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1. Innledning

Et resultat som har fascinert generasjon etter generasjon av matematikere, er teo-
remet som sier at den generelle n’tegradsligningen ikke kan lgses ved algebraiske
operasjoner (“ved rotutdragninger”) nar n > 5. Men idag nevnes Niels Henrik
Abels (1802-1829) bergmte bevis fra 1824 [2] for denne umuligheten kun som en
fotnote til den sikalte Galois-teorien. Denne teorien, som skyldes den bramodne
franske matematikeren Evariste Galois (1811-1832), drept 21 ar gammel i en duell,
representerer kvintessensen av en lang utvikling innen ligningsteorien der Lagrange
(1736-1813), Ruffini (1765-1822) og Abel er sentrale navn. Galois’ teorem gir en
ngdvendig og tilstrekkelig betingelse, via den sakalte Galois-gruppen, for nar et
polynom har rgtter som kan uttrykkes ved algebraiske operasjoner. Selv lang tid
etter Galois’ banebrytende arbeid ble lgsninger av (spesielle) ligninger ansett som
det sentrale problem innen algebra, og dette synet var fremtredende gjennom meste-
parten av det nittende arhundret. Det var fgrst etter en lang modningsprosess at
perspektivet pa Galois-teorien og pa gruppebegrepet ble utvidet. Med Emil Ar-
tins innflytelsesrike forelesningsserie om Galois-teori i Hamburg sommeren 1926
ble kroppteoriaspektet ved Galois-teorien definitivt etablert, og Galois-gruppen
ble definert via symmetrier til tallkroppen som naturlig er knyttet til det gitte
polynomet [6]. (Se ogsé [38].) Forbindelsen til ligningsteorien ble tonet ned betyde-
lig. Alle moderne presentasjoner av Galois-teorien bygger pd Artins fremstilling,
som forgvrig er meget elegant. I oppbyggingen av denne teorien mé en hel rekke
abstrakte begreper innfgres, og det kreves betydelig matematisk skolering og mod-
enhet for tilegnelse av teorien. Etter 4 ha veert igjennom Galois-teorien for fgrste
gang opplever vel ogsd mange det som et antiklimaks (selv om det burde vaere det
motsatte!) nar resultatet om ulgsbarheten av femtegradsligningen presenteres som
et korollar. Dette p& grunn av ren utmattethet i anstrengelsen etter & absorbere
denne omfattende teorien. ,

Det kunne derfor veere av en viss interesse med et gjensyn med Abels opp-
rinnelige bevis. Dette knytter seg til de enkleste prinsipper, slik som den Euklidske
algoritmen og irredusibilitet av polynomer, samt symmetriske polynomer. Beviset
er derfor ogsa tilgjengelig for en stgrre skare matematisk interesserte. I det hele
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tatt er et av de mest fascinerende aspekter ved den klassiske ligningsteorien hvilke
enkle betraktninger som ligger til grunn for denne.

La oss skissere Abels bevisidé: Fgrst viser han at alle rotuttrykkene som fore-
kommer i en algebraisk lgsning av den generelle n’tegradsligningen er polynomer i
de n rgttene til denne ligningen. Dette gjgres ved at man arbeider seg suksessivt fra
det “ytterste” (eller “siste”) rottegnet som' forekommer i lgsningen, inn til det “inn-
erste” (eller “fgrste”) rottegnet. Denne delen av beviset er blitt stiende essensielt
uforandret i ettertiden og gir et utmerket eksempel pa Abels virtuose%b\lsk av et
polynoms irredusibilitet som 1niddel til & resonnere. I dag er disse teknikkene “folk-
lore” i algebra, men ifglge Sylow [30] var det Abel som fgrst innferte irredusibilitet
som prinsipp. Riktignok hadde Gauss (1777-1855) tidligere (1801) i sitt studium
av sirkeldelingsligningen z™ — 1 = 0 definert begrepet irredusibelt polynom, men
han bruker ikke irredusibiliteten som middel i sine videre utledninger.

Den andre delen av Abels bevis, den “substitusjonsteoretiske” (eller “gruppe-
teoretiske”) delen, opptar to tredjedeler av hans publiserte bevis [3] og kan forenkles
betydelig. Abel kjente ikke til den italienske legen og matematikeren Paolo Ruffinis
forspk pa & bevise ulgsbarheten av den generelle n’tegradsligningen i drene mellom
1799 og 1813 [27,28]. Ruffinis arbeider var meget uklare og vanskelige & tyde,
blant annet fordi han benyttet seg av en meget komplisert notasjon. Samtidens
matematikere reagerte stort sett negativt pa hans pastatte bevis, unntatt Cauchy
(1789-1857) som var positiv. I ettertid ma man erkjenne at selv om Ruffinis bevis
inneholder et stort gap, si er hans “gruppeteoretiske” betraktninger helt riktige
og mye enklere enn Abels. Dette ble klargjort av Pierre Wantzel (1814-1848) i
et arbeid fra 1845 [33], og det er Wantzels versjon av Ruffinis bevis vi skal pre-
sentere i stedet for andre delen av Abels eget bevis. Gapet i Ruffinis bevis var at
han antok uten bevis det som Abel fgrst beviste, nemlig at en algebraisk lgsning
av den generelle n’tegradsligningen kan bringes pa en slik form at rotuttrykkene
som forekommer, er polynomer i rgttene til ligningen. Ruffinis “gruppeteoretiske”
bevis starter med det “innerste” rottegnet i lgsningen, og han viser ved en enkel be-
traktning at det ma vere en kvadratrot. S& viser han ved like enkle betraktninger
at det neste rottegnet ma veere en kubikkrot dersom n > 3. P& analog mate viser
han at dette samme rottegnet ma veere en femterot dersom n > 5, og han har
oppnadd en selvmotsigelse. Det er en bemerkelsesverdig symmetri i de to delene
som beviset naturlig bestar av: I den ene delen starter man med det ytterste rot-
tegnet og arbeider seg suksessivt innover mot det innerste; i den andre delen starter
man med det innerste rottegnet og beveger seg utover.

Vi skal presentere en forholdsvis utfgrlig gjennomgéelse av ligningsteorien som
leder opp til Abels og Ruffinis bevis. I den forbindelse gjennomgéar vi ogsa Lagranges
analyse av de klassiske, kjente lgsninger av tredje- og fjerdegradsligningene, og hans
forsgk pa ut fra denne analysen, & lgse den generelle femtegradsligningen. Lagrange
var den direkte inspirator for bade Ruffini og Abel. Vi vil fgrst presentere de klass-
iske Igsningene av annen-, tredje- og fjerdegradsligningene idet vi poengterer det ved
Igsningene som peker mot Abels og Ruffinis resultater. Vi vil ogsa skissere den klass-
iske ligningsteoriens to “pillarer”. Den ene er “Lagrange-Ruffini-komponenten”,
som er teorien for polynomer i n variable, med drgfting av hvor mange forskjell-
ige verdier disse antar under permutasjoner av de variable. Den andre er “Abel-
komponenten”, som bestar av den Euklidske algoritmen, stgrste felles divisor til to
polynomer, og irredusible polynomer, spesielt binomiske polynomer.
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2. Grunnleggende begreper

Vi m3 presisere hva vi mener med “den generelle n’tegradsligningen” og hva det
vil si & Igse en ligning algebraisk (“ved rotutdragninger”). For dette trenger vi &
introdusere noen nﬁkkeibegreper. Samtidig innfgrer vi en hendig notasjon. Vi vil
hele tiden arbeide innenfor de komplekse tall C, i stedet for & behandle kropper
i almindelighet. Bevisene vi skal gi, kan imidlertid overfgres ordrett til en mer
generell situasjon, slik at tapet av generalitet bare er tilsynelatende. Vi mener
at et slikt utgangspunkt har pedagogiske fordeler. En annen sak er at pionerene
innen lignin%steorien — Lagrange, Ruffini, Abel og Galois — hadde det samme
utgangspunk*?et (se 7).
\

Tallkropp

Med en tallkropp (opprinnelig kalt “rasjonalitetsomrade”) forstar vi en delmengde
E av C slik at 0 og 1 er med i E, og der addisjon, subtraksjon, multiplikasjon
og divisjon (bortsett fra med 0), de sikalte rasjonale regningsarter, er utfgrbare
innenfor E. Eksempler p& tallkropper er de rasjonale tall Q og de relle tall R. To
andre eksempler er
Ey = {a+bila,b € Q},
der i er den imaginsere enheten, i2 = —1, og
Es = {a+bV2|a,b € Q}.
Observer i forbindelse med E» at dersom a + byv/2 € E; er forskjellig fra 0, sa er
(a+ b\/2)~! € E,. Vi rasjonaliserer nevneren ved et lite knep: ‘
1 _ a—bv2 - a _ b
a+bv/2  (a+b/2)(a—bv2) a?-2b a? —20?
Vi skal senere se en betraktelig generalisering av denne rasjonaliseringen av nevn-
eren i forbindelse med Abels analyse (se kommentar til korollar 2 i 4).

V2 € E,.

Utvidelse av en tallkropp

La E vere en tallkropp og la by,... ,bg veere komplekse tall. Med E(by,. .. ,bk)
forstar vi tallkroppen generert av by, . .. , by over E, det vil si den minste tallkroppen
i C som inneholder E og bi,...,b,. Vi sier at tallkroppen E(bs,...,bx) er en
utvidelse av tallkroppen E. Hvis utvidelsen av E er generert av ett element, altsa
av formen E(b), sier vi at vi har en enkel utvidelse av E.

Enhetsrgtter
Med en primitiv m’te enhetsrot vil vi forstd en lgsning w av ligningen z™ — 1 = 0,
med den egenskap at de m rottene til denne ligningen er w, w?, w®, ..., W™},

w™ = 1. Eksempelvis er

27i/m

2 .. 2w
w=e€ = C0S — +18ln —
m m

en primitiv m’te enhetsrot. Observer at dersom m er et primtall, sa er enhver
m’te enhetsrot w forskjellig fra 1 en primitiv m’te enhetsrot. Mengden av alle
enhetsrgtter i C vil vi betegne med £.
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Rene ligninger

En ren ligning er en ligning av formen ™ — g = 0. Dersom z = r er en rot i denne
ligningen, s& er de m rgttene gitt ved r, wr, w?r, ..., w™ 'r, der w er en primitiv
m’te enhetsrot. Vi betegner en slik rot med det flertydige symbolet r = %/a (eller

r = a'/™), og sier at r er en m’te ot av a.

