. han vil
melde i, paa haand nr. 1, han vil melde ¢, paa haand nr. 2 0.s.v., hvor
hvert af i’erne naturligvis betegner en af meldingerne 1, 2 eller 3. Ganske
analogt kan vi sige, at II veelger sig en strategi (j1, ja, - - -5 Jis)> d. v.s. han
vil melde j, paa haand nr. 1, han vil melde j, paa haand nr. 2 o. s. v., hvor
hvert af j’erne naturligvis betegner en af meldingerne 1, 2 eller 3. Hver
af spillerne har aabenbart 35 forskellige strategier at vealge imellem.
Horende til disse valg af strategier svarer en forventet gevinst for I, som
vi let kan angive et udtryk for.

Vi definerer funktionerne L, (i, j), Lo(3, §), L_(3, j) ved skemaerne

N oves| N 12| 12 3
1| aabd] 1| 000 1|l—a—a b
2| abb| 2| 000| 2|—a—b—b
3|—bbb| sl—boo| 3|—b—b—b].
L@ ) L, ) L_(i, )

L, (3, 5), Lo(3, §), L_(3, j) angiver, som man let gaar efter, I’s gevinst, naar
I har meldt ¢ og IT har meldt j, eftersom henholdsvis I’s haand er steer-
kest, de to heender er lige steerke, eller I's haand er svagest. Den forven-
tede gevinst for I under det ovenfor omtalte valg af strategier bliver da

1

K(ila 7:2’ cee iSljl’ jz: s ’jS) = Q2 Lsgn(31—32)(’£31’ jsz) s
S 81, 82)
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hvor sgn (s,—s,) betegner +, 0 eller —, eftersom s, > 8, 81 = 8, eller
8, < 8,. Thi sandsynligheden for, at I faar haanden s, og samtidig Il haan-

1 . . .. .
den s,, er @,og hvis s, > 8,, bliver I’'s gevinst jo i saa fald L, (3, js,),

hvis s, = s, bliver den Lq(3,, js,), 0g hvis §; < s, bliver den L_(i,, j,)-

Opfattet paa denne maade bliver pokerspillet af den udferligt behand-
lede type med m = n = 35,

Med disse antydninger vil vi lade os ngje, men blot til sidst angive,
hvad en nermere beregning (delvis med tilnzrmelse) giver som fornuf-
tigt spil. At V = 0, altsaa at spillet er retfeerdigt, folger straks paa grund
af den fuldstendige symmetri mellem I og IL. I stedet for den gamle
styrkeskala for heenderne 1, 2,3, ..., S—1, 8 bruges en ny skala

1 2 S—2
2= 0, ),

S—1"8—1 "§—1’
—b
Hyvis man faar en haand, hvis styrke z er > pelig , skal man altid melde 1.
a

a—b
Hvis man faar en haand, hvis styrke z er < ——, skal man melde 1 med
a

b
sandsynligheden ath og 3 med sandsynligheden a_—:l-_b (se fig. 3).

sandsynlighed
1 ...............
meld. 3
b meld. 1
a+b
meld. 1
| z=haands styrke
a—b |1
a
Fig. 3
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Man vil blive straffet for det, hvis den anden spiller fornuftigt som
nevnt, og man selv giver sig til at melde 2 med positiv sandsynlighed
for nogle af heenderne eller melde 3 med positiv sandsynlighed for heender,
hvis styrke er > a———b.
@ a—b
Kvantitativt forstaar man godt de to grenser — 08 atb’ Hyvis a er

—b
meget stor i forhold til b, kommer 70 neer op til 1, d.v.s. henderne skal
a
veere meget steerke, for man udelukkende melder 1 paa dem. Endvidere
b :
vil " blive meget lille, svarende til at »bluffmeldingerne« (melding 1
a

paa haand med lav styrke) sker med meget lille sandsynlighed.
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MATHEMATICA SCANDINAVICA.

Dette nye vitenskapelige tidsskrift, som utgis av de matematiske for-
eninger i Danmark, Finland, Island, Norge og Sverige, er i sommer ut-
kommet med sitt forste hefte. Det bestar av hele 19212 sider og er blitt
som en hel bok.

Heftet inneholder forst og fremst sytten originalavhandlinger om em-
ner fra de forskjelligste omrader av matematikken:

Tallteors:

L. Carlitz: A theorem of Stickelberger.

Ernst S. Selmer: Sufficient congruence conditions for the existence of
rational points on certain cubic surfaces.

