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1. Innledning

Abels addisjonsteorem er et grunnleggende resultat med mange ansikter. Det
kan betraktes som et resultat om algebraiske funksjoner og deres integraler, som
et teorem om Riemannske flater eller ogsa som et teorem om algebraiske kurver.

Den klassiske formuleringen — »addisjonsteoremet« — tar sitt utgangspunkt i et
rikt eksempelmateriale av velkjente identiteter mellom summer av (»bestemte«)
integraler av algebraiske funksjoner. 1 de enkleste tilfellene dreier det seg om -
integraler hvor de omvendte funksjonene f.eks. kan vere eksponensialfunksjonen
eller trigonometriske funksjoner. Addisjonsteoremet er da bare en annen méte 4
uttrykke velkjente identiteter (funksjonallikninger) som ' gjelder for disse
funksjonene. I de mer moderne og »glatte« formuleringer av Abels teorem er det
opprinnelige aspektet som et »addisjonsteorem« bare implisitt tilstede, kamuflert
bak begreper som kompakt Riemannsk flate, divisor, Picard-gruppe og Jacobi-
mangfoldighet. I en av disse moderne. formuleringene vil Abels teorem bare
uttrykke at en bestemt gruppe-homomorfi er injektiv, mens en annen formulering
vil gi Abels teorem som. en nedvendig og tilstrekkelig betingelse for at en gitt "
divisor pa en kompakt Riemannsk flate er en hoveddivisor (d.v.s. kommer fra en
meromortf funksjon pa flaten).

I vare dager foler vi at det er nedvendig & avklare en rekke grunnleggende
begreper for vi gir les pd en rigores behandling av Abels teorem. I s méte var
Abel langt forut for sin tid. Vi m4 nemlig huske at han ikke eksplisitt brukte slike
fundamentale begreper som kompleks integrasjon, analytisk fortsettelse eller
Riemannsk flate. Men han har tydeligvis vert ledet av en meget sikker intuisjon
pa disse eréder. Ogsa det grunnleggende begrepet slekt (genus) som inngdr i
Abels teorem, var uavklaret pa4 Abels tid og han fremstar ogsi her som en pionér.
Nér det gjelder selve den komplekse integrasjonen, er det meget sannsynlig at
Abel under sitt ophold i Paris stiftet bekjentskap med Cauchy’s grunnleggende
arbeide om dette fra 1825, men Abel gjor ikke eksplisitt bruk av dette. ’
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2. Elementere eksempler

Spesialtilfeller av Abels addisjonsteorem finnes allerede i de helt gruhnleggende
deler av differensial- og integralregningen. Her ytrer dette teoremet seg som
velkjente funksjonallikninger for ‘element®re funksjoner som logaritmen og de
(omvendte) trigonometriske funksjoner. I infinitesimalregningen behandles disse
identitetene i reell form mens Abels teorem egentlig angar de utvidede komplekse
versjonene av dem. '

Det mest banale «addisjonsteorem« har vi i likningen

X1 X2 Xy + X2
1) ‘ J dt+J dt = J dt
0 0 0

som ogsé er gyldig for kompleks integrasjon. Om vi skriver ¥ (x)=[3 dt blir ¥(x)
=x og vi kan derfor si at (1) er addisjonsteoremet for identitetsfunksjonen.

I stedet for forst & innfore eksponensialfunksjonen og sd definere logaritmen
som den omvendte funksjon, er det idag mange lereboker som tar -sitt
utgangspunkt i funksjonallikningen

@ f)+f0) = f(xy)

som den sentrale egenskap for logaritmen. De viser da (se f.eks. [4] s. 227) at om
det eksisterer en deriverbar lesning +0 av (2) s& er den gitt ved

dt
3) flx) = J " for x>0
] 1
At (3) virkelig tilfredsstiller (2) for x>0 folger ved enkel integralregning. Vi har
altsd

1 dt  [*dt *1*2 dt
[eofe- [
: J1 t 1 t 1 t

For kompleks integrasjon, som i dette tilfellet avhenger av integrasjonsveien,
blir (4) bare en identitet modulo et helt multiplum av 27i. (Vi forutsetter at x;x,
+0). Ved gjentakelser av (4) far vi den mer generelle likningen

