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Niels Henrik Abel visade 1824 att den allminna ekvationen av grad 5 inte kan
16sas med rotutdragningar och rationella operationer. Tva ar senare ger han i ett
brev till Crelle rotuttryck for rotterna till en femtegradsekvation som kan losas
pa detta sitt och skriver dessutom att han utstréckt resultatet till ekvationer av
primtalsgrad. Hans bevis finns bara delvis i det efterlimnade manuskriptet [5] om
16sbara ekvationer och deras rétter. Det har en utforlig inledning och bérjan, men
slutet, som handlar om ekvationer av primtalsgrad, ar en oredigerad skiss.

For Abel var malet att finna rotternas form hos ldsbara ekvationer. Fér hans
yngre rival, Evariste Galois, var malet ett annat: att finna de méjliga symmetri-
grupperna eller Galoisgrupperna for losbara ekvationer. Béda avled innan de
kunnat skriva fardiga arbeten. Galois kunde l6sa sitt problem for ekvationer av
primtalsgrad medan Abel inte hann fullborda sitt mera ambitidsa projekt.

Via Christian Skaus intressanta artikel [10] i Normat (1990) och en uppsats
[9] av den svenska matematikern Malmsten (Crelle 1847) dir Abels ofullbordade
manuskript [5] bearbetas, har jag kommit att lisa manuskriptet och de arbeten
som f6ljde efter av Kronecker [8] och Weber [12].

Abels manuskript slutar med en explicit men okommenterad formel for rétterna
hos en l6sbar ekvation. Samma formel finns hos Kronecker och Weber som emeller-
tid inte citerar Abel pa denna punkt. Det betyder att Abel visste eller gissade sitt
slutresultat, som dessutom implicit och i viss form innehaller en beromd sats av
Galois. Men beviset har luckor, vilket ocksa utretts av Abels kommentator Sylow.
Avsikten med denna artikel ar att fylla ut bevisen pa ett sétt som harmonierar
med Abels manuskript.

Vad det ror sig om mera i detalj &r latt att forstd med tillgang till nagra av den
nutida algebrans basbegrepp. Trots att ldsaren berdknas kinna till dem, raknar
jag upp dem 1 ett inledande avsnitt.

Carl Johan Malmsten blev 1841 professor i matematik i Uppsala och skrev under
1840-talét manga anméarkningsvirda arbeten. Han var efter Klingenstierna den
forste matematiker i Sverige som béade foljde med sin tid och bidrog till den. Den
unge professorns framstallningskonst gjorde matematiken till ett modeamne 1 1840-
talets Uppsala. Han var en ofta anlitad talare, och hans goda hand med spraket
syns ocks3 i de arbeten han skrev pa svenska. Da han presenterade sig for en storre
publik, blev spraket franska eller latin. Malmsten var forst och framst analytiker
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och var kanske den forste 1 Sverige som forstod vad konvergens ar for nagot. Fore
Riemann fann han funktionalekwvationer f6r funktioner analoga med (-funktionen,
dock utan att anvinda dem, och han var den férste med en strang teori for kedje-
brak. Liksom de flesta matematiker laste han Abels arbeten, sarskilt det posthuma
[5] om ekvationer som kan l6sas genom rotutdragning, senare kallade metacyk-
liska. Lésningen avsatte det intressanta arbetet [9] (Crelle 1847). Det citeras av
Kronecker [8] nagra ar senare och har antagligen haft en viss betydelse for dennes
arbeten om rétternas struktur som senare generaliserades av Heinrich Weber och
finns tillgangliga i t.ex. Weber [12].

Till slut vill jag tacka Christian Skau f6r hans talamod och de larorika dis-
kussioner han fért med mig om Abels manuskript.

1. Algebraiska forberedelser
Jag antar att ldsaren vet vad en kropp ar. Méangden av polynom
f(z)=ar+az+---+amz™

i en obestdmd z med koefficienter i en kropp K betecknas med K[z]. Genom
multiplikation av polynom blir K[z] en ring och samtidigt ett linjart rum av odndlig
dimension éver K. D& an, # 0 sags f(z) ha grad m. Man har grad f(z)g(z) =
grad f(z) + grad g(z) f6r icke férsvinnande polynom. I K[z] har man entydig fak-
toruppdelning modulo multiplikation med element i K \ 0. Polynom utan faktorer
av positiv grad sags vara irreducibla. Da t ar ett element i en kropp innehallande
K, later vi K(t) beteckna alla f(t)/g(t) med f(z), g(z) € K[z], g(t) # 0. Analogt
for K(tl,.. .,tn).