Marcel Riesz: Sur le lemme de Zolotareff et sur la loi de réciprocité
des restes quadratiques.

Abstrakt algebra:
Karl Egil Aubert: On the ideal theory of commutative semi-groups.
Helge Tvermoes: Uber eine Verallgemeinerung des Gruppenbegriffs.

Reell og kompleks funksjonsteors :

Theger Bang: The theory of metric spaces applied to infinitely differen-
tiable functions.

Arne Beurling: A theorem on functions defined on a semi-group.

Gunnar af Hillstrom : Kapazitéitsbeziehungen bei konformer Abbildung
von Einschnittgebieten.

Olli Lehto: A majorant principle in the theory of functions.

Hans Radstrém: On the iteration of analytic functions.

Hans Tornehave: On analytic functions of several variables. A theorem
on analytic continuation.

K. I. Virtanen: Eine Bemerkung iiber die Anwendung hyperbolischer
Massbestimmungen in der Wertverteilungslehre der meromorphen Funk-
tionen.

Funksjonalanalyse:

Arne Beurling and Henry Helson: Fourier-Stieltjes transforms with
bounded powers.

Rolf Nevanlinna: Bemerkung zur Funktionalanalysis.

Differensialligninger :
Lennart Carleson: On infinite differential equations with constant
coefficients. I.
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Lars Garding: Dirichlet’s problem for linear elliptic partial-differen-
tial equations.

Matematisk statistikk:
David Fog: Contingency tables and approximate y2-distributions.

Ennvidere finner man en oppgaveavdeling med tre problemer, hvorav
de to visstnok er ulgste, samt en anmeldelse av S. C. Kleene’s bok »Intro-
duction to metamathematies¢. Deretter falger fortegnelser over matema-
tikere som er knyttet til vitenskapelige institusjoner i Norden, og over
styrene for de utgivende foreninger. Og heftet avsluttes med opplysninger
om den kommende matematikerkongress i Amsterdam (2.-9. sept. 1954),
referat fra et mote i den internasjonale matematiske union, foreningsnytt
med mere.

I et tillegg, som ikke horer med til selve heftet, finner man en liste over
bgker som er kommet inn til redaksjonen, og autoreferater fra artikelfor-
fatterne i heftet.

Tidsskriftet koster da. kr. 40.— pr. ar (halv pris for medlemmer i de
utgivende foreninger og for studerende ved universiteter og hayskoler i
inntil fire ar) og kan bestilles ved henvendelse til Matematisk Institut,
Blegdamsvej 15, Kgbenhavn 0.

OPPGAVEKONKURRANSENE FOR GYMNASELEVER 1953.

I den danske konkurrence (arrangeret af Foreningen af Matematik-
lerere ved Gymnasieskoler og Seminarier i Danmark) blev 1. premie
(kr. 100) uddelt til Leif Kristensen,III G mn., Nykegbing Mors kommunale
Gymnasium, og 2. preemie (kr. 50) til Ole Enkegaard, IIT G mn., Rungsted
Statsskole. Opgaverne stod i Matematisk Tidsskrift A for 1952, hefte 4.

I den norske konkurransen (arrangert av Norsk Matematisk Forening)
ble Kronprins Olavs premie (kr. 100) og diplom gitt til Eystein Junker
Nilssen, 5 Ra, Kristiansand Katedralskole, og diplomer ble tildelt Olav
Laudal, 4 R,Mandal k. h. almenskole, og Leif-Norman Petterson,5 Rb, Ullern
skole. Oppgavene sto i Norsk Matematisk Tidsskrift for 1952, hefte 2.

UTNEVNELSER.

Professor, dr. phil. Richard Petersen er udnaevnt til professor i anvendt
matematik ved Danmarks tekniske Hgjskole fra 1. februar 1954 at regne.

Lektor F. E. Rossing, Tonder, er udnavnt til rektor ved De forenede
Kirkeskoler (Sangskolen) i Kgbenhavn.

Inspektor Kay Piene ved Det pedagogiske seminar i Oslo er utnevnt
til rektor samme sted.

Universitetslektor John O. Stubban, Oslo, er utnevnt til dosent i mate-
matikk ved Universitetet i Bergen.
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Tristen for innsendelse av lgsninger av oppgaver merket med stjerne
er 1. januar 1954.