' . x1 Jt x2 ]t } Xn it X1Xp .0 X Jt
) j —+j _—+...+J —=J =
1t 1t 1t 1 t

slik at err vilkdrlig endelig sum av integraler av type (3) kan reduseres til ett
integral av samme type, bare de evre grenser i integralene tilfredsstiller den
relasjonen som er angitt. Vi skal se at dette er en sentral egenskap ved det
generelle Abelske teorem selv om vi vanligvis ikke kan klare oss med bare ett
integral pa heyre side. '
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I »addisjonsteoremene« (1) og (4) er »integrahden en rasjonal funksjon. Et annet
eksempel av samme enkle type har vi i identiteten

X1 X2 X3 dl’ . .
© J dt +J dt =J " med x3_x1+x2

o 1427 o 1422 o 1412 T l—xy%,

som ikke er noe annet enn den velkjente funksjonallikningen for arctan x, Ogsa
her ma denne likheten i det komplekse tilfellet taes med reservasjonen »modulo
perioder«. En periode betyr verdien av samme type integral, men med lukket
integrasjonsvei. Alle integrasjonsveier legges L}tenbm polene som her er +i.

Endelig nevner vi et elementzrt eksempel hvor integranden ikke er en rasjonal
funksjon, nemlig addisjonsteoremet

™ J"l dt +f"2 dt _r dt
. , o |/1=¢? 0 |/1—t2 0 |/1—t2

med x; = xﬂ/l -x3 +x2]/1 -x32

som ved »omvending« ikke er noe annet enn en omskrivning av den velkjente
identiteten sin (u+v)=sinu cos v +cosu sin v.

3. Elliptiske integraler.

I alle eksemplene ovenfor er integralene av de gitte algebraiske funksjoner
kjente elementare funksjoner som In x, arctan x og arcsin x, og identitene mellom
integralene er kjente funksjonallikninger for disse funksjoner. Vi kunne altsd i
disse tilfellene holdt integralregningen helt og holdent utenfor om det ikke var for
4 gi noen helt elementere illustrasjoner av Abels teorem. ‘ _

, Allerede tidlig i integralregningens historie stotte man pa enkle kontinuerlige

. funksjoner som man ikke kunne integrere (antiderivere) ved hjelp av de vanlige

elementere funksjoner. De elliptiske integraler danner det historisk viktigste

eksempel pa en slik situasjon. Ved passende variabelbytte kan disse integralene -

overfores til tre normalformer. Den forste og mest benyttede normalform pa Abels
tid var den sikalte Legendreske normalform

® ’J" dt
e /(L= (1 -k

mens en i vare dager baserer seg pad en eneste normalform, nemlig den
Weierstrasske

9) o u\—J _3_it_
a]/4t — gt —g3
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som ved omvending, d.v.s. ved & betrakte x som en funksjon av u leder til den
elliptiske funksjon som kalles Weierstrass’ g-funksjon.

Man ble tidlig ledet til elliptiske integraler i forbindelse med diverse anvendelser

~ av integralregning i geometri og mekanikk, som ved beregning av buelengde pa en
ellipse (derav navnet), svingetid ved pendelbevegelse og senere i forbindelse med
konform avbildning. En realiserer den konforme ekvivalens mellom det ovre
halvplan og det indre av et rektangel ved hjelp av et elliptisk integral. Denne
sistnevnte anvendelsen av elliptiske integraler er spesielt informativ fordi det gitte
“rektangel star i direkte forbindelse med dobbeltperiodisiteten for den omvendte
elliptiske funksjon (se [3] s. 230-232, kap. 7 i [3] gir forevrig en utmerket
introduksjon til elliptiske funksjoner). , '

Selv om en pa Abels tid ikke hadde greid & uttrykke integraler av typen (8) eller
(9) ved elementzre funksjoner, var en den gang ikke klar over at dette er
prinsipielt umulig. Dette ble forst vist av Liouville i 1837. .

Teorien for elliptiske funksjoner har en lang forhistorie i teorien for elliptiske
integraler. 1 1718 gjorde den italienske greve Fagnano en bemerkelsesverdig
oppdagelse i forbindelse med lemniskatens buelengde. Lemniskaten er en plan
kurve som i sin enkleste form ser. ut som et liggende attetall

Fig. 1.
med likningen (x2+y?)?=x2—)? i vanlige rettvinklede koordinater. Buelengden
for denne lemniskaten regnet fra origo til et punkt i forste kvadrant med
radiusvektor r (0=r=1) er gitt ved det elliptiske integralet

s(r) = f ]
o)/1-x*
Ved to suksessive variabelbytter

212 l 2u?