Polynomer og rasjonale funksjoner over en tallkropp

Med et polynom i én variabel x over en tallkropp E mener vi et uttrykk av formen
f(@) = anzg™ + an_12" "+ + a1z +ao,

der koeflisientene ag, ay,---ay, er elementer i E. Vi sier at graden til f(x) er n
dersom a, # 0. Dersom a, = 1, sier vi at polynomet er monisk. Man betegner
mengden av polynomer i z over E med F[z]. Med en rasjonal funksyon iz over E
mener vi en kvotient mellom to polynomer av denne form.

Mer generelt far vi bruk for polynomer og rasjonale funksjoner i flere variable.
Med et polynom f(z1,...,Z,) i n variable z1, ..., 2, over E mener vi en endelig
sum av formen

f(xlv s axn) = Z (liliz_,,znl?lllﬁb'? - .’E;” s
der koeffisientene a;,;,. ;, ligger i E, og i1, i, ..., i, er hele tall > 0. En rasjonal
funksjon i 1, ..., , over E defineres tilsvarende som en kvotient mellom to slike

polynomer.

Den generelle n’tegradsligningen

Med en generell n’tegradsligning vil vi forsta en ligning av formen

(1) T+ 12" 4t az+ag=0,
der ag, a1, ..., an—1 er komplekse tall som vi antar er uavhengige i betydningen
algebraisk uavhengige over Q. Dette betyr presist at dersom f(ag, a1, ..., Gn—1) =

0, der f er et polynom i n variable med koeflisienter fra Q, sa er f lik nullpolynomet.
(Man kan vise at det er ekvivalent & anta algebraisk uavhengighet over tallkroppen
Q(&), det vil si over den minste tallkroppen som inneholder Q og enhetsrgttene £.)

Enhver ligning av n’te grad over C har n rgtter i C (bevist av Gauss i 1799),
og vi betegner rgttene i (1) med z1, ..., z,. Rgttene x1, ..., =, til (1) er igjen
uavhengige hvis koeflisientene ag, ..., a,_1 er det. Beviset for dette er ikke helt
elementzert. Som en alternativ mate & betrakte den generelle n’tegradsligning pa
kan en tenke seg at z1, ..., x, er n uavhengige komplekse tall som er rgtter i en
n’tegradsligning (1). Koeffisientene aq, ... ,a,-1 i (1) er symmetriske polynomer
ix1,...,Zn, og det fglger da av fundamentalteoremet for symmetriske polynomer
(se 4) at ao,...,a,_1 0gsd er uavhengige.

Motsetningen til en generell ligning er en spesiell ligning. I en spesiell ligning er
koeflisientene tall som er algebraisk avhengige over Q. Et eksempel pa en spesiell
femtegradsligning er

z° — 2625z — 61500 = 0.
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Euler (1707-1783) studerte denne ligningen og fant at den hadde en rot £ = & som
kunne uttrykkes ved rotutdragninger:

a= {’/75(5 +4V10) + §/225(35 +11/10)
+ §/225(35 ~11V10) + {‘/75(5 - 4v/10).

Algebraisk lgsning av ligninger

Med algebraiske operasjoner forstar vi de rasjonale operasjoner (addisjon, subtrak-
sjon, multiplikasjon, divisjon) samt rotutdragninger. En forelgbig definisjon av
begrepet “algebraisk lgsning” av n’tegradsligningen (1) er fglgende: Det fins en
formel som inneholder kun de algebraiske operasjonene anvendt pa koeffisientene
4,01, .. ,an-11 (1), og som gir en rot i (1). Vi skal nd gi en presis definisjon: La
F=Q(&,a9,0a1,...,0,-1) veere den minste tallkroppen i C som inneholder de ra-
sjonale tallene Q, enhetsrgttene &, og koeflisientene ag, ay,... ,a,-1. Tallkroppen
F representerer det som er “kjent”, de gitte “data”, og oppgaven er a uttrykke
rgttene 1,... , 2z, til (1) ved hjelp av disse data. Med en radikalutvidelse K av F
mener vi en kjede av enkle kropputvidelser der vi starter med F og ender med K :

F=FyCFCF,C---CFy_1CFy=K,

slik at F;11 = F;(n;), der 7; er rot i en ren ligning 2P — ¢; = 0 hvor & e Fy op;er
et primtall, og i = 0,1,... ,N — 1. Altsd er n; = %/¢, = 51.1/’".

Definisjon: n’tegradsligningen (1) kan lgses algebraisk dersom det fins en radikal-
utvidelse K av F slik at minst én av rgttene z1,... ,z, til (1) ligger i K.

Kommentar 1. Antagelsen om at p;’ene er primtall innebaerer ikke noe tap av
generalitet, idet ™™¥b = "3/ ™¥/b. Altsa er enhver m’te rot en suksesjon av g;’te
rgtter, der m = qfl q’2c2 ... qlk’ er primtallsfaktoriseringen av m.

Kommentar 2. Ifglge Abel (korollar til teorem 3 i 4) kan et tall i F;;; uttrykkes
pa formen i )

bo + b1§i1/pi + bgf?/m et bpi_lgl(m*l)/m ’

der b'ene ligger i F; fori =0,1,... ,N—1. La x4 veere en rot til (1) som ligger i K =
Fn, og uttrykk x ved tall i Fiy_; som ovenfor. Ved gjentatte anvendelser av denne
uttrykksformen helt til man kommer ned til F' = Fj, fir man en lgsningsformel for
roten zj, der enhetsrgtter og koeffisientene til (1) inngar, samt rotstgrrelser bygget
opp av disse. Dette er den presise forklaring pa hva vi mener med at en rot i (1)
kan gis som et algebraisk uttrykk i koeffisientene ag, a1, ... , ay.

Kommentar 3. Dersom den generelle n’tegradsligningen (1) kan lgses algebraisk
sa kan enhver spesiell n’tegradsligning lgses algebraisk: Man innsetter de numer-
iske koeffisientene til den spesielle ligningen istedet for a;-ene i formelen for roten.
(Selv om dette synes intuitivt opplagt, si er det en subtil vanskelighet her som vi
imidlertid ikke vil g& neermere inn pa.)
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/

3. De klassiske lgsningene av annen-, tredje- og
fjerdegradsligningene

A. Den generelle annengradsligningen

Lgsningen av den generelle annengradsligningen
24+ az+a=0

har veert kjent siden antikken. Som kjent er de to rgttene x; og x2 gitt ved

1
x1=——2—+§ a? — 4ao

a1 1
21)2:——2-—5 a%-—4a0

Vi ser at /a2 — dag = 1 — 2.

Konklusjon: Rottegnet som forekommer i lgsningen av den generelle annengrads-
ligningen er en kvadratrot og kan uttrykkes som et polynom i rgttene med rasjonale
koeffisienter.

B. Den generelle tredjegradsligningen

Den ferste lgsningen som ble funnet av den generelle tredjegradsligningen
(%) 3 4+ agz® + a1+ a9 =0

skyldes Scipione del Ferro (1465-1526), som var professor ved universitetet i
Bologna til sin dgd. Lgsningen ble senere uavhengig oppdaget av Nicolo Tartag-
lia (1505-1557). Vi skal presentere nedenfor den metoden som Gerolamo Cardano
(1501-1576) gir i sin bok “Ars Magna”, forst trykket i Niirnberg i 1545. Cardano
var forgvrig den fgrste som introduserte komplekse tall a + V/—b i algebra, selv
om han hadde store betenkeligheter med det. (Om alle intriger, kontroverser og
hemmeligholdelser omkring tredje- og fjerdegradsligningene, se [32] og [36].)

Fgrst fjerner man annengradsleddet i (i) ved & foreta substitusjonen z = y—az /3.
Innsatt i (i) far man

(i7) v +py+qg=0,

der p = a1 — (a3/3), ¢ = (2a3/27) — (az2a1/3) + ao. Na kommer det avgjgrende
knepet: Sett y = u + v og innsett i (%):

@) ud 4+ v° + (Buv +p)(u+v)+¢=0.
Man palegger nd u og v betingelsen

(iv) 3uv = —p
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(og altsd udv® = —p3/27.)
Av (#4) far man da

(v) ud 4+ 03 = —q.
(iv) og (v) gir n& (se Vidte-relasjonene i 4) at u® og v* er rgtter i annengrads-

polynomet

p3

i tP+qgt——==0,
(vi) +at - oo
og altsa finner man
2 3
(vid) W=t T
S 4 e P
2. 4 27

Altsd er lgsningen av den generelle tredjegradsligningen tilbakefgrt til lgsningen av
en annengradsligning (vi) (“den kvadratiske resolventen til tredjegradsligningen”)
og til rene ligninger av tredje grad (vis). Tar man i betraktning at 3uv = —p fra
(iv), og at kubikkrgtter kun er bestemt opp til en tredje enhetsrot, sd fir man av
y = u + v at de tre rgttene y1,y2,y3 til (i) er gitt ved formlene:

2 3 2 3
(vii) w=il-+ %+%+¢j_ s

Her er w en primitiv 3dje enhetsrot. Lgsningen (viii) kalles Cardanos formler. Ved
& bruke at 1 +w +w? = 0, s& fir man av (vi):

” 2 31
(iz) i/‘g + qz + g“ = :9;('!/1 + wyz + w’ys)

VY S 2
\/ 5 1 tor =3ty twys)
Av (iz) utleder man na lett at

(@) L2 = Lo D 1) - ) )

Innsett nd i (viii), (iz) og (z) for y; = z; + (a2/3) = z; — (1/3)(x1 + 2 + 3),
1 =1,2,3, og for p og q uttrykt ved ao, a1, as.