8. I ekvationen " = a"4y"-2" 4ro u, &, ¥, 2, och n positiva, hela tal
och dessutom » jimnt samt n > 1. Talen z, y och z forutsittas relativt
primiska. Bevisa att de tre talen &ro alla olika stora.

A. V. Peljo.

9. Bevisa, att i ovannimnda ekvation, dér » alltsa forutsittas jamnt,
exponenten n méste vara ett udda tal.

A. V. Peljo.
10. Angiv en vixande foljd ay, @y, . .., @, ... av hela tal under f5l-
jande villkor:
1)a, =1,

2) om s, = ;4@ ... +a,, si kan varje helt positivt tal b = s, pa
ett och endast ett sitt skrivas i formen

b= ta;,ta,+ ... +a,
dir
h<ly< ...<t =M.
Inkeri Simola.

11. Gitt en sirkel og to pa hverandre loddrette sekanter som skjeerer
hverandre i et punkt P. Nar sekantene dreier seg om P slik at de stadig
danner en rett vinkel med hverandre, vil kvadratsummen av de korder
som sirkelen utskjeerer, vaere konstant. Vis dette.

A. 8. Benestad.

#12. Bestem ved konstruktion centret og toppunkterne for en ligesidet
hyperbel, som gar igennem et givet punkt, har en given asymptoteret-
ning og rerer to givne rette linier.

Sigurkarl Stefdnsson.

#13. Ved de folgende tre forskellige opgaver betegner g(z) en for
0 < z < oo defineret funktion, som ikke antager nogen negativ verdi.
Kontinuitet af g(x) forudsettes kun ved den sidste opgave og da kun i
eet punkt x,.
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a. Med I(x) betegnes halvlinien gennem origo og punktet (z, p(x)).
Nar 2 voksende gennemlgber de positive reelle tal, vil [(x) gennemlgbe
en raekke stillinger. Hvilken geometrisk betydning vedrerende dette gen-
nemlgb har det, at uligheden

P(2175) = Z20(y)

er opfyldt for alle positive veerdier af x, og alle vardier af x, > 1 %

b. For hvilke funktioner g(x) gelder uligheden

P(T125) = (%)

for alle positive veerdier af x; og x, ?

c. Vis, at hvis ulighederne
p(mz) = mpx), m=123,...,

er opfyldt for alle positive x, og hvis ¢(x) er kontinuert for z =z, ,
hvor z, er et vilkarligt givet (men fast) positivt tal, vil

p(x) > 0 for z - 0.
Svend Bundgaard.

LOSNINGER

Oppgave 2.
Opplesning i delbrgker gir

1 _ 2’_*410_
(n+p) (n+p,) - .. (ntp,) o ntw]
der
1yk-1
A, = (=1 : )
(Pr—p1) -+« Pr—Pr—1)Prr1—Pr) - - - (Pr—D%)
Folgelig er
N 1 r N A
> =3y =
o (nApr) (D) .. (n4D,) oLy n(nDy)
r A4, Y1 1 " Ay
— 2(—— >= — (sy—s +85),
ké' Prne1 \P N+Dy k=21' Pk(N xemtom)
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og da
Pr
folger herav igjen ved & la N — oo
s 1 " ASp,

> - 3

oy m(n+pg) (n4pg) ... (n+D) 5 P

hvilket er likheten i oppgaven.
Johannes Kvamsdal.

Riktig lgsning er ogsé innsendt av N. E. Andersen, Per Asisoff, Erling
Boshn, Odd G. Eriksen, P. Janko, Kjell Kolden, A. Lodemel og Henrik
Meyer.

EKSAMENSOPPGAVER

NMT vil en gang arlig gjengi ett sett oppgaver til studenteksamen
(artium) pa reallinjen fra hvert av de fem nordiske land.

Danmark : Studentereksamen maj—juni 1953.

Matematik 1.
1. Bevis formlen

2t 4@t 1)k 6@t D)4 .+ 20 (1) = M DEIEET)

3

)

idet a er et givet tal og n et vilkéarligt positivt helt tal.
Find dernsest summen

1:24+2:44+36+...4+n2n.