2 2
1+ %%

far vi addisjonsteoremet (eller snarere »duplikasjonsteoremet«)

' » r dx v dx
(10) f = 2j
~Jo)/1—x* o [/1—x*
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hvor r og u er forbundet ved

a1 —u)
IENTEE

2

En kan si at formelen (10) for lemniskaten er motstykket til formelen sin 2u
=2sinu cosu for sirkelen, eller om man vil formelen (7) med x, =x,.

Euler fortsatte Fagnano’s undersékelser og fant i 1753 at addisjonsteoremet for
lemniskateintegralet har formen :

e (oAt st
(11 J - +J = J
' o J/1—=t* Jo |/1—1t* o /1—1t*>

hvor

B xll/l —x3 +x2|/1 —x}
P 1+x3x3

‘Den tilsvarende relasjonen mellom x;; X, og x; i det mer generelle
addisjonsteoremet for Legendre’s elliptiske integral (8) er

o)/ =)= k2x3) +x,)/ (1= xD) (1 - k*x})
(12) X3 = i 3.2.2
, ‘ 1 —k*xix3

Vi far (11_) 'som spesialtilfelle av (12) ved & sette k=i og (12) generaliserer ogsa
(7) ved & sette k=0.

4. Det generelle addisjonsteoremet

Hva er det s& som er den felles kjerne i de eksemplene vi har gitt? Vil den
vanlige leser pd dette grunnlag kunne gjette seg til hva et eventuelt generelt
addisjonsteorem sier ? Neppe. Det eksempelmateriale vi har gitt, er nemlig meget
spinkelt i forhold til den generalitet som Abels addisjonsteorem har. Etter de
eksemplene vi har gitt, skulle en kanskje tro at summene av integraler av
algebraiske uttrykk av liknende type som de vi har betraktet — alltid kan reduseres
til ert integral av samme form. Dette er galt. I denne henseende er nemlig vare
eksempler en smule villedende siden de alle angér tilfeller hvor slekten er O eller 1.
Dette var selvfolgelig Abel klar over. I et brev til Crelle fra Paris i august 1826 (se
[2]s.267) gir han et eksempel pd et addisjonsteorem hvor det inngér en kvadratrot
av et polynom av 6 grad — et sdkalt hyperelliptisk integral av slekt 2. I dette
tilfellet angir . Abel helt eksplisitt hvorledes en sum av tre integraler kan
tilbakefores til en sum av to integraler av samme type.

P4 dette punkt kreves det egentlig en nermere presisering av begrepet
algebraisk _funksjon og kompleks integrasjon av slike funksjoner- (eller
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differensialuttrykk). Selv om Abel ikke formaliserte disse begrepene slik vi gjor det
idag, er det klart at han hadde en presis og sikker. intuisjon om dette. Et
irredusibelt polynom i to variable, med komplekse koeffisienter og av grad n med
hensyn pé y, vil ved likningen f(x,y)=0 implisitt definere y som en algebraisk
‘ funksjon av x dersom vi tar de nedvendige forholdsregler med hensyn til den
flertydigheten som oppstar. - Innenfor en liten sirkelskive har vi normalt n
holomorfe funksjoner y, (x), y,(X),. . ., y,(x), slik at f(x,y;(x))=0 (i=1,2,...,n) nar
x ligger i denne sirkelskiven. Nar vi integrerer en algebraisk funksjon langs en
kurve 7, er forutsetningen at vi gjer et utvalg av lokale lesninger som varierer pa
en kontinuerlig méte langs y. Det samme skal vere tilfelle nir vi mer generelt
betrakter sikalte Abelske integraler, det vil si integraler av typen

(13) j @ (x,y)dx
hvor y er en algebraisk funksjon av x mens ¢ er et rasjonelt uttrykk i x og y.
Endelige summer av Abelske integraler av typen

) J ' p(x.)dx

skal vi, som i [5], kort kalle for Abelske summer. Disse Abelske summene kan
ogsé oppfattes som summer av formen >/, F (x;) hvor F er en funksjon som har ¢
som derivert.

Abels addisjohsteorem. Hvis F er en funksjon som har en gitt algebraisk funksjon
o som derivert (dF = @(x,y)dx) sd finnes det et helt tall g som bare avhenger av ¢
slik at vilkdrlige Abelske summer Y F_ IF (x;) alltid kan skrives som en sum av formen
Yrrs,  F(x)+Q hvor xjene (j=p+1,...,p+g) er algebraiske uttrykk i x;-ene
(i=1,2,...,p) og Q er en sum som bestdr av rasjonale funksjoner og logaritmer

til slike.