En bijektion U : K — L mellan kroppar sigs vara en isomorfism om U(ab) =
UaUboch U(a+b) =Ua+Ub for alla a, b € K. D& L = K siger man att U &r en
automorfism. Alla automorfismer L — L bildar en grupp under sammanséttning
som vi kallar Aut L. Med Aut(L/K) ska vi mena den undergrupp i Aut L som &r
identiteten pa en del K av L.

Ett element ¢ i en Sverkropp till en kropp K sigs vara algebraiskt av grad m
over K om 1, ¢, ..., t™ ! ar linjart oberoende 6ver K och ¢™ ligger i deras linjara
holje. Det betyder att det finns ett polynom f(z) € K[z] av minsta grad m sadant
att f(t) = 0. Vi sager att f(z) ar ett minimalpolynom till ¢ och att m &r graden av
t over K. Det ar klart att varje minimalpolynom &r irreducibelt och bestdmt pa en
konstant nar. Vi kan da bilda kvotringen K[z] mod f(z) som visar sig vara isomorf
med K(t). Om K — K’ ar en isomorfism och f'(z) ar bilden av ett irreducibelt
polynom f(z) € K[z], sd &r motsvarande kvotringar isomorfa. Om ¢, t' &r rotter
till motsvarande ekvationer foljer alltsa att

(*) warje isomorfism K — K' kan fortsattas till en isomorfism K(t) — K'(t').
Algebraiska talkroppar erhaller man genom att successivt adjungera algebraiska
tal. En upprepad anvindning av () visar

Fortsattningssats. Om K C L ar algebraiska talkroppar kan varje isomorfism
fran K fortsattas till en isomorfism fran L.
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Galoiskroppar, Galoisgrupper

Tva rotter till ett och samma irreducibla polynom sigs vara konjugerade till var-
andra. Om f(z) € K|[z] ér irreducibel av grad n med rotterna e, ..., an, sa ségs
L = K(ay,...,oy) vara sonderfallskroppen till f(z). Vi skriver d& ocksd L = K @)
och Aut(L/K) = Aut(f/K).

Om U € Aut(f/K) och f(a) = 0, ar ocksd f(Ua) = 0, dvs « och Ua ar
konjugerade. Dessutom, om «, 3 ar rotter kan enligt (*) isomorfismen K (a) —
K(B) utvidgas till en isomorfism i Aut(f/K). Denna grupp &verfor alltsé varje rot
i varje annan rot.

En algebraisk kropp L D K sigs vara en Galoiskropp over K d& UL = L
for varje isomorfism U : L — UL som ar identiteten pa K. Varje sonderfallskropp
L = K(ay,-..,a,)over K har denna egenskap, ty Uay, ... ar da lika med rotterna
@1, ... inagon ordning. Alltsd ir Aut(f/K) isomorf med en undergrupp av alla
permutationer av n element. Féljaktligen &r antalet element i Aut(f, K ) en delare
till nl.

Det foljer av (*) att om L ar en Galoiskropp 6ver K, v,w € L,ochUv =v medfér
att Uw = w for varje U € Aut(L/K), s ar w ett polynom i v med koefficienter
i K.

2. Radikalutvidgningar

Enkla radikalutvidgningar

Varje kropp i det foljande antas innehélla de rationella talen. En kropp L sags vara
en enkel radikalutvidgning av grad n av en kropp K da K innehaller en primitiv
n'® enhetsrot w och L = K(s), dir s ar nollstélle till ett irreducibelt polynom
h(z) = z" —a € K[z]. Alla rdtter har da formen w*s for k =0, ..., n—1. Speciellt
ir K(s) en Galoiskropp 6ver K, elementen har formen

(1) u=ag+ais+--+an_1s"",

gruppen Aut(K(s)/K) &r cyklisk av grad n och alstras av s — sw. De konjugerade
till v 6ver K har alltsa formen

(1" uj =a0+a1sz+---+an_1(sz)"”1.