2. A og B er to punkter pa parablen y* = px, beliggende p& hver sin
side af parablens akse; A’s afstand fra parablens akse er numerisk dob-
belt s& stor som B’s afstand fra denne akse. Skeeringspunktet mellem
tangenterne i 4 og B kaldes C. Linien gennem C og midtpunktet af AB
skeerer linien, der gar gennem A4 vinkelret pa BC, i punktet P.

Find ligningen for det geometriske sted for P, nar 4 gennemlgber
parablen.

Angiv den fundne kurves art og dens beliggenhed i koordinatsystemet.
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3. I trekant ABC er M midtpunktet af siden AB, N midtpunktet af
siden BC og P det punkt pa siden AC, der er siledes beliggende, at
AP 1

P03
Idet AB = 17,652, AC = 5,670 og MP = 2,418, skal man beregne
vinklerne og de ubekendte sider i trekant MNP.

Matematik II.
1. Lgs ligningen
22+ (2—30)x—(1747¢) = 0.
Idet de fundne redder kaldes « og f, skal man danne den andengrads-
ligning 224 Axz+ B = 0, hvis redder er 43 og f*+3.
Savel « og 8 som A og B skal angives pa formen a--ib, hvor a og b er
reelle tal.

2. Underspg og tegn kurven

Find dernwst arealet af den lukkede figur, der begreenses af kurven,

3
linien z = 3 og tangenten til kurven i det punkt, hvis abscisse er 3"

3. I kassen ABCD—A,B,C,D,, hvor AA, = BB, = CC,= DD,, er
kanten AB = kanten BC = 4, og kanten BB, = 2. Midtpunkterne af
kanterne AB og BC kaldes henholdsvis M og N.

Find rumfanget og overfladen af tetraedret B;,DMN.

Find endvidere tetraedrets toplansvinkler langs kanterne M N og B,D.

Finland: Studentexamen 1953. Léngre kursen.

1. Under tiden 1923-53 viixte antalet abiturienter med 211,59%. Ar
1923 voro 65,4 %, av abiturienterna gossar, ar 1953 47,79,. Med hur minga
9%, har flickornas antal Skats?

2. For vilka virden pa z konvergerar den oéndliga geometriska serien
2—log x+... (Briggska logaritmer)? Berikna seriens summa, di

& = }/100.
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3. Visa, att rotterna till ekvationen (ab—c?)x2—(a+b)x-+1 = 0 alltid
aro reella, vilka reella virden a, b och ¢ &n mé ha. Angiv villkoret for
att rotterna skola vara lika. Under vilket villkor dro rétterna
1) positiva, 2) negativa, 3) av motsatta tecken?

4. Hirled ekvationen for den tangent till parabeln
y = — 44321,

som &r parallell med linjen x—2y+1 = 0. Rita figur.

5. Hérled formeln f6r volymen av ett sfiriskt segment (storre @n halv-
sfdren).

6. En punkt P pi diametern AB i en cirkel sammanbindes med &nd-
punkterna C och D av en med AB parallell korda. Visa, att

PA2+PB? = PC*4+PD?.

7. I en likbent triangel 4r basen = 10 cm och benen = 13 cm. Beréikna
avstindet mellan den omskrivna och den inskrivna cirkelns medelpunk-
ter.

8. Visa, att om i tetraedern ABCD kanterna AB och CD &ro vinkel-
rita mot varandra (genom den ena kan liggas ett normalplan mot den
andra), sa ligga tetraederns fran A och fran B dragna hojdlinjer i samma
plan.

9. Tva cirklar med radierna 5 cm och 3 ecm skira varandra sé, att den
vinkel, som deras tangenter i den ena skérningspunkten bilda sinsemel-
lan och som vetter mot centralen, 4r = 110°48'24"’. Berikna centralens
lingd med 4 decimalers noggrannhet.

10. Visa, att sin* x4cos* x— 3} sin? 22 dr mindre eller = 1 f6r alla vir-
den pa .

Island: Menntaskolinn i Reykjavik. Studentereksamen 1953.

L

1. a) I en plan er der givet to punkter, 4 og B, og en ret linie /, som ikke
er parallel med AB. Konstruer brendpunkt og toppunkt for en parabel,
som har sin akse parallel med [, gar igennem punkterne 4 og B og har
sit breendpunkt pa linien 4 B.
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b) Find parablens ligning, nar ! er z-aksen og punkterne 4 og B har
koordinaterne 4(3, 6) og B(—4%, 1).