Mer enn mange andre resultater om algebraiske funksjoner er Abels teorem en
analytisk setning. Likevel er Abels bevis for addisjonsteoremet preget av hans
bakgrunn i likningsteori. En hovedsak i beviset er nemlig setningen om at en
symmetrisk rasjonal funksjon av rettene i en algebraisk likning kan skrives som
en rasjonal funksjon av likningens koeffisienter.

Addisjonsteoremet uttrykker at vilkarlige Abelske summer knyttet til den
algebraiske funksjonen ¢ (som i sin tur avhenger av den algebraiske funksjonen
y(x)) kan reduseres til Abelske summer med hoyst g ledd (pluss et integral av en
rasjonal funksjon, svarende til Q ovenfor). Vi kan derfor underforst at vi har valgt
-g minimal med hensyn-pa denne reduksjonsegenskapen (d.v.s. at vi ikke alltid kan
redusere en Abelsk sum med g ledd til en tilsvarende sum med ferre ledd).
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5. Algebraiske kurver med singulariteter

Likningen f(x,y)=0 hvor f er et irredusibelt polynom i to variable med
komplékse koeffisienter leder til begrepene algebraisk funksjon, (kompakt)
Riemannsk flate og (plan) algebraisk kurve. Et stykke pa vei er disse tre begrepene
ekvivalente. Likevel ma en si at det er kurvesynspunktet som presenterer det
rikeste og mest fullstendige bilde av likningen f (x, y) =0. For dette synspunktet tar
hensyn til den meget detaljerte informasjon som ligger i kurvens singulariteter
(multiple punkter). Vi fir en viss visualisering av de forskjellige typer av
singulariteter nér vi i et plan inntegner de punktehe pa kurven ¥ ={(a,b)|f(a,b)
=c} hvor begge koordinatene a og b er reelle. F.eks. ‘

QY
N

Fig. 2.

(@) x3—x2+y?=0.
Ordinert dobbeltpunkt i
origo med tangentene
x+y=0 og x—y=0.

Fig. 3.

(b) x3—y?=0.

Ikke-ordinaert dobbelt-
punkt (spiss) i origo og
med y=0 som dobbelttan-

Fig. 4.

(C) (x2+y2)3 __\4x2y2=0'

Ikke-ordinart firedobbelt-
punkt i origo. Hver av
koordinataksene er en

gent. dobbelttangent.

Selv om disse visualiseringene er ufullstendige (idet de bare representerer den
reelle delen av kurven), har de en betydelig heuristisk verdi. Ut fra dette anskuelige
eksempelmateriale er man blitt ledet til en presis klassifikasjon av alle: typer av
singulariteter. En kan si at singularitetene gir et bilde av hvorledes kurven snitter
seg selv. )

Om vi kompletterer kurven X til en projektiv kurve 2, har vi felgende
forbindelse mellom kurvens slekt g, dens grad n og multiplisitetene r; i dens
singulzre punkter (d.v.s. de punkter hvor vi har r;>2)

(n=1n=-2) rili—1)

2 _22

(14) . g =

Summen til hoyre i (14) ma tolkes pé en bestemt mate om den ogsé skal vare
gyldig for ikke-ordinzre singulariteter hvor vi har ferre tangenter enn
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multiplisiteten tilsier. (Bidraget til denne summen fra en singularitet av typen (c)
vil feks. bli 8 istedet for 6 pa grunn av de to dobbelttangentene.) Sterrelsen
n=(n—1)(n—2)/2 kalles ofte for kurvens virtuelle slekt. Vi har =g med likhet
hvis og bare hvis kurven er uten singuléritcter. ‘

Et annet sentralt tema i teorien for algebraiske kurver er sporsmélet om
hvorledes en gitt kurve blir snittet av andre plane algebraiske kurver. I
virkeligheten er det dette synspunktet som ligger til grunn for Abels egen.
behandling av addisjonsteoremet. Abels versjon inkluderer ogsd de tilfeller hvor
deén gitte kurve har singulariteter, noe som vanligvis gir tapt i de moderne
fremstillingene av Abels teorem pa Riemannske flater.