Infér man Lagranges resolventer
n—-1
(2) Wk, u) =Y w™¥yy,
0

far man av (1') att

3) nags® = (wF,u).

Lemma 1. Om K(s) ir en enkel radikalutvidgning av primtalsgrad p av en kropp
Kochs' =bs* dir0 < k <poch0#be€ K, saar K(s) = K(s') och potenserna
S, ..., sP71 ir permutationer av motsvarande potenser av s’ multiplicerade med
tal ur K.

Anmirkning: Om s ar rot till 2? — a € K[z], ir ' rot till 27 — bPa* € K[z], dar
bada polynomen ar irreducibla.
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Bevis: Med kj' = j mod p &r s/ = b;s"7" for nigot b; € K, ty s? € K. Vidare
ar j — j' en permutation av 1, ..., p — 1 mod p. Harav foljer uppenbarligen att
K(s) = K(s').
Sats 1. Lat

K CLclL(s)

vara kroppar och antag att L(s) ar en enkel radikalutvidgning av L av primtals
grad p och att K innehaller en primitiv p*® enhetsrot w. Lat vidare M vara en
Galoiskropp 6ver K. Da ar M NL(s) = M NL, eller ocksa finns ett s' € (M NL)(s)
sadant att L(s') = L(s) och

(LNM)c(LNnM)(s")Y=L(s')NM
ar en enkel radikalutvidgning av grad p.

Bevis: Eftersom L(s) D L behover vi bara betrakta det senare fallet M N L(s) #
MNL. Da finns ett u € L(s) \ L som ocksa ligger 1 M. Det har da formen (1) dar
nagot apsk # 0 och k > 0. Fixera ett sidant u och sitt s’ = azs*. DA &r enligt
lemmat L(s) = L(s') och, om vi uttrycker u som polynom i s, far u formen (1)
dar koefficienten for s’ ar lika med 1. Vi kan alltsa fran borjan anta att s’ = s och
a; =1 for vart speciella u.

Eftersom u € M &r alla dess konjugerade ug, ..., up_y 6ver L D K en del av
de konjugerade 6ver K och ligger alltsad i M. Detsamma galler resolventerna, och
eftersom a; = 1, f6ljer att s = (w,u)/p ligger i M. Vi kan nu upprepa resonemanget
med ett godtyckligt

v="bo+bis+--+bp15"7

i L(s)\ L som ligger i M. Dess konjugerade och resolventer ligger i M och eftersom
s € M ser vi att koeflicienterna by, ... ocksa ligger i M. Det betyder att (M NL)(s)
ar en enkel radikalutvidgning av primtalsgrad p av L N M, och satsen ar bevisad.

Sammansatta och primara radikalutvidgningar

Déa n &r en produkt mk kan man sénderlagga en enkel radikalutvidgning K C K(s)
L K C K(s™) C K(s).

Man sager att L ar en radikalutvidgning av K om det finnes en kedja enkla radi-
kalutvidgningar

(4) KcK,c---CcL

som slutar med L. Enligt det som sagts ovan kan man anta att varje kropp i kedjan
har primtalsgrad &ver den féregiende. Da alla dessa primtal ar lika siger vi att L
ar en primdr radikalutvidgning av K.

Sats 2. Lat L vara en Galoiskropp 6ver en kropp K. Varje enkel radikalutvidgning
L C L(s) av primtalsgrad p kan utvidgas till en primar radikalutvidgning L C M,
dér M ar den minsta Galoiskropp dver K som innehaller L(s).

Bevis: Lat s, ..., sy med s = s; vara alla konjugerade till s 6ver K och z? — ¢y,
..., P — ¢ motsvarande polynom i L[z]. I sviten

Lc L(sl) c L(31a32) c---C L(Sl,...,sk)
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ar varje kropp antingen identisk med den foregaende eller en enkel radikalutvidg-
ning av grad p, och den sista kroppen ar den minsta Galoiskropp 6ver K som
innehaller L(s).