2. Ligningen
4a3 4+ (3—124)a?— (12+5i)xr—9+31 = 0

har en reel rod. Find alle ligningens rgdder.

3. Los fuldsteendigt ligningen
4 sin2 x-+5 sin 2x+3 cos 2¢4+3 = 0.

II1.
1. Bevis ved partiel integration formlen
(2 . 2n+1 2n 2 . 2n—1
sin®* @ do = sin®t x dx .
0 2n+14o

k7

Beregn derefter S ?sin? @ da.
0
2. Et regulert tetraeder O—ABC har kantlengden 3. P4 kanten OA
ligger punktet 4,, og pa kanten OB punktet B;, siledes at 04, =
OB, = 2. Bestem pé kanten OC et punkt C,, siledes beliggende, at volu-
menet af tetraedret O—A4,B,C, bliver } af det givne tetraeders volumen.
Find derefter punktet O’s afstand fra planen 4,B,C,.

3. De indre overflader af to kongruente glas er rette cirkulere kegler
med en topvinkel pa 90°, og hvert for sig af glassene har volumenet V.
I glassene heldes der en vedske med det samlede volumen U, hvor
V<U-<2V.

Hvor stort bliver veedskens volumen i hvert af de to glas, nar den del
af glassenes indersider, som vedsken deekker, har det storst mulige sam-
lede areal, eller det mindst mulige samlede areal ?

Norge: Examen artium 1953.

I. I en trekantet pyramide ABOT med grunnflate ABC er grunnflate-
sidene 4B og AC og sidekantene CT og BT alle like store og lik 2a. Den
tredje grunnflatesiden er lik a. Sideflaten BOT star vinkelrett péd grunn-
flaten ABC. Hvor stor er bgyningsvinkelen mellom sidekanten A7 og
grunnflaten ¢ Finn overflaten av pyramiden.
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Sett sd av et linjestykke « fra B langs B4 og BT og fra C' langs CT og
CA. Kall de fire nye endepunktene av linjestykkene x for henholdsvis
D, E, F og @. Vis at disse punktene ligger i samme plan og er hjorner i
et rektangel, og at flateinnholdet av dette er

V30
— (20x—a?) .
8

Finn den storste verdien som flateinnholdet av dette rektangelet kan
ha, og den tilsvarende verdi av z.

For denne verdien av  skal du s& finne volumet av det prismet som

blir innskrevet i pyramiden, nar du gjennom sidene DE og F@ i rekt-
angelet legger plan vinkelrett pa BC.
V5—

1
II. 1) Det eksakte (ngyagtige) uttrykket for cos 72° er — Finn

eksakte uttrykk i redusert form for sin 72°, cos 36° og sin 36°.

2) I en sirkel med sentrum O og radius @ er innskrevet en firkant
ABCD, der diagonalen AC er en diameter, siden AD danner vinkelen v
med AC, og diagonalen BD er lik siden BC. Diagonalene skjarer hver-
andre i K.

Vis at / ADE er lik / EDO.

Finn AE og EO uttrykt ved @ og v. Bestem vinkel v slik at EO er
mellomproporsjonalen (mellomproporsjonalleddet) mellom AE og AO.

Vis at AB og AD for denne verdi av v er sider i kjente reguleere mange-
kanter, innskrevet i sirkelen, og skriv opp AB og AD uttrykt ved a. Finn
til slutt BC og CD uttrykt ved a, og vis at de ogsi kan uttrykkes ved
storrelser i reguleere mangekanter.

III. En vilkarlig rett linje gjennom punktet S(a, 0) pa den positive

x-aksen skjerer den rette linjen y = 2 i 4 og den rette linjen y = —x i
B. 1 A trekker vi en normal pad y = z, og i B trekker vi en normal pa
y = —u. Vis at det geometriske sted for skjeringspunktet mellom disse

normalene, nar linjen ! dreier seg om 8, far ligningen
r?—20x—y* = 0.

Vis at denne ligningen framstiller en hyperbel, og bestem dens sentrum,
akselengder og asymptoter.

Hyperbelen skjeres av sirkelen (z—a)2+4y2 = r2. Finn koordinatene
til skjeeringspunktene. Hva er betingelsen for at vi skal f& skjeering ?