Konklusjon: I den algebraiske lgsningen av den generelle tredjegradsligningen
(i) er det innerste rottegnet en kvadratrot og det neste rottegnet en kubikkrot.
Rotutrykkene som forekommer i lgsningen, er polynomer i rgttene 1,2, 3 med
koeffisienter i Q(w), der w er en primitiv tredje enhetsrot.
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C. Den generelle fjerdegradsligningen

Den algebraiske lgsningen av den generelle fjerdegradsligningen ble funnet av
Lodovico Ferrari (1522-1565), Cardanos sekreteer og venn. Ferrari reduserer pro-
blemet med & finne lgsningen av fjerdegradsligningen til a lgse en tredjegradslig-
ning, den sdkalte “kubiske resolventen” til fjerdegradsligningen. Ferraris lgsning
stdr beskrevet i den ovenfor omtalte bok av Cardano. Vi skal her beskrive en
lgsningsmetode som skyldes Euler, og som er analog til den metoden vi benyttet
for tredjegradsligningen.
Man fjerner forst tredjegradsleddet i den generelle fjerdegradsligningen

(%) z* + asz® + azr® + a1z +ap =0,
ved & foreta substitusjonen x = y — (a3/4). Man far da (i) pa den enklere formen
(i) vt +py +ay+r=0,

der p, g, r er visse polynomer i ag, a1, az, as som lett kan bestemmes. Man setter né
i analogi med tredjegradsligningen

1
(441) y.:§(u+v+w)‘
Setter man (%) inn i (4i), sd far man
(iv) (u? + 0% + w?)? + 4(uv + vw + wu)(u? + v* + w? + 2p)

+4p(u? 4+ 0% + w?) + 8(uvw + ¢)(u + v + w) + 4(u*v? + v?w? + wu?) +16r =0
Man palegger na fglgende betingelser pa u, v, w:
(v) w40 +w?=-2p

UVW = —¢q

(og altsd u?v?w? = ¢?).

Setter man (v) inn i (iv), sa far man
(vi) uw?v? + w?w? +v*w? = p® - 4r.

Av (v) og (vi) far man nd (se Victe-relasjonene i 4) at u?,v? og w? er de tre rgttene
til tredjegradspolynomet (“den kubiske resolventen”)

(vii) 3+ 2pt? + (p? —4r)t — ¢* = 0.
La t1,ty og t3 veere rgttene i (vii). Da er

(viid) u=Vi, v=vVh, w=vVis
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Fortegnene i (viii) bestemmes av uvw = —¢ i (v). Kun fire kombinasjoner er mulige
og man finner de fire rgttene y1,y2,ys og ya til (ii) ved & sette inn i (7i4):

(i) n = (VB +VE+VE)
v =3 (VB ~ Vi~ V)
v =3 (~VE+ VR - V)
vi =5 (VB — Vi + Vi)

Av (iz) far vi lett at
(z) Vii=y+y2, Vh=yi+ys, Vis=y1+vs.

Av (z) finner vi t;,%, og t3 som polynomer i y1,y2,y3,ys. Ved & bruke resultatene
fra B far vi at rotuttrykkene som gir rgttene t1,to og ts til (vii), kan uttrykkes ved
polynomer i t, to, t3, og altsd ved polynomeriyi, y2, s, Y4, med koeflisienter i Q(w),
der w er en tredje enhetsrot. Innsetter vi til slutt y; = z; + (a3/4),1 = 1,2,3,4, der
a3 = —(z1 + T2 + 3 + x4), sa slutter vi fglgende:

Konklusjon: I den algebraiske lgsningen av den generelle fjerdegradsligningen
(i) er det innerste rottegnet en kvadratrot og det neste rottegnet en kubikkrot.
Rotuttrykkene som forekommer i lgsningen, er polynomer i rgttene 1,2, %3, T4
med koeffisienter i Q(w), der w er en primitiv tredje enhetsrot.

Vi skal se, nar vi i 6 gjennomgér Ruffinis og Abels resultater om strukturen av
en algebraisk lgsning av den generelle n’tegradsligningen, at konklusjonene ovenfor
for annen-, tredje- og fjerdegradsligningene passer inn i et mgnster.

La oss bruke den algebraiske lgsningen av den generelle tredjegradsligningen i B:

z° +a2x2 4+ a1z +ap =0,

som eksempel pa en radikalutvidelse K av F' = Q(&, ap, a1, az), der £ er enhets-
rgttene, slik at en av rgttene xq, T2, 73, (faktisk alle tre!) ligger i K. Vi har nemlig

F=FCF CFCF=K,

2 3
F1=F0(\/%+%>7

s 2 P
F,=FR \/—%—}- )

q
2

der

NI%

F3s=F

- w
|§\
|
|
NS
+
w|"@
3|

og der p = a1 — (a2/3) , ¢ = (2a3/27) — (aza1/3) + ao.
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4. Den klassiske ligningsteoriens to pillarer

A. Permutasjoner, polynomer i n variable, symmetriske polynomer

Vi tar utgangspunkt i sammenhengen mellom rgttene til en n’tegradsligning og dens
koeffisienter. Denne sammenhengen ble fgrst pavist av den franske matematikeren
Francois Viete (1540-1603), som forgvrig skapte den moderne algebraiske nota-
sjonen. Han brukte bokstaver til 4 betegne ikke bare ukjente stgrrelser, men ogsa
kjente stgrrelser. Dessuten innfgrte han betegnelsene “polynom” og “koeffisient” i

algebra.
La som fgr
"+ a1z 1+ Faz+ar=0
vaere den generelle n’tegradsligningen og la rgttene veere x4, o, -, z,. Da har vi
faktoriseringen

x"+an_1x"“1+~~+a1:c+a0:(x—$1)(x—x2)-~-(:c—a:n).

Multipliserer vi ut hgyresiden og sammenligner koeflisienter, far viViéte-relasjon-
ene:

(4) —Qp1=T1+Za+ + Tpo1 +Tp =51
Op—2 = T1T2 + -+ T1Tp +T2T3 + - + Tp_1Tp = E TiTj = S2
1<i<j<n

(—1)"a0 =T1X2 " Tp—-1Tp = Sp -

$1,82,... , 5y kalles de elementere symmetriske polynomer i de n variable zq, ...,
Zn. Et polynom f(zi,...,2,) i de n variable zy, ... ,z, over tallkroppen E kalles
symmetrisk dersom

f(xo(1)7$a'(2)7 .. 7xa(n)) = f(mh-TZ?' .- axn)

for enhver permutasjon o av symbolene 1, 2, ..., n. Vi innfgrer notasjonen
fo(z1, ..oy Zn) = f(Zoq)s -, To(n)) Betingelsen blir da f, = f for enhver o.
Hva er s en permutasjon? En permutasjon av de n symbolene 1, 2, ..., n er
en énentydig avbildning ¢ av mengden av disse symbolene pa seg selv. Dersom
(1) = i1, 0(2) =4, ... ,0(n) = in, s& bruker man fglgende notasjon for o :

(12 n)
o=1. . ", .
11 129 in

Denne notasjonen skyldes Cauchy [10], som forgvrig kalte permutasjoner for “substi-
tusjoner”. I sitt arbeide fra 1815 generaliserte han noen av de resultater Ruffini
tidligere hadde oppnadd. Med produktet av to permutasjoner o; og o2, betegnet
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med 7102, mener vi sammensetningen, eller komposisjonen, av o1 og o2. Det vil si
forst anvender vi avbildningen o3 og s& oy.

Eksempel. Lan =3 og la

(123 (123
1=\231) 27 \132)"
(123
1927\ 213/ "

Med den inverse permutasjonen til permutasjonen o (vi betegner den inverse med

o~1) mener vi simpelthen den inverse avbildningen til 0. Det er da klart at oo~ ! =

o~ 1o =id, der id er identitetsavbildningen.

Da er

Eksempel. Lan =3 oglaoc = (12%). Daero™! = (323)ogoot =07 lo =
(123) =id.

Mengden av alle permutasjoner av n symboler med sammensetningsregelen er
det fgrste eksempelet pa en gruppe som ble studert i matematikkens historie. Denne
spesielle gruppen kalles den symmetriske gruppen pa n symboler og betegnes med
S,. I Lagranges og Ruffinis studier av S,, er perspektivet helt sett ut fra lignings-
teorien: Hva som var relevant for dem var & finne hvor mange forskjellige (formelle)
verdier et polynom i n variable kunne anta under alle mulige permutasjoner av de
variable. Man kan si at de studerte de mulige indekser undergrupper av S, kunne
ha, i stedet for undergruppene selv. Det var forst med Cauchys [11] siste arbeider
fra 1844-46 viet permutasjoner at gruppeperspektivet trer tydeligere frem. (Man
m4 huske at Galois’ arbeider enda ikke var publisert og alminnelig kjent.)

Vi vil infgre en alternativ notasjon for permutasjoner som ogsa skyldes Cauchy
og som skal vise seg & vare hendig. Med en k-sykel, 1 < k < n, mener vi en
permutasjon o i S, som ombytter k symboler i {1,2,...n} syklisk og fikserer de
andre. Det vil si det finnes k distinkte symboler 1,4z, ... ,ir i {1,2,... ,n} slik at
o(i1) = 42,0(i2) = 43, ... ,0(ix) = i1, og de andre symbolene avbildes identisk pa
seg selv. Vi betegner o med

g = (lezzk)

Observer at

o®=00---0=1d (k faktorer).

Eksempel. Lan = 5. Daer o = (123) en 3-sykel, og i var tidligere notasjon skrives

osom o= (;3753)-

2-sykler inntar en spesiell stilling. De kalles for transposisjoner. Enhver permuta-
sjon o kan skrives som et produkt av transposisjoner. Dette vises enkelt ved fgrst &
pavise at ¢ kan skrives som et produkt av k-sykler og deretter at enhver k-sykel er
et produkt av transposisjoner. For eksempel er (efg...pq) = (eq)(ep) ... (eg)(ef)-
I Ruffinis “gruppeteoretiske” bevis for umuligheten av en algebraisk lgsning av
den generelle n’tegradsligningen for n > 5 er det to relasjoner mellom 3-sykler og
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5-sykler som er fundamentale: La r, s, t, u, v vaere fem distinkte symboler i mengden
{1,2,...,n}. Daer

(i) (rstuv) = (ruv) (rst)

(131) (rst) = (rtsuv) (vusrt),

noe man direkte verifiserer.
La oss na returnere til polynomer i n variable. Et eksempel p& et polynom f
som tkke er symmetrisk, er:

(iv) f(z1, 22,23, 74) = 2122 + T34 .