Ekvationslosning genom rotutdragning

Lat f(z) € K|[z] vara ett irreducibelt polynom med koefficienter i en kropp K,
som antas innehalla alla enhetsrotter. Att ekvationen f(z) = 0 &r ldsbar med
successiva rotutdragningar och rationella operationer betyder att det finns en svit
enkla radikalutvidgningar
(5) KCLiC---CLp1CL,
dir L, innehaller en rot till f(z) = 0, dvs ett element i sonderfallskroppen K(f)
av f(z) 6ver K. Enligt Sats 1 & d& K(f) N L, = K(f) N L1, eller ocksd ar
L, N K(f) en enkel radikalutvidgning av L,—; N K(f) som i sin tur osv. Vi kan
allts3 anta att alla kropparna i sviten efter vissa strykningar &r innehéllna i K(f).
Vi kan nu visa en kompletterande sats som liksom de tva tidigare finns mer eller
mindre implicit hos Abel.

Sats 3. Om f(z) € K([z] &r ett irreducibelt polynom och ekvationen f(z) = 0 ar
16sbar med successiva rotutdragningar och rationella operationer, finns en svit av
Galoiskroppar 6ver K,

(6) KcLyc---CK(f)
dér var och en ar en priméar radikalutvidgning av den foregaende.

Bevis: Vi vet att det finns en radikalutvidgning (5) av K, dar varje kropp Lzy1 =
Li(sx) har primtalsgrad over den foregaende, alla ar innehéllna i K(f), och L,
innehaller en rot till f(z) = 0. Har ar redan L, en Galoiskropp 6ver K. Enligt
Sats 2 finns en primir radikalutvidgning Ly C L} med L) en Galoiskropp 6ver K
innehéllen i K(f) som har L; C L, som forsta led. Om L) innehaller en rot til
f(z) =0, ar L, = K(f). I annat fall, om s3 € L}, sa ocksa L3 = Ly(s3) C L osv.
Allts3, om s; ar ett forsta s; utanfér Lj, sa ar Lj(sk) en enkel radikalutvidgning
av L, som i sin tur ar forsta ledet i en primar radikalutvidgning av Lj till en
Galoiskropp innehéllen i K(f). Efter ett andligt antal sadana steg far vi en svit av
det onskade slaget som slutar med en Galoiskropp L; 6ver K som ar identisk med
K(f). Det bevisar satsen.

Att Abel verkligen forestillt sig sviten i Sats 3 kan man sluta av Sylows kom-
mentar i [1] II s. 333 dar Abels uppstéllning av de i ordning adjungerade rotut-
trycken aterfinns nederst pa sidan.

For Abel tedde sig Sats 3 i konkret form sa att rétterna till f(z) = 0 kunde
uttryckas genom superponerade rotuttryck och rationella operationer. Det be-
tyder att om en rot fixeras, sa fir man de andra genom att de ingdende kvadrat-,
kubik- osv rotterna antar alla sina virden genom att multipliceras med potenser
av motsvarande primitiva enhetsrétter. Antar man att alla enhetsrotter som ingar
finns med i grundkroppen K, fir man alla operationer i Aut(f/K) pa detta sitt.
Detta pastdende foljer omedelbart av fortsattningssatsen. Vi kan alltsd sluta att
antalet element i Aut(f/K) ir produkten av de primtalspotenser som i (6) ut-
trycker en kropps grad Gver den foljande. Av detta foljer ett pdpekande av Sylow
i dennes kommentar till Abels manuskript ([1] II s. 335) som kan uttryckas som
foljer:
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Lemma 2. Om f(z) har primtalsgrad p, upptrader p bara en ging bland de
successiva gradtalen i (6) och d& med potensen 1.

Bevis: Eftersom gruppen Aut(f/K) permuterar p objekt, maste dess ordning
dela p!.

3. Losbara ekvationer av primtalsgrad

Innan vi gar in pa en analys av Abels manuskript ska vi kort bevisa en huvudsats
med tva foljdsatser, en om Galoisgruppen och en om rétternas form. Tillsammans
innehaller de det Abel visste och ville visa om l6sbara ekvationer av primtalsgrad.

Huvudsatsen

Sats 4. Lat K vara en kropp och f(x) € K|[z] ett irreducibelt polynom av prim-
talsgrad p. Om ekvationen f(z) = 0 ar losbar och K innehaller enhetsrotterna av
grad p, finns en radikalsvit

KcLclL(t)y=K(f)

dér L(t) har grad p 6ver L och

(@) K(f) = K(2),
(i) L = K(s), s =t?, ar en Galoiskropp 6ver K,

(iii) rétterna till f(z) = 0 har formen
p—1 )
) Tp = Z ajwikti
0

dir a; = a;j(s) med a;(z) € K[z], a1 = 1 och w ar en primitiv p*® enhetsrot.