Tegn figur pa millimeterarket nar » = @ /2. Velg @ = 3 og bruk 1 cm
som enhet.
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Vis til slutt at nar sirkelen skjeerer hyperbelen, vil tangentene til de to
kurver i skjeeringspunktene p4 samme hyperbelgren alltid danne en
rombe.

Sverige: Uppgifter f6r realgymnasiet.
Allmén kurs.

Obs. Inférda beteckningar bora forklaras och uppstillda ekvationer
motiveras. Resonemang, losning av ekvationer och genomférande av
utrdkningar bora icke vara s& knapphindiga, att de bli svara att folja.
Geometriska uppgifter bora atfoljas av figurer, ritade med blyerts med
hjalp av passare och linjal.

1. I en aritmetisk serie &r summan av de 22 forsta termerna 8,8 och
summan av de 36 forsta termerna 12. Hur manga termer, fran borjan
riknat, skola medtagas, for att deras summa skall bli sa stor som majligt ?

2. Tva klotsegment ha samma volym. Deras hojder forhalla sig som
1:4 och deras buktiga ytor, tagna i samma ordning, som 3:1. Bestim
forhallandet mellan segmentens plana ytor.

3. Los ekvationen cos bx = cos® x .

4. Kurvan 3y = ax*+4bx3—a? har en minimipunkt i punkten (1;—42).
Bestdm konstanterna a¢ och b samt upprita kurvan.

5. Tva av en triangels horn ligga i punkterna (3; 6) och (8; 6). De
delar av koordinataxlarna, som falla inom triangeln, ha bada en lingd
av tre lingdenheter. Berikna koordinaterna for det tredje hornet.

6. I triangeln 4 BC &r den inskrivna cirkelns radie 1% av triangelns om-
krets och } av hojden mot sidan 4B. Berikna vinkeln C.

7. En regelbunden tresidig pyramid &r omskriven kring en sfir med
radien 2 cm och inskriven i en sfir med radien 7 cm. Berikna radien i
den sfir, som tangerar basytan och sidoytornas forlingningar (en av de
8. k. vidskrivna sfirerna).

8. I en rét cirkuldr kon &r basradien 1 em och héjden A em, dér 4 &r en
konstant. I konen inskrives en rit cirkulir cylinder med axeln utefter
konens hojd. Cylinderns basradie dr 2 em och dess totala begréansningsyta
y cm?2 Bestdm y som funktion av x. Unders6k dérefter for olika virden
pa A, hur den ndmnda ytan varierar, d& « genomloper de virden, som x
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kan anta, och &skadliggor detta i ett och samma koordinatsystem. Be-
stdm sirskilt eventuella maximi- och minimipunkter och de A-virden,
for vilka dylika kunna forekomma. Beskriv slutligen med ledning av
undersokningen och kurvorna, hur den ifrigavarande ytan varierar for
olika virden pa h.

Specialkurs.

1. Visa, att de tangenter till ellipsen 2x2-6y> = 3, som ga genom
punkten (1; 1), dro vinkelrita mot varandra.

2. Visa, att funktionen y = ax+bx [/1—a2, déir @ och b éro konstanter,
satisfierar ekvationen

x(l—xz)j—y—l—(2x2—1)y = aux? .
x

3. S6k och konstruera orten for medelpunkten i en cirkel, som tangerar
cirkeln 22--%2 = 64 innantill och gir genom punkten (4; 0).

4. Hur nira styrlinjen till en parabel kan skéirningspunkten mellan
tva inbérdes vinkelrita normaler till parabeln komma ?

5. B och B’ #ro dndpunkterna av en hyperbels konjugataxel. En rét
linje genom B skér hyperbeln i tva punkter, P och Q. Visa, at konjugat-
axeln dr bisektris till vinkeln PB’Q eller till dess sidovinkel.

6. I en cirkel med radien r #iro O4 och OB tva fran medelpunkten O
utgdende stralar, som med varandra bilda vinkeln 2v, diar » < 90°. En
korda CD i cirkeln ir sida i rektangeln CDEF, vars horn E och F ligga
pa var sin av stralarna OA4 och OB. For tva ligen av kordan CD antar
ytan av rektangeln ett maximivirde. Visa, att produkten av dessa maxi-
mivirden dr = r4, oberoende av vinkeln v.