Her er n = 4, og vi observerer at dersom
(1234 (1234
7= \1324)° "7 \1432)"
sé gir (iv)

fa(171,$2,$3,334) = f($1,$3,$2,334) =21T3 + Toxs # f($1,$2,563,$4)
og
fr(@1, @2, 23, 24) = f(z1, 24,23, 22) = 2124 + T223 # flz1, 22,23, 24) .

Man overbeviser seg om at f antar ngyaktig tre forskjellige verdier ved alle mulige
permutasjoner i Sy, nemlig de tre verdiene f = f;q, f, og fr.

Vi kommer né til fundamentalteoremet for symmetriske polynomer. Dette teo-
remet ble bevist av den engelske matematikeren Waring (1734-1798) i 1762. Han
presenterte et nytt bevis 1 1770 [34], og det er dette siste beviset som vi finner
i algebraleerebgker senere. Beviset er helt elementsert og var standard kost i alle
eldre leerebgker i algebra, se for eksempel [23,29,35]. For en nyere referanse se [31].

Fundamentalteoremet for symmetriske polynomer. La f(z1,...,z,) vare

et symmetrisk polynom i de n variable zy,- - - , z, over tallkroppen E. Da finnes et

éntydig bestemt polynom g(yi,...,yn) i de n variable y1,... ,y, over E slik at
flx1, - yzn) = 9(s1,--- ,8n),

der 51, , sp er de elementaere symmetriske polynomene i z1,... ,z,.

Eksempel. La n = 2 og betrakt det symmetriske polynomet f(z1,z2) = 2 + z2.
Da er
o3+ 123 = (21 +22)? — 22120 = 5% — 25,

Altsa er f(z1,z2) = g(s1,52), der g(y1,92) = ¥5 — 20.
Korollar. Dersom z1,... ,z, er de n rgttene til n’tegradsligningen
"+ ap_12" 4+ +arz+ag =0,

og f(y1,...,yn) er et symmetrisk polynom i de n variable yi,...,y, over tall-
kroppen E, sd vil f(x1,...,%y) vaere et element i tallkroppen E(aq, ... ,a,-1).

Bevis: Bruk Viéte-relasjonene (3).
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B. Den Euklidske algoritmen, stgrste felles divisor for to polynomer,
irredusible polynomer, binomiske polynomer

La
G(z) = bpa™ + bp_12™ 4o+ b1z + by, by £0

h(z) = Rz + 12"V + ez tco, cx#0

veere to polynomer i E[z]. Ved polynomdivisjon av g(x) med h(x) finner man
polynomer g(z) (“kvotienten”) og r(z) (“restleddet”) i E|[z] slik at

(v) 9(z) = q(z)h(z) +r(z)

grad (r(z)) < grad (h(x)).

Polynomene q(z) og r(z) er éntydig bestemt ved (v). Dersom r(z) = 0, det vil
si r(z) er nullpolynomet, s& sier vi at h(z) er en divisor i g(xz). Som eksempel
nevner vi det tilfellet at g(a) = 0, det vil si @ € C er en rot til g(z). Settes da
h(z) = z — «, si ser man lett av (v) ved innsetting = « at r(x) er nullpolynomet.
Altsé er £ — « en divisor i g(x). P4 denne maten viser man at g(x) kan skrives som
9(z) = bp(z — a1)(z — a2) -+ - (& — Qp,), der a;’ene er rgttene til g(z).

Den Euklidske algoritmen fremkommer ved suksessive anvendelser av divisjons-
algoritmen ovenfor. Man far fplgende skjema for den Euklidske algoritmen:

(vi) 9(x) = g(z)h(z) + r(z)

h(z) = q1(z)r(z) + ri(z)
r(z) = g2(z)r1(z) + r2(z)
ri(z) = gs(z)ra(z) + r3(x)

r1—2(z) = q(x)ri-1(z) + ri(z)
ri—1(z) = qa(z)ri(z) .

Prosessen stopper nér restleddet blir 0, noe som ma inntreffe fgr eller siden da
gradene til restleddene r;(x) avtar. Av skjemaet (vi) leser man nedenfra og opp
fgrst at ry(z) er en divisor i r;_1(z), s& at () er en divisor i r_2(z), og sd videre.
Konklusjonen er at 7;(z) er en divisor i bade h(z) og g(x). Men mer enn det:
Dersom s(z) € E[z] er en divisor i bade h(z) og g(z), s far man av skjemaet
(vi) lest ovenfra og ned fgrst at s(z) er en divisor i 7(x), dernest at s(z) er en
"ditisor i r1(z), og sd videre. Konklusjonen blir at s(z) er en divisor i r;(x). Hvis
vi normaliserer r;(z) til et monisk polynom ved & multiplisere med et passende tall
i E, s& har vi ved resonnementet ovenfor vist at to polynomer h(z) og g(z) i E[z]
har en éntydig bestemt stgrste felles divisor i E[x], ut fra fglgende:

Definisjon. Stgrste felles divisor til polynomene h(z) og g(z) i E[z] er det éntydig
bestemte moniske polynomet d(z) i E[z] med fplgende egenskaper:

(i) d(z) er en divisor i bade h(z) og g(z).
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(ii) Dersom s(z) er en divisor i bade h(z) og g(x), s er s(z) en divisor i d(z).
Vi betegner d(z) med (g(z), h(z)).

Teorem 1. La g(z) og h(z) vare to polynomer i E[z] og la d(z) = (9(z), h(z))
vaere storste felles divisor. Da finnes to polynomer s(z) og t(z) i E[z] slik at

d(z) = s(z)g(z) + t(z)h(z) .

Bevis: Betrakt skjemaet (vi) ovenfra og ned. Av gverste linje far vi r(z) =
g(z) — g(x)h(x). Sett dette inn i neste linje og uttrykk ri(x) ved g(z) og h(z).
Ved suksessivt & sette inn i pafglgende linje finner man til slutt at r;(z) kan ut-
trykkes pa gnsket méte ved g(z) og h(z), og dermed d(z) ogsé ved & normalisere

ri(z).

Definisjon. Et polynom g(z) € E[z] er irredusibelt over tallkroppen E dersom det
er umulig & faktorisere g(z) = g1(x)g2(x), der g1(z) og g2(z) er polynomer i E[z],
begge av grad > 1. ’

Vi skal n8 bevise et fundamentalteorem ved et helt elementaert bevis som skyldes
Abel. Han anvendte det med stor effekt i sine ligningteoretiske undersgkelser, blant
annet i sitt bevis for umuligheten av & lgse den generelle n’tegradsligningen alge-
braisk nar n > 5. Dette fundamentalteoremet og dets umiddelbare konsekvenser,
som vi formulerer som’ korollarer, inngar idag som “folklore” i Galois-teorien og
kroppteorien, gjerne knyttet til begrepet “minimalpolynom”.

Teorem 2 [4, s. 480]. La h(z) vere et irredusibelt polynom over tallkroppen E.
La g(z) € E[z] ha en felles rot o med h(z). Da er h(z) en divisor i g(x). Altsd er
alle rgttene til h(x) ogsa rgtter til g(x).

Bevis: La d(z) = (h(z), g(z)). Siden d(z) er en divisor i h(z) og h(z) er irredusibel,
s& ma enten d(x) = 1 eller si er d(z) lik ah(z) for passende a € E. Anta ad
absurdum at d(z) = 1. Da finnes ifglge teorem 1 polynomer s(z) og t(z) i E[z] slik
at

1 = s(x)g(x) + H(x)h(z).

Ved 4 sette £ = « inn i denne ligningen far man en motsigelse idet hgyresiden blir
0. Altsd ma d(z) = ah(z) for passende a € E. Siden d(z) er en divisor i g(z), er
selvfglgelig ogsd h(x) en divisor i g(z). Dette fullfgrer beviset. :

Korollar 1. Dersom « er rot til et irredusibelt polynom h(z) over tallkroppen E,
s& kan ikke o veere rot til et polynom g(z) € E[z] av lavere grad enn h(z) uten at
g(z) er nullpolynomet.

Bevis: Dersom g(a) = 0, s4 er ifglge teoremet h(z) en divisor i g(x). Dette er kun
mulig dersom g(z) = 0, da grad(g(z)) < grad(h(z)).

Korollar 2. La o vere en rot til det irredusible polynomet h(z) = z* +c,_12* 71 +
‘... 4 c1x + co over tallkroppen E. La E(a) vere den enkle utvidelsen av E som «
genererer over E. Da er

E(Oz) = {bO +b+--- +bkﬁ1ak_1|b0,.‘. ybp—1 € E}
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Dersom 3 € E(a) og 8= by + by + -+ + bg_1a*71, der bi-ene er i E, si er disse
entydig bestemt.

Bevis: Da h(a) =0, sd er a® = —(cg—10*7 1+ -+ cia+cp). Man kan bruke dette
til & uttrykke a*t1, o**2 etc. ved potenser of av o der i < k—1. Det er da klart at
dersom f3; og [ er to elementer i A = {bg+bia+---+bg_10*" by, -+ ,bp_1 € E},
s& er summen, differensen og produktet av 81 og (2 igjen i A. Dessuten er E C A
og o € A. S& det gjenstar kun & vise at dersom 3 € A,3# 0,sd er 371 € A. Lana
B =g(a)#0,der g(z) = by +bix+---+bp_12*71 € E[z]. Da ma (h(z), g9(z)) = 1,
og altsé finnes det ifglge teorem 1 polynomer s(z) og t(z) i E[z] slik at

s(x)g(z) + t(x)h(z) = 1.

Sett x = . Siden h(a) = 0, far vi at s(a)g(a) = 1, det vil si 871 = 1/g(a) = s(a).
Dette betyr at E(a) = A, som vi skulle vise.
Dersom § € E(a) og

B=by+bia+---+ bp_10* ' =co+cra+cpo1abt ,

séer (bo—co) + (by —c1) + -+ + (bg—1 — cx—1)aF~1 = 0. Ifglge korollar 1 er da
bo = co, b1 = c1,...bg—1 = cx—1. Dette viser entydigheten.

Kommentar. Et essensielt punkt i beviset for korollar 2 er den vidtrekkende
generaliseringen av knepet med “rasjonalisering av nevneren” som vi mgter i enkle
situasjoner, for eksempel i tallkroppen Q(v/2). (Se 2.)

Det irredusible polynomet vi eksklusivt skal mgte i denne artikkelen er det binom-
iske polynomet h(z) = 2P — a € E[z], der p er et primtall. Vi presenterer nd Abels
bevis for at dette er irredusibelt.