Bevis: Betrakta en svit enligt sats 3, och sonderlagg den i enkla radikalutvidg-
ningar. Forsta gangen f(z) sénderfaller i faktorer kommer dessa faktorer att bilda
en bana for en grupp av primtalsordning. Det betyder att antalet faktorer och
den permuterande gruppens ordning bada ar lika med p. Allts& sonderfaller f(z)
i linjéra faktorer. Vi har alltsa en radikalutvidgning K C L C L(¢) dar rotterna
Zg, ..., Tp—1 har formen (7) med koeflicienter a; € L. Lemma 1 visar sa att vi
kan viélja t sa att a; = 1, och Lemma 2 visar att L ar en Galoiskropp over K.
Under denna férutsittning ar det latt att visa att K(t) = K(f). Ty antag att
U € Aut(f/K) lamnar t = (w,z)/p invariant. D& & UL = L och Uzy = z; for
nagot j samtidigt som

: Uzg = by +wFt + - 4 bk~ Dgp~1

dar by, ..., b,—1 € L. En jamforelse av koefficienterna for ¢ i z; visar dd att
w¥ = wJ varav j = k s8 att U ar identiteten. Enligt Galoisteorins grunder betyder
det att-alla element i K(f) ligger i K(t). Eftersom L bestar av alla element i K(t)
som ar invarianta under T : t — wt, foljer nu att L = K(t?) = K(s), och med detta
har vi visat (i), (ii) och (iii).
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Anmirkning: Som tidigare kan vi inféra Lagranges resolventer
r—1
(wk’m) = E“"—hxi’
0

och vi far som tidigare a;t’ = (w’,z)/p. Alltsa ar de icke forsvinnande resolvent-
erna linjart oberoende 6ver K(s). Enligt (7) ar

p—1
prE = Zw’k(w’, z).
0

Observera ocksa att (7) visar att T'z; = zit1, sa att T(w?, z) = w¥(w?, z) dir index
raknas mod p.

Galoisgruppen

Med vissa luckor finns forsta delen av den sats som nu foljer bevisad hos Abel och
Malmsten. Den andra delen finns ofullstindig hos Malmsten. Avsnittets rubrik
motiveras av den anmirkning som foljer efter satsens bevis.

Féljdsats 1. Till varje U € Aut(f/K) finns ett k¥ # 0 mod p och ett a(s) € K(s)
sa att

(8) Ut = a(s)t*
och sa att
(9) U(w,2) = w7 (w*,2)

om Uzg = z; och véanstra sidan inte ar noll.

Anmirkning: Eftersom K(s) = K(t?) ar gruppen Aut(K(s)/K) isomorf med
Aut(f/K) mod T, dvs enligt (9) med den undergrupp G av Aut(f/K) vars element
V lamnar z, invariant, Vzo = zo. Enligt (9) med ! = 0 permuterar gruppens
element V de icke forsvinnande resolventerna cykliskt. Alltsa &r G isomorf med en
undergrupp av den multiplikativa gruppen Z, \ 0, dvs den &r cyklisk och alstras av
ett element U av ordning r som delar p — 1. Vi skriver

(9) U(w,z) = (w,2)

dir U9 =1, dvs ¢" = 1 mod p.
Bevis: Lat som tidigare Tt = wt. Elementen TUt och Ut har samma p*® potens,
namligen (TUt)? = TUt? = TUs = Us, ty UK(s) = K(s) eftersom K(s) &r en
Galoiskropp. De l6ser alltsd bada en ekvation z? — ¢ = 0 dér ¢ € K(s). Det 5ljer
att TUt = w*Ut f6r ndgot k. Eftersom ocksa Ut =co +cit +--- + cp_ltl’_1 med
koefficienter i K(s), s foljer att Ut = cxt* varav (8).