For det Abel gjor for & oppnd forbindelsen mellom x;-ene 6 og x;-ene i
addisjonsteoremet ovenfor er folgende: I tillegg til den faste kurven f(x,y)=0
betrakter han  en kurveskare h(x,y,a,,d,5,...,4,)=0 hvor parametrene
ay,a,,. . .,4, inngdr i polynomet h pa en line®r mate. P4 grunn av at vi har r
parametre & rutte med, kan vi fritt velge r punkter pd " og tilpasse a;,. . ., a, slik
at h skjerer X i disse punktene med absisser x,x,,...,X, Sterrelsene Xx;
(j=p+1,...,p+g) i addisjonsteoremet blir da bestemt som absissene for de
resterende (»endelige«) skjeringspunktene mellom h og f. En mate 4 produsere
spesielle addisjonsteoremer pa er & velge h av grad m og fastlegge mn — 7 skjerings-
punkter med kurven  slik at vi etter Bezout’s teorem far 7 resterende skj@rings-

_ punkter.

Vi kan feks. anvende denne geometriske metoden péd irredusible kubiske
kurver. Da er f(x,y) et irredusibelt tredjegradspolynom i x og y som vi
»homogeniserer« med en tredje variabel z for 4 kunne betrakte den tilhorende
plane projektive kurve . Som h(x,y,a,,. . .,a,)="0 velger vi den »variable« linjen
y—a,x—a,=0, altsd r=2. Vi kan legge denne linjen gjennom to punkter pd #" og
dermed f4 et entydig bestemt resterende skjeringspunkt med 4. Det &dpenbarer
seg ni en fantastisk forbindelse mellom geometriske, analytiske og algebraiske
egenskaper. Noen  av disse er summert opp i det folgende skjema.

Vi ser allerede av dette eksemplet at synspunktet »Riemannske flater« ikke
makter & skille mellom et ordinert dobbeltpunkt og en spiss. Derimot gir Abels
opprinnelige addisjonsteorem en fullstendig klassifikasjon av (irredusible) kubiske
kurver. Addisjonsteoremet forer  til at de ikke-singulere punktene pa. en
irredusibelvkubislk kurve kan organiseres til en gruppe pé en naturlig méte. De
gruppene vi far i de tre tilfellene er: C/A =kvotientgruppen av den additive gruppe
'C av de komplekse tall med hensyn pa den undergruppen av C som genereres av
to komplekse tall w, og w,, som er linezrt uavhengige over kroppen av de reelle
tall, C* =den multiplikative gruppen av alle komplekse tall +0~— og den additive
gruppen C.

Straks vi gar til kurver av heyere grad hvor g>2, blir bildet meget mer
komplisert. Men nettopp her er addisjonsteoremet et viktig instrument i den
videre teori. ' '
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Irredusible Normalform - n | g| Antall Addi- Riemann-| Gruppe
kubiske plane inflek- sjons- flate
kurver (n=3) sjons- teorem
‘ punkter
-
Uten singu- | y*= . 111]9 Ellip- - Torus- Cc/A
lariteter a(x—=x,)(x—x,)(x —x3) tiske - flate
. hvor x;-ene er funksjo-
parvis forskjellige ner
’ (p-funk-
sjonen)
Et ordinert | y?>=ax?(x+1) 110f3 Logarit- | Kule- c*
dobbelt- men flate
punkt (se(4))
En spiss y*=ax? 1{0]1 Identi- Kule- C
' ' tets- flate
funk-
sjonen
(se(1)

F4 teoremer i matematikkens historie er blitt 's& mange superlativer til del som
addisjonsteoremet. Men i stedet for & gjenta hva Legendre, Jacobi, Picard, Mittag-
Leffler og andre har sagt om dette i tidligere tider, er det kanskje av vel sa stor
interesse & hore hva Griffiths sier i 1976 ([5] s. 322). )

».....Confronted with this state of affairs it seemed a good idea to go back and
have a look into just how our undérstanding of the beautiful codimension one
theory came about. Here, almost certainly the decisive step was Abel’s theorem.
This claim is by no means intended to minimize the later works of Jacobi,
Riemann etc., but rather to maintain that it was Abel’s theorem which initially got
the ball rolling. His general addition theorem provided the key to unlocking the
structure of an algebraic curve via its Jacobian.«

Denne artikkelen kan bare i liten grad rettferdiggjere eller begrunne det
Griffiths her sier. Betydningen av Abels teorem ligger forst og fremst pad et
videregiende og teoretisk plan og kan vanskelig forklares tilstrekkelig innenfor en
kort artikkel som denne. Det man kan hape pé er at de antydninger som er gitt,
vil inspirere noen til et noyere studium av Abels teorem. ’
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