Teorem 3 [5, s. 228]. Det binomiske polynomet z? — a, der a er et element i
tallkroppen E og p er et primtall, har enten én rot i E, eller s& er det irredusibelt
over E.
Bevis: Anta 1P —a ikke har noen rot i E, og anta ad absurdum at 27 —a = f(z)g(z),
der f(x) og g(z) er moniske polynomer i E[z] av grad henholdsvis m og n, med
m,n > 1 6g m+n = p. Rottene i den rene ligningen z? —a = 0 er r,wr, ... ,wP™1r,
der w er en primitiv p-te enhetsrot og r er én rot i P — a = 0. Da er

2 ~a=(z—r)(z—wr) - (z—wfr) = f(z)9(x).
Herav far vi at konstantleddene A og B til henholdsvis f(z) og g(z) ma veere av
formen A = w*r™, B = w'r™. Siden m 4+ n = p og p er primtall, er m og n relativt
primiske. Altsa finnes hele tall ¢ og j slik at im + jn = 1. Altsa far vi:

C = AIBI — ik+ilpim+in _ ikl

Da blir C? = rP = a. Siden C € E, har vi en motsigelse til at 2P — a ikke har noen
rot i E. Altsa er 2P — a irredusibel over E.

Korollar. Anta at det binomiske polynomet zP — a, der a ligger i tallkroppen E
og p er et primtall, ikke har noen rot i E. La r = ¢/a = al/? veere en rot til z? — a.
Da er

E(r) = {bo + blal/p + b2a2/” +---+ bppla(p_l)/plbo, ey bp_l S E} .

Bevis: Dette fglger umiddelbart av teoremet og korollar 2 til teorem 2.
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5. Lagranges analyse av lgsningene av tredje- og
fjerdegradsligningene

Del Ferros og Ferraris algebraiske lgsninger av henholdsvis den generelle tredje- og
fjerdegradsligningen skjedde ved ad hoc kunstgrep. Man forsgkte i de neste 200
ar med liknende kunstgrep & lgse den generelle femtegradsligningen uten & lykkes.
Viktige bidragsytere til ligningsteorien frem til aret 1770, ved siden av Viete, var
Tschirnhausen (1651-1708), Bezout (1730-1783) og selvfglgelig Euler. Aret 1770
markerer et veiskille i ligningsteoriens historie. Ved et pussig sammentreff av til-
feldigheter ble det dette aret offentliggjort fire betydelige arbeider alle viet lignings-
teorien. Ved akademiene i Siena (Italia), London, Paris og Berlin ble det presentert
avhandlinger av henholdsvis Malfatti (1731-1807), Waring, Vandermonde (1735~
1796) og Lagrange [22]. Hver av disse avhandlingene inneholder viktige nye bidrag
til ligningsteorien. Men det var Lagranges arbeid som hadde desidert stgrst spenn-
vidde og perspektiv, og hans “Réflexions sur la résolution algébrique des équations”
ble en hjgrnesten for ligningsteorien. Ruffini, Abel og Galois star alle i stor gjeld
til Lagranges analyse av og forklaring pa hvorfor tredje- og fjerdegradsligningen lar
seg lgse algebraisk. Samtidig gir hans analyse den forste indikasjon pa hvorfor den
generelle femtegradsligning ikke kan lgses algebraisk. Vi skal né gi et kort resymé
av Lagranges arbeide.

Joseph Louis Lagrange
(1736-1813)

Lagrange observerte fgrst at rotuttrykkene som forekommer i lgsningen av de
generelle tredje- og fjerdegradsligningene kunne uttrykkes som polynomer i rgttene,
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med koeffisienter bestiende av rasjonale tall og enhetsrgtter. Ved & studere hvordan
disse polyomene endret seg under permutasjoner av rgttene fant han grunnen til at
den algebraiske lgsningen var mulig. Dette overbeviste ham om at ngkkelen til &
finne den algebraiske lgsningen til den generelle n’tegradsligningen

(%) " + an_lx”_rl +---4+ax+ag=0

med rgtter zi,...,Tn, var & underspke om det fantes polynomer f(z1,...,Zn) i
rottene z1, ... , T over tallkroppen Q(&), som antok feerre enn n verdier under alle
mulige permutasjoner av z;’ene. La nemlig z; = f(21,...,2,), og anta at f antar
verdiene z1, 22, . . . , zm under alle mulige permutasjoner av x;’ene. Da vil

(1) 9(z) = (z—21)(z — 22) - (2 = Zm)

veere et m’tegradspolynom i z der koeffisientene er symmetriske polynomer i
T1, ..., Tn. lplge korollaret til fundamentalteoremet for symmetriske polynomer (4
A), ligger koeffisientene til g(z) i tallkroppen F' = Q(&,a¢,01, ... ,an-1). Dersom
m < m, har vi altsi funnet et polynom av grad mindre enn n, som vi da ved induk-
sjon kan tenke oss at vi kan lgse algebraisk. Ligningen (%) kalles en resolventligning
til (*). La oss na demonstrere ved konkrete eksempler hvordan den generelle tredje-
og fjerdegradsligningen kan lgses pa denne maten.

For den generelle tredjegradsligningen z° + asz® + a1z + ag = 0 med rgtter
T1,%2,T3, velges

21 = f(z1,%2,23) = (z1 + w2 + w2x3)3,

der w er en tredje enhetsrot. Man viser lett at f antar kun to verdier ved alle
mulige permutasjoner av z1, 2, z3, nemlig

(i1) 21 = (21 4+ wrg + Wix3)?

29 = (z1 + Wz 4 wxs)®.

Altsé kan z; og 2o bestemmes som rgtter i en annengradsligning (“den kvadratiske
resolventen til tredjegradsligningen”), der koeffisientene ligger i F' = Q(&, ao, a1,
as), og altsa er “kjente data”. A bestemme disse koeffisientene krever elementeer,
men tidkrevende, regning. Resolventligningen blir

22 4 (243 — 9azay + 27ag)z + (a3 — 3a1)* = 0.
Av (i) far man na

(ZZ@) 1+ wro + w2:c3 = \3/21
T+ wWray + wrs = Yzo.

(Kubikkrgttene i (iii) er ikke uavhengige idet man har ¢/z; ¢/z2 = a3 —3ai, noe man
ser ved & multiplisere sammen venstresidene i (74i) og observere at dette produktet
er et symmetrisk polynom i z1, 2, Zs3.)

Av (iii) sammen med ligningen z; + 2 + 3 = —a2 kan man lett bestemme
rottene x1, T2, 3, og man finner igjen Cardanos formler (viii) i 3 (nar az = 0).
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For den generelle fjerdegradsligningen z* + a3z® + asz® 4+ a1z +ao = 0 med rgtter
Z1,T2,X3, T4, velges

21 = f(z1,22,73,%4) = (T1 + 22 — 33 — T4)” .

(Som Lagrange poengterer kunne man alternativt valgt f = hh, der h er den
komplekskonjugerte til h(x1, z2, T3, 24) = T1 + iT2 + i223 + 324 , * = —1.)

Man viser lett at f antar tre forskjellige verdier under alle mulige permutasjoner
av I1, T2, T3, T4, nemlig

(iv) 21 = (1 + T2 — T3 — z4)?
2o = (z1 — T2 + T3 — 24)°

23:(x1-—x2—x3+m4)2.

Altsd er 21, 2o, 23 rotter i en tredjegradsligning (“den kubiske resolventen til fjerde-
gradsligningen”), med koeffisienter i tallkroppen F = Q(,a0,01,a2,a3). Man
finner ved en del regning at resolventligningen blir

2% — (32 — 8ay)2? + (3a3 — 16a3ay + 1643

+16asa; — 64a0)z — (a3 — 4azaz +8a1)? = 0.
Av (i) f&r man

(v) T+ Ty — T3 — T4 =21
T1 — Lo+ T3 — Ty = /22
Ty — T2 — Tz + Ta = /23

(Kvadratrgttene i (v) er ikke uavhengige, idet produktet av venstresidene i (v) er
et symmetrisk polynom i z1, 2, T3, %4, Og viser seg & veere lik —a3 + 4azay — 8ay.)

Relasjonen z; + 2 + 23 + T4 = —a3 sammen med (v) gir na rgttene 1, T2, T3, T4
til den generelle fjerdegradsligningen, akkurat som i 3.

Hva med den generelle femtegradsligningen? Ifglge Lagranges filosofi skal man
oppsgke et polynom f(x1,... ,xs) over tallkroppen Q(£) i de fem rgttene z1,... ,zs
slik at f antar fzerre enn fem verdier under alle permutasjoner av rgttene. Dessuten,
og det er en implisitt forutsetning, ma f(z1,...,2s) veere av en slik beskaffenhet
at man er i stand til & beregne rgttene z1,...,zs ut fra kjennskapet til f og de
forskjellige verdier f antar. Det er nemlig lett & se at for alle n > 1 finnes et

polynom g(z1,... ,T,) med heltallige koeffisienter som antar to verdier under alle
permutasjoner av i,... ,ZTn, nemlig
(’U’L) g(xlv" 7$ﬂ) =

(z1 — 22) (21 — 23) -+ (€1 — Zn) (T2 — 23) (22 — T4) -+ (Tn—1 — Tn)

= H (I«, -—.’E]‘).