Lat oss nu betrakta resolventerna

r—1

(10) (wj,a:) = Zw_ﬁzi = paj(s)tj,

0
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den sista likheten enligt (7). Eftersom U permuterar rotterna och resolventerna ar
linjarkombinationer av dem, inducerar U en linjar transformation

U(wja zT)= Z cji(wia z)

av resolventerna dér ¢;; € K. Men enligt (10) ar (w’, ) ett egenelement till T med
egenvirdet w’, och enligt (8) 4r U(w’,x) ett egenelement till T med egenvardet
w*i. Det foljer da av den sista ekvationen att

(11) U(w,z) = dj(w", )
dar d; # 0 d8 (w’,z) # 0. Nu ar

p—1 r—1
DPZo = Z(w]az)a bz = Zw”(w"ax)
0 0

varav enligt (11)
Z dj(w*, z) = Z Ww(wl, z).
Alltsd ar d; = wY* s3 att (9) foljer.

Anmarkning: Av (9) foljer efter ndgon rakning hur Aut(f/K) opererar pa rott-
erna, men det ar enklast att utgd fran (8). Man far TV Ut = wa(s)t* = UTt varav
samma likhet applicerad pa K(t) = K(f). Med kk' = 1 mod p far vi alltsa

UTU ' =T¥,
och genom iterationer UTVU~! = T7* varav
ij = UzjO = Tk’jU:lto = Tk 541

om Uzy = z; och indices raknas mod p.
Om T &r gruppen av affina bijektioner j — ij + [ av Z,, och vi noterar att
Aut(f/K) innehaller T : zj — zg41, ser vi alltsd att

Aut(f/K) dr isomorf med en undergrupp av I' som innehdller translationen
k—k+1.

Foljdsatsen 1 ar ett specialfall av en sats av Galois ([7]) som sager detsamma
om Aut(f/K) da f(z) € K[z] ar irreducibel av primtalsgrad p och det finns en svit
av kroppar

KC Kl c---C Kn+1 ZK(f)

sddan att var och en &r normal Gver den foregéende, Aut(K;41/K;) ar cyklisk
for alla j, och f(z) &r irreducibel i K,. Man sager att ekvationen f(z) = 0 &r
metacyklisk.. Galois’ bevis &r enkelt och utnyttjar att endast translationerna i
T har perioden p. Som ovan ser man att Aut(K(f)/K,) alstras av ett T som &r
cyklisk av ordning p. Om vi antar att Aut(K(f)/K;+1) har den nskade egenskapen
att innehalla translationerna och vara isomorf med en undergrupp av I, och antar
att U € Aut(K(f)/K;), & V = UTU ™! identiteten pd K;;; och har perioden
p. Alltsd &r V en potens av T, och man kan resonera som tidigare och visa att
Aut(K(f)/K;) ocksa har den onskade egenskapen.
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Rotternas form

Den andra foljdsatsen uttrycker i modern terminologi det resultat som var Abels
huvudmal. Genom att applicera Aut(f/K) pa formeln

(12) pzo = (0%, 2) + (w,2) + - + (WP, 2)

far man alla rotter zx uttryckta som summor av p* rétter ur element i K(s). Dessa
rotter kan emellertid inte valjas oberoende av varandra. Vi ska se nedan att de ar
rationella funktioner av en av dem.

Enligt anmarkningen efter Foljdsats 1 permuteras termerna i (12) cykliskt av
en undergrupp G i Aut(f/K) som alstras av ett element U med ordning r givet
av (9') dar r delar p — 1 och ¢" = 1 mod p. Lit (w',z) = pa;t* # 0 och betrakta
motsvarande bana under U,

r—1

B; = U (wigk, z).

0

Alla ig* ar har skilda mod p eftersom r &r det minsta tal k > 0 for vilket g* =
1 mod p. Alltsd har varje bana r element. Valj I C (1,...,p— 1) s att

ri—1

(13) U U B;

i€l 0

ar en uppdelning av alla icke férsvinnande resolventer utom (w?, z) i banor under U.
Vi kan nu aterge det slutresultat som Abel efterstravade.

Foljdsats 2. Det finns ett element U € Aut(f/K) sadant att
(14) Ut = a(s)t?, Us = a(s)Ps?

och att rétterna till f(z) =0 ges av

r—1
-k
(15) PTo = ag + Z z cir(¥s)"
i€l 0
med c;; € K(s) da ¥s antar sina p varden.