7. Diskutera utseendet av kurvan

2x+a
T x4

Y

for olika virden pa a. Undersok dirvid skérningspunkter med koordinat-
axlarna, maximi- och minimipunkter samt asymptoter. Undersdk &ven,
hur kurvan nirmar sig till asymptoterna. Upprita slutligen i deras huvud-
drag — i olika koordinatsystem — exempel pa de olika typer av kurvor,
som kunna férekomma.
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SUMMARY IN ENGLISH

NIELS HENRIK ABEL. Fr. LANGE-NIELSEN.

The first part is a short survey on the life of Abel. It is pointed out
that most of his biographers in their (otherwise greatly exaggerated)
treatment of his economic difficulties have paid too little attention to
his family problems. As a matter of fact he received rather good help
from official as well as from private sources, and he did not die in the
deepest poverty; it was as a guest at one of the richest estates in Norway
that he was attacked by acute phthisis, and every care was taken of him
for months until he died in 1829 at the age of twenty-six.

In the second part the importance of Abel’s algebraic works and of his
integral equation is dealt with.

The third and fourth parts present his occupation with the following
three problems:

1. To determine all functions whose integrals can be expressed by ele-
mentary functions.

2. To find relations between definite integrals of the same form, but
with different limits (vaddition theorems«).

3. To invert a function defined by a definite integral.

Abel, to a higher degree than any earlier mathematicians, recognized
the important relations which exist between these three problems.

The third part also deals with the events about his great »Paris trea-
tise«. And the fourth part contains a discussion on the competition and
rivalry between Abel and Jacobi, claiming that the discovery of the
elliptic functions and their most important properties was primarily due
to Abel, and that the old tradition of the equal rights of two independent
discoverers is not maintainable. Jacobi is to blame (at least) for the
quite unsatisfactory way in which he quotes—or fails to quote—Abel’s
works, for instance in »Fundamenta novax.

The fifth and last part of the article deals with Abel’s important con-
tributions to the theory of infinite series. Here also an essay is made to
present »Abel in a nutshell¢, quoting first (in French) a program declara-
tion of Abel, and exemplifying afterwards his way of setting and solving
problems by giving his proof for the non-existence of a »general deciding
function¢ for the convergence of infinite series.

THE MANUSCRIPT OF ABEL’S PARIS TREATISE FOUND.
Vicao BRUN.

The treatise »Mémoire sur une propriété générale d’une classe tres-
étendue de fonctions transcendantes«, which was presented by Abel to
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the Académie des sciences in Paris Oct. 30. 1826, was printed in Savants
étrangers in 1841. G Libri, who superintended the printing, claimed that
the manuscript was lost before he had read the proofsheets, and it has
been missed until last year when it was found by the author of this article in
Biblioteca Moreniana in Florence. He had been lead to this library by
the treatise »Sulla mancata publicazione, nel 1826, della celebre memoria
di Abel¢ by Giacomo Candido (1942) where »a copy made by Libri
was mentioned; it was this »copy« that turned out to be the original
manuscript.

THE FOUR-DIMENSIONAL SPACE. RoLF NEVANLINNA.

The hypothetical beings of a two-dimensional world (plane) might
well be supposed to invent an abstract three-dimensional space, if they
had first developed an analytic geometry in rectangular coordinates in
their own plane; they would merely have to consider number triples
instead of number pairs, and to generalize the coordinate formulae for
distances and angles in an appropriate way. The same principle enables
ourselves to construct an abstract space with four (or more) dimensions.

A kind of intuitive images of four-dimensional »bodies« may be ob-
tained by considering their »projections« into three-dimensional space.
That is completely analogous to the use of plane pictures of three-dimen-
sional bodies. This method is exemplified by studying the three-dimen-
sional »projections« of some of the six regular polytopes in four-dimen-
sional space.

Some suggestions on curvilinear riemannian spaces and infinite-dimen-
sional Hilbert spaces are added, and their applications in the theory of
relativity and in quantum mechanics are shortly indicated.

THE ELEMENTS OF J.v. NEUMANN’S THEORY OF GAMES.
ErvLiNG FOLNER.

After a short introduction the main theorem of J. v. Neumann is proved
and illustrated by a numerical example, that has been chosen so as to
demonstrate the importance of knowing not only the elementary part of
the theory of games, but also the main theorem.

Finally the simplified poker play of J.v. Neumann is presented and
discussed.