1<i<j<n
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Polynomet g antar verdiene ++/D, der

D= H ([L‘i—.’Ej)QEFZQ(S,ao,...anwl)

1<i<j<n

er den sakalte diskriminanten til den generelle n’tegradsligningen (*). Men kjenn-
skapet til ¢ er ikke av serlig hjelp til & finne rgttene z1,... ,2,. Nar man ser bort
fra polynomer av formen c¢; + c2g, der g er polynomet i (vi) og ¢1 og c2 er sym-
metriske polynomer i z1, ... , s, var Lagrange ikke i stand til & finne et polynom
f(zy,...,z5) i rottene til den generelle femtegradsligningen som antok ferre enn
fem verdier under alle mulige permutasjoner av zi,...,zs. (Det var Ruffini [27]
(1799) som forst beviste at et slikt polynom ikke eksisterer, og Cauchy [10] (1815)
utvidet dette resultatet for alle n > 5. I sitt fgrste “bevis” for umuligheten av
4 lpse den generelle femtegradsligningen algebraisk fra 1799 [27], bruker Ruffini
dette resultatet. Abel benytter seg av det samme resultatet i den “substitusjons-
teoretiske” delen av sitt bevis, og han krediterer Cauchy for dette.) Men selv om et
slikt polynom ikke eksisterer, er enda ikke alt hap ute om & lgse femtegradsligningen
algebraisk: Dersom nemlig polynomet z; = f(z1,... ,%,) i de n rgttene til den gen-
erelle n’tegradsligningen (*) antar m forskjellige verdier under alle permutasjoner
av Zi,...,Tn, s& kan godt m > n dersom bare den tilhgrende resolventligningen
(i) av m’te grad er en ren ligning, det vil si av formen g(2) = 2™ — b = 0, og altsa
zZ1 = %

Ut fra analogien med tredje- og fjerdegradsligningen, samt betraktningene vi har
redegjort for ovenfor, ble Lagrange for den: generelle n’tegradsligningen ledet til &
betrakte folgende polynom

(vit) 21 = f(T1,.-- ,Zn) = 21 + W2 4"z,

der w er en primitiv n’te enhetsrot. Det spesielle polynomet i (vii) kalles Lagrange-
resolventen til den generelle n’tegradsligningen. Lagrange viste at for n = 5 vil

denne vere rot i en ren ligning 2> — b = 0, der b igjen er et polynom, b =
g(z1,...,75), over Q() i rottene z1,...,xs5, og slik at g antar seks forskjellige
verdier under alle permutasjoner av z1,...,s. Derimot er b tkke rot i en ren

ligning. Dermed bryter Lagranges angrepsstrategi sammen for femtegradsligningen,
den strategi som fungerte for tredje- og fjerdegradsligningene, idet man ledes til en
resolventligning (som ikke er en ren ligning) av hgyere grad enn fem. Selv om han
uttrykker en viss tvil p4 grunn av dette, utelukker ikke Lagrange helt hipet om &
kunne lgse den generelle femtegradsligningen algebraisk.

I retrospekt kan man si at i det omtalte arbeidet til Lagrange finnes flere ansatser
til Galois’ senere definitive analyse av algebraisk lgsbarhet av ligninger. Dersom
man nemlig oversetter til “gruppespraket”, s& viser faktisk Lagrange den ene (og
“letteste”) implikasjonen i Galois’ teorem anvendt pa den generelle n’tegradslig-
ningen: Hvis S, er en opplgsbar gruppe, si er den generelle n’tegradsligningen
algebraisk lgsbar. (Se forgvrig dreftingen av dette punktet i [12].)
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6. Abels og Ruffinis bevis for at den generelle
n’tegradsligningen ikke kan lgses algebraisk nar n > 5

Abels teorem [3, s. 75]. Anta at den generelle n’tegradsligningen

(%) " +a, 12" 4+ +ar+ag=0
kan Igses algebraisk. La F = Q(€,ao,a1,.-. ,an—_1) veere tallkroppen generert av
enhetsrgttene £ og koeffisientene ag, a1, . .. , an,—1 over de rasjonale tall Q. Da finnes

en radikalutvidelse K av F' :
(**) F=FcFkhckhcCc---CFy_1CFy=K,

der Fip1 = Fi(m), " = & € F; ,p; primtall, ¢ = 0,1,...,N — 1, slik at K
inneholder minst én rot til (*), og der ng, 11, . .. ,ny—1 kan uttrykkes som polynomer
over Q(€) i rpttene x1, T, ...z, til (¥).

Vi skal gjennomga Abels bevis for dette teoremet til slutt. Fgrst vil vi presentere
Ruffinis ” gruppeteoretiske” resonnement, som basert pa Abels teorem gir et elegant
bevis for umuligheten av & lgse den generelle n’tegradsligningen algebraisk nar n >
5. (Det er egentlig Wantzels [33] forenklede versjon av Ruffinis [28] siste bevisforspk
fra 1813 vi presenterer.) ‘

Teorem. (Abel og Ruffini). Den generelle n’tegradsligningen kan ikke lgses alge-
braisk for n > 5.

Bevis: Anta ad absurdum at det finnes en algebraisk lgsning. Vi tar utgangs-
punkt i radikalutvidelsen (**) som ifglge Abels teorem eksisterer med de nevnte
egenskaper. (Vi kan selvfglgelig anta at F;1q # F; for allei =0,... ,N —1,1i (**).)
La oss forst betrakte den fgrste radikalutvidelsen (det “innerste rottegnet”) i (*¥*):
Fy C Fy, det vil si F C F(ng), der 1o er rot i den rene ligningen zP° — & ="0.
Her er & € F og po et primtall. La nd ng = f(z1,...,2n), der f er et polynom i
rgttene x1,...,x, til den generelle n’tegradsligningen (*) over tallkroppen Q(E).
Da mé f forandre verdi for minst én transposisjon, for ellers ville f veere et sym-
metrisk poynom i z1,... ,Z,, og folgelig no = f(x1,... ,z,) € F ved korollaret til
fundamentalteoremet for symmetriske polynomer i 4 A. Vi minner om at enhver
permutasjon kan skrives som et produkt av transposisjoner (4 A), og at man lett
innser at fyr = (fr)o for o,7 € S,,. Altsé finnes en transposisjon 7, som vi kan anta
(eventuelt etter renummerering av rgttene zi,...2,) er 7 = (12), slik at f # f-.
Siden nP° = &gy, har vi

(7’) f(l"lax%---,l’n)po:ﬁo-

Observer at hgyresiden & i (i) er en symmetrisk rasjonal funksjon i z1,...,2,
over Q(&), idet & € F = Q(&,a0,01,.-. ,an-1), 0g ethvert tall i F' er en kvotient
mellom to polynomer i ag,ay,... ,an—1 over Q(€). Anvend nd 7 = (12) pa begge
sider av identiteten ():

(1'7’) f(anxla"- ,:L.n)PO :£0~
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Paolo Ruffini
(1765-1822)

Av (i) ser vi at f(za,%1,... ,2Zyn) er enrot i 2P0 — &, =0, og altsd er
(423) f(z2,m1,..c,Zn) =wno =wf(z1,22,...,20),

der w er en primitiv py’te enhetsrot. Anvend nd 7 = (12) pa begge sider av identi-
teten (4i1):

f(x1,$27 .. 7x77.) = U-)f(CCQ,J:l,- .- 7xn) = UJQf(xl,.’L'Q, .. 7:L.n) .
Atsd er w? = 1 og fglgelig pg = 2. Med andre ord, det fgrste (“innerste”) rottegnet
i en algebraisk lgsning av den generelle n’tegradsligningen er en kvadratrot.

Vi pastar nd at no = f(x1,...,2,) er invariant under enhver 3-sykel o = (ijk),
det vil si f = f, for enhver 3-sykel . Anvend nemlig o pa begge sider av identiteten

(iv) flen,.. z0)? = .

Da far vi fo(21,... ,Tn)* = &, og altsd er

(v) fo(z1, o yzn) =smo = sf(z1,... ,2n),
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der s er +1 eller -1. Anvend o suksessivt to ganger pa begge sider av identiteten
(v), og bemerk at 0° = id :
foz = sfe = 52f

f=fr=5f,=5F.
Altsa er s® =1, og folgelig s = +1. Av (v) far vi f, = f, og pastanden er bevist.

Observasjon: I beviset for pastanden over har vi kun brukt at hgyresiden i (iv) er
invariant under enhver 3-sykel. Altsd har vi ogsa bevist: Hvis en rasjonal funksjon
h(z1,...,z,) over Q(E) er invariant under enhver 3-sykel, og g(z1,...,%s) er et
polynom over Q(€) slik at

g(z1,. .. zn)? = h(T1,. .., Tn),
s& er ogsd g(x1,... ,Tn) invariant under enhver 3-sykel.
Naer F; = F(’I’]()) = {bo +b1’l]0|b0,b1 S F}, siden ny = \/EE , & e F. Altsa er
hvert tall i Fy en rasjonal funksjon i z1,...,2, over Q(£) som er invariant under

enhver 3-sykel. Av observasjonen ovenfor slutter vi na at suksessive kvadratiske
utvidelser av F i radikalutvidelsen (**) gir opphav til tallkropper der hvert element
er en rasjonal funksjon i z1,...,z, over Q(£) som er invariant under 3-sykler.
Dette kan ikke lede til en algebraisk lgsning av den generelle n’tegradsligningen
nar n > 3 : Anta nemlig alle de enkle utvidelsene i (**) er kvadratiske og la
z; € Fy, der 2; € {z1,...,2,}. Ifglge ovenstdende er da g(z1,...,%,) = T
invariant under 3-sykler, hvilket er absurd. Altsd ma det i (**) forekomme en
forste utvidelse Fy 1 = Fi(n;) , n?* = & € F;, p; primtall, slik at & = h(21,... ,Tn)
er en rasjonal funksjon i z1,. .. ,z, over Q(€) som er invariant under 3-sykler, mens
ni = g(x1,... ,Tn) er et polynomizy,... ,z, over Q(£) som ikke er invariant under
alle 3-sykler. (Spesielt ma p; # 2). Vi har altsd

(vi) 9(x1, .. xn)P = h(z1,... ,20) =& .

\

La o veere en 3-sykel slik at g, # g. Anvend o pa begge sider av identiteten (vi) og
husk at hgyresiden er invariant under o :’

9o (T1y- oy Tn)PP = h(z1,... ,2n) = &.
Altsd er go(z1,... ,%,) en rot i 2P — & = o, og fplgelig
(vii) 9o = wg,

der w er en primitiv p;’te enhetsrot. Vi anvender o suksessivt to ganger pé identi-
teten (vii), idet vi bemerker at o3 = id :

902 = WGy = wg

9= g3 = wg, =w'g.