Anmarkning: Observera att vi har valt ¢ sd att (w,z) = pt. Satsen finns explicit
i Abels manuskript. Formel (15) ovan aterfinns hos Abel i en uppstéllning 6verst
pa's. 240 dar varje rad ar en bana under G medan mdjligheten att en bana ar noll
inte namns explicit.

Bevis: Vi har . .
(w*,z) = pa;(s)t’
och upprepningar av (14) visar att elementen i banan B; har formen
cik(s)tiyk

varav (15). D& ¢t — w’t fr man pz; pa vinster sida av (15). Det visar satsen.
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Anmarkning: Vi kan ocksa rikna ut koefficienterna cix(s) i (15) mera systemat-
iskt, men for enkelhetens skull bara f6r den forsta banan

t, Ut, ..., Ut
Vi anmarker till att borja med att vi kan ersitta (14) med
Ut = a(s)s Ftotke

dar k ar ett heltal. Om ¢" = 1+ jp mod p? kan vi alltsd genom att byta g mot
g + kp med ett lampligt k anta att j = —1 sa att

g"=1-p+qp’
for nagot heltal ¢. Enligt (14) far vi sviten

t, Ut=a(s)ty, U’t= a(Us)a(s)gtgz,

(16) —1 -2 r—2 r—1
ey UTt=a(U"%s)...a(s)? t7

Med ett steg till far man t = B(s)t? dér

(17) B(s) = a(U™1s)a(U ™" 2s)7 ...a(s)s" .
Det foljer att t179" = #=9° = B s3 att
(18) t=A(s)YB,  A(s)=sT

varav

r—1

(19) t+Ut+--+U =) AU's){/B(U'),

vilket ir helt analogt med den formel for rotterna till en 16sbar ekvation av grad 5
som Abel gav i sitt brev [6] till Crelle. Man observerar att U opererar pa B genom
att exponenterna forskjuts cykliskt, och att det f6ljer av (17) att

YB({Us)=C(s)¥Bs,  C(s)=a(s)'"

helt analogt med Ut = a(s)ty. Motsvarande formler finns for alla banor i (15)
genom att man ersatter ¢ = s!/? med (18).
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4. Abels manuskript

Redan i borjan av den del av manuskriptet som handlar om 16sbara ekvationer av
primtalsgrad, f(z) = 0, f(z) € K|[z], grad f(z) = p, skriver Abel upp rétterna
enligt (7) som

p—1
2k=Zaj(w’°t)j, k=0,...,p—1,
0

dar koefficienterna ligger i en kropp L D K och t ar rot till ett irreducibelt polynom
7P —s € L[z]. Sedan undersoker han konjugerade t' = Ut, s' = Us till ¢, s. A priori
ar s' ett polynom i t med koefficienter i L, och Abel vill att bara den konstanta
koefficienten kan vara skild fran noll, dvs att L ar en Galoiskropp. Men hans
otaliga argumentering haller inte. Om han hade tankt pa sin uppstallning av hur
radikalutvidgningen gatt till (var Sats 3), hade beviset som hos Sylow och oss varit
latt. Med antagandet att L ar en Galoiskropp, visar sedan Abel fullt korrekt att

(20) t' = atF, a€L, k # 0 mod p.

Har anvander han implicit ett T € Aut(K(f)/L) definierat av t — wt, dvs Tz =
Zr4+1- Hans bevis finns i forkortad upplaga i beviset av Foljdsats 1.

Abels nista steg ar att visa att L = K(s) varav K(f) = K(t) i var beteckning.
Beviset ar inte invindningsfritt, men Abel kan nu anta att elementet a i (20) har
formen a(s),a(z) € K[z].

Abel sager sedan att Aut(K(s)/K) borde alstras av (20) upphdjt till p, dvs

(21) s— s = a(s)Psk.

Han skriver upp iterationerna och drar slutsatsen att operationens ordning delar
p — 1, eftersom k" = 1 mod p medfor att r delar p — 1. Han betraktar sa en
annan bijektion (20) och drar darefter outsagt den i sammanhanget omotiverade
slutsatsen att Aut(K(s)/K) ar cyklisk av en ordning r som delar p— 1 och skriver
upp alla konjugerade till s som

s, O0s, 6%, ..., 6ls, @"s=s.

Vi kan inte dra denna slutsats utan att som i Foljdsats 1 ocksa utnyttja att varje
U € Aut(f/K) permuterar rétterna och alltsa inducerar en linjar transformation av
resolventerna. Men just detta maste han ha underforstatt, ty omedelbart efterat,
pa s. 240, foljer en framstallning av zo som en summa som fransett beteckningarna
ar densamma som var formel (15) i Féljdsats 2. I de f6ljande raderna itereras den
cykliska permutation som U inducerar p& hogra sidan. Nederst pa den féregaende
sidan 239 skriver Abel i vara beteckningar upp de forsta termerna i var formel
(16), och nederst pa s. 240 star alla termerna i summan i var formel (19) med B
enligt (17). Det betyder att Abel trots sina ofullstindiga bevis hade det slutliga
resultatet i Féljdsats 2.

De tre foljande sidorna som avslutar manuskriptet verkar ha att géra med en
utvidgning av de vunna resultaten till 16sbara ekvationer av grad p™, resultat som
1 allmén formulering finns utlovade i borjan av arbetet.
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5. Malmsten, Kronecker, Weber

Malmstens arbete [9] foljer den allmanna delen av Abel [5] ganska noga med vissa
preciseringar. Nar det kommer till 16sbara ekvationer av primtalsgrad accepterar
Malmsten att koefficienterna i

To=ao+art+ - +ap_1t?7!

ar polynom i s = ¢ men tillfor ocksa ndgot nytt, nimligen att Aut(f/K) trans-
formerar resolventerna linjart, vilket inte finns explicit hos Abel. Av detta drar
han den ofullstindiga slutsatsen att Aut(f/K) permuterar de p* potenserna av
icke forsvinnande resolventerna (w,z), ..., (w?~!,z) (men han vet inte att de per-
muteras cykliskt). Det f6ljer av detta att deras produkt ligger i grundkroppen.
Malmsten applicerar detta resultat pa en allmén ekvation av grad p dir rotterna
Zo, ..., Tp—1 kan betraktas som obestdmda. I sa fall visar han att invariansen
under en enda transposition ar mojlig bara da p < 3. Malmsten ser har ett allmént
och begripligt resonemang som visar att allménna ekvationer av primtalsgrad > 3
inte kan 16sas med rotutdragningar och rationella operationer.

I inledningen till sin forsta artikel [8a] citerar Kronecker Malmsten och till-
kdnnager — utan bevis — sin upptackt att Aut(f/K) permuterar resolventernas
p* potenser cykliskt. Han tycks d3 bara ha tankt pa fallet da resolventernas p‘
potenser bildar en enda bana for Aut K(s)/K). Man kan anta att han fullfoljt
Malmsten pa denna punkt utan att se att man maste bevisa att den nast sista
kroppen L ar en Galoiskropp. Som vi har sett finns det fullstdndiga resultatet
uttalat hos Abel, men Kronecker citerar i sin inledning bara tva formler i [5] dar
detta inte framgdr. Det kan forklaras av att han féredragit Malmstens klara och
rediga framstallning framfor Abels manuskript. Kronecker uttalar var Foljdsats 2
om rétternas form inklusive (18) och (19), nu med en hanvisning till Abels arbete [4]
om Abelska ekvationer. Artikeln slutar med en sats som utférd nirmare i [8b] som
sager att rotterna till en losbar ekvation med hela koefficienter och kommutativ
Galoisgrupp ar polynom i enhetsrotter med rationella koefficienter. Kronecker
har ocksd funnit att en Iosbar irreducibel ekvation av_udda primtalsgrad p med
reella koefficienter har antingen en eller p reella rétter. Beviset ar mycket enkelt:
konjugering av rotterna ar en operation i Aut(f/K) dér K &r en reell kropp, och
en sadan kan inte fixera tva rotter utan att vara identiteten.

Hela teorin for losbara ekvationer av primtalsgrad togs upp i Webers larobok
[12]. Nyheten dér ar att Galois’ sats anvands som genvag till Galoisgruppens aktion
pa resolventerna. Darmed férsvinner problemet att visa att den niist sista kroppen
L 3r en Galoiskropp ur litteraturen.
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