Altsd er w3 = 1, og fglgelig p; = 3.
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Vi skal vise at dette fgrer til en selvmotsigelse nar n > 5. Ifglge (i) og (111)i4 A
kan en 5-sykel skrives som et produkt av to 3-sykler, og en 3-sykel kan skrives som et
produkt av to 5-sykler. Dette medfgrer at et polynom (eller en rasjonal funksjon)
f(zy,...,x,) er invariant under alle 3-sykler hvis og bare hvis f(z1,...,z5) er
invariant under alle 5-sykler. Altsd mé det finnes en 5-sykel 7 = (rstuv) slik at
gr # g. Dessuten ma h, = h. Av identiteten (formel (vi) der p; = 3)

9r(Z1,. .. )2 = h(T1,. .. 7)) =&
far vi ved anvendelse av 7 at
gr(x1, .oy 2n)? = (T, ,T0) =&
Altsd er g-(z1,...,2,) en rot i 23 — & = 0. Fglgelig ma
(vii) gr =wg,
der w er en primitiv tredje enhetsrot. N4 anvender vi 5-sykelen 7 fire ganger pa
begge sider av identiteten (viii), idet vi bemerker at 75 = id :
g2 = wgr = w’g
grs = wigr =W’y
gri = wig, =w'g

9 =g =wlg, =u’g.

Altsd er w® = 1, hvilket strider mot at w er en primitiv tredje enhetsrot. Altsd har
vi oppnadd en motsigelse til antagelsen om at den generelle n’tegradsligningen kan
lgses algebraisk, og beviset for teoremet er fullfgrt.

Kommentar. Av de to relasjonene

(rt)(rs) = (rst)
(tu)(rs) = (rst)(stu)

mellom 2-sykler (transposisjoner) og 3-sykler, der r, s, ¢, u er fire distinkte elementer
i{1,2,...,n}, ser man at den alternerende undergruppen A, av den symmetriske
gruppen S, er generert av alle 3-sykler i S,,. (A, bestdr av de permutasjoner i
S, som kan skrives som et produkt av et like antall transposisjoner.) Det er ikke
vanskelig & bruke dette til & vise at en rasjonal funksjon f(z1,...,2,) i 21,...,%n
over Q(&) som er invariant under alle 3-sykler, er av formen

f:b0+b1A7

der by, b1 € F og A =[], ;;<n(zi— ;). Her er A kvadratroten av diskriminanten
D = [lcicjen(mi — z;)? til (*). D er symmetrisk i z;’ene og ligger folgelig i F.
Dette viser at i radikalutvidelsen (**) vil F; = F(A), og nér n > 3 har vi ifglge
beviset ovenfor Fy = Fy(m1), der n; er kubikkroten /£; av et tall & i Fi.
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Niels Henrik Abel
(1802-1829)

Dette er helt i overensstemmelse med det vi vet om den algebraiske lgsningen av
den-generelle annen-, tredje- og fjerdegradsligningen i 3: Det innerste rottegnet er
en kvadratrot, det neste er en kubikkrot.

Vi vender oss na til beviset for Abels teorem. Det beviset vi skal presentere, er
essensielt Abels oprinnelige bevis med en liten modifikasjon som skyldes Kronecker
[21], idet man blant annet unngér Abels inndeling av rotuttrykkene etter grad og
orden. Det siste viser seg & vaere ungdvendig. La oss forgvrig bemerke at i Abels
opprinnelige inndeling forekommer en feil [3, s. 72]. En sa stor matematiker som
W.R. Hamilton [15, s. 248] uttalte om dette punktet: “It renders it difficult to
judge of the validity of his subsequent reasoning”. Koénigsberger [19] viste hvordan
Abels feil lett kan rettes opp, og forgvrig understreket han at Abels inndeling av
rotuttrykkene etter orden og grad ikke har betydning for resultatet.

Bevis for Abels teorem. Ifglge hypotesen om at den generelle n’tegradsligningen
(*) kan lgses algebraisk, finnes en radikalutvidelse L av F':

(iz) FC F(a)C---C F(a,...,8) CF(a,...,6,n) C F(o,...,6,n,0) =L,

slik at L inneholder en rot zytil (*). Her er a,...,0,n,0 rotter i rene ligninger av
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primtallsgrader over den foregéende tallkroppen. Vi skal vise hvordan vi ut fra (ix)
kan finne en ny radikalutvidelse K av F' av type (**).

La 6 i den siste kropputvidelsen F(a,...,6,n) C F(a,...,0,n,0) (det “ytterste
rottegnet”) i (iz) veere rot i den rene ligningen P — a = 0, der p er et primtall
og a € F(a,...,86,n). Vi kan anta at polynomet zP — g ikke har noen rgtter i
F(a,...,6,n). Ellers ville § € F(a,...,6,n) siden F inneholder enhetsrgttene &,
og dermed ville den siste kropputvidelsen i (iz) veere overfladig. Ifplge teorem 3 i
4 B er 2P — a irredusibel over F(a,...,6,7).

Ifglge korollar 2 til teorem 214 B kan z; € L = F(a,... ,8,7,0) skrives éntydig
pa formen

(z) 21 =bo+ b1+ +by_16P71,
der b’ene ligger i F(a,...,6,n). Vikan anta at ikke alle by, by, ... ,bp—1 er 0, fordi
ellers er den siste kropputvidelsen i (iz) overfladig. Sett uttrykket (z) for roten z;
inn i (*). Vi far da
(i) co+019+--~+cp_19p_1 =0,
der c’ene ligger i F(a,...8,n), idet vi bruker relasjonen 67 = a til & gjgre de
forskjellige eksponentene til § mindre enn p. Av korollar 2 til teorem 2 i 4 B fglger
atcp=c1 = =cp_1 =0. '

Erstatt s& 6§ med w' i (z), for i = 1,2,... ,p — 1, der w er en primitiv p’te
enhetsrot:
(xid) Yi = by + by + - 4 by P Digr1,
Setter man = = y; inn i venstresiden i (*), overbeviser man seg lett om at man far

co+ 1wl + - 4 cp PGP

der c’ene er de samme som i (zi). Siden vi allerede har konstatert at ¢ = ¢; =
--- = ¢p_q1 = 0, sa trekker vi fglgende konklusjon: y1,y2,... ,Yp—1 1 (2ii) er rptter
i (*). Merk at ifglge korollar 2 til teorem 2 i 4 B er y’ene parvis distinkte og ogsé
distinkte fra z;. Ved eventuell renummerering av rgttene z1,... ,z, til (*) kan vi
anta Y3 = T2,... ,Yp—1 = Tp. Vi har da fglgende ligningssett:

Tiii 21 =bo+b10+- -+ b0+ b, 16771
P

To =bg +bjwl+---+ bkkak + -4+ bp_lwp_ltgp_l

Tiyr = bO + blwze 44 bkwkigk R bpglw(P—l)iep—l

@p = b+ biwP 0+ - + b P VOF 4y b (P PL
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La k € {0,1,...,p — 1}. Multipliser x;41 i (ziii) med w™** og legg sammen hgyre
og venstre side 1 (zi7). Man far da
152
(ziv) o = — Zw*ki:ﬁi+1,
P
siden )
e
Pt w'—1
dersom p ikke er en divisor i .
For de k € {1,2,... ,p— 1} der by # 0 setter vi né
(zv) v = bp6” .
Av (zv) far vi
(zvi) vl = 000" = bha* € F(a,... ,6,n).

Av (z) far vi

(zvid) Czi=bo+ Z Vg,
keJ

der J = {j > 1|b; # 0}. Dessuten viser (ziv) at by og hver v (k € J) kan uttrykkes
som polynomer i zy, ... ,z, over Q(£). Det er klart at by € F(c, ... ,6,n), og (zvi)
sier at v € F(a, ... ,6,n) for k € J.

La J = {ji,...,j1} Vilager n en ny radikalutvidelse L' av F' ved & erstatte den
siste utvidelsen F(a,...,6,n) C F(a,...,6,n,0) i (iz) med [ suksessive utvidelser,
nemlig

F(a,...,6,n) C F(a,... ,6,n,vj,) C - CF(a,...,6nv5,...,v;)=L".

(Man kan lett vise at L' = L, men det behgves ikke.) Av (zvii) har vi at z; € L'.

La né z; veere enten by eller en av Vfl, .. ,uz . Daer

21 =9g(T1,. .. ,Zn)
for et passende polynom i z1,... ,Z, over Q(£). La z1,... , 2z, veere de forskjellige
verdiene g antar under alle permutasjoner av z1, ... ,Z,. Da er z; enrot til ligningen
(zvidi) h(z)=(z—=2z1) - (z2—2zm)=0.
Man observerer at koeffisientene til h(z) er symmetriske polynomer i xy,... ,2,

over Q(&), og ifplge korollaret til fundamentalteoremet for symmetriske polynomer
i4 A er h(z) et polynom over F. Siden z; € F(a,...,6,n) kan 2, skrives éntydig
pa formen (korollar 2 til teorem 2 i 4 B)

(zix) z=do+din+--+dg-1n?t,
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der d’ene ligger i F(a,...,06) og der n er rot i den rene ligningen ¢ —e =0, e €
F(a,...,0), ¢ primtall. (Vi antar at n ¢ F(a,...,6) slik at 2?9 — e ifglge teorem 3
i 4 B er irredusibel.)

Ved & resonnere pi ngyaktig samme mate som ovenfor, idet ligningen (zviii)
nd spiller samme rollen som ligningen (*) gjorde, finner man at d,n", for r €
{0,1,... ,q — 1}, kan uttrykkes som polynom i z1,...,2n over Q(&), og folgelig
ogsé som polynom i x1,...,z, over Q(£). For de r € {1,2,... ,q— 1} der d, #0
setter vi p, = d,n". Da er u? € F(a,...,6). Dessuten er dy € F(a,...,0).
Denne prosedyren gjennomfgres for alle by og ufl,... ,1/2, og man erstatter sd
den nest siste utvidelsen F(a,...,6) C F(a,...,6,n) i (i) med en suksesjon av
utvidelser basert pd p’ene, analogt det vi gjorde ovenfor med v’ene. (Dersom det
viser seg at d,, = 0 for alle r > 1 i de forskjellige uttrykkene (ziz), sa kan utvidelsen
F(a,...,6) C F(a,...8,n) slgyfes helt).

Vi fortsetter den beskrevne prosedyren helt til vi (etter et endelig antall skritt)
kommer til den forste utvidelsen F C F(a) i (iz). Vi har da oppnddd a finne en ny
radikalutvidelse K av F' av den gnskede formen (**), som beskrevet i teoremet.

Dette fullfgrer beviset for Abels teorem.

C

7. Sluttkommentar

Abel publiserte kun to arbeider utelukkende viet ligningsteorien fgr han dgde.
Det ene var det ovenfor omtalte beviset for umuligheten av & lgse den generelle
n’tegradsligningen algebraisk nar n > 5. Det andre var en avhandling om en
spesiell klasse ligninger som er algebraisk lgsbare [4]. Et stort eksempelmateriale
pa denne type ligninger stgtte Abel pa i studiet av elliptiske funksjoner, spesielt
“delingsligningen”, som er analog til sirkeldelingsligningen 2™ — 1 = 0 studert tid-
ligere av Gauss. Etter Abels opprinnelige plan skulle avhandlingen, foruten de
fem paragrafer den bestar av, ha minst to til som skulle omhandle anvendelser
pa elliptiske funksjoner, spesielt slike som tillater kompleks multiplikasjon. For-
uten delingen av perioden til en elliptisk funksjon skulle den inneholde elliptiske
transformasjonsformler og algebraiske anvendelser av disse. Det er sannsynligvis
kappestriden mellom Abel og Jacobi pa de elliptiske funksjoners omrade som gjorde
at han ikke rakk 3 fullfgre avhandlingen. Man finner forgvrig en innholdsfortegn-
else gjengitt i [1,vol 2, s. 310-311]. De ligninger som Abel studerte i sin publiserte
avhandling, ble senere av Kronecker og Jordan kalt for “abelske ligninger”. Da det
viser seg at disse nettopp er karakterisert ved at de tilhgrende Galois-gruppene er
kommutative, ble Abels navn pd denne maten heftet til kommutative algebraiske
strukturer.

Det som er nevnt ovenfor om Abels avhandling, er symptomatisk. Det er ingen
vanntette skott i hans matematiske forskning, og ligningsteorien gar igjen som en
r¢d trdd i store deler av hans matematiske arbeider. Abel var fgrst og fremst
algebraiker, og han ga flere ganger uttrykk for at ligningsteorien var hans ynd-
lingsstudium. I hans arbeider over elliptiske funksjoner trddte behandlingen av de
forskjellige algebraiske ligninger, som denne teorien er sa rik pa, sterkt i forgrunnen.
Hva mer er, ligningsteorien var i hans hand det mest virksomme verktgy. For ek-
sempel var det uten tvil den algebraiske lgsningen av den elliptiske delingsligningen
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som fra fgrst av fgrte ham til den elliptiske transformasjonsteori. Ogsa i beviset for
det egentlige Abels teorem, det sakalte “addisjonsteoremet”, spiller ligningsteorien
en vesentlig rolle.

Evariste Galois
(1811-1832)

Et meget spennende og interessant emne, bade matematisk og historisk, er spgrs-
malet om i hvilken grad Abels arbeider har bidratt til & muliggjgre Galois’ definitive
analyse av ligningsteorien, som topper seg i sistnevntes beundringsverdige funda-
mentalteorem [14]. Selv om Galois et sted sterkt benekter noen avhengighet av
Abel, sa er nok ikke det hele sannheten. Ingen har behandlet dette emnet s innga-
ende og med sa stor innsikt, savidt artikkelforfatteren vet, som Sylow, som forgvrig
sammen med Sohus Lie sto bak utgivelsen av den andre utgaven av Abels samlede
verker i 1881 [1]. (Fgrsteutgaven kom i 1839 ved Holmboe.) Ved hundrearsjubileet
for Abels fgdsel i 1902 skrev Sylow en artikkel der han gjennomgar Abels matema-
tiske testamente i detalj [30]. Det er to ting Sylow fremhever ved Abels arbeider,
som ma ha pavirket en sa levende intelligens som Galois’. Det ene er den an-
vendelse Abel gjorde av et polynoms irredusibilitet, noe vi har sett flere eksempler
pa i denne artikkelen. Det andre er muligheten av & uttrykke alle rgttene til et
polynom ved en eneste stgrrelse, den man senere har kalt Galois-resolventen. Abel



Gijensyn med Abels og Ruffinis bevis 81

anvender denne i sin siste avhandling om elliptiske funksjoner [1, s. 547] og tenker
seg til og med det irredusible polynomet som har resolventen som rot, redusert ved
a “adjungere” visse “irrasjonaliteter”. Dette sted hos Abel har Galois sitert bade
i avhandlingen “Sur la théorie des nombres” og i den posthume “Mémoire sur les
conditions de résolubilité des équations par radicaux” [14]. Det er nettopp ved den
forente anvendelse av disse prinsipper og ved en slutningsméte som er analog til
Abels i avhandlingen om Abelske ligninger, at Galois beviser sitt epokegjgrende
fundamentalteorem.

Bade Abel og Galois hadde et klart begrep om det vi idag kaller en kropp (tid-
ligere kalt “rasjonalitetsomrade”). I sine respektive arbeider om algebraiske lgs-
ninger av ligninger antar de at denne kroppen inneholder de rasjonale tall, altsa
er det vi idag kaller en kropp av karakteristikk 0. Nar de snakker om rasjonali-
tetsomrader generert eller bestemt av vilkarlige sterrelser z’,z”, ..., er det uklart
om de mener at disse stgrrelsene er uspesifiserte komplekse tall. To argumenter
for at de (implisitt) tenker seg alle stgrrelsene de betrakter, er komplekse tall er:
(i) De tenker seg at komplekse enhetsrgtter er til deres disposisjon, og (ii) de tar
for gitt at alle polynomer de betrakter, har rgtter som ligger i et eventuelt stgrre
rasjonalitetsomrade. Ifglge Gauss’ bevis for algebraens fundamentalteorem er dette
intet problem dersom stgrrelsene er komplekse tall. Beviset for at (ii) er riktig for
kropper generelt, kom senere og skyldes Kronecker.

I Abels etterlatte skrifter finner vi et utkast til et stgrre arbeid om algebraiske
ligninger [5]. Her stiller han seg fplgende problem: Finn formen som en algebra-
isk lgsning til et irredusibelt polynom av gitt grad n mé ha. Han stiller opp flere
teoremer og antyder bevis for disse. Det ble Kronecker [20] som fullfgrte dette
byggverket som Abel la fundamentet for. La oss som eksempel skrive ned den
lpsningen Abel selv meddeler for n = 5 over de rasjonale tall Q. Dersom et irre-
dusibelt polynom over Q av femte grad kan lgses algebraisk, s& ma enhver rot &
kunne skrives pa fglgende form:

€ = A+ Poky*ky Pk ks + PukY P ky Pk Py

+ Pk kS PRPEY 4 Pk PR PR PRy
der

ko=C+B 1+e2+\/h(1+e2+ 1+e2>

Py = A; + Askg + Asks + Askoks .

Her er A,B,C,e,h, Aq, Ay, A3, A4 rasjonale tall, og kg, k1, k2, k3 fremkommer av
den gitte formelen for kg ved a ta alle mulige kombinasjoner av £ foran de to
distinkte kvadratrottegnene som forekommer. Dessuten fremkommer Py, Py, P, Ps
av formelen for Py ved syklisk ombytting av kg, k1, ko, k3. Motsatt vil en £ som er
pa formen ovenfor, veere rot i et polynom over Q av femte grad. Se forgvrig [35]
Band I, §196.

Av de formler Abel forgvrig stiller opp for det tilfellet at graden er et primtall,
utleder han at rgttene til et irredusibelt polynom av primtallsgrad som er algebraisk
lgsbart, kan skrives som et polynom over grunnkroppen i to vilkarlige av rgttene
[30, s. 21]. Han formoder at den motsatte implikasjonen er riktig. Galois beviste
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dette ved a bruke sitt fundamentalteorem, og det inngar som den siste proposisjon i
hans skjellsettende arbeid “Mémoire sur les conditions de résolubilité des équations
par radicaux”. (Dette arbeidet ble fgrst publisert i 1846, fjorten ar etter Galois’
dgd; av Liouville i det matematiske tidsskriftet som sistnevnte grunnla [14].) Ved
& bruke “Abel-delen” av det ovenfor omtalte resultatet til Abel og Galois, kan man
lett vise at ingen polynomer over Q av formen

7P +292° — ¢,

der p er et primtall > 5 og ¢ er et vilkarlig primtall, kan lgses algebraisk over Q.
Man viser nemlig at polynomet er irredusibelt over Q og antall reelle rgtter er
> 1 og < p. (Observer ogsd at “Abel-delen” gir et nytt bevis for at den generelle
femtegradsligningen ikke kan lgses algebraisk.)

Sluttbemerkning. Ved en sékalt Tschirnhousen-transformasjon kan man redusere
en femtegradsligning til en ligning av formen z° 4+ ax + b = 0. For at en slik
ligning over Q (forutsatt irredusibel) skal veere algebraisk lgsbar er det ngdvendig
og tilstrekkelig at koeffisientene er av formen

 But(4Xr+3)
TN+
. 4B (AN +3)(2A+ 1)
N A2 +1

med \,u € Q. For eksempel gir A = —24/7 og u = —5 koeflisientene i Eulers
ligning nevnt i 2. (Se Netto [23].)

8. Litteratur

Heinrich Webers [35] monumentale trebindsverk “Lehrbuch der Algebra” fra 1895
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som basis for definisjon av Galois-gruppen.

En forlgper for Webers lerebgker i algebra er Camille Jordans [17] klassiske
“Traité des substitutions et des équations algébriques” fra 1870. Med Jordans
“Traité” ble Galois’ ligningsteori den matematiske verdens fullstendige eiendom.
Jordans verk gir den fgrste originale fremstilling av Galois-teorien siden Galois selv.
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annet kriterier for ndr en endelig gruppe er opplgsbar, drgftes inngaende. Et stort
eksempelmateriale av spesielle ligninger hentet fra teorien for elliptiske funksjoner
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Den fgrste laereboken i algebra som behandlet Galois-teorien, var tredjeutgaven
av Serrets [29] “Cours d’algebre supérieure” fra 1866. (Fgrsteutgaven kom i 1849.)
Presentasjonen av Galois-teorien er en parafrase av Galois’ egen fremstilling, men
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Ellers finnes det en omfattende litteratur som behandler forskjellige aspekter ved
den klassiske ligningsteorien, og vi tar med i litteraturlisten nedenfor noen som er
spesielt relevante for denne artikkelen. Nar det gjelder historikk over ligningsteorien
henviser vi til de meget lesverdige artiklene til Kiernan [18] og Ayoub [7], samt til
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